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envi ronment requires the ability of user-computer conmiunicat ion
at a high level. This operating system provides an environment
which facilitates the deve l opment of special purpose languages 

____at a very high level .by means of the threaded code.

The principles of the design of the system are discussed 
_____

and contrasted with othe r reported approaches to l aboratory
computing. Examples which denonstrate the multileve l nature of 

Ithe design and the advantages of this approach are described.
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ABSTRACT

An operating system for a laboratory compute r network has been liii -

plemented util izing the principles of hierarchically structure d soft-

wa re and hardware. The sys tem was developed using a threaded code tech-

nique which is shown to provide a greater degre e of expandabi l ity and

maintainability than is found wi th operating sys tems deve loped with less

structured progra mm ing techniques. The continuous evolution of computin g

needs in a research environment requires the avai lab i l i ty  of’ user-computer

comniunication at a high level. This operating system provides au environ-

ment which faci l i tates the deve lopment of special purpose languages at a

very high level by means of the threaded code .

The principles of the design of the system are discussed and con-

trasted w ith othe r reported approaches to laboratory computing. Exampl es

which demonstrate the multi level nature of the design and the advant ~qes

of this approach are described. 
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INTRODUCT ION

In a typi cal uni vers i ty chemi s try research envi ronmen t , computer

system support is requi red for a variety of research projects in areas

such as chromatography, electrochemistry , and spectroscopy , among others .

The type of computer support required varies greatly f ro m experi ment to

experi ment , but usually includes di rect instrument control , data acquisi-

tion and storage , and computation of results . Ins t rument control may

involve the use of fi xed programs for a given class of experi ments or it

may require sophistica ted interaction with the user. Data acquisit i on

requirements can va ry from low speed , high vol ume data to very hi gh speed ,

relat ive ly low volume data. Some experi ments may require sma l 1 amounts

of real—time computations , while othe rs , such as s iniulations, may run for

hou rs or days . At any gi ven time , approximately ten people may be employed

in up to ten different research projects requiring some kind of computer
support.

The fundamental p rob lem in laboratory computing is making computer

services available to the experi menter when and where they are needed at

a reasonable cos t in equipment and user time . This envi ronment is an

especially diff icult one because of its very wide range of computati on,

data acquisi tion rate , and data volume problems . The constant evo lution

of the software required by the ever chancing nature of researc h adds an
extra complicati on.

L ~. ~~~~~~~~~~~~~~~~~~~
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Paqe 2

Most of the specifi c probl ems of laboratory computing can he des-

cri bed in terms of commun ication or information fl ow requirements . Data

acquisition obviously involves a flow of information from instrument to

computer. Similarly, instrument control , data reduction , and presentation

of results can be thought of as information flow problems . The need to

change software through programming is also an information flow problem

because the user must communicate his ideas to the computer.

The purposes of a l aboratory computer operating system are to pro-

vide for orderly information fl ow among the hardware and software com-

ponents involved in an experi ment and to communicate wi th  the user of

the system. Specific services are provided to aid in moving data and

results from experiment to user and commands from user to expe rim ent.

Other services are provided to aid in application software development.

The effect of these sets of system s~rvices is to create an environment

in which experiments may be more conveniently perfo rmed.

The environment provided by the system software is much more struc-

tured than that provided by the bare minicomputer hardwa re . Thi s struc-

ture along with the specifi c services provided by the system sim p1ifie~
the writ ing of application programs by reducin g the number of decisions

a prograniner must make and the amount of detail included in each prograii .

However, a more specificall y structured envi ronment is necessaril y less

genera l than the hardwa re envi ronment. An operating system improves

applicability to those kinds of information flow problems most likely to

be encountered by reducing generality . A system desi gned to a wider
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range of app ) i cat ions requi res greater genera Ii ty and , there fo re ,

more d i f f icul t  to implement and less sat isfactory for any one appl ica-

t ion . Thus , there are some very good turn—key systems des igned for

speci f ic  applications, but few genera l purpose research laboratory com-

puter systems . The ideal laboratory computer sys tern shou ld provi de” a

f lexib le en ronment as an ove rall structure plus some me amis of c )‘t’ .tt i nq

‘~ i~t~’c i a 1 pur pose env I ronments for spec i f ic  cl as ~.es o t p rob ) ems.

