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Multistate Reliability Models: A Survey

~ 1 by

Eniad El—Neweihi and Frank Proschan

Abstract
\

~ For a long time, the vast majority of the models in reliability theory have

concentrated on the case in which both components and systems assume only two

possible states; functioning and failed. Unfortunately, this represents a

gross oversimplification of the many real life situations in which both components

and systems actually assume a variety of states ranging from perfect operation

to complete failure.

More recently, papers have appeared which treat the more sophisticated

and more realistic situations in which components and systems may assume many
states. In the present paper, a survey is made of earlier work , but more
especially of some quite recent work (some completed , some still in

progress) by the relatively small number of researchers active in this

important new area of reliability. It is becoming apparent that this

research will generate results not only of value in reliability applications ,
but also of independent interest in multivariate statistical analysis. ~~~~~~~~~
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1. Introduction.

The vast majority of reliability analyses assume that components and

system are in either of the two states: functioning or failed. In many

situations one is capable of distinguishing between various “levels of

performance” for both the system and its components. For such cases, the

existing dichotomous model is a gross oversimplification of the real situation,

whereas models representing multistate systems and components are much more

suitable.

Until recently, very little work has been done on this more general

problem of multistate systems. Some earlier work treated only very specialized

aspects of multistate systems, but no comprehensive treatment of these models

was available. Among the earlier papers are (lii, (121, (13], (14], (16],

and [17]. However there has been recently a growing interest in this important

new area of reliability theory. More sophisticated and comprehensive work

on multistate models has been performed by Barlow [2], El—Neweihi, Proschan,

and Sethuraman (8] and Ross [15]. In this expository paper a survey is made

of the various treatments of multistate models. We briefly mention the

earlierwork, but we concentrate on the more recent and more comprehensive

• treatments of multistate models performed by the relatively small number

of researchers active in this important area of reliability.

We now summarize the contents of this paper. Our terminology and notation

are similar to that of Barlow and Proschan (1] for the two state case. In

Section 2 we present the notation and terminology used throughout the paper.

In Section 3 we consider a system of n components. For each component and

for the system itself, we can distinguish among different “levels of performance”

represented by a state space S. For component i, xi denotes the corresponding

state, i—l ,...,n, the vector x —  (x1,...,x~) denotes the vector of states of
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components l,...,n. The state of the system is assumed to be a dete~~~nistic

function of ~ of the states of the components from S~ , the nth Cartesian power

of S, into S. Thus ~~x) is the state of the system corresponding to the

component state vector x. We then survey rhe different choices of

state space 5, and various definitions of the structure function ~ presented

in different treatments of multistate models. We investigate structural

properties of the various models , occasionally comp aring and contrasting them.

In Section 4 we investigate probabilistic aspects of multistate models.

We survey the relationship (in a probabilistic sense) between the performance

of the system and the performances of its components. For instance, system

performance is, as expected , a monotone function of component performances.

When the exact value of system performance is difficult to compute, bounds

are provided.

In Section 5, we survey dynamic aspects of multistate systems. In earlier

sections, it is tacitly assumed that time is fixed. In Section 5, multistate

systems are viewed as operating over time. At time 0, the system and each of

its components are at the maximal “level of performance”. As time passes, the

performance levels of components (and consequently of the system) deteriorate

to successively lower levels until finally level 0 (complete failure) is

reached. Concepts of IFRA and NBU stochastic processes, analogous to the

corresponding lifelength distributions in the binary case are defined and

studied by various researchers. Some generalized IFRA and NBU closure theorems

are presented.

Finally in Section 6, we show by means of two examples how theories of

multistate systems may be applied to existing binary reliability models.

il l ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

.— - 
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2. Notation and Terminology.

The vector x ~~~~~~~~~ denotes the vector of states of components

1, . . . ,n.

C {l,2,...,n} denotes the set of component indices.

(j1,
x) (xi,...,xj...1,...,j,xj+1,.. ,x~) where j—O,1,...,M. 

S

(•i,x) E (x1,..., x1_1, •, ~~~~~~~~~~~~

1~ 
(j,.~~,jL

< x means that y1 < x1 for i—i,... ,n and y~ 
< x~ for some i

a — (a0,...,ct~) is a probability vector means that 0 < 11,

M
• j0,l,.. . ,M and E ~ 1.

