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LAMINAR FLOW-FIELD COMPUTATION IN AXISYMMETRIC NOZZLES
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B. C. Barber

SUMMARY

A numerical procedure for computing the laminar flow—field in nozzles at

throat Reynolds numbers of 300—3000 is described . Such nozzles are found in

spacecraft position control thrusters , chemical lasers, and low density hyper-

sonic wind— tunnels. A parabolic approximation of the Navier—Stokes equations

( the ‘boundary layer equations’) is transformed to Von Mises form and solved
numerically by a central difference method . The entire subsonic and supersonic

flow—field is computed . No assumptions or approximations , other than those

inherent in the flow equations, are involved . The method is of the direct type

and the flow—field for any given nozzle geometry may , in principle , be computed .

Examples are given comparing computed results with published experimental data.
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• I INTRODUCTION

Viscous nozzle flows occur in at least three fields of technology . In low

thrust satellite position control thrusters the nozzle throat size is of order

one millimetre , and typically the throat Reynolds number is in the range

1000—3000. Usually they operate with a propellant of nitrogen, hydrogen or

aninonia or mixtures of these gases, often at high temperature. In law density

hypersonic wind—tUnnels the nozzles are larger, having throat radii from several

• millimetres to several tens of millimetres and operate with throat Reynolds

numbers in a similar range , usually with nitrogen or air ’. The nozzle walls are

often cooled. In chemical lasers the nozzles are of the same size range as

satellite control thrusters and operate in the same Reynolds number range, often

wi th f luorin e as the ‘working fluid’2.

The numerical procedure described in this Repor t was developed for
predicting the performance of satellite control thrusters. I t is, however ,

• equally applicable to any nozzle flow, although in this Report only laminar
flows are considered . The basic drawback to operating a convergent—d ivergent

• nozzle at laminar Reynolds numbers is that viscous shear forces in the flow in

the divergent part of the nozzle inhibit the acceleration of the flow. The

boundary layer thus thickens and in extreme cases may encompass the majority of

the mass flow. In the case of propulsion nozzles this results in poor nozzle

efficiency and a reduction in specific impulse (thrust per unit mass flow). In

the case of low density hypersonic wind—tunnel nozzles it limits the obtainable

Mach number and limits the region of constant Mach number in the flow core. In

the case of chemical lasers the nozzle flow viscous forces reduce the stagnation

pressure available for recovery in the laser cavi ty, and this has a direct
bearing on the output power. In addition the reactions which produce the laser

power occur between the oxidiser and fuel streams. This is usually limited to

the nozzle boundary layer2 so the influence of the boundary layer on the
operation of the laser is important.

Most viscous nozzle flow—field analyses belong to one of two types. In

one type of analysis the flow is approximated by a viscous boundary layer and an
inviscid core. The flow in the boundary layer may be obtained by using, for

example, Cohen and Resho tko ’s approximate integral method3 and then using an
itera tive technique to couple the boundary layer and inviscid core. This

approach was followed by Murch et and by Po tter and Carden 5. Al ternatively,

the equations of the boundary layer may be transformed by introducing a
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stream—function and applying a modification of the Lees—Dorodnitsyn transformation

(a combination of the Mangler transformation and Illingworth transformation).

The resulting coupled pair of partial differential equations may then be

solved directly by a finite difference procedure (Whitfield
6) or the equations

may be simplified and transformed to a pair of ordinary differential equations

by assuming local similarity. These equations may then be solved more readily

at the expense of the constraints imposed by similarity. This approach was

adopted by Edward s7. In both cases the boundary layer solutions are coupled

iteratively to the one—dimensional core flow.

In the other type of analysis the entire flow—field is computed by solving

the Navier—Stokes equations directly. Only one analysis of this type has been

reported
8
. Here , Rae solved a parabolic approximation of the Navier—Stokes

equations (the ‘boundary layer equations’) in the channel flow approximation
9

for the whole flow—field. An implicit Crank—Nicholson finite difference scheme

was used.

At low Reynolds numbers experimental evidence
10 

indicates that the

inviscid core almost disappears. The viscous boundary layer—inviseid core

approximation is then not even approximately true. It then becomes very

desirable to account for the viscous effects over the whole flow, and an analysis

of the complete flow—field becomes necessary. It is assumed, of course, that

the Reynolds numbers are not so low that the Navier—Stokes equations cease to be

valid.