In a w e) 1 —st ru c tu r e d  env i roninen t there is at leas t  come hope th a t

Independent I ~ designed programs can coniiiuni cat e wi th each other and that

p ,‘oqramrne rs can tinde rs tand eac h others work.  The s t ruc t u re s hoim hi I in—

pose an a utomat ic  di s cip i Inc on the sys tem users gui ding the m into

compat ib le program and data construct ions. ‘Th is is espec i a l l y i mp o r t a n t

o a un i t.ers I t ’~’ ‘.et t i nq e~Piere ’ the userS iix~s t o f t en  a i ’e stud e nt who

have not vet developed much sd f—disc 1 p1 i ne in proqranvni ng and will not

he around long enough to imia iota in the I r own work . Howeve r , because o

the requirements ot f lex i b i l i ty  in researc h projects 
* 

thi s disc ip l ine

inus t ht’ 1 fl )OSC d without excess i ye restrictions on general i tv . It is

bet te r  to provide tanda,’d means for so lv ing  p ’obl ems i-at he,’ than re-

s t r ic t  i nq the Li nd -. of i~rohlem s w h i c h  can he so l ved .

Tb I c paper tie cc r i he s an i nno vat I ye approach to an operat i nq sv s tern
whi c h i ~ ca ;)a b 1 e of p rev I di nq the 1 ow 1 eve ) gene ra ) i t  ~ needed to C OlilliUn I —

cate wi th  a van etv of spei’i f i c i nstruncnts as wel l as providing the

hi gh leve l of commimu nicati on requi red by a va r iety ot coot I nuou\l y e~ ol vi nq

ex per ime nts.

A A



Page 4

Hierarchic ally Structured Hardware

The only economi cal way to provide the required variety of computer

services in this research laboratory environment is through the use of a

hierarchy of computers . For efficiency , expensive peripheral equipment

and sophisticated software are share d , as much as possible , in one cen-

tral system which is ori ented toward the support of software development

and data reduction computation . Such a medium to large scale centra l

system cannot , however , be made sufficiently flexible and genera l to also

support simultaneous data acquisiti on and experiment control under a

wide range of conditions. Small , dedicated systems can better handle

the data acquisition and experimen t control problems , but , without a

large investment in peri pheral equipment and system software , they are

not able to supp ly adequate software deve l opment and coniputation ser-

vices. Dividing computer support services into two classes , operating

in two diffe rent environments , results in  better service in both environ-

ments.

Our approach to this problem has been to develop a computer system

which provides for a divisi on of l abor between one central computer and

several (currently two) peripheral compute rs . The hardware structure for
this system , wh i ch is known as the Hierarchical Interactive Sharing Sys-

tem (HISS); is shown in Fi gure 1. The periphera l computers can devote thei r

full attention to the instruments attached to them while the central corn-
pu ter provides the data storage capacity, computing power , and extensive

periphera l equipment to effectively extract information f rom the data .

Also , during the software preparation phase , the central compute r ’ s 

- -~~~~~~~~~~~~ - ~~- ----
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more extensive memory and peri pherals greatly improve the programme r ’ s

eff ic iency .

If support serv ices are divided between local instrument control

computers and a centra l computer , then some foru m of comm unication imm us t

be provided for the transfer of data , commands , and programs . This corn-

niunication may be through user carried messages , coumiixrn peripherals

such as paper or magnetic tape , di rect data lines , shared per iph era ls

such as a single disc dri ve for two computers , or even shared ma in memory.

The various communication possibi l i t ies have a wide range of data traui s-

fer rates , complexities , and costs .

The HISS system uses multiplex ed di rect parallel data line coninuni—

cation between the centra l computer and eac’~ peripheral computer. This

techni que offers sufficient data transfer speed for our experiments ,

allows the central and local computers to he located in differen t labo ra-

tories , and is not too difficult or expen sive to build. The mul t iplexe r

electronics are illustrated by a simplified schematic in Figure 2. Un-

der centra l computer software con trol any one of up to 15 peripheral

ii
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to r s ta t ions nay be solo c ted by the mu it i p 1 e so I’ . In foru’~, t I Oh ma\

then he t rans torre d, i n pa r a l l e l  , in ci thet’ di m t ~~. t l oll at rates of up to

~~ ,~
)t)

~
) lu-hi t words per secouid . 1 he actu al ,‘ate tlept’iids on tho le ,mq t Pi

of the c Oti l i Oc t i ny  ca bl e  ami d the ~-. peed of ’ th e oe ri phora 1 ~ompu o r.