- j_o j

c t < c t’, where both a, cx ’ are probability vectors, means that

:1 
Ea 1LI E c t~ , j—O ,1,...,M.
k~j k—j

xVy denotes max(x,y).

xVy (x1Vy1,... , x~
Vy~).

xAy denotes min(x,y).

xA~ (x1Ay1,.. . ,x~Ay~).

“Increasing” is used in place of “nondecreasing” and “decreasing”

is used in place of “nonincreasing”. When we say

is increasing we mean f is increasing in each argument .

Given a univariate distribution F, its complement 1—F is denoted by F.

Given a set s, ~n denotes its nth Cartesian power.

_ _ _ _ _ _ _ _ _  4
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3. Deterministic Properties of Multistate Coherent Systems.

Consider a system of n components. We assume that the performance of the

system depends deterministically on the performances of the components. Thus

given x, the vector of component states, we may determine •(x) , the system

state. The function • is called the structure function of the system. In

the binary case, it is assumed that both components and system are in either

of two states: functioning or failed. The variables xi, 11,...,n , as well

as $(x) , assume their values in the state space S — (O ,l}, where 0 denotes

• failure and 1 denotes functioning. The structure function ~ is then a map

from {0 ,1}fl into {o,i}. The structure function ~ satisfies certain conditions

that represent intuitively reasonable properties of systems encountered

in practice. The following two conditions are required for a binary system to

be a coherent structure ([1], Def. 2.1, p. 6),

(i) The function ~~x) is increasing.

(ii) Each component is relevant to the system, i.e., for each

i there exists a vector ( i ,x) such that ~~].i,x) > •(O~~x). This

means that the function ~ is not constant in its ith argument,

i—i , . . . ,n.

Condition (i) embodies the reasonable assumption that improving the performance

of a component is not harmful to system performance. Condition (ii) eliminates

from consideration components which have no effect on system performance. The

theory of binary coherent structures has served as a unifying foundation for

a mathematical and statistical theory of reliability for the dichotomous case.

The binary model, however, is an oversimplification in describing a

situation in which either the system or its components (or both) are capable

of assuming a whole range of levels of performance, varying from perfect

f unctioning to complete failure. In these situations , models representing

~ 
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mulitstate systems and multistate components are much more useful in describing

system performance in terms of component performances. Naturally, the first

step in constructing such models is to provide useful definitions of state

spaces, representing the sets of levels of performance, and of the structure

function $, that relates the performance of the system to the performances of

its components . A theory of multistate structures can then serve as a unifying

foundation for a mathematical and statistical theory of reliability in the

multistate case. Among the earlier attempts to this type, we mention the

following two examples: 
-

Hirsch, et al (11], in a treatment of “cannibalization”, consider a system

of n components; the state of component i is represented by the binary

variable x~ assuming the values 1 or 0 according to whether component i is

• functioning or failed, i1 ,...,n. However the system itself can be in

any of Mi-i states representing various levels of performance. The set of

possible performance levels is assumed to be totally ordered and is then

represented, without loss of generality, by S — {O,l,...,M}, where 0 denotes

complete failure and M denotes perfect performance. The structure function

~ is a map from {Ø,1}
fl into S. Note that S can have at most 2~ elements.

The structure function ~ is assumed to be monotone increasing, with ~~O) 0,

$(i) M. The authors, however, do not attempt a general treatment of

multistate models. Their main concern rather is to investigate the mathematical

model for cannibalization to determine how components may be exchanged to

improve system performance. The following multistate model is presented by

Postelnica (14]: Consider a system of n components in which the state space

for the system and for each of its components is the unit interval (0,1],

representing a continuous range of performance from perfect performance (1)

to complete faiLure (0). The structure function ~: [O ,lf’ -‘~ [0,1] satisfies

— ~_,__ 
-- ~- — _____ —



- ___  _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _  __ _ _ _ _ _ __ _ _ _ _

the following conditions :

(a) •(i) —

(b) $(O) — 0.

H • (c) $(x) is monotone increasing.

(d) $ (c)>c, 0 < c < l .

(e) ~(c~,O) < c 0 < c < 1.

The author does not attempt a comprehensive treatment of such multistate

structures, buth rather investigates some very special applications.