A difficulty with the channt.~1 flow approximation is that the channel walls are

limited to small angles of convergence and divergence. Furthermore, no account

is taken of any radial pressure gradient. In general the streamtubes are

inclined to the symmetry axis. There will thus be a component of the pressure

gradient along the streamtubes in the radial direction, and experimental uat.~ in

Ref 10 shows that this component may not be ignored.

• The numerical analysis reported here is of the ‘entire flow—field

computation ’ type. The nozzle flow-field is computed using a form of the

boundary layer equations in which a radial pressure gradient exists.

2 THE FLOW EQUATIONS

The s ta r t ing  point is the form of the boundary layer equ at ions  developed
I I  . 6

by Probstein and Elliott . These equations were also used by Wlutt ic id and 
175
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by Edwa r ds7 , Symbols are def ined in the nomenclature . The coordinate system

is shown in Fig I.

tin 1 3 / ~u\— + ‘v — — + — — l r ~ — ( I )
y x r 3y~~ ~

y

- u~~~~+~~~~~~(r~~
_
~~~) ~~~~~~ 

(.~)

(p ur) + •
~~

-. (pvr)  • 0 (3)

— 0 (4 )

where c~ is the density . h is the static enthalpy , p the stati. pressure,

u the laminar viscosity, k the thermal conductivity, C~ the specific heat

at constant pressure, u the velocity in the longitudinal direction , v the

velocity in the transverse direction , x the longitudinal coordinate , y the

• transverse coordinate , and r is the radius.

Probstein and Elliott derived these equations for external flow where the

boundary layer thickness is much smaller than the longitudina l radius of

curvature. These equations are here extended to internal flow and to the whole

of the flow-field. The distance x is measured from some reference pLane along

a given streamtube and the distance y is measured from the symmetry axis along

a surface orthogonal to the streamtubes. In this case this is also a surface

of constant static pressure since the transverse momentum equation is neglected

leading to ~p/ay • 0 . In this approximation this arises from neglecting the

• centrepetal force component which accompanies a change in direction of the flow,

z~ 3t)/3x is assumed neglig ible. This is a good approximation in the divergent

part of the nozzle where the streamtubes are only slightly curved , but in the

region of the nozzle throat this approximation is not so satisfactory .

The equations are thus not limited to small angles of convergence and

divergence of the nozzl e wal l s , but are l imited to small first derivatives. In

this sense this approximation is one order higher than that used by Rae
8 and

there Is a radial compon.nt of the pressure gradient.

175
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2.1 Transformation of th. flow equations

Equa tion (3) may be written in parametric form:

pur — (5)

pvr — (6)

where th. parameter 
~ 

is the compressible stream function
12
. From the chain

rule for differentiation we have the following operators:

(
~
) - (~

;)
* 

+ (
~
)
~ 
(
~
)
~ 

(7)

(.i~ - 
(
~.t\ (.i.’~ (8)\ay 1~ \a*,I~

so that

(?)~ 
- (?~)~ 

- Pvr(~j) 
(9)

(
~
) - Pur(.a~) 

. ( 10)

Thus equations ( I )  and (2) may be transformed from coordinates x , y to
x, $ and we have:

— 
_
~~~~~~+*(ppur

2
~~~) 

( I I )

} !~. — !~~ + 

* (~ur2 

~~~ 
+ 14Pur2(~~)

2 
. (12)

This is known as Von Miss. transformation ’3.

The valus of $ at the a n ,  of the nozzle is taken to be zero (an
• arbitrary, but convenient, choice). At the nozzle wall:

— purdy (13) 175
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and is independent of x since the total mass f low is conserved throughout the
nozzle. Hence:

— &/2w (14)

where ii~ is the total mass flow rate.

It is known that in the Von Mises form the boundary layer equations are

likel y to lead to a more stable numerical procedure ’4. In addition they may be
solved numerical ly by a marching integration procedure which avoids any itera t ion
as will be shown later.

