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E] ABSTRACT

An operating system for a laboratory computer network has been im-
plemented utilizing the principles of hierarchically structured soft-
ware and hardware. The system was developed using a threaded code tech-
nique which is shown to provide a greater degree of expandability and
maintainability than is found with operating systems developed with less
structured programming techniques. The continuous evolution of computing
needs in a research environment requires the availability of user-computer
communication at a high level., This operating system provides an environ-
ment which facilitates the development of special purpose languages at a
very high level by means of the threaded code.

The principles of the design of the system are discussed and con-
trasted with other reported approaches to laboratory computing. Examples
which demonstrate the multilevel nature of the design and the advantaqes

of this approach are described.
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INTRODUCTION

In a typical university chemistry research environment, computer
system support is required for a variety of research projects in areas
such as chromatography, electrochemistry, and spectroscopy, among others.
The type of computer support required varies greatly from experiment to
experiment, but usually includes direct instrument control, data acquisi-
tion and storage, and computation of results. Instrument control may
involve the use of fixed programs for a given class of experiments or it
may require sophisticated interaction with the user. Data acquisition
requirements can vary from low speed, high volume data to very high speed,
relatively Tow volume data. Some experiments may require small amounts
of real-time computations, while others, such as simulations, may run for
hours or days. At any given time, approximately ten people may be employed
in up to ten different research projects requiring some kind of computer
support.

The fundamental problem in laboratory computing is making computer
services available to the experimenter when and where they are needed at
a reasonable cost in equipment and user time. This environment is an
especially difficult one because of its very wide range of computation,
data acquisition rate, and data volume problems. The constant evolution
of the software required by the ever changing nature of research adds an

extra complication.

Lo d
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Most of the specific problems of laboratory computing can he des-
cribed in terms of communication or information flow requirements. Data
acquisition obviously involves a flow of information from instrument to
computer. Similarly, instrument control, data reduction, and presentation
of results can be thought of as information flow problems. The neced to
change software through programming is also an information flow problem
because the user must communicate his ideas to the computer.

The purposes of a laboratory computer operating system are to pro-
vide for orderly information flow among the hardware and software com-
ponents involved in an experiment and to communicate with the user of
the system. Specific services are provided to aid in moving data and
results from experiment to user and commands from user to experiment.
Other services are provided to aid in application software development.
The effect of these sets of system services is to create an environment
in which experiments may be more conveniently performed.

The environment provided by the system software is much more struc-
tured than that provided by the bare minicomputer hardware. This struc-
ture along with the specific services provided by the system simplifies
the writing of application programs by reducing the number of decisions

a programmer must make and the amount of detail included in each progran.

llowever, a more specifically structured environment is necessarily less
general than the hardware environment. An operating system improves
applicability to those kinds of information flow problems most likely to

be encountered by reducing generality. A system designed to a wider
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range of applications requires greater generality and, therefore, is
more difficult to implement and less satisfactory for any one applica-
tion. Thus, there are some very good turn-key systems designed for
specific applications, but few general purpose research laboratory com-
puter systems. The ideal laboratory computer system should provide a
flexible environment as an overall structure plus some means of creating

special purpose environments for specific classes of problems.

In a well-structured environment, there is at least some hope that
independently designed programs can communicate with each other and that
programmers can understand each others work. The structure should im-
pose an automatic discipline on the system users, guiding them into
compatible program and data constructions. This is especially important
in a university setting where the users most often are students who
have not yet developed much self-discipline in programming and will not
be around long enough to maintain their own work. However, because of
the requirements of flexibility in research projects, this discipline
must be imposed without excessive restrictions on generality. It is
better to provide standard means for solving problems rather than re-
stricting the kinds of problems which can be solved.

This paper describes an innovative approach to an operating system
which is capable of providing the low level generality needed to communi-
cate with a variety of specific instruments as well as providing the

high level of communication required by a variety of continuously evolving

experinents.,
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Hierarchically Structured Hardware

The only economical way to provide the required variety of computer
services in this research laboratory environment is through the use of a
hierarchy of computers. For efficiency, expensive peripheral equipment
and sophisticated software are shared, as much as possible, in one cen-
tral system which is oriented toward the support of software development
and data reduction computation. Such a medium to large scale central
system cannot, however, be made sufficiently flexible and general to also
support simultaneous data acquisition and experiment control under a
wide range of conditions. Small, dedicated systems can better handle
the data acquisition and experiment control problems, but, without a
large investment in peripheral equipment and system software, they are
not able to supply adequate software development and computation ser-
vices. Dividing computer support services into two classes, operating
in two different environments, results in better service in both environ-

ments.

