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Preface

This thesis is the outgrowth of two previous theses
written by Kenneth Olson and Allen Nejezchleb, by Rome Air
Development Center, and from an interest in optimal receiver

structures for the atmospheric radio noise (ARN) environment.

The two theses by Olson and Nejezchleb used existing models
for ARN to evaluate CPFSK and CFSK receivers. As a result
of this work it became obvious that existing models for ARN
are inadequate for evaluating existing receiver structures
and specifying optimal receiver structures. Thus, it was

. decided that a new, more analytically tractable noise model
must be found. That is the topic of this thesis.

I would like to thank Captains Kenneth Olson and Allen
Nejezchleb for introducing me to the subject of ARN and their
patient help when starting this project. I would also like
to thank Peter Maybeck and Captain Stanley Robinson for the
many helpful suggestions on technical and non-technical
problems encountered during the writing of this thesis. I
am especially appreciative of Major Joseph Carl who provided
guidance throughout this project, steering me away from many
problems and helping me over many others. A special thanks
must also go to my wife Katherine who, besides composing all
of the figures, gave me constant moral support throughout

the nine months of work on the thesis.
Steven D. Hettinger
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Abstract

&&he physical processes causing atmospheric radio noise
in the very-low frequency communication channel are examined.
The return strokes from lightning discharges are found to be
the major source of the noise.

A survey of empirical noise models is presented. The
models are compared in terms of their ability to match the
measured first order statistics from CCIR Report 322. While
all of these models have advantages and disadvantages, it is
observed that all are inadequate to evaluate the performance
of known receivers or to specify the optimal receiver
structure. his results because empirical noise models give
no information about the higher order statistics of the
noise.

A new model for atmospheric radio noise is developed.
This model is a random process model that is based on the
physical processes causing the noise. Higher order statis-
tics of the noise can be determined, at least in principle,
from this type of model. The model consists of the sum of
two compound Poisson processes. The first order statistics
from this model are compared to the measured statistics from
CCIR Report 322, Based on this, the model is found to be a
valid representation for atmospheric radio noise in the very-

low frequency channel.
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A RANDOM POINT PROCESS MODEL FOR
ATMOSPHERIC RADIO NOISE

I. Introduction

This report proposes and evaluates a new model for
atmospheric radio noise. This model has applications in the

field of statistical communications. A model for atmospheric

radio noise is of interest in communication theory, because
this type of noise is the limiting factor on the performance
of communication systems operating at very-low frequency.

There are many models already existing for atmospheric
radio noise, but most of these are of limited use since they
only characterize the first order statistics of the noise.
Knowledge of the first order statistics is not sufficient
for many applications. The proposed model allows higher
order statistics to be found.

The report is divided into three major sections:
(1) characteristics of atmospheric radio noise, (2) empirical
noise models, (3) a random point process model for atmos-
pheric radio noise. The first section prcvides background
material on the physical processes causing the noise and
presents the known statistics of the noise. The second
section presents a survey of existing models for atmospheric

radio noise, and points out the inherent deficiencies of

1




these models. The last section proposes a new model for

atmospheric radio noise and demonstrates the model is repre-

sentative of the noise.

This report should be thought of as a pilot study on
modeling atmospheric radio noise as a random point process.
A new model is proposed and is shown to be feasible, but a
considerable amount of work still needs to be performed
before the model can be used to evaluate the performance of

communication systems.




II. Characteristics of Atmospheric Radio Noise

Communication receivers operating at very-low frequen-
cies (VLF) are limited in performance by atmospheric radio
noise (ARN). Before the performance of existing VLF
receivers can be analyzed or an optimal receiver configu-
ration can be specified, the statistical characteristics of
the noise must be understood. The physical processes
affecting ARN include the generating and the propagation
mechanisms, and the effects of measuring equipment on meas-
urements of ARN. An understanding of these processes is
required to analyze existing noise models and to develop new
noise models. The discussion of the statistical character-
istics includes the results of measurements conducted on ARN,
and a discussion of the stationarity of ARN. This section
discusses the physical processes causing and affecting ARN,

and presents the known statistical characteristics of ARN.

Lightning Discharge Mechanism

The primary source of ARN is the electric field gener-
ated by lightning discharges. There are three major types
of lightning discharge: cloud-to-ground, intracloud, and
cloud-to-cloud. Only the first of these, cloud-to-ground
discharge, is of interest when examining ARN. This is
because of the relatively weak electric currents involved in

cloud-to-cloud and intracloud discharges. For the purpose
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of this paper, any future references to a lightning dis-

charge will refer to a cloud-to-ground discharge unless
otherwise specified.

A lightning discharge consists of three separate stages:
the building of an electrical potential difference between

the ground and the cloud, the occurrence of a streamer-

leader discharge, and of a return stroke discharge. During
thunderstorms, clouds acquire an electrical potential dif-
ference between the upper and lower surface. Positive
charge accumulates at the top of the cloud while the nega-
tive charge accumulates at the bottom. The factors that
cause the electrical potential to build are not currently
understood (Ref 28). The negative charge, in the lower
portion of the cloud, causes a concentration of positive

charge to form on the surface of the earth. When the poten-

tial difference between the bottom of the cloud and the
ground is sufficient to cause the atmosphere to break down, i
the second stage of the lightning discharge begins.

The atmosphere does not break down in one step. Instead,

slightly ionized paths (streamers) propagate from the cloud
to the ground in 10m to 100m segments, at an approximate rate
of .5m/usec. The streamer is immediately followed by a
leader stroke. The leader stroke propagates down the already
ionized path created by ;he streamer at a rate of 70m/usec.
The streamer-leader process repeats at 25 psec to 100 psec
intervals until one or more of the branches from the

streamer-leader reaches the ground (Ref 11:15-18). The
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highly ionized path formed by the streamer-leader process is
then used by the return stroke.

The return stroke is the most powerful stroke occurring
during the lightning discharge. It propagates through the
ionized path, from the ground to the cloud, at a rate of
approximately 80m/usec. Frequently three or four return
strokes (a multiple discharge) will occur within .2 sec.
When a multiple discharge occurs, the ionized path is kept
from collapsing by the flow of a 500 amp to 1000 amp con-
tinuous current. Figure 1 illustrates the three stages of
a typical lightning discharge, and Figure 2 shows the current
and timing of a typical multiple discharge.