This method of handling the boundary layer equations is essent ia l ly  the
same as that employed by Patanka r and Spalding for general second order parabolic —

15equations

Equations (ii) and (12) are written in terms of non—dimensional variables

(defined in the nomenclature) and become:

- — __L~ _~~~~~~~ ~~~~~~ + 8Pr
0 

~~~ - (u*p*u*r*
2 

~~ 
( IS )

— I a 1 2 k* ah*- 

“o ~~~ dx* 
+ 8 .......~~

. 
~~*u*r* ......

~~~

+ 8Pr
0Mg(y0 

— I) p*p*u*r*
2 (a *)

2 
(16)

where M is the Mach number, y the ratio of specific heats and Pr is the

Prandtl number. The superscript (5) refers to non—dimensional variables and the

subscript (0) refers to mean values at the duct entrance.

2.2 The boundary conditions

An idea of the nozzle geometry may be gained from Fig 3 or Fig 6. It will

be seen that at the nozzle inlet the wall is parallel with the symmetry axis.

It is assumed that at the nozzle inlet the flow has constant enthalpy across its

cross—section and that a fully established (parabolic) velocity profile exists.

It is further assumed that there is no radial velocity component. Thus we have:

u* — 2 (I—ip * )~~ , v5 — 0 , h* — I at x5 — 0. (17) •

IL •~ A
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At the nozzle axis the condition, express the symmetry. So we have:

0 , — 0 , — 0 at ~,* — 0 . ( 1 8)

It is assumed that at the nozzle wall non—slip conditions are appropriate,
i e  velocity su p and temperature jump are ignored. Hence:

C*q*u* — 0 • v5 • 0 , ~~~~~~ — at $* — 1 (19)

where q* is the non—dimensional heat flux at the nozzle wall.

For the two test cases presented in section 5 the wall was assumed to be
adiaba tic,ie q* — 0 . Note that the transverse enthalpy gradien t is lef t in
terms of the transverse coordinate y* • The reason for this is that as
y + y , ah/aq, + because u + 0 and it is possible to incorporate the
boundary conditions as shown and thus avoid the singularity.

3 THE GAS PROPERTIES

The computations presented in this Report were performed with nitrogen.
The equation of state used is:

p — pRT/m (20)

where It — 8.3143 x JØ 3 J K 1 kg—mole~~
and m • 28.013 (the molecular weight).
The gas is thus assumed to be ‘ideal ’.
The Prandtl number was assumed constant at Pr — 0.7.
The viscosity was assumed to obey Sutherland ’s law:

14.5 T312 —7 2u — 
122.0 + T 

X 10 N s/gn . (2 1)

The specific heat is assumed constant at C — 1.0397 IO~ J kg~~ K
1

and the ratio of specific heats, y — 1.400

• It is assumed that all energy states are in mutual equilibrium and frozen
flow losses are ignored,

175
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4 THE FINITE DIFFERENCE PROCEDURE

Equations (15) and (16), together with the initial and boundary conditions

( 1 7) to ( 1 9),  the equation of state (20) and the viscosity law (21) and various

mainly geometrical relationships (which will be developed in section 4.3) form

the starting point for the numerical procedure.

A central difference technique is used to solve equations (IS) and (16).

A general point in the mesh scheme and the domain of integration in the x~ 
— 4,5

plane is shown in Fig 2. The equations have been integrated up to and including

the mth axial point and the solution is about to be extended to the m + Ith

axial point; ~ is an arbitrary function and B is an arbitrary coefficient.

Thus we have:

— 
m+I n 

— 
m,~ (22)

3x5

— ~~ _!~__ t
~ 

— (23)2t~4,* \ m+ 1 ,n+ 1 m+ l ,n—I )

a B — i J ~

••
(Bm n+i + 

~m,n ) ( m + i ,n+i m+I ,n)
. 

a** ~4,* 2~4,*

— 
(Bm,n 

+ ~~~~~~~~~~~~~~ — in+I ,n—I)1 (24)2~4,*

The Crank—Nicolson scheme is sometimes not stable for flow in a duct’4’
16

so a fully implicit scheme is used and values of ~ are evaluated along the

line m + 1 . Values of the arbitrary coefficient B are taken along the m line

where the previous solution is known. This avoids non—linearity and the

resulting necesEity for iteration.

Equations (15) and (16) may be written in the form:

- A .~~L. + .J.._ (B _~i\ + c (25)
- ‘  3x5 dx* ~$* ~ a~*/

for $ u5 we have:

— I IA 
~~~~~~~ 