More recent and more comprehensive research in multistate systems has

been performed by Barlow (2], El—Neweihi, Proschan and Sethuraman [81 (hereafter

l eferred to as EPS (8]), and Ross (15]. The definition given by Barlow [2]

for the multistate structure is set—theoretical, based on the concept of miii

path sets and nun cut sets of binary coherent structures. Consider a system

of n components. Assume that the state space for each of the components as

well as for the system is the set S {O ,l ,. .. ,M }, where 0 denotes the failed

state and N denotes the maximal or perfect state. Let 
~l’ ”’~r 

be non—empty
r

subsets of C such that U P~ = C and P~ P4, i~j. The structure -function
i—i J

-
~~ S is defined by

~~x) — max mm x~, (3.1)
l$ilr icP~

where xesn is the vector representing the states of components l,2,...,n.

In the binary case the structure function given in (3.1) is the most general

coherent structure ([1], Chapter 1), and the sets P1,. . ‘1’r are its miii path

sets. Let $‘ be the binary coherent structure associated with 
~
i’••

~ ’~r~ 
The

multistate coherent structure ~ specified in (3.1) can then be expressed in

terms of the corresponding 3 unary coherent structure 4 ’ as follows: For

~l if x >j
each i—i,... ,n. let y~~ 

= and let 
~~~~~~ ~

Y j
)
~ 
j0 ,1,.. .,M.

0 o.v. 

~- • • -
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It is fairly easy to see that $(x) > j if f 
~~
‘ (;) — 1, and

M
• 4 (x) E c~ (b). (3.2)

i—i 4

Thus the multistate coherent structure given by Barlow (2], is very

• closely related to a corresponding binary coherent structure. Exploiting

this relationship makes it easy to extend results from the binary case to the

multistate case.

-
‘ A more general approach has been taken by EPS [8] to define multistate

coherent structures. The common state space for each of the components and

for the system is again taken to be the set S = {o ,... ,M} , representing the

Mfl levels of performance ranging from complete failure (0) to perfect

functioning (M). The structure function c~: s
n 

-
~~ S is assumed to satisfy three

conditions.

Definition 3.1. A system of ii components is said to be a multistate

coherent system (MCS) if its structure function ~ satisf ies:

(i)’ ~ is increasing.

- (ii)’ For level j and component 1, there exists a vector

(•i,x) such that 4(j
~
,x) j while q (9~ ,x) # j  fo r Ui,  i 1,. . .

and j”O,l,. . .,M.

(iii)’ •(j) — j  for j— O ,1,... ,N.

The three axioms embodied in Definition 3.1 extend the notion of

binary coherent system to the new notion of a multistate coherent system.

Note that conditions (i)’ and (ii)’ generalize conditions (i) and (ii)

in the binary case. Condition (iii)’ is automatically satisfied in the

binary case, but is not implied in the present multistate case by (1)’

and (ii)’. Also note that since the structure function in (3.1), def ined

by Barlow [2], satisfy conditions (i)’, (ii)’ , and (iii)’ of Def ini tion

3.1, they constitute a subclass of the NCS class. For instance, for a two 
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component system, only two distinct systems satisfy (3.1), namely, the parallel

and the series system, regardless of the cardinality of S. However for

S a {0,l,2}, there are more than 12 MCS’s.

The definition given by Ross (16] for a multistate system is less structured

than either the Barlow [2] specification or the EPS [8] specification. The

state space S is taken to be (O ,oo) and the structure function $ is any monotone

increasing function from [ø,00)
n into (O ,co). Ross (15] has not attempted to

investigate structural properties of his model; rather, he concentrates on the

stochastic properties of his model when observed either at a fixed point in

time, or when observed at different points in time (dynamic models). Results

of this type will be surveyed in the next two sections.

In the remainder of this section we present various structural properties

of the multistate structures given by Barlow [2] and EPS [8]. These properties

extend well—known results in the binary case ([1], Chapter 1) to the more

general multistate case.

The following theorem gives simple bounds on MCS performance:

Theorem 3.1. Let c~ be the structure function of an MCS of ii components.

Then

n u n  x~ < q (x) < max x~. (3.3)
l<i<n l<i<n

Theorem 3.1 states that a parallel system yields the best performance

of an NCS, and a series system yields the worst performance. Using this

theorem, EPS [8] establish probabilistic bounds on system reliability.

As in the binary case, the following lemma in EPS [8] gives a decomposition

• identity useful in carrying out inductive proofs. It holds for any multistate

J structure, not just for the NCS.