The streamer-leader and return strokes generate electro-
magnetic interference (atmospherics). The atmospherics
from many storms combine to produce ARN. The time varying
waveform of the interference determines the distribution of
the power in the frequency domain (power spectrum). The
effect of ARN on a receiver depends on the power density
spectrum of the noise, the center frequency of the receiver,
and the bandwidth of the receiver. The magnitude of the
electromagnetic interference from a lightning discharge is
proportional to the current of the discharge. The streamer-
leader portion of a lightning discharge contains a series of
300 amp pulses that are approximately 1 usec in duration.
The power spectrum of the streamer-leader discharge has been
found to have a center frequency of approximately 30 KHz,

and a 3 db bandwidth of 40 KHz. The magnitude of the power
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Figure 1. Three Stages of a Cloud-to-Ground Discharge
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spectrum falls at a rate that is inversely proportional to
frequency, for frequencies greater than 40 KHz. The return
stroke is a pulse of approximately 20 k-amps with a 100 usec
duration. The power spectrum of the return stroke has a
center frequency of 10 KHz and a 3 db bandwidth of 10 KHz.
The magnitude of the power density spectrum for the return
strike decreases at a rate that is inversely proportional to
the square of the frequency (Ref 11:19-20). Figure 3 shows
the measured waveform from an actual lightning discharge,

and Figure 4 shows the measured power density spectrum of

the return and the streamer-leader strokes. Figures 3 and 4
were produced from a small sampling of atmospherics; these
figures are presented only to show general characteristics

of atmospherics. From Figure 4, it is seen the streamer-
leader strokes are the dominant source of ARN at frequencies
above 60 KHz. At frequencies below 30 KHz, the main source
of ARN is the return stroke. The streamer-leader strokes
always occur in groups while there may or may not be multiple
discharges during a return stroke. These characteristics will

be useful in deriving a model for ARN in section IV.

Factors Affecting ARN

Since ARN is caused by thunderstorm activity, it is not
surprising that the spatial distribution of thunderstorms has
an effect on the ARN. Several studies have been performed
to find geographical patterns associated with the occurrence

of thunderstorms (Ref 4:31). Both of these studies found
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there are three general areas of thunderstorm activity:
South and Central America, Africa, and Indonesia.

The location of thunderstorm activity is also dependent
on the time of day and the season of the year. Thunderstorm
activity seems to reach a maximum in late afternoon and
early evening. There is also a tendency for storm activity
to follow the sun around the earth. This is demonstrated by
the northward movements of storm activity in April to Sep-
tember, and the southward movement of the storms in October
to March (Ref 31:468).

ARN is not only dependent on the location of the
thunderstorms, but also the number of storms and the number
of lightning discharges in those storms. The average number
of thunderstorms per day has been estimated to be 44,000, or
about 1800 per hour. A typical thunderstorm will produce
approximately 200 discharges per hour, thus producing a total
world-wide lightning discharge rate of 100 per second
(Ref 4).

The propagation mechanism of the electromagnetic inter-
ference also affects the ARN at the receiver. At VLF two
modes of propagation exist: ground wave and waveguide. For
distances less than 1500 Km the method of propagation is
essentially by ground wave. This method results in attenu-
ation that is proportional to the distance. For distances
greater than 1500 Km, but less than 20,000 Km, the earth and
ionosphere act as a waveguide. The relation between the

field intensity and distance, for the waveguide mode of

11




S " SR R R P b AU i - € e

A S it i R

So————

|
|
;
|

propagation, is given by Eq (1) (Ref 11:33).

. EXP(-ayd)

B wik
1 3

2 (L

where

the propagation path is from point two to point one
Ei = field intensity at point i
a_ = attenuation along path w, a is complex with units

of nepers/meter

d = distance in meters along path w

When creating a model for the ARN process it is impor-
tant to understand not only the mechanisms that produce ARN,
but also the effects an observation scheme might have on the
noise measurements. Some of the factors affecting the meas-
urements of ARN are receiver impulse response, antenna gain,
antenna polarization, antenna directivity, and geographical
location. All of these have an effect on noise measurements.
These are important because noise measurements, the output
of a receiver, are often used to infer the characteristics

of the noise, the input to the receiver.

Statistical Characteristics of ARN

ARN cannot be described as a deterministic function of
time due to the complexity of the physical processes involved.
Therefore ARN is often viewed as a random process that is a
function of time. This chapter investigates the known sta-

tistical properties of ARN.
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A large quantity of ARN data has been gathered by the

National Bureau of Standards. This data includes world-wide
time averaged noise power measurements, and amplitude proba-
bility distribution curves for the time varying noise enve-
lope. This work is presented in condensed form in CCIR
Report 322 (Ref 7). The block diagram of the receiver used
in these measurements is presented in Figure 5.

The world-wide measurements of ARN power are derived
from measurements made by sixteen receiving stations through-
out the world. Figure 6 shows the location of these stations.
The average noise power available at the antenna is rela-
tively constant for observation intervals up to four hours.
The measurements made during these four hour periods are
relatively constant from day to day for periods up to three
months. Therefore, the noise power measurements in CCIR
Report 322 are plotted for the four seasons of the year, and
each seasonal section contains six plots of the four hour
time blocks in a day (Ref 7). Figure 7 shows a typical aver-
age noise power plot from CCIR Report 322. The average noise

figure, Fa’ shown in Figure 7 is computed from Eq (2).

T
(% f E2(t)dt
o]

Fa = 10 LOGlo

| 2nK To B
L
where

" the average noise figure in db

K = Boltzman's constant

13
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T = standard temperature of 288° Kelvin
E(t) =

T = the observation time in sec

the time varying envelope waveform

B = the receiver bandwidth in Hert:z

All of the noise power measurements in CCIR Report 322

are made by receivers with a 200 Hz effective bandwidth.

Figure 8 shows an example of an empirically derived plot for

converting the noise power measured at 1 MHz to the average

noise power at a different frequency. A different noise

power conversion plot is required for each world-wide plot

of noise power.

CCIR Report 322 also contains a plot of the amplitude-

probability distribution (APD) of the ARN. The APD curve is

a plot showing the percentage of time that the time varying

envelope voltage, at the output of an ervelope detector,

exceeds some threshold. The curve is plotted parametrically

with Vd’ which is defined by Eqs (3), (4), and (5).

The Vd

ratio is a rough measure of the impulsiveness of the noise;

the more impulsive, the larger the V4 ratio.

E L[ g2 s
rms \T bo E<(t)dt |
\
1 (T \
Eav o iT Io E(t)dt]
\ /
;Erms\
V, = 20 LOG, .| ;
d 10'.\Eav |
17
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(4)

(5)
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The shapes of the APD curves depend only on the V4 ratio,

i

rather than the absolute value of E or E (Ref 5:1).
rms av

Thus, all of the APD .curves with a given Vyq ratio can be

collapsed into a single curve by normalizing the incoming

waveform by E_ ., such that the resulting waveforms all have

power equal to 1 watt (Ref 7:8-9). Since the waveforms have

been normalized by Erms’ the envelope voltage threshold E

T
must also be normalized. Therefore the ordinate of the APD

plots is presented in terms of a threshold, A, which is
defined in Eq (6).