Our approach to this problem has been to develop a computer system
which provides for a division of labor between one central computer and
several (currently two) peripheral computers. The hardware structure for
this system, which is known as the Hierarchical Interactive Sharing Sys-
tem (HISS),is shown in Figure 1. The peripheral computers can devote their
full attention to the instruments attached to them while the central com-
puter provides the data storage capacity, computing power, and extensive
peripheral equipment to effectively extract information from the data.

Also, during the software preparation phase, the central computer's
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more extensive memory and peripherals greatly improve the programmer's

efficiency.

If support services are divided between local instrument control
computers and a central computer, then some form of communication must
be provided for the transfer of data, conmands, and programs. This com-
munication may be through user carried messages, common peripherals

such as paper or magnetic tape, direct data lines, shared peripherals

such as a single disc drive for two computers, or even shared main memory.

The various communication possibilities have a wide range of data trans-
fer rates, complexities, and costs.

The HISS system uses multiplexed direct parallel data line communi-
cation between the central computer and each peripheral computer. This
technique offers sufficient data transfer speed for our experiments,
allows the central and local computers to be located in different labora-
tories, and is not too difficult or expensive to build. The multiplexer
electronics are illustrated by a simplified schematic in Fiqure 2. Un-

der central computer software control any one of up to 15 peripheral

, i~ °
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i computer stations may be selected by the multiplexer. Information may

then be transferred, in parallel, in either direction at rates of up to

{

; 300,000 lo-bit words per second. The actual rate depends on the length
i

i of the connecting cable and the speed of the peripheral computer,

1 Software Requirements

! Operating system software is required to support this hierarchical
,E hardware organization and the application programs using it. This system
; . . . . .

1 must provide efficient communications between the central computer and
i

\

kY

peripheral computers so that system services can be effectively used by

G

experiments while the flexibility of the peripheral computers is main-

tained.
The following goals were set for the design of this laboratorv com-
puter system:

1. Provide real-time data acquisition for a variety of unrelated
experiments,

Provide mass storage for data and programming.

"o
.

. Provide interactive control of experiments.

. Provide sophisticated data massaging during experinents.
Provide relatively fast computational speed.

. Provide for appropriate maintainability ot system software.

Ny OV & W
.

Provide for future expandability O system software.

8. Provide both the flexibility necessary for a research environ-
ment and sufficient structure to lessen author dependence of
user software.

. Provide for efficient chemist-computer communication at a level
consistent with the problem and the chemists background,

A computer system may be put together and operated in a great many

] different ways. At the time this system was being planned, the only
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viable choices for the hardware were minicomputers from various manu-
facturers. More recently, smaller and less expensive microprocessors
have been developed. These are logical candidates for peripheral com-
puters in a laboratory computer network. Experiences with the HISS
system should be applicable to designs using them as well as to the
minicomputers actually employed.

Software for microprocessor based laboratory systems is still poor-
1y developed because their very low hardware cost discourages spending
very much on system software. They have been used principally in the
research laboratory as built in controllers for instrumentation rather
than as user programmable computers. As parts of a hierarchical system,
however, they could become an important addition to general purpose labora-
tory computing systems.

Software for minicomputer based laboratory systems is more readily
available than it is for microprocessor systems, but it is still not
satisfactory for hierarchically structured hardware or the kinds of ex-
periments performed in this laboratory. The central computer operated
initially under a fairly simple disc based operating system and each
peripheral computer operated under an even simpler core based operating
system. None of these operating systems are very well designed for a
laboratory computer environment. They are good examples of older, larger
scale computer system designs reduced in size and capabilities and put
into a small laboratory computer. Communication between computers occurs

through common I/0 devices such as paper tape, a slow, bulky, and error




Page 8

prone medium. Consequently, very little communication between computers
occurred.

Most vendors of laboratory computers have some kind of real-time
executive (RTE) operating system designed to enhance instrument control
capabilities of their computers. The Hewlett-Packard RTE system, which
is typical of this class, is a much improved version of their disc operat-
ing system. The added multiprogramming capabilities allow the computer
to service instruments in a real-time mode while executing another pro-
gram in whatever time is left over. This system is intended to be used
for directly controlling several instruments simultaneously by time
sharing one central processing unit. There may, however, be considerable
system overhead and delay in responding to requests from attached instru-
ments, especially if more than one of them can produce data at a fairly
high rate.