~~~~~~~~~~~~~~~~~~~~~~ • - --~~~~~~~~~~~~~ ~~~• -~~~~ -••- •- •~~~•. -~~~ -~~~~~ -~~~~~~~
-
~~~~~~~~

-—- •
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Lemma 3.1. The following identity holds for any n—component structure

function •:

M
— E $(i~~2!) t[x ~ 

for i—l ,...,n, (3.4)
j —0 I

where

1 if x
1
j

I —(x~— i J  0 if x~#j -

As in the binary case, EPS [8], define a dual structure for each multistate

structure.

Definition 3.2. Let ~ be the structure function of a multistate system.

The dual structure function is given by:

(x) — H — ~ (M—x1, M-x2,..., 
M_x

~). (3.5)

It is easy to verify that the dual of an HCS is an MCS.

Example 3.1. The dual of a series (parallel) system is a parallel (series)

system. More generally, the dual of a k—out—of—n is an (n—k+l)—out—of—n

system, where a k—out—of—n system Is given by ~~x) = X
(fl_k÷1).

Design engineers have used the well—known principle that redundancy at

the component level is preferable to redundancy at the system level. This

principle is presented by EPS [8] in mathematical form in (I) of the

following theorem; (ii) is a dual result.

Theorem 3.2. Let ~ be a structure function of an MCS. Then

(I) ~ (XVZ) > 
~
, (2E.) V~ (2)~

(ii) q (2~AZ) < ~ (~) Ac~ (z.) •
Equality holds in (I) for all x and ~ if and only if the structure is parallel .

Equality holds in (ii) for all x and ~ if and only if the structure is series.
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Parts of (I) and (ii) of Theorem 3.2 are also proved by Barlow [2].

In the binary coherent structures the concepts of minimal, path vectors

and minimal cut vectors play a crucial role. The analogue in MCS theory is

the concept of critical connection vectors. This concept is defined by

EPS [~3] in the following:

DefinitIon 3.3. A vector x is said to be a connection vector to level

jif 4 ( )  — j, j0,l,...,M.

Definition 3.4. A vector x is said to be an upper critical connection

vector to level j if ~~x) — j and ~ < x implies $(~) < j, j—l,...,M.

A lower critical connection vector to level j can be def ined in a dual

manner , j=0,1,.. .,M—l.

The existence of such critical connection vectors is guaranteed by the

conditions of Definition 3.1.

Let x be an upper critical connection vector to level j. Define

C
1~~~ 

a U: X
~.?i}. Obviously C

1
(x) is a non—empty subset of C {l,...,n}.

For j—l,...,M, let C
1 

— {C
1

(x):  x is an upper critical connection vector to

level j). Then the following lemma by EPS [8), shows that C1 
enjoys a

property similar to that .enjoyed by the minimal path sets and minimal cut sets

in the binary case.

Lemma 3.2. For j1 ,...,M,

uC,~ = {l,...,n}.

For j=l,. .. ,M. let ~~~~~~~~~~~~~~~~ be the upper critical connection vectors
I

to level j, where 4, a 
~~~~~~~~~~~~ 

l<r<n
1
. The following theorem by EPS [8),

expresses the state of an MCS using its upper critical connection vectors.

Theorem 3.3. Let ~ be the structure function of an MCS. Let
I

be its upper critical connection vectors to level j, j=1,... ,M. Then

_ _  • 
j
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$(x) > j if and only if x > y~ for some ~ ‘t < M and some l<Z1n~.

The above theorem is uitilized to establish bounds on the system performance

distribution , as will be shown in the next section.

4. Probabilistic Properties of Multistate Coherent Systems.

• The deterministic relationships between the performance of a multistate

system and that of its- components are exploited by the various researchers in

the field to investigate the probabilistic properties of multistate systems.

In this section we survey important relationships between the stochastic

performance of the system and the stochastic performances of its components.

These results provide bounds on system performance which are particularly

useful when exact system performance is difficult to evaluate.