Eq
A = 20 LOGlO B (6)
rms

where W

ET = envelope voltage threshold

The APD plot shown in Figure 9 represents the amount of time
the envelope waveform exceeds a threshold for a given V.
Both the noise figure, Fa' and the APD curves are
dependent on the receiver bandwidth (Ref 27). The receiver
used by the National Bureau of Standards has an effective
noise power bandwidth of 200 Hz. The APD curves in Figure 9
can be medified to apply to receivers of bandwidth other
than 200 Hz. This can be done by selecting a curve with a
different V4. Figures 10 and 1l can be used to convert a
Vd ratio measured by a receiver of one bandwidth to that of §

a different bandwidth (Ref 27).

19




., 4
i /X /
e ag
T R
\\\\\\\\ Al s
s VW WW\
L AT, CAT A D
P A Al A
Vi TP A At
ATt Ll o Al
U it Y
e s
F g g
2

0001001011 51 8 10 20 30405060 70 80 88 90 868

Percentage of time

for which A is exceeded

9. Measured-Probability Distribution for ARN

Figure

L




——

‘g /%g soley yipimpueg
000t 00t o 3

\
|

\
TR

=
\
Y

b
\
o

\

21

N
N
5
L
g

Nﬂ>

0
X
X
NS
N\
L5

APD Bandwidth Conversion Plot 1

\\
RN N

\\,
R RES
N

4

A . g
Figure 10.




dldle o
N A AN AN A W | g:'
\\\\\\Yo\,,.m )]
\ AN \t
AN A\, WAl
&9 MW
k- AN\ &
3 a
I}
Q ]
%\\\
NI |
\C l\\\\‘\“ (-]
R
AL
AVAN
LR R
AW'IA
\
\ §
1\
3
) # o = v L
=

Bandwidth Ratios B,/B,

Figure 11. APD Bandwidth Conversion Plot 2




The APD curves in CCIR Report 322 are composed from
measurements made in different seasons of the year and times
of the day. Due to the long term variations that occur with
time, the curves can only be considered an approximation to
an APD curve that might be measured over any short peariod of
time. Crichlow does not believe this introduces an appre-
ciable error in computations using the APD curves (Ref 5:10).

All of the measurements made in CCIR Report 322 relate
to the statistics of the time varying envelope waveform of
the noise. If the envelope noise process is modeled as a
stochastic process that is ergodic in both the mean, and
autocorrelation, then the measurements of average noise
power and the average envelope amplitude from CCIR Report 322
are representative of the second and first moments of the
first order probability density function of the noise pro-
cess. If the process is ergodic in the mean, then it is
also ergodic in distribution (Ref 21:328-332). Therefore,
the measured APD curves can be related to the first order
cumulative distribution function of the envelope noise pro-
cess. The assumption of ergodicity over at least four hour
periods of time is required to make the noise measurements
from CCIR Report 322 a meaningful measure of the statistical
properties of the random process.

Even though a great amount of effort has been expended
in making the measurements of CCIR Report 322, these meas-
urements are at best representative of the first order sta-

tistics of the envelope noise process. When postulating a

23
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stochastic model for ARN, the model should be based on the
physical mechanisms which cause the noise. The model should
also be able to represent the measured statistics. In
section III this philosophy will be used to examine empirical
models for ARN.

24




III. Empirical Noise Models

Most receivers that operate at VLF have been optimized
for use in Gaussian noise, but the APD curves shown in
Figure 9 demonstrate that ARN is not Gaussian. When zero-
mean white Gaussian noise is the input to an envelope
detector, the amplitude of the noise at the output is Ray-
l leigh distributed. An APD curve for a Rayleigh distributed

random variable plots as a straight line with a slope of
negative one-half when plotted on Rayleigh paper, as in

Figure 9. This corresponds to a V, ratio of approximately

d
1.0, but atmospheric radio noise at VLF, usually has a Vd

ratio between 4 and 1l4. Thus, Gaussian noise is not a good

approximation of ARN.

Philosophy of Empirical Models

When evaluating the performance of VLF receivers, an
analytically tractable model for ARN must be used. One
approach, that has been used many times, is to find a random
variable that has a first order density function that will
produce an APD curve that matches the measured curves shown
in Figure 9.

This type of model has been used to evaluate the per-
formance of communication systems operating in ARN (Refs 10;

( 19;21;24;32). Models of this type are referred to as empir-
ical models (Refs 11;12).
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There are two requirements that all useful empirical
models must meet. First, the model must be capable of pro-
ducing theoretical APD curves that match measured curves.
Second, the model must be analytically tractable. Both of
these requirements are somewhat vague since the first does
not specify how precisely the model must match the measured
data, and the second does not specify how tractable a model
must be for a given application.

An upper limit on the required accuracy of fit can be
established by determining the variation in the measured
data that produced the APD curves in CCIR Report 322. The
APD curves shown in Figure 12 are composed from data obtained
over short periods of time (short term APD curves). All of
these curves have the same Vd ratio, but differ slightly in
shape. The APD curves in CCIR Report 322 (long term APD
curves) are the result of combining all the data used to
produce the short term APD curves of a given V4 ratio. In a
later chapter, long and short term APD curves are compared
using a quantitative measure of the quality of fit between
curves. Since nothing is gained by making theoretical curves
fit measured curves closer than the accuracy of measured
data, the fit between short and long term APD curves is used

as an upper limit of accuracy when fitting APD curves.
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Survey of Empirical Models

This section presents a survey of empirical models. The
models are discussed in terms of the following characteris-

tics: formulation, assumptions, strengths and weaknesses.

APD Representation by Crichlow (Refs 5;6;7). Crichlow's

representation of the APD curves is based only on measured
data. Crichlow observed, when APD data is plotted on Ray-
leigh probability paper, as in Figure 9, the plots consist
of two straight line segments of different slopes connected
by a curved section. The grid coordinates for Rayleigh prob-
ability paper are defined in Eqs (7) and (8).

" )
X=- % LOG]_O\\" LN rP(E) ? (7
S
Y = 20 106, [gE—| (8)
10 ®rms

where
X is abscissa scale in linear units
Y is ordinate scale in linear units

P(E) is the probability that the envelope exceeds a
threshold, E

E is envelope threshold voltage

Erms is RMS value of the time varying envelope waveform

The three sections of the APD curves can be analytically
represented by three separate functions. When combined the
functions form a piecewise continuous approximation to the

APD curves. The three functions can be piecewise
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differentiated to produce a first order density function of

the noise envelope. This process is used by Wilson
(Ref 32:27-48).

The main advantage of the Crichlow representation is
its accuracy in reproducing measured APD curves. The dis-
advantages of this representation are (1) the model is not
based on the physical mechanism that causes the noise,

(2) the model gives no information about higher order sta-
tistics of the noise, and (3) no convenient method exists
to relate the V, ratio of the noise to parameters of the

model.