(26)
175 ~
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I0

B 8Pr
0 

p*p*u*r*
2 (27)

C 0 (28)

for •

A (29)

2k*
B 8p*u5r5 .—;.. (30)

p

2 p*p*u*r*
2 2

• C 8Pr0
M0
(y
0 

— 1) 
4(&p*)

2 (~~,n+i 
— ~~~~~~~ . (3 1)

Note that in equation (16) au*/a4,* is evaluated along the m line:

(

~~
5)
2 

4(~4,*)2 
(u~~~+1 

- u~,~_1)
2 
. (32)

In each case the coefficients A, B and C are evaluated on the basis of

the known solution at the previous step. They are therefore regarded as

constants.

4.1 The flow equations in finite difference f o r m

Writing (25) in finite difference form using (22) and (24) we have:

2(~4,*)
2 (Bm n  + Bm,n_i) }

+ •m+ 1 n ( + 

2(o4*) 2 (Em,n+i 
+ 2

~m n  + 8m~n—i ~j •~

+ •gn~.1 n+1 

~ 
2(A$*)

2 (Bm n  + B
m,n+i)J~

- A Ap5 + ~x*C + $ . (33)
m,n m,n m,n

175
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Le t :

~x* I
c. • — — (8 . + 8  . i  ( • 34)

2(.~p*) 
\ m,i+I m,i/

— i + ~~~~ (B . • + 28 + B (35)
i,i+I 2(~4,*)

2 \ m,i+. gn,i+I m,

I
• c. — — - (B . + B  . . (36)

i,i+2 2(M,~)
2 \ in,i+I m,i+2j

Then we have:

~ 
c

1~ 
C

13 

- 

b
1 

-

C
22 

C 23 C
24

N N -

N N N
N N N

- 

cN.. I ,N_ I
CN . I ,N

cN_ I ,N+I m+1 ,N+I 
bN_ I

where b . — A .
~
p5 + t~x5C . + • . . (38)

i m,i m,i m,i

Note that the flow has been divided into N equal movements of stream function:

— I /N (39)

(37) gives a system of N—I equations in N+ l  unknowns.

4. 2 The boundary conditions

The boundary conditions give zero gradien t of $ at the symmetry axis.

So • +1 1 — • +1 2 and c ,1 may be added to c12 , the first column deleted

from the coefficient matrix in (37), and $~~~~~ 
deleted. The boundary condi-

tions at the nozzle wall are of two types. Either the value of • is specified

or its first derivative. When $ u5 the first of these alternatives applies

and we have •m+ I N+ I — 0 . In this case the last column may be deleted from

the coefficient matrix and •
~~ I N+I deleted. When • h5 • and an adiabatic

wall is assumed we have •m+I ,N 
— 

m+1,N+I 
so that CN_ 1 ,N4.I 

may be added to

the last column deleted from the equations and m+I,N+I 
deleted. The

effect is the same in both instances; the coefficient matrix is reduced to
175 

tridiagonal form and we have N—I equations in N— I unknowns:
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12

+ c~~) C
13 

- 

m+I,2 
b 1

C
22 

C
23 

C
24

\
— (40)

\
C
N_2,N_2 

CN_2,N..1 
cN_2,N

C (C + c  ) • b
N—1 ,N-I N—I ,N N—I ,N+I m+I,N N—I

~ther conditions at the nozzle wall may be treated in a similar way. If

$ is specified and is other than zero (for example the wall temperature may be

given, or the velocity, if a veloci ty jump is allowed) , then the term
CN_I ,N+I+m+I,N+I 

may be subtracted from bN_I and the last coltann deleted and

m+1 N+I deleted.

The case where a finite gradient is specified is a little more involved.

