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THE STEERING PROBLEM FOR THE MIRROR-SCAN TRACKING SYSTEM
PART 1 — THE STOP-GO-STOP PROCEDURE

1. INTRODUCTION

&= The Mirror Scan system employs a mirror to steer the beam of a tracking radar whose
k| light weight (about 11 kg (25 1b)) permits it to be slewed much more rapidly than the
antenna of a conventional system, so that the system can be used to track several targets

- | simultaneously. Since tracking accuracy varies inversely with update time, the number of

& | targets which can be simultaneously tracked depends on the efficiency of the steering

3 algorithm. The steering problem is to determine the radar-beam motion which covers a

' given collection of targets with minimum update time, subject to two constraints:

® A physical constraint on the magnitudes of the torques that can be applied to the
mirror;

E ® A constraint on the velocity of the beam motion as the beam passes through a
E target, so as to insure a required number of radar-pulse hits on the target.

F" 1.1 General Synopsis

Sections 2 through 4 are devoted to a careful mathematical description of the steering
problem, which is a difficult problem in control theory. As a first approach to this problem
we will in this report examine the stop-go-stop (SGS) paths, that is, beam motions in
which the beam is made to stop at each target. The problem of finding the optimal SGS
path can be reduced to a standard problem in control theory with a known solution. This
reduction of the problem is described in section 5. In section 7 we will show how calcula-
tions of update times of optimal SGS paths for various configurations of target positions
lead to the conclusion that the mirror-scan system can track at least seven targets in a half-
hemisphere with an update time of less than 1 second.

In section 6 we will discuss the aiming problem, which is the problem of determining
the best system orientation for a given area of coverage. One might expect that the solution
of this problem would be to point the system at the centroid of the area of coverage, and
computer calculations suggest that this is in fact the case. However, the same calculations
also reveal that the system orientation has only a slight effect on efficiency, provided that
the departure of the pointing direction from the centroid of the area of coverage is not too
“extreme.”

9 Finally, in some situations the SGS procedure is nearly optimal, and in others SGS is
clearly inefficient. In subsequent reports in this series we hope to obtain lower bounds on
update time (as a function of number of targets and area of coverage), identify the precise

I Manuscript submitted March 16,1978.
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conditions under which SGS is grossly inefficient, and construct better tracking algorithms
for this case.
1.2 Technical Summary
A summary of the technical results of this report is as follows:
@ The target position { and the corresponding mirror normal position p are related by
E=~a-2(a-p)p, (21)

where a is a constant vector defining the orientation of the system. (The aiming vector is
-a.)

©® The system control is defined by specifying the applied torque vector u as a func-
tion of time.

® The system control u = u(t) and mirror motion p = p(t) are related by
1 u=IpXp, (3.1)
where I is a certain moment of inertia.

® The steering problem is to find the closed curve p = p(t) which joins given points

‘ with minimum update time, subject to two constraints:
IpXpl<a 4.c1)
and
Eliqrget < B- (4.c2)

® The constraint (4.C1) can be expressed as a bound on the second covariant deriva-
k| tive 52p/5t2 of p, which is the tangential component of p.

® The constraint (4.C2) is closely approximated in a more convenient form by
Ipl < B/2. (4.CA2)

® In the stop-go-stop (SGS) procedure the constraint (4.C2) is automatically
satisfied, and p moves in great-circle arcs, stopping at each “image” of a target position.

reduces to a solved problem in control theory, and the update time T of an SGS path is

E ® The determination of the optimal point-to-point motion of p along an SGS path
then given by

=

, T=2F VZa, (5.10)

where {ZJ-} are the arc lengths of the various links of the path.

T
R Sr—
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® There are (N - 1)!/2 SGS paths, where N is the number of targets. The optimal SGS
path is the one which minimizes \/Z; (and therefore T') and can be found by straightfor-
ward enumeration of all cases, provided that N is not too large.

® For the current design value of « it can be predicted from the calculated results
that the Mirror Scan system can simultaneously track at least seven targets in a half-
hemisphere with an update time of less than 1 second.

® The orientation of the system (defined by a) has only a slight effect on system
efficiency, provided that the departure of the aiming vector (- a) from the centroid of the
area of coverage is not too extreme.