Operat j ug s y s t e m  so t t t ~a u - t’ is requl red to support t h i s  h ierarchi ca l

hardware om’~ani :at ion and the app i icat  100 pro~mran is us ing 1 t . 1 hi’. ‘.~ ‘- t em

nus t P h O V I  do e f f i  ci cot coumui~mn i cat ions between the ct ’n t ra 1 co mpute r and

pen phera 1 com~m it ers so that svs torn cervices can [
~C e f f e c t  i vo l v u’.ed h~

e\po ,’ i rents win i t ~ the f l e x i b i l ity of the periphera l computers is ma i n—

• t a i miod .

Tlit’ tOI1OW i~~~ goa ls w el t ’ set for the dos ign of ’ th Is 1 abora t em - v com -

puter sy s tem:

Prey ide co a l—t ime  data acgui s i t  100 t or a ~‘a ~‘j et of un,-e 1 at od
ex pe r iments.

~
‘
. Provide mass storage for data and proqt’anviing .

3 . Provide lot  o ract i ye contro l of t”spo ,’ irent ‘-.
4. Prov ide sot’hi s ti cated data massagin g duti uti e\pe ri  flk’hi t s

5. Previ do re lat i vo )~ f a s t  computati onal speed.

~ ~‘~~yj~j~* for appropriate ma intaina bi 1 1 tv ot  systerm sott w au -e.

Provide for future expandabi li t -v ~ i s~ st eumi software .
8. Prov id e both the t’ lexibi 1 1 t r necessar y f o r  a research onvi reui—

men t and s uffi ci cut st ruc t nrc to lessen au t ho,’ dependen CC’ of
uset’ software .

‘) Provide for efficien t chemi st—co mpute ,’  con~mmun i cat ion at a level
consist e n t wi th t he problem and the chemists  backgroun d.

A computer sv~ tern may he put toget her and opt’ rated in a great many

different ways. At the t l ine this system was hem planned , the on 1

I I
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viable choices for the hardware were minicom pute rs from various manu-

facture rs. More recently, smaller and less expensive microprocessors

have been developed . These are log ical candidates for peripheral corn-

pu ters in a laboratory computer network. Experiences with the HISS

• system should be applicable to designs using them as well as to the

niinicomp u~ers actuall y empl oyed.

Software for microprocessor based laboratory systems is still poor-

ly developed because their very low hardware cost discourages spendin g

very much on system software. They have been used principally in the

research l aboratory as built in controllers for instrumentation rather

than as user programmable computers . As part s of a hiera rchical system ,

however , they could become an important addition to general purpose l abora-

tory computing systems .

Software for minicomputer based laboratory systems is more readil y

available than it is for microprocessor systems , but it is still not

satisfactory for hierarchically structured hardware or the kinds of ex-

peri ments performed in this laboratory . The centra l coriiputer operated

initially under a fairly simple disc based operating system and each

peripheral computer operated under an even simpler core based operatinq

system. None of these operating systems are very wel l desi gned for a

laborato ry computer environment. They are good examples of older , larger

scale computer system designs reduced in size and capabilities and put

into a small laboratory computer. Communication between computers occurs

through coninon I/O devices such as paper tape , a slow , bulky , and error

i
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Page 8

p rone med i um. Conse quentl y, very l ittle communication between computers

occurred .

Most vendors of laboratory computers have some kind of real-time

executive (RTL) operating system desi gned to enhance instrument control

capabili ties of their computers . The Hewlett—Packard RTE system , which

is typ i cal of th i s c lass , is a much improved vers ion of their disc operat-

ing system . The added mul tiprogramming capabilities allow the computer

to service ill S tru~o nts in a real —time mode wh i le  execut ing another pro-

gram in wh a tever t i me is left  over. This system is intended to he used

for directl y controlling severa l instruments s i m ul taneous ly  by time

sharing one centra l processi nq unit. There m ay , however , he considerable

system overhe ad and de lay in responding to requests from attached instr u—

mnents , es pec i ally i f more than one of theni can produce data at a fa i rly

hig h rate .

Time sharing of one processor for severa l independent operation s

must result in increased operating system overhead and slowe r response.

Of even more i I~pom - t anLe , however , is the resulting software comp lexi ty.