Let X1 denote the random state of component I, i—1 ,...,n. Let X — (Xi,...,X
~
)

be the random vector representing the states of components l,...,n, where the

Xi
’s are assumed to be stochastically mutually independent. Then ~~X) is the

random variable representing the system state, where ~ is the structure function

of the system. Naturally, the random variables assume their values in the state

space S according to certain probability laws. In the model described by

Postehnicu [14], X
~,~ •~ *~

Xn as, well as ~~X) are distributed in the unit interval

[0,1], with cumulative distribution functions F1,.. ~~~ and F respectively.

• Postelnicu [14) discusses briefly bounds on F in terms of ~~~~~~~~~ In the

models described by Barlow [2] and EPS [81, the random variables

and ~~X) assume their values in S — {O,...,N}, with

P[X~—J] P11

P(X ij] — P (J)I I (4.1)
P[qu(~)—j] — p

1
P(q(x)~j ]  —

j—0,1,...,M, and i—l ,2,...,n. P1 represents the performance distribution of

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • - .  -••- — • • ~~~~~ • •--- •• — —-- - - • - - •
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component i, while P represents the performance distribution of the system.

Clearly,

I
• P~(j) — E 

~ik’k—0

P1(M) — 1,

• for i—i ,... ,n. Similar relationships hold for P. Let h — E4(X); we may

• express h as follows:

b E 
~~~~~~~~~~~~

since h is a function of the 1’l’” ’1’n Alternatively , we may epxress h as

follows:

h — ~~~~~~~~~~~~

where a E (p10, p~,1,..., ~iM~ 
for i—i,. ..,n. In either case, EPS.[8] calls

h the performance function of the system.

Using Lemma 3.1, EPS [8], expresses the performance function of a system

of components in terms of performance functions of systems of n—i components.

Such a decomposition identity is useful in carrying out a proof by induction

and in deriving properties of h.

Lemma 4.1. The following identity holds for h:

~~~~~~~~~~ = E 
~~ 

h(J~~ ~~~~~~~~~~~~~ 1l ,...,n, (4.2)

where h(j1, “-~.2~
) — B

The following theorem due to BPS [8] shows that h Is strictly increasing

in each p11, 1>0. This property generalizes the corresponding well known

property of h In the binary case.

• I
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Theorem 4.1. Let h(p11...,;) be the performance function of an MCS.

Let O<p
11
<l for i—l,...,n, j—0,l,...,M. Then h(p1,...,~~) is strictly

increasing in p~1, i1 ,...,n, jl ,...,M.

Properties of h as a function of ~~~~~~~~ are also investigated by

Barlow (2] and EPS (8]. The following theorem due to EPS [8], shows that

• 
• h(P

i~~~~~
Pn) is monotone increasing with respect to stochastic ordering.

A similar result is proved by Barlow [2] for his subclass of the MCS (see

(3.1)) using a differen t proof. The same property is also proved by Ross

[15] for his multistate model.

Theorem 4.2. Let Ps,, P~ be two possible performance distributions

for component i, il ,...,n. Assume P~(1) > P~(j) for j0 ,l,...,M,

i—l,...,n. Let P(P’) be the corresponding system performance distribution.

Then

(i) P(j) > P’(j) for j—O ,l,...,M,

(ii) h(P1,...,P )  ~~~~~~~~~~~~ (4.3)

A useful decomposition identity is given by EPS [8] for P[4~(x)>L],

namely

Theorem 4.3. Let ~ be a multistate structure function. Then

N
P[~ (X)>L] — B p

11 P[4
(j~ ,X)>L]1 9,—i,. ..,M. (4.4)

1—0

Relation (4.4) expresses the survival probability of a structure of

n components in terms of survival probabilities of structures of n—i

components.

Using Theorem 3 1 , BPS (8] obtain the following useful bounds on P

and h in terms of P1,...,P :

Let P be the performance distribution andh be the performance function

of an MCS. Let P1 be the ith component performance distribution, i—l,...,n. 
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Then for j—0,l,...,M—l:

ii ii
r P1(j) < P(f ) < 1 — it

i—i i—i

M n  M n

- 1 B it ~~(i—~) < h  < B [1— it
• 

• i—I. i—i i—i i—i

-
~~~~ where ~~(i) 1 — P1(j).

The concept of upper connection critical vectors introduced by EPS [8]

is exploited to establish further bounds on P and h. Let 

~~~ 
be the

I
upper critical connection vectors to level j, j—l,...,M (see Definition

3.4). Let A~ denote the event (!~~~ 4, 1, r—1,. .. ,n3. By Theorem 3.3,

N
— P[ U U A~]. Now using the well known inclusion—exclusion

t—j r—l 
—

principle, the authors establish upper and lower bounds on P($(X)~j] P(j—l).