Time sharing of one processor for several independent operations
must result in increased operating system overhead and slower response.
0f even more importance, however, is the resulting software complexity.
When central processors were very expensive, there was some economic
Justification for sharing one processor among several tasks. The ex-
pense of writing and maintaining extremely complex software could be re-
covered by making one processor do the job of several. This reason for
multiprogramming systems is no longer very important and the disadvantages
of extremely complex software are becoming more apparent. Such systems

are difficult to maintain even by the original authors. Ordinary users
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have little hope of being able to make any changes at all in them to

accommodate new kinds of hardware or experiments.

Communicating with the Laboratory Computer

Software development, either the creation of new programs or the
modification of old ones, requires some form of communication between pro-
grammer and computer. Having efficient communication is especially im-
portant in a chemical research environment because of the evolving nature
of the software and the often lTimited programming experience of the
users.

In some laboratory computer systems, for example BASIC lanquage
systems, the operating system and the programming language used to com-
municate with it are practically indistinguishable. In others, there
nay be distinct divisions between system and languages. But, since in
all cases the programming languages available are a major factor in de-
fining the environment in which users work, we will consider them as
parts of the operating system. The programming Tanguages available with
small laboratory computer systems are usually quite limited both in
number and capabilities,

The operating systems themselves are usually written in a low
Tevel assembly language compounding system software maintenance pro-
blems. Assembly language may also be used for application programs and
usually must be used for those few programs directly concerned with in-
strument interfacing. For most programs, however, the excessive genera-

lity of the language results in unnecessary program complexity because
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of the large number of coding details required. To make any changes in
a program whenever computing needs change, a user must become familiar
with all these details.

Higher level languages help improve programmer to computer communi-
cation. Because they are more specific, higher level lanquages require
less detail to express those kinds of algorithms for which they are de-
signed. The only higher level lTanguages commonly used with small labora-
tory computers are FORTRAN and BASIC, both of which were designed for
other purposes and do not completely satisfv the needs of a research lab-
oratory environment.

Systems built around the BASIC language have the advantages of being
interactive and relatively easy to learn (Wilkins and Klopfenstein, 19/2).
These two properties are especially important in a resecarch laboratory en-
vironment because of the continually changing software and the lack of
programming expevience of some users. As long as experiments rvemain fairly
slow and simple, BASIC can provide an excellent means of communicating with
the laboratory computer.

BASIC has two fundamental limitations, however. First, it is an
interpretive language, and, therefore, too slow to keep up with some
high speed instruments or to perform extensive computations, such as
simulations. Second, it is an easy to learn and use lanquage only if
the programs are very small. Its lack of modular structuring is a serious
deficiency in a research envirvonment. The programmer cannot write a
series of modules which may be combined to make programs, but, instead,

must write each program, no matter how complex, as a unit.
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FORTRAN-based laboratory computer systems avoid the more serious
limitations of BASIC language systems at some expense in increased sys-
tem software complexity and reduced interactive capabilities. Most im-
portantly, FORTRAN systems allow the user to build programs from modular
subprograms written in either FORTRAN or assembly language. A complex
program may be broken into smaller, more managable subprograms with only
limited and well-defined communication between them. And, if the sub-
programs are made general enough, they can he gathered into libraries for
use by other programmers working on future projects.

Despite its advantages over BASIC, FORTRAN remains a poorly struc-
tured language. For problems limited to input, calculation, and output,
it is adequate. But, if many decisions are required or conplex data
structures are involved, then programs become excessively convoluted and
confusing. Subprogram structures are less efficient and harder to use
than they are in many other languages.

There are quite a number of less well-known (to chemists) systems
and languages which could be applied in the chemical laboratory. A very

elegant example is the UNIX system which was written for the POP-11 at

Bell laboratories (Ritchie and Thompson, 1974). This system has been very

successful because it provides a simple, yet powerful, environment for

users and their programs. [Its strongest point seems to be consistency in

/0 and file structures allowing programs to very effectively communicate

with each other and with users.
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FORTH (Moore, 1974) provides a limited laboratory computer operating
system and a high level programning language based on hierarchical struc-
turing and is available for a number of different computers, including the
HP 2100 series. At the time this system was designed, FORTH was limited
to dedicated computer-instrument systems. It was, therefore, unacceptable
for use in a central computer, although potentially useful in peripheral
computers. Recently, it has been extended to include multiprogramming
capabilities similar to an RTE operating system (Rather and Moore, 1976).
This extension, while useful in some applications, suffers the same limi-
tations as other RTE type systems.