When centra l processors we re very expen sive , there was some economic

justification for sharing one processor among severa l tasks. The ex-

pense of wr i t ing and ma intainin g extremely complex software could he re-

covered by making one processor do the job of seve ral. Tills reason for

multipro gramming systems is no longe r very important and the disadvantages

of extre mely complex software are becoming more apparent. Such systems

are difficul t to maintain even by the ori g inal authors . Ordinary users
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have little hope of being able to make any changes at all in them to

accommodate new kinds of hardware or experiments .

Conuimunicating w i t h  the Laboratory Coi~puter

• Software development , either the creation of new program s or the

mm odi fication of old ones , requires some form of communication between pro-

gramma r and computer. Having efficient conv imunication is especi a l ly im-

portant in a chem ical research environment because of the evolving nature

• of the software and the often limited programming experience of the

users .

In some laboratory computer systems , for example BASIC language

systems , the operating system and the proqramnminq language used to coin-

niunicate wi th  it are practically m d i  stingui shable. In others , t he re

n~uy be di stinct di vis i oti s between sys tern and languages. But , since in

all cases the programming languages avai lable are a major facto ,’ in (IC-

fining the  environ ment in which users work , we wil l  consid e r th emim as

parts of the operating system. The programming languages ava i la ble wi th

small l aboratory computer systems are usu all y quite limi ted both in

number and capabi l i t ies .

The operating sys tenms themsel yes arc usual ly w r i tten in a low

leve l assembly language compounding system software mainten ance pro-

blems . Assembly language may also be used for appl icat ion programs and

u s u a l l y must be used for those few program s direct ly concerned wi t im in-

strumen t interfacing. For most programs , however , the  excessiv e genera-

lity of the language results in unnecessary program complexity because

A A ~A
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of the large number of coding detai Is requi red. To make any changes iii

a p roqrammi whenever compu t lug miceds change , a u’~e i’ mntis I I ecOirn’ I aiim 1 11 a r

with all these detail s .

Hi qiie r leve l 1 an qua qes he I p i nip rove p roq ram m~r~ r t o computer con~iun i —

cat io n. Beca use they are m ore s peci f i c hi qhe r 1 t’vt ’ 1 1 an quages ri’qu i ce

less detail to express those kinds of alqori thins for w hich they are (it’—

signed. The on ly Iii qhe r level language s commim m 1 v used i’~ tii sm a ll I abo ra—

tory computers are ORT RAN am id BASI C • both of whi (‘ii were d~s I qned f imi’

oth e ,- purposes and do miot co m p l e t e ly sa t i . tv  tin ’ ,ieeds oh a rt ’sea~- Pm 1 ~rh—

oratory envi ronmont.

Sys tems bui l t  around the RAS I C 1 anguage ii ave t i r e  adv am i ta qes oh he I nq

inter~ct i  ye and r e la t i ve l y  easy to learn (W i Ikins a m id Khrp f emis t  t ’ i i i , HI.’)

T h es e  two p,’opert_ los a c-e ospec i a 1 ly i import am i t in a res oa rc h m 1 aI ora t ory en—

v i roimment because of the continual ly cima m iqi ng sof tware and ti it ’ 1 ack of

p roq ramumi mig expei- i once oh s oim~’ use m’s . As b u g  as expe ,- i men Is reimia iii t a i c - l  v

s low and si flIp be , HAS I C can p roy i do an e xco 1 1 en t Irmean s of (‘imEmu n I at i 0(1 ms it hi

the I .utwra tory compu t e r .

BA S I C h a  s two fun damo n I. a 1 11 nil t at louis , h owever ’ . I ii’s I , it  i s an

in to rp ret I ye language , and , there fore , too slow to keep up wi t  Pm some

iii qhm speed instrumen ts or to perform e x t  C~IiS I ye comi mput :a Ii ons , c ucim as

s imn ul at i uric . Second , it i s  an easy to learn and use 1 aurguaqe onl y i f ’

the proq rammms are very sma 11 . I t s  lack of mi~mdu I ar I m e t  un mi g i a s i ’m i ous

deficiency in a me sea r e m  envi ronmm iemm t . The proqranwrv,’ cannot wr i t e  a

series of mimodu l cc w h ich may be comb i ned to make programs • hut i lls tt ’ad

must write each pc’o gram , no ma t, to,’ how complex , as a un i t

L ~~~~~~~~~ • • - ‘~~~~
• •  • • - -  A
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FORTRAN based laboratory computer systems avoid the more serious

limitations of BASIC language systems at some expense in increased sys—

tern software complexity and reduced interactiye capabilities . Most im-

portantly, FORTRAN systems allow the user to bui ld p rogranms from modu lar

subp rograms written in either FORTRAN or assembly language . A complex

p rogram may be broken into smalle r, more managable subprograms wi th only

limi ted and well -defined communication between tlmemn. And , if the sub-
:1

programs are made general enough, they can he gathered into libraries for

use by other progranii~ rs working on future projects .