Beckman's Lognormal APD Model (Ref 3). Beckman's model

is based on some assumed underlying mechanism that cause ARN.
Beckman assumes the observed ARN envelope results from an
appropriate transformation of two statistically independent
noise vectors. The first is Rayleigh distributed in ampli-
tude and is assumed to have uniform phase; the second is log-
normally distributed in amplitude and is assumed to have
uniform phase. The Rayleigh vector represents continuous
background noise from distant storm activity. The lognormal
vector results from the propagation mechanism affecting
highly impulsive noise from nearby thunderstorm activity.
Appendix A presents some properties of the Beckman model.

Eq (9) expresses the first order density function of the
noise envelope, seen at the output of the receiver shown in

Figure 5.
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where

E is the random envelope amplitude at the output of the
envelope detector

Nc is a variable between 0 and 1 that depends on the
number of lightning discharges and the receiver
bandwidth

ol is the variance of the lognormal variable

Io(-) is the zero order modified Bessel function

The advantages of Beckman's model are (1) its accuracy
in representing measured APD curves, and (2) its basis on
physical mechanisms causing ARN. The disadvantages of

Beckman's model are (1) the density function cannot be

be determined by trial and error, (3) the Vd ratio for this
model cannot be expressed in closed form, and (4) the model
cannot be extended to higher order statistics. Thus, Beck-
man's model is representative of the measured data, but is

very difficult to use in practical applications.

Beach and George Noise Model (Ref 2). The Beach and

George model is similar to Beckman's model except that an

attempt is made to account for the dependence between large

noise pulses caused by multiple lightning discharges from
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nearby storm activity. The model produces good agreement
with measured APD curves for low probability of exceedence,
but produces poor agreement at high probability of exceed-
ence. This model has many of the analytical problems of
Beckman's model and results in a poor fit to the measured
APD curves. Therefore, the model by Beach and George is

not recommended for modeling ARN.

Hall's Generalized t Model (Refs 12;24). Hall's model

assumes the observed noise at the input of the envelope
detector can be reﬁresented by the product of two random
processes; the first process is narrow band zero-mean
Gaussian noise, N(t), and the second process is a slowly
varying amplitude modulated process, A(t). A(t) is a
stationary process with a first order density function given
by the two-sided Chi distribution as defined by Papoulis
(Ref 21:250). It is assumed the two processes are statisti-
cally independent. The two processes are multiplied together
to produce a random process representation of the noise at
the input of the envelope detector receiver shown in

Figure 5.

This model has only one advantage, APD and density
functions can be expressed in closed form. The disadvantages
are (1) parameters of the model are not related to any char-
acteristics of the actual noise, (2) the model is only
capable of matching APD curves over a small range of Vd

ratios, and (3) the resulting APD curves do not match

31

et




measured curves for extreme values of threshold. Even

S e e

though the model may be used to find higher order statistics

of the noise process at the input of the envelope detector,

it is not clear that these statistics represent the higher

T

statistics of the actual noise, since the model is not based
on the physical mechanisms causing the noise. Thus, Hall's

model is also a poor representation for ARN.

e s

M-Distribution Model (Ref 18). The M-distribution model

describes atmospheric radio noise at high frequency. This

model cannot be extended to VLF because of the limited range

S

T M T N

of V4 ratios produced by this model. Therefore use of the

M-distribution model must be limited to medium and high fre-

quencies.

S IR G B -

Power Rayleigh Model for ARN (Ref 8:83-87). The power

Rayleigh model is similar to the Beckman model. The power

Rayleigh model is composed of an appropriate transformation
of two independent noise vectors at the output of the enve-
lope detector. The first vector is Rayleigh distributed in
amplitude and uniformly distributed in phase, the second is

power Rayleigh distributed in amplitude and uniformly dis-

tributed in phase. Eq (10) is the first order density
function of a power Rayleigh random variable, while Eq (1l1)

oy s I

shows the first order density resulting from the sum of the

=

Rayleigh and power Rayleigh random variable.
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y20
z is the resulting first order density of the noise
envelope

This model has many of the same advantages and disad-
vantages as the Beckman model. It produces APD curves that
are close to measured curves, but not as close as the curves
from Beckman's model. With this model the Vd ratio can be
expressed in closed form, but unfortunately the exceedence

probability cannot. As in Beckman's model, the parameters

must be determined by trial and error.

Mixture Model (Ref 24:38-43). The mixture model is

based on the probabilistic mixture of two random processes.
One is an impulsive process, S(t), and the other is a
Rayleigh process, Z(t). Both are found at the output of the
envelope detector Figure 5. Eq (12) shows the total noise

process, N(t).

N(E) = SCE) ; Z(t) 4 S(B) : ZCt) . y(r) (12)
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where

U(t) = 1 with probability p

U(t) = -1 with probability l-p
Thus, if the random process N(t) is observed, N(t) equals
S(t) on Mp of the observations, and N(t) equals Z(t) on the
remaining M(1l-p) observations, where M is the total number
of observations. Both Z(t) and S(t) zre assumed to be
quasistationary with first order density function given by

Eqs (13) and (14).

oZ 202
b st _ s
i (ko )T+l r(r)2r-1 Kl-r(k—o) (14)

where
Z>0
S$>0
262 = the second moment of Z

k and r are parameters of the model
I(r) = the gamma function of r

Kl-r(x) = a modified Bessel function of order 1l-r

The exceedence probability for the mixture model is given by

Eq (15).

- 1KY 1 EY . " . - E
P(E) (E'o‘) 2_’3_1*(7) Kr(EE] p + (1-p) *« EXP [2(00)2]

(15)
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Advantages of the mixture model are the first order
statistics can be expressed in closed form, and the exceed-
ence probability, given by Eq (15), produces a fairly good
fit to the measured APD curves, except at extremes of the
voltage thresholds. The biggest disadvantage in using the
mixture model is the parameters k, r, o, p must be determined
by trial and error. As with other empirical models, it is
not possible to find useful higher order statistics of the

noise.

Measuring the Exactness of Fit for APD Curves

The purpose of this section is twofold. First, a
quantitative measure for closeness-of-fit between measured
and theoretical APD curves is developed. Second, this meas-
ure of fit is used on two Jdifferent empirical models and on
short-term APD curves to establish acceptable values of fit
between APD curves for use in Chapter IV.

Two empirical models are examined to determine their
quality in terms of fit between measured and theoretical APD
curves. The measured and theoretical APD curves are compared
at nine different values of threshold, A, the nine values of
threshold being at 10 db intervals from -40 db to 40 db.

Two different values of Vd are used in the comparison, Vd
equal to 4 and 10; these are typical Vd ratios found at VLF.
The fidelity criterion for closeness-of-fit is given by

Eq (16).
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MSE = g———z (16)
g (P15)
=

where

di = the linear distance between the curves when

plotted on Rayleigh probability at a given Ai
i

{ Pli = the exceedence probability from the measured APD
curve at Ai

This is a sample mean-square error measure where d is the
linear distance on Rayleigh paper along the exceedence axis.

The linear distance may be computed by Eq (17).