Communicating with a laboratory computer using FORTH is much easier
than with the programming languages available on most systems. The criti-
cisms of it as a programming language are more of a technical nature rather
than of the principles upon which it is based. Because of its poor syn-
tax, it tends to be hard to read and does not encourage the use of com-
ments. A lack of localization structuring makes in vulnerable to foolish
mistakes by uninformed users. In some situations, it is inefficient and

slow due to excessive overhead processing.

The Threaded Programming Technique

The HISS operating system software is implemented using a threaded
programming technique (Bell, 1973; Dewer, 1975). A threaded program con-
sists of a string of indices indirectly pointing to subprograms which, as
illustrated by Figure 3, may be either machine code service routines or

other threaded programs. A threaded program itself does not contain any




T it 2 10 o IR b e S

e

! Page 13 ‘ |

4 executable code. It just specifies the order in which subthreaded pro-
grams and service routines are to be executed. Ultimately, all computa-
tion takes place in machine code service routines which may be either
core resident or mixed with threaded programs.

The essential feature of this threaded programming.technique is its
very extensive use of subprogram structures. The structuring of programs

using modular subprograms is generally agreed to be desirable (Wright,1976),

and most programming languages provide some means of accomplishing it. For
i; example, the FORTRAN language-includes both a CALL statement for explicitly

transferring control to a subprogram and a function expression for implicitly

i e B S s

transferring control during arithmetic calculations. This threaded pro- ‘
gramming technique takes the subprogram idea to its logical conclusion, |
making all program statements, except those in machine code service rou-
tines, into implicit subprogram calls.

It is not practical to use this extreme subprogram structuring with
any of the common programming languages. First, transferring control to
a subprogram is usually much too slow. For example, in the FORTRAN sys-
tem provided with the HP 2100, subprogram calls require hundreds of micro-
seconds. It is assumed in the operating system and FORTRAN compiler de-
signs that subprogram calls are relatively rare in comparison with arith-
metic operations and, therefore, are of little importance. Second, the
syntax of common languages permit, but do not encourage, the use of sub-

program structures. In the FORTRAN language, each subprogram nust be |

Lol
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explicitly defined by the programmer, is listed by the compiler on a
separate page, and can be called only through lTimited kinds of syntax.
Again, the language design assumes that subprogram calls are relatively
rare and, therefore, that the readability of subprogram structures is
unimportant. Subprogram structures in BASIC are even less efficient and
readable.
FORTH (Moore, 1974; Rather and Moore, 1976) and a similar laboratory
computer operating system, CONVERS (Tilden and Denton, 1978), both make
use of the threaded programming technique. In FORTH, a threaded program
is a string of absolute addresses; while in CONVERS it is a string of sub-
routine call instructions. Both of these structures are less efficient in
memory space than the indices used in HISS. FORTH has a very small fixed
kernel consisting of little more than the threaded program interpreter and
a couple of I/0 drivers. Everything else is compiled from FORTH source
code when the system is loaded. CONVERS includes a large number of fixed
machine code service routines along with the interpreter and 1/0 drivers
and is compiled by a standard assembler. HISS includes even more fixed
machine code service routines to provide ah interface with a more sophis-
ticated multiprogramming monitor. CONVERS is the simplest to implement
and is the fastest in execution on the microcomputers for which it was de- i
signed. FORTH, however, is at least as fast for most minicomputers and
is less machine dependent. HISS requires a microprogrammable machine for
efficient implementation and so, at the lower levels, is very machine de-
pendent. The high level threaded program syntax, however, is machine in-

dependent as are both FORTH and CONVERS.
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An interpreter implemented in microcode for the HP 2100 executes
threaded programs by transferring control from service routine to ser-
vice routine in the sequence specified by the threaded program. The in-
terpreter is similar to the one described by Bell (Bell, 1973) and works
in the following way:

Step 1. Increment PC on top of control stack.

Step 2. Fetch S from PCth address of memory.

Step 3(a). If S denotes a service routine, execute it.
Step 3(b). If not, push the address of S to control stack.
Step 4. Go to Step 1.

A control stack provides a place to save nested threaded program
return addresses. During each cycle of the interpreter, the address of
the current threaded program instruction is present on top of the control
stack. All that is required to begin interpretation of a threaded pro-
gram is to push its address onto the control stack. The return address
to the calling threaded program is automatically saved on the control
stack during subprogram execution. Upon completion of a threaded pro-
gram, a special service routine, NEXT, which is also implemented in micro-
code, is executed to delete the address on top of the control stack re-
turning control to the calling threaded program.