Despite its advantages over BASIC , FORTRAN remains a poorly struc-

tured language . For problems limi ted to input , calculation , and output ,

‘it is adequate. But , if ma.ry decisions are requi red or complex data

structures are involved , then programs become excessively convoluted and

confusing. Subprogram structures are less efficient and harder to use

than they are in many other languages.

There are quite a number of less we l l—know n (to ch e m ists) sys tetm is

and languages whi ch could be applied in  the chemical laboratory . A very
elegant example is the UNIX system which was wri tten for time PEW-il at

Bell laboratories (Ritchie and Thompson , 1974). This system has been very

successful because it provides a simple , yet powerfu l , environment for

‘I users amid their programs . Its strongest point seems to be consistency in

I/O and fi le structures allowing programs to very effectively co m im mm mu nicat e
with each other and wi th users .

_ _ _ _  _ _  
A l ~d
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FORTH (Moore , 1974) provides a limi ted l aboratory computer operating

system and a high level progranini ng language based on hierarchical struc-

turi ng and is available for a number of different computers , including the

HP 2100 series. At the t ime this system was designed , FORTH was limited

to dedicated computer-instrument systems. It was , therefore, unacceptable

for use in a central conmputer , although potentially usefu l in peripheral

computers . Recently, it has been extended to include mmiultiprogra nvui ng

c a p a b i l i t i e s  s i m i l a r  to an RTE operating system (Rather and Moore, 1976).

This extens ion, w h i l e  u se fu l  in some applications , suffers the same limi-

tations as other RTE type sys tems .

Communicating w i th  a laboratory computer using FORT h is much easier

• than with the proyran~ning languages available on most systems . The criti-

cisuims of it as a programing language are nmo re of a technical nature rather

than of the principles upon which it is based. Because of its poor syn-

tax , it tends to be ha rd to read and does not encourage the use of coin-

mmients. A lac k of localization structuri ng mirakes in vulnerable to fool ish

nmistakes by uninfornmed users. In some situations , it is inef f ic ient  and

slow due to excessive overhead processing.

The Threaded P rogrananin~g Tec hnique

The HISS operating system software is impleme n ted using a threaded

progranining technique (Bell , 1973; Hewer , 197 5) .  A th readed program con-

sists of a stri ng of indices i n d i r e c t l y pointing to subprograms wh ich , as

illustrated by Figure 3, may be either mmia chine code service i’out’i mios or

other threaded programs . A threaded program itself does not contain any
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executable code. It just speci fies the order in which subthreaded pro-

4 grams and service routines are to be executed. Ultimately, al l computa-

tion takes place in machine code service routines which may be either

core res ident or mi xed wi th threaded programs .

The essential feature of this threaded programmi ng technique is its

very extensive use of subprogram structures. The structuri ng of programs

us ing modular subprograms is generally agreed to be desirable (Wright,1976),

and most programmi ng languages provide some means of accomplishing it. For

example , the FORT RAN language-includes both a CALL statement for explici tly

transferring control to a subprog ram and a function expression for implicitly

transferring control during ari thmetic calculations . T h mis threaded pro-

gramming technique takes the subprogram ide a to ‘i ts l ogi cal conclusion ,

making all program statements , except those in machine code service rou-

t ines , into implicit subprogram calls.

It is not practical to use this extreme subprogram structuring wi th

any of the commo n programing languages . Fi rst, transferring control to

a subprog ram is usually much too slow. For example , in the FORTRAN sys-

tem provided with the I-h P 2100, subprogram calls require hundreds of micro-

seconds . It is assumed in the operating system and FORTRAN compiler de-

signs that subprogram calls are rel atively rare in comparison with ari th-

metic operations and , therefore, are of little importance . Second , the

syntax of commo n languages permi t , but do not encourage , the use of sub-

program structures . In the FORTRAI-1 language , each subprogram nhist be
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explicitly defined by the prograni’ner, is listed by the compiler on a

separate page , and can be called only through lim ni ted ‘kinds of syntax.