For example suppose the heat flux is given. Then at the nozzle wall:

ah~ 
C *

— -.~~- q * (41)

and also

ah ah
— pur ~~~~ (42)

so that

— 2p*u*r* -~~~~~
. . (43)

Hence

— 
Prg* (44)

2p5p*u*r5

In finite difference form:

—h * — 
8~i~* *pr

m+1,N+J m+I,N (M~,N+I 
+ + P~ ,N)~~

U
~ ,N+I + u

~~N)(r~~N+I 
+ r

~~N)

.. .. . .( 45)

I 75
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The RHS is known on the basis of the previous step. So h
~~N+, 

may

be expressed in terms of h* and the coefficient matrix reduced as before.
• m+I ,N

4.3 Solution of the finite difference equations

The two tridiagonal systems of equations for u5 and h* are solved at

each step by a Gaussian elimination method ’7. For a tridiagonal system of

equations this results in a very compact procedure.

The temperature vector is computed from the enthalpy vector, and the

density vector from the temperature and pressure.

The radial coordinate is computed from a recurrence relation:

pur — (46)

so

— 2p*u*r* . (47)

It is easily showu fr~in the geometry tha t

— cos O (48)

so

2p*u*r*— 
cos O 

(49)

In fini te difference form:

4~4,* cos O~~
t~r* — r

~+, 
— r~ — 

~~~~ + p5 “i ~u* + u5 
n~ 

~~~~ + r5 ~\ n n+ I~~ n ~~~~~ n n+ I~

Henc e:

4&~* cos 9
— ~

/
~*2 + 

+ ~~~~~~~~~~~~~~~~~ 
. (SI)

175
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Thus given that r1’ — 0 and values for the density, velocity and stream—

tube inclination at the previous step the radii may be easily computed.

In general the final radius r~~ 1 does not quite coincide with the duct

wall , ic the computed flow—field does not qi.ite fit the duct. This is because

the procedure uses the pressure and pressure gradient computed at the previous

step. The procedure corrects the pressure to make the computed flow—field fit

the duct and the resulting pressure and pressure gradient are used at the next

axial step. Thus no iteration is required, the procedure simply marches along

the nozzle , the pressure and pressure gradient being controlled by an error

parameter. The necessary correction to the pressure is estimated from the one—

dimensional flow equation connecting pressure change and area change ’8 :

— 
yM2 dA (52)

I - M

The mean Mach number across the flow is used and the area change is

computed from the radius error. It was found desirable to use only a fraction

of the pressure correction to ensure stability. In addition the magnitude of

the correction must be limited to avoid problems with the singularity at M — I.

Because the radii fluctuate the streamtube inclination also fluctuates,

and this is coupled back into the equations and produces instability. In order

to overcome this effect a small step length is used (1/250 of the throat radius)

and the change in inclination is computed every 7—25 steps depending on the wall

curvature. In regions of high curvature the smaller interval was used since

the radius is changing more rapidly and small errors have less effect on the

inclination. The effect is to smooth the streamlines, and it successfully

stabilises the procedure at the expense of grea tly red uc ing its efficiency .

The streamtube inclination 0 is calculated from the geometry. We have:

sin O — ~~
-

~
- (53)

where t~r is the change in radius from the chosen point 7—25 steps upstream ,

to the current point along a given streamtube. tx is the corresponding change

In longitudinal distance. The expression becomes increasingly inaccurate as

aelax increases. It can, however , be shown to be consistent with the other
assumptions, speci f i ca l ly  ap / a4 ,  — 0 . 175
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If the flow parameters are such that the flow does not choke at the

nozzle throat the pressure decreases up to the nozzle throat, and then increases

the flow being everywhere subsonic. If the procedure tries to force too great

a mass flow through the nozzle it fails; the flow chokes before the throat is

reached. When this situation occurs the error between the computed flow—field

and the duct radius increases rapidly, resulting in a greatly increased negative

pressure gradient. The pressure then becomes negative and the procedure fails.

Both these situations may be easily detected and upper and lower bounds on the
mass flow rate established. The procedure then takes the mean of the upper and

lower bounds and establishes a new upper or lower bound depending whether the

new mass flow rate leads to premature choking or no choking. Thus the flow rate

is adjusted until the flow chokes at the r~ozzle throat and then the pressure

decreases monotonically throughout the duct. This bisection method of iteration

has only linear convergence, but convergence is guaranteed and usually only

about eight iterations required. This point is explained further in the next
• pa ragraph.

The eigenstate corresponding to choking is not well defined. If the mass

flow rate is slightly greater than the ‘true ’ eigenvalue the computed flow—field

expands slightly in the region of the throat, to accommodate it. The sonic

surface then intersects the nozzle axis slightl y upstream of the geometric throat.

If the mass flow is very carefully adjusted to make the error parameter a

minimum in the throat region the sonic surface intersects the axis slightly

downstream of the geometric throat. It is thus possible to make the sonic

surface intersect the axis at any arbitrary point (within limits) around the

nozzle throat. it is possible to vary the mass flow by about 0.5% at a throat

Reynolds number of 2000 and achieve a smooth expansion to supersonic flow. At

a Reynolds number of 500 the flow is more critical and it is possible to vary

the flow only by about 0.05%. This phenomenon is a result of the numerical

method used , at least in part. Rae
8 also noted a similar effec t, except that

his mass flow was much better defined and the limits between which the sonic

surface could be varied were both downstream of the nozzle throat. The effect

is very convenient from the practical standpoint. It means that when the whole

procedure is iterated to find the choking eigenstate it is only necessary to find

the mass flow rate to three significant figures, which saves time.

• Note that no additional assumptions or fitting (as was done in Ref 8) is

• 175 required in the region of the singularity at the throat. When the choking mass

• • - - -~~~~~~~~~ “• - - - - •
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• flow rate has been determined the procedure will start from its initial condi-

tions and continue to compute through the subsonic flow through the throat and

into the supersonic flow in the expansion cone.

The computations presented in this Report were performed in single

precision — seven significant figures — on a large minicomputer. Double

precision made no significant difference to the results. The procedure is very

inefficient and for the two test cases presented the total time for each was

about 4 hours. This is a total of eight iterations of the flow up to the throat

to determine the eigenstate and one complete determinator of the flow to the

nozzle exit. This time is reduced to a total of about 20 minutes using a more

modern computer (PRIME 400). Thus although procedures such as the one described

in this Repor t are very lengthy the advent of modern fast computers means that
they become more practicable.

5 RE SULTS

A survey of the literature reveals little detailed experimental data on

the flow—fields in low density nozzle flows. The exception is Ref 10. Here,

Rothe measured the gas density and temperature at a large number of points

throughout the flow of nitrogen through small nozzles using an electron beam

fluorescence technique. His measurements covered throat Reynolds numbers (based

on throat diameter) from 639 down to 57.

Two of the nozzle flows presented in Ref 10 were chosen as test cases for

the present work. In both examples the ‘propellant’ is nitrogen at an initial

temperature of 300 K. Also in both examples the semi—angle of the convergent

part of the nozzle is 3Q0 the semi—angle of the nozzle expansion cone is 20
0 
and

the longitudinal radius of curvature of the throat is one half the transverse
radius. For the purposes of this computation the radius of the inlet was taken

to be three times the throat radius.

5.1 Example I

The throat Reynolds number (based on diameter) — 639 and the throat

diameter — 2.50 ma, the inlet pressure — 1 . 98 1  X 10~ N/rn2 (1.955 x io
_2 

bar) and

the mass flow ra te ~ 20.1 mg/s. The computed flow—field is shown in Fig 3. The

lover half of the nozzle shows the streamtubes and orthogonal (constant pressure)

surfaces. The upper half shows the displacement thickness and consta~it Mach

surfaces at M — 1 , 2, 3 and 4. The computation was performed with 20 streamtubes

although only 10 are shown for clarity. 175
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• It will be noted that the displacement thickness is compressed consider—

ably by the convergent part of the nozzle, but grows out into the stream in the

• expansion cone. Although about 952 of the mass flow becomes sonic only about

70% is accelerated to Mach 3.

• • It is unsafe to make conclusions of an analy tic nature from a numeri cal
analysis, especially in the region of singularities, but the behaviour of the

sonic surface at the nozzle throat may be compared with the sonic surface in

two—dimensional inviscid flow. In inviscid flow the sonic surface is parabolic

in form near the symmetry axis , intersects the axis downstream of the geometric
throat and is concave towards the flow (see for example Ref 19). Here the sonic

surface is slightly convex towards the flow.

The axial static temperature is shown in Fig 4. Near the throat the agree-

ment with experimental results is excellent and even near the exit plane the

computed curve is only just outside the error bars. Fig 5 shows the results for
• the axial static pressure. The computed curve agrees wi th the experimental

curve to within 20%.

5.2 Example 2

The throat Reynolds number — 307 and the throat diameter = 5.1 ma, the

inlet pressure — 4.657 x io2 N/rn2 (4.596 x Io~~ bar) and the mass flow rate
18.97 mg/s.

The computed flow-field is shown in Fig 6. The displacement thickness
curves more rapidly into the flow in the expansion cone and only about 452 of
the mass flow is accelerated to M — 3.

The axial static temperature is plotted in Fig 7 and here again the agree-

ment with experimental results is good. Note the oscillation in the curve at

X/R t — 17 due to an incipient instability. Fig 8 shows the axial static

pressure and here the agreement is excellent except for the oscillation near

— 17. The cause of this oscillation has not yet been identified. A further

example at a lower Reynolds number (91) was tried, but increased instability
prevented a reliable computation.

In the present case Rothe presents results for the radial profi les  of
temperature, densi ty and pressure at X/Rt — 13.7. Fig 9 shows the radial static

temperature. The computed results are within or on the edge of the error bars

over the whole range. In Fig 10 the radial density profiles are shown, here the

agreement is not so good but still reasonable. Fig 11 shows the radial pressure 