Ln (P 4
d; = L0G, [__.__n( 11)] (17)
Ln(PZi)

where
Ln is the natural logarithm

Pli = the exceedence probability from the measured APD

curve at Ai

Poy = the exceedence probability from the theoretical
APD curve at Ai

;! 3 - .
4 di linear distance between Pli.and P2i

. Figures 13, 14, 15, and 16 show the fit of the mixture model
| and the Beckman model to measured APD curves at Vd ratios of
4 and 10. The error statistic, MSE, for each curve is shown

1 on the figure it applies to.
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Figure 13. Comparison of Measured and Beckman
APD Curves, V4 = 4 (MSE = .00924)
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Figure 14. Comparison of Measured and Mixture

APD Curves, Vd = 4 (MSE = .081)
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Figure 15. Comparison of Measured and Beckman
APD Curves, Vd = 10 (MSE = .00146)
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Figure 16. Comparison of Measured and Mixture
APD Curves, Vd = 10 (MSE = .347)
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The major purpose of examining these two models is to estab-

lish an acceptable measure of exactness of fit for theoretical

APD curves. The Beckman model is used because it provides the
closest fit to measured APD curves, and the mixture model is
used because it is the most convenient empirical model. The

T; value of MSE is shown on each plot. Nine points are used to
determine the value of MSE for each curve even though all

nine points do not always appear on the plot because of

scaling considerations. The error between short term and

TP Sy o T TS b

long term APD curves produced MSE values ranging from .041

to .152 for Vd equal to 4, and from .027 to .086 for V4

equal to 10. This indicates both empirical models fit the

measured data reasonably well.

AT L e T T T —

Inherent Deficiencies of Empirical Noise Models

ARN is represented in a probabilistic manner to provide

LRI I

- -

the communication engineer a method for evaluating the per-

formance of existing receiver configurations, and to allow him
to specify the optimal receiver structure. This section

1 examines the requirements for evaluating receiver performance
and specifying the optimal receiver. The adequacy of empir-

ical noise models are examined in terms of these requirements.

Evaluating the Performance of Existing Receiver Struc-

tures. As mentioned earlier, most VLF receivers currently
operational are optimal in a white Gaussian noise environ-

ment. In this section, a binary receiver, that is optimal in

- white Gaussian noise, is used as an example for the analysis
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of a known receiver structure, see Figure 17. Before a

receiver can be evaluated, a criteria must be established
by which performance is measured. Minimum probability of
error is the criteria used in this section (Refs 29; 24).
It is assumed that both signals are equally likely, have
equal energy, and are known exactly. The resulting receiver
structure is examined in many textbooks; its performance is
well known (Refs 29:27-28; 14:67-68; 33:248-251).

This receiver computes realizations of two random vari-
ables, £, and &2, over the signaling interval of length T.

It then computes a new random variable realization, A, by

subtracting £, from &, . Eqs (18), (19), and (20) demonstrate
the computations made by the receiver.
T
1 fo S (t) [S4(r) + n(t)]de (18)
T
%9 = J Sp(®)[S5(t) + m()]de (19)
= - 82 |

where
Si(t) is the ith signal
N(t) is the additive noise

gi(t) is the received signal plus noise

There are two conditional densities associated with each of

the random variables, %, and %,. These are £(2,18)),
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Figure 17. Optimal Binary Receiver for White Gaussian Noise,
Signals are Equally Likely and Have Equal Energy
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f(gllsz), f(gzlsl), and f(&zlsz); where f(gilsj) is the den-

T

sity on £;, assuming Sj is transmitted. Since the decision
statistic A is the difference of two random variables, the
conditional densities of A depends on joint densities of

2 and L5. Egs (21) and (22) show these densities.
£(A1S)) = £(27 - 2,18 (21)
£(A[8p) = £(%; - £,518)) (22) :

Since the performance of the receiver is measured in terms
of probability error, an expression for the probability of

error is needed. The desired expression is:

Pg = [ [ £(%;. 2,18)) - P(Sp)dey,de,
R: 2.1-9,210

+ [ [ £(21. 2,185 ¢+ P(S,)dr dz, (23)
R:ll'lzio

P. is the probability the receiver will make an error
Pi is the a priori probability that signal i is sent,
equal to % by assumption
Eq (23) reveals the need for knowledge of the joint statis-
tics of the noise, to evaluate the performance of the receiver. ?
In the special case of white Gaussian noise, the joint densi-
ties can be found from the first order density. ARN is not

white or Gaussian, thus, knowledge of the higher order sta-

tistics is required to compute the performance of a known

receiver.
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Specification of the Optimal Binary Reciever. The first

step in finding the optimal receiver is to select a cost

function (Ref 29:24-26). 1In this section, the minimum prob-

ey

ability of error is used as the cost function. The next

sais sushe sus

step is to represent the received random process as a random

vector. A convenient method for expanding the process for a

finite observation interval employs the Karhunen-Loeve

1 expansion (Ref 29:174-209) to arrive at a truncated N dimen-

sional representation involving random vectors where N is

finite.

Now that the cost criterion is determined and the

received random process is expressed in terms of a finite

e o G e R

random vector, the only task left is to determine the decision
region in the N dimensional decision space that will minimize
the cost of the decision. This procedure is developed in

many textbooks (Refs 29:25-27; 13:62-65). Eq (24) presents
the decision rule that will minimize the probability of

error of the decision for a binary receiver.

£(R]S;)
£R|S,)

o

g (24)

VAV U
g

where

P1 = the a priori probability of transmitting signal Si
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g = the received vector (51. Tgn & v s 5 os EN)

f(glsi) is the joint conditional density on R assuming
S; is sent
The ratio of the two densities is known as the likelihood
ratio.

Eq (24) specifies the computation that must be made by

the optimal binary receiver. It should be noted that joint
conditional densities are required to make the decision.
Again for the case of white Gaussian noise, the joint den-
sities can be determined from the first order densities.
For ARN the joint densities cannot be determined from the
lower order densities, thus the joint densities must be

explicitly known.

Inadequacies of the Empirical Noise Models. The useful-

ness of empirical noise models is severely limited because
they are only capable of representing the first order density
function of the noise at the output of an envelope detector,
as shown in Figure 5. The previous two sections demonstrate
that joint density functions are required to evaluate the
performance of an existing receiver and to specify the optimal
receiver for a given noise environment.

There is no way to solve the optimal receiver problem
using empirical noise models, but an approximation to the
performance of a known receiver can be solved. This is
accomplished by finding marginal densities on the quadrature

components of the ARN, assuming the signal and noise are
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statistically independent, and the random variables %1 and
%9, Figure 16, are statistically independent. The union
bound is then used to find an upper limit on the probability
of error (Refs 19; 33:264-265). This method is only mar-
ginally adequate for producing performance bounds (Ref 19).
The union bound is only tight for certain conditions, but
the real problem in using the union bound is in the assump-
tion that the two random variables 2 and &, are statis-
tically independent.