2. SYSTEM GEOMETRY

Radiation from a feed (which is fixed with respect to the ship) passes through a hole
in a mirror M and falls upon a fixed reflector S, which reflects it back toward M. The
radiation is linearly polarized, and S is composed of wires aligned parallel to the direction
of polarization. The mirror acts as a half-wave plate and rotates the angle of polarization
by 90°, so that the radiation passes out through S after reflection by M. Let a be the unit
vector defining the direction of the radiation incident on the mirror. Then a is fixed to the
ship and points into the ship, and its negative (- a) will be called the aiming vector.

Let
P = unit vector normal to the mirror, pointing outward;
¢ = “reflected” unit vector, pointing to the target.

Then, since the angle of incidence on the mirror equals the
angle of reflection, the vectors a, p, and { are related by

(Fig.1)
E=a-2(a- p)p (2.1)

P= el (2.2) M

Since target ranges have no relevance to our problem,
we can identify each target position with a point on a unit /
sphere, whose position is ¢£. The corresponding value of p
(given by (2.2)) will be called the p-image of the target.

and

Let E(l), vy E(N ) be an arbitrary collection of N tar-

get positions, and let p(), ..., pV) be the corresponding ¢
p-images. The steering problem is to find the closed curve Fig. 1 — Relation of the vectors
p = p(t) (0 <t < T), subject to certain constraints, which a,p,and §

3




W W e —

WILLIAM B. GORDON

joins all the p-images with a minimum update time T'. In the steering problem it is assumed
that the value of the aiming vector (- a) is fixed and given. The aiming problem is to make
an intelligent choice of a for each given area of coverage.

We shall fix a right-handed rectangular X, X, X3 coordinate system to the ship, with
corresponding spherical coordinates r, 6, and ¢. As shown in Fig. 2, the mirror-scan system
is attached to the port side of the ship, the posi-
tive X, axis points toward the bow, the positive
Xg axis is vertical, and the coordinates of a point X3
on the unit sphere (r = 1) are

x; =sin 6 cos ¢ : X
®

Xg =sin@sing »>. (2.3)

x3 =cos 0 i

Since a points into the ship, its X, coordinate is 3

negative. Similarly, the X, coordinates of p and § Fig. 2 — Relation of coordinate systems
are always positive.

3. THE CONTROL

Mathematically, the mirror motion is defined by a curve p = p(t) lying on the unit
sphere, that is, by a description of the motion of the unit normal p. Physically, the mirror
is moved by applying torques to the mirror around certain instantaneous axes of rotation,
and the system control is defined by specifying the total torque vector u as a function of
time: u = u(t). The relationship between the control u and motion of p is

u=IpXp, (3.1)

where [ is a certain moment of inertia.

Equation (3.1) is a special case of Euler’s equation for the motion of a rigid body, and
in its derivation two assumptions are made:

Al. The mirror is a disk, a square, or some other body having certain symmetry prop-
erties. For a disk, I is the moment of inertia about a diameter.

A2. The torques are applied in such a manner that the mirror motion has no rotational
component around the axis p, because the existence of such a component would imply the
expenditure of energy to produce motions of the mirror which have no effect on its aim.

It turns out to be more convenient to write (3.1) in the form

u=1Ip X 62p/5t2, (3.1%)
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where, by definition,

62p/6t2 = p + |p/2p. (3.2)

The derivation of (3.1*) and thus of (3.1) is given in Appendix A. The mathematical equiv-
alence of (3.1) and (3.1*) is a trivial consequence of the identity p X p = 0, which allows
any scaler multiple of p to be added to the p term in the right-hand side of (3.1) without
changing its value. The replacement of p in (3.1) by p + [p|%p and thus by 62p/5¢2 may
therefore appear to be highly arbitrary, but it is justified by the identity

Ip X p | = 152p/5t2|, (3.3)

so that the constraint on the torque magnitude |u| reduces to a constraint on 162p/6t2|. To
show that (3.3) is an identity, one differentiates the identity p * p = 1 twice and obtains

P P=0andp-p+ |p2=0. (3.4)
Equation (3.3) is a consequence of (3.4) and of the vector identities
a*(bXec)=-c+(bXa)
and
aX(bXc)=b(a*c)-c(a*b).
From (3.2) and (3.4) we also have

162p/6t212 = |p|2 - |p|*. (3.5)

The quantity 52p/5¢2 is called the second couvariant derivative of p = p(t), and in
Appendix B it is shown that §2p/6¢? is the tangential component of p, that is, the projec-
tion of the vector p(t) onto the plane tangent to the unit sphere at the point p(t). If the
curve p = p(t) is taken to be the description of the motion of a particle of unit mass, then
82p/5t? is equal to the tangential component of the force acting on the particle. In
particular, the condition §%p/6t2 = 0 is precisely the condition that the motion be inertial,
that is, on a great-circle arc with constant speed. Hence (3.1*) has the following conse-
quence: if the applied torque u is cut off at a certain time, then p = p(t) will thereafter
move along a great-circle route with constant speed.