~~~-- - - - • - -~~• - -_
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• profile and here the agreement is poor. At the nozzle wall the computed

pressure loss is about 122, bu t the measured loss is about 29.5%. Fig 6 shows

that the streamtubes are only very slightly curved in this region so that the

extra pressure loss is unlikely to be caused by a centrepetal force component,

and in any event the streamtubes are curved towards the symmetry axis which would

tend to increase the pressure along the radius . It is tempting to speculate that

the pressure effect is caused by the influence of the low pressure in the vacuum

chamber in which the nozzle is tested, being propagated upstream through the

subsonic part of the flow. The procedure described in this Report, being based
on a parabolic approximation, is unable to take this kind of effect into account.

6 CONCLUSION S

The object of the work presented in this Report was to develop a numerical

procedure suitable for computing the entire flow—field in a nozzle at low

Reynolds numbers. As the results in examples I and 2 show this has been

reasonably successful. No approximations are required other than those inherent

in the boundary layer equations. Similarity is not assumed. A viscous boundary

layer — inviscid cone flow is not assumed. Furthermore the method is of the

direct type, the flow can be computed from a given nozzle geome try .

Despite the low density of the flow in the examples, non—slip boundary

conditions were employed and gave reasonable results.

A criticism sometimes levelled at full flow-field computations is that

they are slow and require large fast computers. This may have been true in the

past, but computers are becoming more powerful, so much so that procedures of the

type described here are now practicable propositions .
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NOMENCLATURE

A arbitrary coefficient in equation (30), defined in iden tities 31 and 34,
or area in equation (60)

a radius of nozzle wall

a
0 radius of nozzle inlet

a
t radius of nozzle throat

B arbitrary coefficient in equations (28)and (30), defined in identities 32

and 35
b defined in equation (42)

C arbitrary coefficient in equation (30), defined in identities 33 and 36:~ 
specific heat at constant pressure

P P’Po
c matrix coefficient defined in equations (38), (39) and (40)

h static enthalpy (Ah — C~tT)
h* h/h

0

k thermal conductivity

k* k/k0

M Mach number

m molecular weight

mass flow rate

N number of streamtubes
p static pressure
p* p/p

0

Pr Prandtl number
q heat flux at nozzle wall

q5 qa
0/k0T0

R gas cons tant
Re Reynolds number

r radius
r* n a

0

T static temperature

u velocity in longitudinal direction
175

u* u/u0
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NOMENCLATURE (concluded)

v velocity in transverse direction

X x/a~ , x measured along sy~~etry axis from nozzle throat

x coordinate in longitudinal direction

x* (i/a0) /Pr
0

Re0
y coordinate in transverse direction

y* y/a0

y ratio of specific heats

A finite difference

o streamtube inclination

viscosity

$1~~ U/U0

p density

pC p/p
0

• arbitrary function

* stream function

$* *2r/ ~

Subscripts

m denotes arbitrary point in x direction

mean denotes mean value

n denotes arbitrary point in ~j i  direction

0 denotes initial conditions

w denotes value at nozzle wall

Superscripts

* denotes non—dimensional variable
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