Note that P(4’) — P1~ .. ~~4,] — it P(X1 > y ~~] for l<r<n1 
and j—l,...,M.

i—I
An interesting generalization of the Moore—Shannon Theorem ([1], Theorem

5.4] is obtained by Barlow [2] using the close relationship between his

definition of a multistate coherent system and that of the binary coherent

system. Recall that corresponding to every multistate structure function ~

def ined by Barlow (2] ,  there is a binary coherent structure 4 ’ closely

related to ~ (see (3.1) and (3.2)). Let h’ be the binary reliability function

• associated with 4 ’ , i.e., h’ — E4’(Y), where I — (Y
i~ •••~

Y
n
) is a random

vector whose components are Bernoulli random variables. In view of (3.2),

it is easily verified that

P($ (X)~j] = E~b’(~~) — h’(~~), (4.5)
N

where a (q11,... ,q~1
), and q11 

B 
~ik’ 

i—l,...,n.
k—j

Recall that Moore and Shannon show that binary coherent reliability

functions are S—shaped in the sense that if all components function with
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probability p, either h(p) > p or h(p) < p for all O~p<3., or there exists

O<p0<l such that h(p) < p for 0~p~p0 , while h (p) > p for l~p~p0. Barlow [2]

gives a natural generalization of this result to the multistate case with

respect to stochastic ordering.

Theorem 4.4. Let — a —  ( % , . . ., CI
M
) for i—1,...,n. Assume h’(p0) — p0

(O<p <l). Let — (l—p0,0,...,O,p0). Then

(a) 

~ 

a~
’ implies that £ 

~~~ ~~~

‘

* implies that 
~~~~~~~~

St at

where p —  
~~~~~~~~~~ 

p4 = p (4(X)—j], j—0,...,M, and a’ < a” means that
H N St
B B ct~ , j—0,l,...,M.

k—I
Note that (4.5) is central to the proof of the above theorem.

Finally , in the model proposed by Ross [16], X1, i—l,... ,n, and

•(X) are non—negative random variables with distribution functions F1,

11,...,n, and F respectively. The function ~~~~~~~~~~~ is def ined by

r (F1,.. . , ~~) — E4 (X),

where — i—F1, i—i ,... ,n.

Using an extension of Lemma 2.3, p. 84, of Barlow and Proschan [1],

Ross (15] proves the following:

Theorem 4.5. If ~ is a binary function then

> [r(F1,...~ F~)]’~ (4.6)

for all 0<ct<l.

As a consequence o~ the above theorem, Ross [15] proves:

Corollary 4.1. Let X,~,,.. .,X be independent IFRA random variables.
n

Then



r

n
(a) B X1 Is IPRA.

i—i

h 
(b) P{ it x~ > 

n} > (P{ it x~ > a})a,
i—i i—i

Recall that a distribution function F with F(0) — 0 is said to be an

increasing failure rate average (IFRA) distribution if

~ (czx) > (~~(X)]a for all 0<cs<i, x>0.

Observe that part (a) of Corollary 4.1 represents the well—known property

of the closure of the IFRA distributions under the convolution operation.

Ross (15] also utilizes Theorem 4.5 in proving a generalized IFRA

closure theorem which is presented in the next section.

• 5. Dynamic Models for Multistate Coherent Systems.

In previous sections, we consider deterministic and probabilistic

properties of multistate systems at a fixed point in time. In this section

we survey some dynamic aspects of multistate structures. We now consider

multistate system as operating over time. At time 0 the system and each of

its components are at their maximal level of performance. As time passes,

the performance levels of components (and consequently of the system)

deteriorate to lower levels until finally level 0 (complete failure) is

reached.

In the binary case, the length of time during which a component (system )

functions is called the lifelength of the com1~..~ient (system); each lifeiength

is a non—negative random variable. The corresponding lifelength distribution

has been classified according to various notions of aging. See, e.g., Ii].

Two of the important classes of life distributions are the increasing failure

rate average (IFRA ) class and the new better than used (NBU) class. Closure

of these classes under various basic reliability operations, such as

—~ —S — •—~~~~~~~~~ —a———— - k ~~~_ S _ ~ _L S • i _ • •_••_ _ • •- ••_ __ • •__~_~ — - •—  —-- • -— S • ______________
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convolution of distributions and formation of binary coherent systems, is

demonstrated in (1]. The counterparts of these concepts in the multistate

case have been investigated by Barlow [2], EPS [8], and Ross [15].

Let {x1(t), t>0} denote the decreasing stochastic process represent ing

the state of component i at time t , where t ranges over the non—negative

real. numbers for i—1,...,n. The stochastic process {4,(x(t)), t>0} is also
decreasing and represents the corresponding system state as time varies,

where X(t )  — 
~~~~~~~~~~~~~~~ 