4. THE STEERING PROBLEM

In this section we will define the steering problem in its most general form. The con-
straints of this general problem are easy to express and hard to apply, but in our subsequent
discussion of the stop-go-stop procedure (section 5) we will show how these constraints
reduce to a single constraint which is simply and directly related to the motion of p.

The first constraint can be stated simply as

ul <o, (4.1)

5
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where o' is the largest torque that can be applied to the mirror. This constraint is related to
the motion of p via (3.1) or (3.1*) and can be written in one of the following equivalent
forms, each of which will hereafter be referred to as the constraint (4.C1):
PXpl<a, )
or

162p/6t2| < a, (4.C1)

v

or

B2 - 1p1 <o, |

where a = &'/I, I being the moment of inertia which appears in (3.1) and (3.1*). The mathe-
matical equivalence of these forms is a consequence of (3.3) and (3.5).

The second constraint, referring to the beam velocity £(t) as the beam passes through a
target, will be expressed as

 larget < B> 4.2)

where f is the largest possible beam velocity which allows the required number of radar
pulse hits on the target. Differentiating (2.1) to express (4.2) in terms of the motion of p,
we get the constraint

@+ )P+ (8 * PIPlyyrger < B/2- (4.C2)

Using the same notation introduced in section 2, we let £, ., £N) pe the position
vectors of N targets and let p(l), oy p(N ) be the corresponding p-images. We let £ = §(t) be a
curve which joins the points £(1), ..., {¥), and we let p = p(t) be the p-image of this curve,
so that for each value of ¢, p(t) and £(t) are related by (2.1) and (2.2). We can now state the
steering problem in its most general form:

The Steering Problem. Find the closed curve p = p(t) which satisfies the constraints (4.C1)
and (4.C2) and joins all the points p(), ..., pV) with minimum update time.

Remark 4.1. Later, when the design of the system has been made more definite, it may be
necessary to replace the constraint (4.1) (and hence constraint (4.C1)) by a constraint
imposing separate bounds on the components of u about certain instantaneous axes of
rotation. A further complication might also be required if the moments of inertia about
these axes should have too strong a functional dependence on position. In this case the
constraint (4.1) would be only an approximation but a safe one, since the values of o' and a
would always be adjusted so as to guarantee that no component of u exceeds a certain
amount, and the estimation of the update time T thus obtained would be greater than its
true value.

Remark 4.2. An attractive alternative to constraint (4.C2) would be the ‘“‘approximation”

2pl <pB. (4.C2A)

6
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In fact, by setting a * p = - cos Y, it is easy to show that la * p| <sin Y ||, so that from
(2.1) one obtains

lé.l2 =4|@-pp+@- PPl
=4[@a- p)? +(a° P2
<4[sin? y +cos® Y] 1P 2.
In other words
1< 20, (4.3)

so that approximation (4.C2A) is safe in thc same sense as in the previous remark. Moreover
the accuracy of the approximation || = 2|p| is usually quite good; it depends on the maxi-
mum permissible excursion of p from - a and therefore depends on the area of coverage. For
example, if the area of coverage is a quarter-hemisphere, then |£| and 2|p| differ by less than
8 percent.

5. THE STOP-GO-STOP PROCEDURE

As before, we let £1), ..., V) be N target positions and let p(1), ..., p) be the cor-
responding p-images. In the stop-go-stop (SGS) procedure p = p(¢) moves along great-circle
arcs in a closed path joining all the pm and comes to a complete stop at each of the p).
Hence constraint (4.C2) is automatically satisfied, and we will now show how constraint
(4.C1) reduces to a mathematically simpler form, which will be denoted by (5.CSGS).