Again , the language desi gn assumes that subprogram calls are r e l a t i v e l y

rare and , therefore, that the readability of subprogram structures is

unimportant. Subprogram structures in BASIC are even less effi cient and

readable.

FORTh (Moore , 1974; Rathe r and Moore , 1976) and a similar laboratory

compute r ope rating system , CONVERS (Tilde n and Denton , 1978), both nmake

use of the threaded programing technique . In FORTH , a threaded program

is a stri ng of absolute addresses ; while in CONVERS it is a string of sub-

routine call instructi ons. Both of these structures are less efficient in

memory space than the indices used in HISS. FORTh has a ve ry small f ixed

kernel consisting of l i t t le nmore than the th readed programim interpreter and

a couple of I/O drivers . Everything else is compiled from FORTH source

code when the system is loaded . COtIV ERS includes a large number of fi xed

machine code service routines along wi th the interprete r and I/O dri vers

and is compiled by a standard assembler. HISS includes even more fixed

machine code service routines to provi de an interface with a more sophis-

ticated multiprogran imning monitor. CONVERS is the sinmple st to implement

and is the fastest in execution on the microcompute rs for which it was de-

signed. FORTH , however , is at least as fast for most minicomputers and

is less machine dependent . HISS requires a niicroprogranimiable nmachine for

efficient implementati on and so, at the lower levels , is very machine de-

pendent. The high leve l threaded prog ram syntax , howe ver, is machine in-

dependent as are both FORTH and CONVERS .

—- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .
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An interpreter imp lemented in microcode for the HP 2100 executes
threaded programs by transferring control from service routine to ser-

vice routine in the sequence speci fied by the threaded program. The in-

terpreter is similar to the one described by Bell (Bell , 1973) and works

in time following way:

Step 1. Increm ent PC on top of control stack.
Step 2. Fetch S from PCth address of memory.
Step 3(a). If S denotes a service routine , execute it.
Step 3(b). If not, push the address of S to control stack.
Step 4. Go to Step 1.

A control stack provides a place to save nested threaded program

return addresses. Duri ng each cycle of the interpreter , the address of

the current threaded program instruction is present on top of the control

stack. All that is required to begin interpretation of a threaded pro-

gram is to push its address onto the control stack. The return address

to the calling threaded program is automatically saved on the control

stack during subprogram execution . Upon completion of a threaded pro-

gram, a spec i al serv i ce routine , NEXT , which is also implemented in micro-

code , is executed to delete the address on top of the control stack re-

turning control to the cal ling threaded p rogram.

This threaded program interpreter is quite simple and fast , re-

qui ring only an average of 0 microseconds per i nterpreter cyc le. Th is i s
nearly as fast as the most limi ted assembl y l anguage subroutine cal l

and is much faster than the hundreds of microseconds required for a typ i cal

FORTRAN su broutine call. The interpreter and associated service routines
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use 2413 of the 4008 instruction words available in the wri table con-

trol store module. The rest of this space is available for other uses

including user defi ned instructions . A more complete discussion of this

threaded program implem m~ntation has been described previ ously (Phillips ,

et a1 , 1978).

The hi gh speed of subprogram transfers provided by time th readed

program interpreter would be los t wi thout corresponding efficiency in

passing parameters to and returning results from subprograms . The most

efficient means of communication between subprograms , through a data

stack , is used in the HISS system. This data stack , although imnplemented

in a fashion similar to the control stack , is distinct from and indepen-

dent of it. Any kind of data nmay be stored on time data stack , but the

control stack is limited to subprogram return addresses and a few related

programn flow i temims .

Most of time stack oriented computers currently in use , for exam imp le .

the HP 3000, use a single stack for both data and subprogra m control i n -

formation (Bulunan , 1977). Each subprogram call and return requires a coin--

plex series of operations to allocate stack memory and coninunicate para-

meters or results. This single stack architecture is appropriate for lan-

guages in which subprogram calls are relatively rare, but it cannot be

used for a threaded program system.