This threaded program interpreter is quite simple and fast, re-
quiring only an average of 8 microseconds per interpreter cycle. This is
nearly as fast as the most limited assembly language subroutine call
and is much faster than the hundreds of microseconds required for a typical

FORTRAN subroutine call. The interpreter and associated service routines




Page 16

use 2418 of the 4008 instruction words available in the writable con-
trol store module. The rest of this space is available for other uses
including user defined instructions. A more complete discussion of this
threaded program implementation has been described previously (Phillips,
et al, 1978).

The high speed of subprogram transfers provided by the threaded
program interpreter would be lost without corresponding efficiency in
passing parameters to and returning results from subprograms. The most
efficient means of communication between subprograms, through a data
stack, is used in the HISS system. This data stack, although implemented
in a fashion similar to the control stack, is distinct from and indepen-
dent of it. Any kind of data may be stored on the data stack, but the
control stack is limited to subprogram return addresses and a few related
program flow items.

Most of the stack oriented computers currently in use, for example,

the HP 3000, use a single stack for both data and subprogram control in-

formation (Bulman, 1977). Cach subprogram call and return requires a com-

plex series of operations to allocate stack memory and communicate para-
meters or results. This single stack architecture is appropriate for lan-

guages in which subprogram calls are relatively rare, but it cannot be

used for a threaded program system.

Hierarchically Structured Software

The threaded programming technique, when combined with a suitable
compiler, allows the development of highly structured hierarchical pro-

grams which, in addition to being smaller in size than cquivalent
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conventionally structured programs, are also easier to write and under-
stand. Each threaded program is defined in terms of more basic or gen-
eral purpose instructions which are, in turn, programs defined from
even more basic instructions. At the bottom of this hierarchical struc-

ture are microcode and assembly language service routines which only

rarely need to be changed. Above them are a series of levels of threaded

program building blocks defining all of the operations needed for a par-

ticular kind of application. At the highest level are specific appli-

cations programs. The language available for implementing a threaded
program becomes more specific as higher levels are added to the hierarchi-
cal structure. It is also the higher levels which most often have to

be modified in a research environment. This hierarchical structure se-
parates the implementation details of a program from the overall logic

making the program easier to understand and modify,

Some example threaded program procedures are given in Ficure 4.

These procedures are part of the intermediate level coding for a chroma-
tography simulation language or system (Phillips and Burke, 1978). They

are written in terms of instructions implemented as lower level threaded
programs and service routines such as HITRATE and R.EXP. These lower

level instructions are much more specific than the machine's qeneral pur-
pose assembly language would be. Consequently, the example threaded pro-
grams are much shorter and easier to understand than they would be if im-
plemented in any general language. The first two procedures in Figure 4,
HITSURF and STUCK, are, in turn, used as instructions in the third procedure,

ADSORB. By the addition of these two threaded programs procedures, the
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language becomes even more specific and following threaded programs can
be written on an even higher level.

The lTowest level service routines, such as R.EXP, an exponential
random number generator, are unlikely to ever need any changes. The code
for these routines is compiled and stored separately to keep it from
cluttering the higher level threaded programs with excessive detail.
Users working at this intermediate level in the simulation language hier- 1
archy would be interested only in what an instruction does and not how
it does it. These intermediate level threaded programs would, in turn,
be uninteresting implementation details for a user manipulating models
of chromatographic processes.

Most of the logic of the operating system is implemented with

threaded code in a fashion similar to the chromatography simulation
example illustrated by Figure 5. Included among these routines are execu-
tive call interpreters, a file manager, and interactive user interface.
Threaded code is resident in a virtual memory with currently active
pages in core and inactive pages kept in a support file on disc. This
allows for future expansion of system functions without increasing the
amount of core memory occupied since additional threaded programs remain
on disc until actually used and then automatically displace other unused
programs from core.

The minimum amount of virtual memory support core for efficient

system operation is 65 pages of 32 words each. Core resident assembly




Page 19

language routines and system communication tables require about 7,000
words of memory. Thus, the total HISS system requires about 9,000 words
of core memory leaving 23,000 words for user programs or data.