Our first task is to determine the curve p = p(t) which joins two points, say p) and
p?), in the shortest time, subject to constraint (4.C1). We let Z(1, 2) be the great-circle
distance between p(!) and p( (the arc length of the short great-circle arc joining these
points). Then

Z(1,2)=cos! [p) - p2)7. (5.1)
Let x = x(s) (0 <s < Z(1, 2)) be the short great-circle arc joining p(l) to p(z) parame-
terized by s = arc length. Then x = x(s) is (geodesic) motion along a great-circle arc with
constant unit speed, and the acceleration vector is a unit vector which is always directed

toward the center. Hence, letting primes denote differentiation with respect to s, () =
(d/ds), we have

x| =1, (5.1)

X'+ x"= 0, (5.2)

and

x"+x=0. (5.3)

i,
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(We recall from (3.2) that by definition §2x/86s2 = x"' + |x'|2x, so that §2x/5s2 = 0 by
virtue of (5.1) and (5.3); that is, the motion x = x(s) is geodesic.)

Now let
p(t) = x[s(t)] (5.4)

be a general motion along the great-circle arc whose velocity |p| = |dp/dt| is not necessarily
constant. Differentiating (5.4), we get

p=sx’ (5.5)
and
p=sx'+4a2x". (5.6)
But p(t) is merely a reparameterization of x(s), so that from (5.3) we have x’’ = - p. Also,

from (5.2), x’ is a unit vector perpendicular to p. Referring to (5.6), we therefore see that
$x' = tangential component of p = §2p/5t2,
so that
Ip X pl=|sp X x| = |5].
Hence constraint (4.C1) reduces to
s1<a, (5.CSGS)
where « is the same constant as appears in (4.C1).

The problem, of finding the curve p = p(t) joining p®) to p(z) in minimum time T sub-
ject to constraint (4.C1) as well as the conditions p(0) = p(T') = 0, has now been reduced to
the problem of finding the piecewise smooth function s = s(t) for which

(5.CSGS) is satisfied on each smooth piece,
8(0)=0 and s(T)=2(1, 2),
§(0)=4(T) =0,
and
T is minimum.
This is a standard problem in control theory and has a well-known solution: one

applies a maximum acceleration « for half the time and a maximum deceleration - « for the
other half.* Hence we have

*E.B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967, Ch. 1.
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2
1 1 Tmin)
2 Z(1,2) 5 & ( 2
or, solving for Ty, ;,,
Tiin = 2V Z2(1, 2)/ax. (5.7

There are (N - 1)!/2 SGS paths joining the N points p{1), ..., p%), and we now consider
the problem of finding the one which is optimal.

Consider for example the configuration of four points shown schematically in Fig. 3.
The points are labeled 1, 2, 3, and 4, and there are three SGS paths labeled 1234, 1324, and
1342. For example, the path 1234 is the path which takes point 1 to 2, 2 to 3, 3 to 4, and
4 to 1. These three paths are the only three essentially different SGS paths in this case,
since all the other paths differ from these only in their starting point or orientation. Thus,
for our purposes, the path labeled 1234 is the same as paths labeled 2341, 1432, etc.

More generally, for a configuration of N points we can always label the starting point
as 1, so that the N-tuple (1, iy, ig, ..., ijy) runs through all the different path levels as the
(N - 1)-tuple (i, ig, ..., i) runs through all the permutations of the (N - 1) integers {2, 3,
..., N}. In fact, each path is represented twice, once for each orientation, so that there are
only (N -1)!/2 essentially different SGS paths joining N points.

We let Z(i, j) be the arc length of the great-circle arc joining p() to p(j ) and let 7'(i, j)
be the transit time for the motion of p(t) from p(0 to p\/), the motion being “‘optimal’’ as
previously described in this section. Then as in (5.1) and (5.7) we have

Z(i, j) = cos™! [p() - pl)] (5.8)

TG, j) = 2/ ZG, ], (5.9)

and the update time T corresponding to the path (1, iy, i3, ..., iy) is

T=

% WZ,i3) + VZg03) * .. + VZN-1,i8) *+ VZ(n, D). (5.10)

2 3 2 3 2 [
" 4 i 1342 4

| 1234 4 1324

Fig. 3 — Paths joining four points

9
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Hence the optimal SGS path is the one which minimizes the right-hand side of (5.10). In
brief, we shall say that the optimal SGS path minimizes Z/Z.