The processes {X1(t), t>0}, i1 ,...,n are

assumed to be mutually independent.

In Barlow’s model where the state space is (0,1,... ,N), let us call
S 

{j, j+l,...,M} the “good” states. Assume that (P{X~(t) > J}]
hh’t j~

decreasing in t>O for fixed j. It is easily verified that (P{~ (X(t)) >

is decreasing in t>0 for fixed j. Thus the above result states that if the

• length of time spent by each component in the “good” states is an IFRA

random variable, then the corresponding length of time spent by the multi—

state system in the “good” states is also an IFRA random variable. In the

binary case this represents the so—called IFRA èlosure (under formation

of binary coherent systems) theorem. Note that from (4.5) the proof of

the IFRA closure theorem for Barlow’s model is immediate.

The following definition is due to Ross (15].

Definition 5.1. The stochastic process {X(t), t>0} is said to be an

IFRA process if Ta 
— inf{t: X(t) < a) is an 1PM random variable for

everya>0.

Having introduced this definition, Ross [15] then proves the following

generalized 1PM closure theorem.

Theorem 5.1. Let {X~(t ) ,  t>0}, i 1 ,...,n, be independent 1PM

• processes and • a multistate structure function. Then {4,(x(t)), t>0} is

_ — -  • • - - -•S S --• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •_ ••_ ,• - A
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an 1PM process .

The crucial tool in proving the above theorem is Theorem 4.5.

Ross (15] also defines an NBU process and proves a generalized NBU

closure theorem. First let us recall the definition of an NBU random

variable.

Definition 5.2. A non—negative random variable Y with distribution

function P is said to be new better than used (NBU) if P(s+t) <

for all s>O, t>O , where P — 1—F.

Now, Ross (15] gives the following definition of an NBU process.

Definition 5.3. The decreasing stochastic process {X(t) t>0) is said

to be NBU if with probability 1,

V P•(Ta>s+tIX(u))•a, 0<u<s} < P{Ta>t}

for all s,t, a>0, where Ta is as in Definition 5.1.

Using his definition, Ross proves:

Theorem 5.2. If the component processes are independent NBU processes,

then {$(X(t)), t>0} is also NBU.

Another definition of an NBU process is given by EPS [8], and then a

simple characterization for this NBU process is derived. Using their

‘i 
‘ 

characterization, they give a simple proof of a generalized NBU closure

theorem. The BPS definition of an NBU process .is as follows:

Definition 5.4. The stochastic process {X~(t), t>0} is an NBU stochastic

process if T~~1 
— inf{t: X1(t) ~~. 1) is an NBU randor variable for J—0,... ,M—1.

Recall that the state space for the EPS [8] model is the set {o,. . - ,M}.

The following lemma gives a simple characterization of an NBU process.

Lemma 5.1. The stochastic process {X1(t), 
t>0) is NBU if and only if

for all s>0, t>O,
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St
xi(s+t) < min(X~(s) , X~(t))~

F where X ,(s) and X~(t) are two independent random variables having the same

distributions as Xi(s), Xi(t) respectively.

Using their Lemma 5.1, BPS [8], prove the following generalized NET)

closure theorem.