Hiera rchii c~jj~ Structured Software

The threaded programming technique , when comb ined ~-,ith a suitable

co~imp1ler , allows the development of highly structu red hierarchical pro-

graumis wh ichm , 1m m addit Ion to being smaller in size than equival e nt

LL A
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conven tiona l ly s tructured p rograms , are also easier to write and under-

stand . Each threaded program is defined in terms of miore basic or gen-

eral purpose instructions which are, in turn , programs defined f rom

even more basic instructions . At the bottom of this hierarchical struc-

ture are mi crocode and assembly language service routines which onl y

rarely need to be changed . Above them are a seri es of levels of threaded

program building blocks defining all of the operations needed for a par-

ticular kind of application . At the highest level are specific appli-

cations programs . The language available for implementing a threaded

program becomes more specific as higher levels are added to the hierarchi-

cal structure . It is also the higher levels which most often have to

be modified in a research envi ronment. This hierarchical structure se-

parates the implementation details of a program fromu the overal l  log ic

making the program easier to understand and modi fy.

Some example threaded program procedures are given in linure 4 .
Thes e procedures are part of the inte rmediate level coding for a chroma-

• tography simulation language or system (Phill ips and Burke , 1978). They

are written in terms of instructions implemented as lowe r level threade d
programs and service routines such as HITRATE and R.EXP . These lower
leve l instructi ons are much more specifi c than the machine ’s ~enera1 pur-

pose assembly language would be. Consequently, the example threaded pro-

grams are much shorte r and easier to understand than they would he i f  im-

plemented in any general language. The fi rst two procedures in Fi gure 4,

IIITSIJRF and STUCK , are, in turn , used as instruction s in the third procedure ,

ADSORB. By the additi on of these two threaded progranms procedures , the
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language becomes even more specifi c and follow i ng threaded programs can

be written on an even higher level .

The lowest level servi ce routines , such as R.[XP , an exponential

random nunber genera tor, are unl ikely to ever need any changes. T he code
for these routines is compiled and stored separately to keep it from

cluttering the hi ghe r level threaded programs with excessive detail.

Users working at this intermediate level in Ue simulation l anguage hier-

archy would be interested only in what an instru ction does and not how

it does it. Timese intermediate leve l threaded programs would , in turn ,

be uninteresting implementati on details for a user manipulating models

of chromatograp h ic processes.

flost of the logic of the operating system is implemented wi th

threaded code in a fashion similar to the chromatography simu lation

example illustrated by Figu re 5. Included among these routines are execu-

tive call interpreters , a file manager, and interactive user interface .

Threaded code is resi dent in a vi rtual memory with currently active

pages in core and inactive pages kept in a support file on disc. This

al lows for future expansi on of system functions w i t h o u t  inc reasing the

amount of core memo ry occu pi ed s i nce add iti onal threaded programs remimai n

on disc until actually used and then automatically displ ace other unused

prog raumus from core .

The minimum amount of virtual memory support core for efficient

system operation is 65 pages of 32 wo rds each. Core resi dent assembly

_ _  LA
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language routines and system conilMinication tables require about 7,000

word s of memory. Thus , the total HISS system requires about 9,000 words

of core memo ry leaving 23,000 words for user programs or data.

The operating system software is organized in a hierarchical stru c-

ture as shown in Figure 5. Control f lows from higher to l ower levels in

this structu re; that is , routines at a higher leve l can direct time activi ty

of routines at l ower levels, but lower level routines can only return in-

formation or make requests of higher level routines . The user interface

to the conmputer system is through the system supervisor at the highes t

level. Peri pheral computer software is at a lower level than the com-

munication network manager and , therefore, peri pheral - compute r programs

can make requests but cannot contro l the central computer system .

All of the system software , except for a small netv- rk coninunica-

tions dri ver, resi des in the centra l computer. Thus , the peri phera l

computers are dedicated to applications programs , while time central corn—

puter provides operation system services sharing its resources among

the users . An applications program in a peri phera l computer needing some

system servi ce makes a request through its communications network dri ver.