For the moderately small number of targets considered in this report (N < 7) the opti-
mal SGS path can be found by the straightforward enumeration of all (N - 1)!/2 cases. The
general problem of minimizing a “cost function” such as (5.10) over a class of paths is
known as the traveling-salesman problem, and algorithms have been constructed which
make the search for the optimal path more efficient. However these algorithms are all
inefficient in the sense that the computational time varies exponentially with N.* Much
attention has been given to the search for optimal and near-optimal solutions to the prob-
lem of minimizing T Z. However, simple examples can be constructed which show that
paths which minimize £ Z do not necessarily minimize /Z, and conversely.

6. THE AIMING PROBLEM

Figure 4 shows a half-hemisphere with four “extreme”’ points on the boundary and
their coordinates. The coordinate system shown here is the same as that shown in Fig. 2.
As £ varies over the entire half-hemisphere, its p-image p will vary over a smaller region, and
the range of p depends on the value of the aiming vector a. This is shown in Fig. 5 for three
values of a. The outer curve is the boundary of the half-hemisphere, as seen by a distant eye
having spherical coordinates (Fig. 2) = 60° and ¢ = 90°. The inner curve is the boundary
of the range of p, and it is marked off into two subregions I and II which are the p-images
of the quarter-hemispheres whose extreme points are (1, 2, 4) and (2, 3, 4) respectively.

Table 1 shows how the great-circle distances between the p-images of the extreme
points varies with three values of the aiming vector a. The arc lengths Z(i, /), in degrees, are
computed according to (5.8), in which the values of p(') are computed according to (2.2).
Z(1, 3) is always 90°, because the gosition vectors ¢ of points 1 and 3 are the negatives of
each other, so that, from (2.2), p® . p(3) = 0 for every value of a.) The results shown in
this table and other calculations suggest that the second value of a listed is optimal when
the area of coverage is the entire half-hemisphere and that the third value is optimal when
the area of coverage is restricted to the quarter-hemisphere (1, 2, 4).

Pt. 11 (-1, 0, 0)
PL.2:(0,0, 1)
Pt 3:(1,0, 0)
Pt.4(0, ,0)

Fig. 4 — Coordinates of four “‘extreme"
points on a half-hemisphere

*H.R. Lewis and C.H. Papadimitriou, “The Efficiency of Algorithms,” Scientific American 238 (No. 1),
96-109 (Jan. 1978).

10
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‘IMAGE . .
OF POINT | 4
-a-(o 1,0) -a=(0, INZ,INZ) -os(-ws 1I2V3,1/403)

Fig. 5 — Ranges of p-images p for various aiming vectors a, with the ranges of p sub-
divided into regions I and II (the ends of the subdividing arcs being p-images of points 2
and 4)

7. CONCLUSIONS
71 Calculations of Optimal SGS Paths and Update Times

Optimal SGS paths and update times were computed in the manner described in
section 5, with the current design value of the constant o (defining the constraint) given by

o = (100,/2) radians/s? ~ 8103 deg/s?.

Optimal paths and update times T were computed for various configurations of up to
seven points and various values of a. Some examples of our calculations are given in Fig. 6
for the three values of a listed in Table 1. The half-hemisphere shown in Fig. 4 is shown in
Fig. 6 as seen by an observer who is in the X, X3 plane at large and positive x5 and slightly
negative x5. The target positions { are indicated by heavy dots, and N is the number of
targets.

7.2 Summary of Observations Concerning Calculated Results :

The results of these calculations can be summarized in the following observations:

Observation 1. The Mirror Scan system can simultaneously track at least seven targets
in a half-hemisphere with an update time of less than 1 second.

Observation 2. The value of the aiming vector - a has only a slight effect on the effici-

ency of the system; for the three values of a listed in Table 1, the variation in update
time was about 5% or less.