One way to find the joint probability densities of the
noise is to find a random process that represents the noise
at the input to the receiver. If the noise is represented as
a random process then it is theoretically possible to find
all of the densities of the noise, and to determine the effect
of the noise at different points in the receiver. This makes
it possible to specify the optimal receiver and evaluate the
exact performance of existing receivers. A process noise
model is proposed and evaluated against the measured APD

curves in the next chapter.
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IV. A Random Point Process Model for ARN

Higher order statistics of the ARN cannot be found
from empirical models. Therefore, a different type of noise
model must be found. If the ARN is modeled as a random pro-
cess, then it may be possible to completely characterize the
process by finding all of its higher order joint density
functions.

The model developed in this chapter is based on the
mechanisms causing ARN. The proposed noise process is
passed through an envelope detector receiver as in Figure 5;
the output of the receiver is then compared to measured APD
curves using plots and the fit parameter MSE. If the meas-
ured and theoretical APD curves match, thep it is assumed
higher order statistics produced by the model are also
representative of ARN since the model is based on the physics

causing the noise.

Development of the Noise Model

Lightning discharges are discrete events. Thus it is

reasonable to use a random process with discrete event times
to model the noise. The amplitude of the interference depends

on the magnitude and location of the discharges. As pointed
applications is the return stroke. Although return strokes
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are often not independent of each other, they will be

assumed statistically independent to preserve simplicity in
the model. The Poisson process is a discrete random process
(point process) that has independent event times (points).

A point process must meet the following three conditions for
it to be Poisson: (1) two events cannot occur at exactly
the same time, (2) the occurrence of a point does not depend
on previous points, and (3) there is no finite interval in
which points occur with certainty (Ref 26:38-43). The
Poisson process not only fulfills the requirement of inde-
pendent event times, but also produces many analytically
tractable results, and enjoys a rich theoretical development
(Ref 26).

Empirical models such as the power-Rayleigh and
Beckman's assume the noise has two components, one impulsive
and the other a continuous background noise. Because of the
close fitting APD curves produced by these models it is
believed the proposed point process model must account for
background noise. Other process models have been proposed
using the sum of a Poisson and a Gaussian process (Refs 9;
23; 25). These models are moderately successful in producing
APD curves.that match measured curves, but the resulting
processes are not analytically tractable. Therefore, the
model proposed in this paper uses a second Poisson process
with a high rate to account for the background noise. The

high rate Poisson process has approximately the same effect
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on a linear system as the Gaussian process used in other
models. This occurs because a filtered Poisson process
asymptotically tends to a Gaussian process as the rate
approaches infinity or the bandwidth of the filter approaches
zero (Ref 22:157). Thus the model proposed in this paper is
the sum of two Poisson processes.

The magnitude of the interference seen at the receiver
differs with each lightning stroke. Thus the magnitude of
the points must be considered to be random variables. The
magnitude of the points are referred to as marks by Snyder
(Ref 26:128). When a Poisson process is marked it is called
a compound Poisson process (Refs 22:128; 29:129). Since it
is hypothesized the background noise originates from many
distant storms it is reasonable to assume, because of the
central limit theorem, that the marks are zero-mean Gaussian
random variables. The highly impulsive part of the noise
is caused by nearby storm activity. Since it is likely that
more than one nearby lightning strike occurs in a given
interval of time, and since there may be spatial correlation
between the sites of stroke activity for nearby storms, the
contribution from strokes may arrive with similar phases to
produce a non-zero mean component to the noise process.
Hence, the marks associated with the highly impulsive part
of the noise model are assumed to be non-zero mean Gaussian
random variables.

The resulting atmospheric radio noise model is

© o0

n(t) = ; a; 8(t-ty) +£ b §(t-p,) (25)

= - 00
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where

Ei and Y are Poisson event times with different Poisson
rates

a; are i.i.d. Gaussian random variables NG(O, 012)
(These are the high rate marks)

b, are i.i.d. Gaussian random variables NG(mZ' 022)

(These are the low rate marks)

8§(+) is the Dirac-delta

NG(m, 02) specifies the mean and variance of a Gaussian
random variable

The probability of observing n, Poisson events in an interval

of T seconds is

OqT) L Exp[- A7)

PNy, = o] = - (26)

where

Al is the average rate of the high rate Poisson process

with units of events per second

Similarly, the probability of observing n, Poisson events in

an interval of T seconds is

(1) 2 EXP[- A,T]

P[8y; = my) - "

(27)

where

Az is the average rate of the low rate Poisson process
with units of events per second
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Verification of the Process Model

In this chapter the effect of the proposed noise process
on the receiver shown in Figure 5 is examined. If the noise
at the output of the receiver produces a match to the meas-
ured APD curves, the model accurately represents ARN, with
respect to its first order density, and is assumed to also
represent the higher order densities. Figure 18 shows a
mathematical approximation to the envelope detector receiver
used in the CCIR Report 322 measurements. This representation
of the receiver is used to evaluate the accuracy of the pro-
posed process model.

This model for the receiver uses quadrative multipliers
and lowpass filters to represent the bandpass filter
(Ref 33:496-501). The lowpass filter should have the same
bandwidth as the bandpass filter. The bandpass filter is an
ideal filter with a double sided bandwidth of 200 Hz. Thus
the lowpass filter shown in Figure 18 should be an ideal low-
pass filter with a single sided bandwidth of 100 Hz. An
ideal lowpass filter can be approximated by an integrator.
The frequency response of such an integrator is given by

Eq (28).

H(E) = I_E%%%ﬁz (28)

where

T is the integration time

52




[-Jv2

-

: 3

3 - t—

& v [T

§ b3 ¢ " S

:' -0 4 - O

! 3

| 3 -

; = -

| E 3

d - -
: (] o
| s 3
| 0 c
8 @
|

| =

i =

|

Figure 18. Mathematical Representation of
CCIR Report 322 Receiver
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The frequency response of Eq (28) can be made to approximate
the ideal lowpass filter by selecting T so the first zero of
the frequency response is equal to the bandwidth of the low- ]

pass filter.

H(100) = 0 = LI _sinm(100)T
N 7(100)T (29)

Solving Eq (29) for T results in T = .0l seconds.

The receiver first multiplies n(t), the input noise pro-

cess, by sinw, t and cosw t where R is the center frequency

of the bandpass filter.

pl(t) = p(t)cosmot (30) 3

~

nz(t) = g(t)sinwot (31)

where

gl(t) and gz(t)are shown in Figure 18,

The outputs of the integrators are

n, = fT n(t)cos(w_t)dt (32) 3
+3 - e o .
B, = [° p(t)sin(e_t)de (33)
~4 o~ o
Using Eqs (25), (32), and (33) yields %
T[S i
n, = fo [g--“gia(t-gi) cosmot
H - 34
+ é,_,bié(t H) coswot]dt (34)
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This reduces to

E"l'l‘l yTZ
ng = §-1 8, cosu t. + 231 by cosw i
and
Nm Nt2
B, = £=1 aj sinogt, + £=1 by sinw u,
where

NTI and NTZ are given by Eqs (26) and (27).