The central computer software then answers this request by taking control H

of the peri pheral computer, interpreting its request , and either perform-

ing  the requested servi ce itself or, in the case of data trans fers, tell-

ing the peripheral computer how to perform the required operations. Only

the central computer software is capable of interpreting system requests,

whether from a user at a terminal , a program in the central compute r, or 

~~~~ - - 
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an applications program in a peripheral computer. In all cases , the

centra l computer plays the role of maste r and time peripheral computers

act as slaves under its control so long as time communica tions network

driver is present in their memo ry. The periphera l slave computers can

make requests and the central master computer wi l l  carry them out if it

understands them and accepts them as appropriate.

Conclusi on

The hierarchical organization used extensively in the design of

this system has proved to be a very useful approach for both hardware

and software comiponents of labo ratory computer syste ms. It is essential

to use definite structures in the desi gn of any thing as co mplex as an

operating system. The hierarchical structure is one of the most genera l

possible allowing it to be used in umanmy different places in the system.

It is also an ideal way of dividing complex problems into sm aller and

si nmpl er pieces wi th the usual result being m ore general solutions and

software is easier to understand , maintain , and extend .

Most of the goals originally set for the system have been net.

The peripher a l computers provide very good real-time data acquisition.

The resulting data can be transmitted at high speed to the central corn-

puter and stored on disc. Inte ractive control of experi ments is pro-

vided by user programs in the peri pimeral comiputers. The system helps

only indirectly in this by rapidly mioving data out , but at leas t it does

not liuiii t the user program as many systems do, since it is located in

another processor. Sophisticated data massaging during experiments is

_ _ _ _ _ _ _ _ _ _ _ _ _  L~~~~~~.A
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available in the centra l computer. Fast computation is avai lable as

demonstrated by a chromatography siummu latio n program (Phillips and burke ,

1978). The systemm i softwa re is cxtrem nely modular mmia kin q it mu ch more

mmm aintainable timan miost operating systems . This modularity , plus the hier-

archical structure provided by the threaded programming technique , should

make future expandabi lity of the systen m easier and provide hardware inde-

pendence for much of time system programming. The flexibility necessary

in a research envi ronment is provid ed by gi vi m ig complete control of time

periphera l computers to time user programs resident in them durin g perfo r-

mance of experiments . This is the most imw1)ortant p lace in the system to

have extre mely good f lexibi l i ty . Other user programs are miore structured

by the system supplied servi ces.

The HISS threaded p rogranmmi ng technique , one ot t -e ~~ st ii ‘- .~ t t m 1 re —

sults of this project , could he improved in two wa ys.  F irs t , t~ e present

threaded code compi ler is based on a general purpose ;-~acro im mtor p rete r.

This approach allowed ext ensive experim mme m mt atio n in  the sy ntax of threaued

programs in the early stages of this project and resulted im m a mo re read-

able and easier to use language . Replacinq this compiler could improv e

the system ’s inte ractive capabili t ies . Second , time threaded program

tec hnique should be made avai lable in peripime ral com iputers. Thi s would

require that microprograniiming capabil i t ies be added to therm.

As a prototype operating system for labo ratory comiputers , th u s he-

si gn includes severa l features which  are like ly to become more importa nt

as newer and less expensi ve hardware becomes avai lable.  Tim e cont mu mu in y
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decrease in prices of p rocessors and mnemmmo ry is chang in g the economics of

laboratory computing in favor of distributed systems . Armd , as the hard-

ware des igns change , so must the software syste nms change .

Real-time multiprocessing systems in which a sing le processor is

shared among severa l concurrent tasks are becoming much less attractive

for laboratory computing. By assigning separate , less powerful , processors

to each task , much can be saved in software complexity with little cost

in hardware . The HISS system uses fairly expensive minicompute rs to do

this because they were what was available during its des i gn , but the

principle of hierarchical processors app lies just as well to the newer

an d less expensive microprocessors . Having a peripheral computer whose

only responsibility is to service a particular instrument greatly re-

duces software cost and cor-nlexity while improving service to that instru—

nEn t. Expensive Peripheral equipment can be shared by attaching it to

one central computer.

The HISS system provides capabil i t ie s usefu l in a chemical research

laboratory which were not previously available and is an advance in time

desi gn of laboratory computer systems . Its hiera rchica l  desi gn i s a

very good approach to building such an operating systemm m and makes it much

more ma intainable and extendable by its users . Syste m s l i ke t h i s  one

are likely to become more commo n and uimore important as time need for and

uses of labo ratory computers increases . This approach to software de-

sign can be expected to influence future computer hardware resulting in

laboratory computer systems better able to assist in cimemnical research.

Detai led listings and other system documentation wi l l  be made

available to interested readers .
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