Theorem 5.3. Let $ be the structure function of an MCS having n
components and {X1(t), t>0} be the ith component performance process,

i—l,...,n. Let {X1(t), t>O}, i~’l, ..,n, be mutually independent NET) processes.

Then {$(x(t)), t>0} is an NET) stochastic process.

Remark 5.1. The useful characterization of Lemma 5.1, adapted to the

binary case, yields a simpler proof of the NET) closure theorem than

the proof given in [1].

• 6. Applications of Multistate Reliability Models.

In this section we illustrate by means of two examples that the theory

of multistate reilability models provides useful and new treatments of some

existing binary reliability models. This shows that not only do the multi-

state reliability models provide more realistic analyses of many real life

situations, but they also permit us to obtain a better understanding and

a more efficient treatment of existing models in the two—state case.

Example 1 appears in El—Neweihi, [9].

Example 1: EPS [7] study the following model. A series—parallel system

consists of k+l subsystems CO, Cl~
...,C.K, also called cut sets. Cut set

contains ni components arranged in parallel, 1—0,1,... ,k. No two cut sets

have a component in common. Components fail one at a time, and after t

components have failed, each of the remaining components is equally likely

to fail, t 0 ,l The system fails upon failure of any of the cut sets;

- - ~~~~ ~~~~~~~~~~~~~ —~ -~~
-
~~~~~~ ~~~~~
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cut set fails when all of its components fail. This model has many applications

in the study of reliability, extinction of species, inventory depletion, urn

sampling, among others.

In part I of [71, BPS study the probability P(u0;n) that the system fails

• because of a specified cut set, say C0, fails first. Several alternative

S 

expressions and recurrence relations for this probability are obtained. Some

of these formulae are useful in the computation of desired quantities, while

others are used to demonstrate qualitative features like monotonicity, Schur—

concavity, etc., and derive asymptotic limits. Similar results are also

obtained for the more general model in which an “alarm” rings when a cuts set

• size first reaches a, where a is a specified positive integer.

In part II of [7], the authors study the probability distribution,

frequency function, and failure rate of the lifelength of series—parallel

systems, where system lifelength refers to the number of components that

have failed at the time of the system failure.

We now show the relationship between the above model and the multistate

models. Assume n1 M, 1—0,... ,k. Let the state of component i of an MCS

be defined to be the number of functioning components in cut set C1. Thus

the above model may be viewed as a series MCS. Let 4,... ,4 be the random

variables representing the lifelengths of components in cut set C~, i0 ,l,...,k.

• For’ multistate component i, the lengths of time spent in state M, N—i,... ,l

_i __i _i I Iare given by X(1)~ A(2) 
— A (l)~~~~~X (M) — X(N_l)~ 

i0 ,...,k, where

~~l)’ ~~2)~~~~~
XM are the N order statistics of ~~~~~~

Such an Identification relating the multistate model and the binary model

permits us to answer a host of questions concerning one of the two models

using results obtained for the other. For instance one can find the probability

that component 0, say, reaches an “alarm” state j, say, first. Such information

— - •— — • - -- -—S  •_ -5
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is helpful in planning maintenance and replacment policies

Example 2. Consider a series system of n binary components. Assume we

• - have N—]. spares for each of the n components. A failed component is

• instantaneously replaced by one of its spares. When the original component

• i is functioning (and thus none of the spares has been used) , we consider

that component I is in state N. Upon failure of the original component

one of its spares is used to replace it, and so the component now enters

state N—i, etc. Thus we can view the system with its spares as a multi-

state series system. Let 4,...,4 be random variables representing the
llfelengths of component I and of its spares, il ,... ,n. Assume that all

the random variables are mutually independent . Obviously, the length of

time spent by component i in a single “state” or in a group of “states”

i I
can be expressed in terms of a sum of an appropriate subset of

i=l,...,n. Thus we may view a binary system with spares as a multistate

system. Again, such an identification is mutually beneficial in the study

of both models. 

~~~~~~~~~ - - - 5- - • S  
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• states. In the present paper, a survey is made of earlier work, but more
especially of some quite recent work (some completed, some still in

• progress) by the relatively small number of researchers active in this
important new area of reliability. It is becoming apparent that this
research will generate results not only of value in reliability

S applications, but also of independent interest in multivariate statistical
analysis.
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