Squaring ) and n, produces ng and Des respectively.

(Npy Nro 12
ne =|] a; cosw t; + ) by cosw_u
5 | {e1 X osi " £ k o~kd
(N1 Nr2 12
n, = a; sinw t; + ) b, sinw_u
- ~1 & - 5
6 _§.-1 o kal ~K e
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Eqs (38) and (39) become

{
N1 ¥m1
B, = ;-1 §'1 8; 8 cosw,t. cosmogj
N1 ¥r2 ;
+ 2 §=1 Esl 3;by cosw ty cosw u f
B2 Br2
+ b, b < 4
| E=l §=1 byby coswguy cosu (40)
g
i
; N1 8
| B = ;:1 §'1 3j 3y sinw ty sinmogj
M Jr2
{ + 2 " a.b, sinw_t. sinw.u
by foy 2St00Es SRvkK
; %2 e
i + L4 §.1 bibj sinwouy sinwguy (41)

n,; is then given by the sum of n. and D




Ny Ny
n, = asa, coswy(t, - t.)
I §-1 i it b TR

N71 N2
+ 2 ; a;b, cosa_ (t: - u,)
-1 E=1 1%k o‘\~i Bk

Npo Npo

+ %_1 §=1 byb coswg (. - Hj) (42)

Dg is then obtained by taking the square root of n,.

To find the first order density function on the random
variable n, or ng is a formidable task. However, insight
about the first order density may be gained by observing
n3 and p, are conditionally Gaussian. n4 and n, are the sum
of independent Gaussian random variables when all tir Ego
Npj, and Np, are known.

The conditional densities on n, and n, are given below.

£logl¥py = Nps Npp = Mo, &y = &, By = ¥y

Ro N 3 ;z
w.t, +0
o°i & R

= NG(m E-l COSW H, o% ;ilcosz 1coszm°uk} (43)
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f(galng Nl' grz Nz’ £y = & Mk M)

N2 5 5
s e (2
NG(m E-l sinw iy, 0] §=1 sin‘o,t + 05 £=1 sin “o“k) (44)

where

D T————

t. and ﬁk are random vectors of event times

This results in the random variables By and D¢ being distri-

PO P s e

buted conditionally as non-central chi-squared (Ref 16:143).
Thus, the random variable n, is conditionally the sum of two
non-central chi-squared random variables. From Eqs (43) and
d (44) it is seen that n, and n, are not conditionally identi-
cally distributed because of the sineojty; and coswt, terms.

Thus, the random variables Bg and n, are also not conditionally

6 f
identically distributed. The random variables nq and n, may ?

v (i iy g e S v N e g e

become conditionally i.i.d. when averaged over the possible

values of £ and By - Thus, it is assumed nj and n, are in

fact conditionally i.i.d. Gaussian random variables where the
conditioning is with respect to Ny and Npo only. This means
the conditional densities on ng and ng are i.i.d. non-central
chi-square with one degree of freedom. Thus the conditional
density on n, is non-central chi-square with two degrees of
freedom.

Using the assumption of conditionally i.i.d. Gaussian

i random variables reduces Eqs (36) and (37) to

1 31 Nr2 e
A O Sl (45)
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1-=F2 4 3 = V4
i 2 a, + = Z b (46)
~% NT fwp B2 e
where
g{'and g{ are i.i.d. Gaussian random variables

Pi and Pé are i.i.d. Gaussian random variables

The 1//2 is a result of the cosine and sine terms in Egqs (35)
and (36). The conditional probability density function an
n, and n, from Eqs (45) and (46) are

£(ay(8py = Ny. Bpp = W)

= Ng(vZ m,N,, 2012 N, + 2022N2) (47)
£(oy Mgy « My By =R
2 2
Thus ng and n, are i.i.d. conditionally Gaussian random

variables. Squaring n, and n, produces g and ne which are
conditionally independent non-central chi-squared random
variables with one degree of freedom (Ref 16:147). Since

n_. and ng are i.i.d., their sum, is a non-central chi-

~5
squared random variable with two degrees of freedom (Ref 17).

oy

This density is given by Eq (49).
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ny + 4Np2mj2
£(n, Ny, Np) = ——yp-t— . Exp|. 27,272
3 4(Npo] + N,os) 4(Nl"l + Nyo3)
2021 %
r (n7N2m2) ih
O N ‘4 N ¢ )
1%1 199
where

Io(‘) is the zero order modified Bessel function.

The joint density on ., yTl and §T2 can be found by com-
bining Eqs (26), (27) and (49).

(50)
The marginal density on n, can then be found by summing
Eq (50) over all values of §1 and NZ'
© @ 2
ny +4N,“ m
f(y) =1 ] : + EXP [- e % }
¥ - = & 9 2 2
Nl 0 N2 0 4(N101+N20§) 4(1’11014-!'1202)
X Ny E
B (n,N3m3 | Sy T ERG D)
° N+ 03 N, !
N
(AaT) 2 EXP(- ApT)
. N,! (51)
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o,

where

xl and A, are the high and low rates of the Poisson
processes

T is the integration time (.0l seconds)

n, 20

The first order density on ng can now be found by a simple

transformation
ng = () (52)
where
Bzl
This produces
2 3.2

© © n8 n8+2N2m
£(ng) = % ) - EXP|- —————LZ -

170 Ny=0 2(n,02+n,03) 4(NyoT+N,03

N
A= [ ng Ny m ] S DL ERRG- D)
(¢)

Njof +Noo} LR

N
T) € EXP(« )T
3 ()\2 ) ( )\2 ) (53)
Ny !
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This is approximately the resulting density of the noise

measured at the output of a receiver such as the one used
by Crichlow.

The result of Eq (53) is now compared to the measured
APD curves from CCIR Report 322. The first step in comparing
the curves is to find the proper parameters, 1, Aoy MWy, 012,
022. This is done by numerically differentiating the meas-
ured APD curves to obtain a first order density of the meas-
ured noise. Parameters are then selected for use in Eq (53)
by using a gradient search subroutine to adjust the parameters
to minimize the mean-square error in fit between the two
curves when plotted on a logarithmic scale. The gradient
search routine used is ZXMIN found in the IMSL library. The
logarithmic scale is used because of the large dynamic range
of the density curves. The density curves are used for
finding parameters instead of the APD curves because of com-
putational considerations. If the fit between the APD curves
is used to find the parameters, then Eq (53) would have to
be integrated thousands of times during the gradient search
procedure. This is not feasible in terms of computer time.