The operating system software is organized in a hierarchical struc-

ture as shown in Figure 5. Control flows from higher to lower levels in

this structure; that is, routines at a higher level can direct the activity
of routines at lower levels, but lower level routines can only return in-
formation or make requests of higher level routines. The user interface
to the computer system is through the system supervisor at the highest
level. Peripheral computer software is at a lower level than the com-
munication network manager and, therefore, peripheral computer programs

can make requests but cannot control the central computer system.

A1l of the system software, except for a small netvark communica-
tions driver, resides in the central computer. Thus, the peripheral
computers are dedicated to applications programs, while the central com-
puter provides operation system services sharing its resources among
the users. An applications program in a peripheral computer needing some
system service makes a request through its communications network driver.
The central computer software then answers this request by taking control
of the peripheral computer, interpreting its request, and either perform-
ing the requested service itself or, in the case of data transfers, tell-
ing the peripheral computer how to perform the required operations. Only
the central computer software is capable of interpreting system requests,

whether from a user at a terminal, a program in the central computer, or
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an applications program in a peripheral computer. In all cases, the
central computer plays the role of master and the peripheral computers
act as slaves under its control so long as the communications network

driver is present in their memory. The peripheral slave computers can

make requests and the central master computer will carry them out if it

understands them and accepts them as appropriate.

Conclusion

The hierarchical organization used extensively in the design of
this system has proved to be a very useful approach for both hardware
and software components of laboratory computer systems. It is essential
to use definite structures in the design of anything as complex as an
operating system. The hierarchical structure is one of the most general
possible allowing it to be used in many different places in the system.
[t is also an ideal way of dividing complex problems into smaller and
simpler pieces with the usual result being more general solutions and
software is easier to understand, maintain, and extend.

Most of the goals originally set for the system have Leen met.
The peripheral computers provide very good real-time data acquisition.
The resulting data can be transmitted at high speed to the central com-
puter and stored on disc. Interactive control of experiments is pro-
vided by user programs in the peripheral computers. The system helps
only indirectly in this by rapidly moving data out, but at least it does
not limit the user program as many systems do, since it is located in

another processor. Sophisticated data massaging during experiments is
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available in the central computer. Fast computation is available as
demonstrated by a chromatography simulation program (Phillips and Burke,
1978). The system software is extremely modular making it much more
maintainable than most operating systems. This modularity, plus the hier-
archical structure provided by the threaded programming technique, should
make future expandability of the system easier and provide hardware inde-
pendence for much of the system programming. The flexibility necessary
in a research environment is provided by giving complete control of the
peripheral computers to the user programs resident in them during perfor-
mance of experiments. This is the most important place in the system to
have extremely good flexibility. Other user programs are more structured
by the system supplied services.

The HISS threaded programming technique, one of the most useful re-
sults of this project, could be improved in two ways. First, the present
threaded code compiler is based on a general purpose macro intorpreter.
This approach allowed extensive experimentation in the syntax of threaded
programs in the early stages of this project and resulted in a more read-
able and easier to use language. Replacing this compiler could improve
the system's interactive capabilities. Second, the threaded program
technique should be made available in peripheral computers. This would
require that microprogramming capabilities be added to them.

As a prototype operating system for laboratory computers, this de-
sign includes several features which are likely to become more iwportant

as newer and less expensive hardware becomes available. The continuing
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decrease in prices of processors and memory is changing the economics of
laboratory computing in favor of distributed systems. And, as the hard-
ware designs change, so must the software systems change.

Real-time multiprocessing systems in which a single processor is
shared among several concurrent tasks are becoming much less attractive
for laboratory computing. By assigning separate, less powerful, processors
to each task, much can be saved in software complexity with little cost
in hardware. The HISS system uses fairly expensive minicomputers to do
this because they were what was available during its design, but the
principle of hierarchical processors applies just as well to the newer
and less expensive microprocessors. Having a peripheral computer whose
only responsibility is to service a particular instrument greatly re-
duces software cost and complexity while improving service to that instru-
ment. Expensive peripheral equipment can be shared by attaching it to
one central computer.

The HISS system provides capabilities useful in a chemical research
laboratory which were not previously available and is an advance in the
design of laboratory computer systems. Its hierarchical design is a
very good approach to building such an operating system and makes it much
more maintainable and extendable by its users. Systems like this one
are likely to become more common and more important as the need for and
uses of laboratory computers increases. This approach to software de-
sign can be expected to influence future computer hardware resulting in
Taboratory computer systems better able to assist in chemical research.

Detailed listings and other system documentation will be made

available to interested readers.
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Figure Captions

HISS Hardware Organization
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