Table 1 — Variation of Z(i, j) with a

-a Z(1,2) | 2(1,3) | Z1,4) | Z(2,3) | Z(2,4) | Z(3,4)
[0,1,0] 60.0° 90.0° 45.0° 60.0° 45.0° 45.0°
[o, 1/\/2' 1A/2] . 49.2° 90.0° 49.2° 49.2° 45.0° 49.2°
[-1A/3,1A/3,1A/3] 46.9° 90.0° 46.9° 52.2° 46.9° 52.2°

11
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OPTIMAL PATHS. 1726534, 1764352

OPTIMAL PATHS: 1726534,1725364
1725364
720.90,0.86,0.86

OPTIMAL PATHS : ALL 1234 OPTIMAL PATHS : ALL 1263547 1723564
T=0.64, 062, 0.63 7=0.85,0.86,0.86 7:0.87,0.86,0.86
N=7 3 Nz3 N=T
4 3
3
4
1 }
|

OPTIMAL PATHS : ALL 1567234
T20.47,0.46, 0.46 T20.71,0.71,0.70

N=7

OPTIMAL PATHS | ALL 1762534
7:0.75,0.74,0.74

Fig. 6 — Examples of optimal paths and update times computed for
the three values of a listed in Table 1. (The calculated results are
labeled below the sketches in the same order that a is listed in the
table.) In the first example the four target positions are the same as
those in Fig. 4.
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Appendix A
DERIVATION OF EQUATION (3.1)

As explained in section 3, equations (3.1) and (3 .1¥; are mathematically equivalent,
and, to prove (3.1*), we shall first express p in terms of certain angular accelerations and
velocities.

As shown in Fig. A, let @, and e, be two unit vectors which are fixed to the mirror M
in such a way that {e;, e,, p} form a right-handed triple:

e; Xey=p,e, Xp=e;,p Xe; =e,. (A1)
Sincee, * e, =1, wehavee, - @, = 0, s0 that ; has no component in the e direction.

Also, from assumption A2 in section 3, it follows that é; has no component in the e,
direction. Similar remarks hold for @5, so that one can define angular velocities &; and wy

satisfying
..1 == (blp and 62 == O.sz. (A2)

From equations (Al) and (A2) we get

li =~ (:)101 + (;)2.2 (AB)
and
P=0ne + W8y - (WF + l)p. (A4)

Since 52p/5t2 is by definition the tangential component of p, it follows that

82p/5t2 = .8, + Gge,. (A5)

Fig. A — Vectors relative to 2 disk-
shaped mirror
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We will now compute the torque u. It will be convenient to think of the mirror as
being composed of particles all having the same unit mass. Let r; be the position vector of

the ith particle, and set
M= Zfl X l.'i.

Then, by definition,
u=M=3"r, X1 (A6)
Each particle has “local” coordinates x,-l and x? defined by
r = xle; + x7e,,

and x and x are constant, since the moving axes e; and e, are fixed to the mirror. From
(A6) one ultlmately gets

u=-[Ijp0 +Ippwple; + [I3w; +10]e,
+ [Iyg(w3 - @2) - (I} - Ipp)01@,]P,

where
=Z:x, x2,I = Z @!)?, and Ipy = Z @2).

From the symmetry properties of the disk we have
I3 =0 and I}; =I5 =1,
where I is the moment of inertia about a diameter. Hence for the disk we have
u=I(- &0 +i5e,)
=I(Wyp X @5 + Wy X &),
and from (A5) we get (3.1*):

u=1IpX 52p/5t2.
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Appendix B
COVARIANT DERIVATIVES

Let p = p(t) be a curve on the unit gphere S. We want to show that the right-hand side
of (3.2) is the tangential component of p. Since the vector p is normal to S at the point p,
we have
normal component of p = (p * p)p.
Differentiating the identity p * p =1, we get
pep=0and p-p+Ip2=0.
Hence

normal component of p = - |p|2p,

and it follows that

tangential component = p - normal component
=p+ |pi%p.

The preceding formulas apply only to spheres. More generally let S be any surface in
Euclidean three-space defined by the parametric equations

Xi=Xi(yl,y2), i=1,2,3,
where y! and y2 are local surface coordinates. Let p(t) = X(y(¢)) be a smooth curve on S.

Then the second covariant derivative of p(t), 52p/5t2, is again defined as the tangential
component of p(t) and is given by

azp/&z = izy_l . ﬁ + 8_2&?. . _a_x_ 5
5t2 Ayl 5t2 3y
where

2.0
5 _jes 319,987, -2,
5t By

and where F‘E,, are the so-called Christoffel symbols. Details can be found in almost any
elementary text in differential geometry (for example, A. J. McConnel, Applications of
Tensor Analysis, Dover, New York, 1967).
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