Table I contains the parameters obtained by the above
procedure. Eq (53) must now be numerically integrated using
the parameters in Table I to obtain values for the AFD
curves. The numerical integration that must be performed is

shown in Eq (54).

n
(o]
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Table I

Parameters for the Point Process Model

Parameter Vd = 4 Vd = 10
A 300 500
AZ 10 30
012 .019 .0005
2
oy 25 5
m, .08 .85

where

n is the threshold represented on the abscissa of
Crichlow's APD curves

The resulting curves and values of MSE for V4 ratios of
4 and 10 are shown in Figures 19 and 20.

The curves show close agreement between measured and
theoretical APD curves for both low and high probability of
exceedence. The theoretical data pcints are found to deviate
a sizable amount from the measured curve for mid-range values
of probability of exceedence. This is thought to be caused
by the use of a logarithmic scale when matching the density
curves. This causes parameters to be selected that produce
an excellent fit in the tail sections of the density but not
as close a fit for the larger valued section near A = Q.

The values of MSE are almost as good as for Beckman's model
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Figure 19. Comparison of Measured and Process Model
APD Curves, V4 = 4 (MSE = .00958)
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Figure 20. Comparison of Measured and Process Model
APD Curves, Vd = 10 (MSE = ,0357)
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and are much better than for the mixture model. This results

because of the high accuracy of the high and low probability
of exceedence values on the APD curves. Thus, this special
case of the process model fits the measured APD curves, in

terms of MSE, almost as well as the Beckman model.
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V. Conclusions

Existing empirical noise models are not adequate for
evaluating the performance of known receiver structures or
specifying the structure of the optimal receiver in atmos-
pheric radio noise. While all but one of the empirical
models examined in Chapter II results in an analytical
expression that closely matches the measured APD curves in
CCIR Report 322, none of the models contain any information
about the higher order density functions of the noise. The
higher order densities are required to evaluate the perfor-
mance of known receivers and specify the optimal receiver.
Thus, empirical noise models are of limited use to communi-
cation engineers.

Modeling the atmospheric radio noise as a random
process allows higher order densities to be found. If the
higher order statistics are to be representative of ARN, then
the process must be based on the physics causing ARN. Thus,
the noise model proposed in Chapter IV is based on the
physical processes causing ARN.

Under certain assumed restrictions the model described
in Chapter IV produces APD curves that fit the measured APD
curves of CCIR Report 322 with less than five percent mean-
square error. Thus, the proposed random point process model

adequately represents the first order statistics of
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atmospheric radio noise. Since the proposed model is based
on the underlying physical processes causing ARN, the
higher order densities resulting from the model are also
representative of ARN.

This process model is used to obtain an approximate
expression for the first order density function of the noise
present at the output of the receiver specified in CCIR
Report 322. 1In principle, the exact expression for the first
order density can be found. This warrants further investi-
gation. If it can be shown that the exact expression also
results in APD curves that closely approximate the measured 1

curves, then the proposed model is definitely an accurate 1

representation for at least the first order statistics of
the noise. No measurements of higher order statistics of
the noise exist; therefore, it is not possible to verify

that higher order statistics agree. Using the higher order

statistics from the model as an accurate representation of
the higher order statistics of ARN, the performance of
existing receivers can be studied and the optimal receiver

structure can be specified.
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Appendix A

Beckman's Model for ARN

This section presents the information required to
reproduce the results shown in Figures 13 and 15. This
sectidn explains how the Beckman model is derived and used.
Some useful numerical approximations are also presented.

The Beckman model is the sum of two random vectors.
Each vector has a magnitude and phase. The magnitude of the
first vector is Rayleigh distributed while the second vector
is lognormally distributed. Both vectors have uniform dis-
tribution of the phase component. R, is the Rayleigh magni-

tude, 32 is the lognormal magnitude, and @ is the phase.

= R - -—g—
£,(R; 9 7 N, EXP[ ZNC] (55)
2
£,(R, ©) = ~L EXP[- (Lo (R) 2 - ] (56)
oR(2m)* 20
where
2

¢“ is the variance of the lognormal random variable

N, is the variance of the Rayleigh random variable

Ln(*) is the natural logarithm

Using the following transformation of random variable




R? = x2 + y2

0 = tan‘1(§)

and Eqs (55) and (56) produces the following densities on

the Rayleigh and lognormal vectors.

S
& 0 = z?l'n—c EXP[- x & ‘gcY ] (57)
2 22
o (x2+12y (2m) % ge*

The Beckman model requires these two statistically indepen-
dent vectors to be summed. The resulting density is given

by the convolution of the density from Eqs (57) and (58).
£(X,,Y,) = f_wf £,(X,Y) + £,(X,-X, YO—Y)dx dy (59)

The result is

1 EXP{_(Ln 2y 4 52)2

> S AR
(KO o) I-QI (Zw)ngc(X2+Y2) 202

(Xo-X)2 + (Y,-1)2

- 2Nc ]dx dy (60)

Using the following transformation of random variable pro-

duces Eq (65)
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X = R cos0 (61)

Y = R sinod (62)
s R Ro cos0 (63)
Xy ™ Ro sin® (64)

© ZRO
0 (Zv)% oN, R

(Ln(R) + 02)2 N Ro2 * Rz]

EXP[-
202 2Nc

£(Ry.9) = [

o R
« [ EXP[-8_ coso|de dR (65)
o Ne

Using the definition of the zero order modified Bessel

function (Ref 1:259) produces

@ R & g2l% Rg? + R
£(R) = e EXP[_ Loy +02]°  Ro ]
8 fo (2m) oN_R 252 2Ne
. el
IO(N dR (66)

Eq (66) is the result shown in Chapter III.

To calculate the data points found in Figures 13 and 15
requires integration of Eq (66). Eq (67) is an approximation
to Eq (66) that can be used for R > 12 and R, >12.

»t"‘v - [ RO EXP[_ (Ln(R) S 02)2 = (RO-R)Z] (67)
(2n)4 oN_R

202 2Ne




The most difficult problem in using the Beckman model
is finding the proper parameters, ¢ and N.. A method for
approximating these parameters from knowledge of the meas-
ured APD curves is now presented. The position of the
Rayleigh straight line portion of the APD curve determines
the value of N.. This portion of the curve can be approxi-

mated by

PR, > R) = EXP[- Ni] (68)

(o]

By reading the value of threshold, A, at which the APD curve
crosses the .99 probability of exceedence point and using

Eq (68) results in Eq (69)

St Ln(.99) R

where

Ln is the natural logarithm

The value of ¢ can be determined from the slope of the
(straight line) lognormal portion of the APD curve when
plotted on Rayleigh probability paper (Ref 3:735). Figure 21
is a plot of slope: ' :rsus o. These methods of obtaining the
parameters only produce approximate values, thus some adjust-
ment of the values may be required to obtain the best fit to
the measured data. The values of ¢ and N, used in

Figures 13 and 15 are o = 1.04 and N, = .0973 for V4 of 4

and ¢ = 1.32 and N, = .00985 for V4 of 10.
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APD Curve Slope vs. o from the Beckman Model
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