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On Thermodynamics and the Nature of the Second Law

for Mixtures of Interacting Continua

by

t ¥

A. B, Green and P. M. Naghdi

Abstract. This paper, which may be regarded as a continuation of a previous
paper on thermodynemics of single phase continua, is concerned with a new
epproach to thermomechanics of multiphase continua and extends the previous
ideas and procedure (Green and Naghdi 1977) to mixtures of interacting continue.
In particular, it contains (&) a proposal of a new approach for obtaining
restrictions on constitutive equations, (b) an appropriate mathematical state-
ment of the second law for mixtures and (¢) the nature of restrictions placed
by the latter on constitutive results representing the thermo-mechanical
behavior ¢rf mixtures with different constituent temperatures. Our point of
departure is the introductlion of balances of entropy and the use of a single
energy equation for the whole mixture as an identity for all motions and all
temperature distributions after the elimination of the external fields. This
procedure is in contrast to “he exlsting approach in most of the current litera-
ture on continuum theories of mixtures based on the use of a Clausius~Duhem
type inequallty (or similar entropy inequalities) for mixtures. Our interpreta-
tion of the second law is similer to that of the previous paper and leads us to
postulate an inequality which reflects the fact that for every process asscclated
with a dissipative mixture, a part of the external mechanical work is always
converted into heat and this cannot be withdrawn from the mixture as mechanical
work. The restriction on the heat conduction vectors is considered separately
and is confined to equilibrium cases in which heet flow is steady. Also, a
restriction on the specific internal energles is derived when the mixture is in
the state of mechanlcul egquillbrium with all its constituents at a common
spatially homogeneous temperature. The remainder of the paper deals with the
constitutive results and thermodynamic restrictions for inviscid fluids, a
fairly detalled consideration of the problem of an incompressibvle Newtonlan viscous
fluid flowing through o rigld porous solid whose temperature may be different
from that of the fluld, as well as some additional remarks on the implication
of the use of an entropy inequality of the Clausius-Duhem type for mixtures as
contrasted with the thermodynamic restrictions resulting from the procedure
proposed here and from our present interpretation of the second law.
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1. Introduction

The continuum theory of mixtures has been a subject of intensive study in
recent years from different points of view; and, at present,there appears to
be agreement on the basic thermodynamical equations of the theory. Differences,
however, arise over the manner in which a second law of thermodynsamics is
interpreted for mixtures. A second law is usually employed to place restric-
tions on constitutive equations; und, even for a single phase continuum, this
aspect of the subject is a matter of some controversy. We do not attempt a
detailed review of the literature on mixtures, but restrict our attention to
references which are relevant to our present development., Briefly, an account
of the subject with extensive references prior to 1960 is given by Truesdell
and Toupin (10). An alternative approach for mixtures with a single tempera-
ture by Green and Naghdi (2,2) is based on different primitive concepts and
consequently some of theilr basic field equations are of different forms from
those of Truesdell and Toupin (%9). However, it has been shown by Green and
Naghdi (2) that the baslc equations in the two formulations of the theory are
equivalent, although this is not spparent at first sight 1n the case of some
of the equatlons. For further details and remerks concerning the relation-
ship between the two forms of the theory and the interpretations assoclated with
some of the quantitlies which cccur in the equations, we refer the reader to Green
and Naghdi (Eaﬁ) and to a recent review erticles by Atkin and Craine (i)..

The present paper is a companlion to the previous work on thermodynamics of
single phase continua by Green and Naghdi (gg,b). The latter paper contains a new
approach to thermodynamics where, iln addition to the usual equations for conserva-
tion of mass and momentum, an equation was postulated for balance of entro;y and
then the equation for balance of energy was required to be satisfied identicslly
for all motions and all temperature distributions after the elimination of the

external ficldc, This resulted in a procedure for obtailning restrictions on
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conatitutive equations prior to any consideration of a second law of thermo-
dynamics. The particular form of the second law or the law of thermodynamic
irreversibility adopted previously (gg,b) led to an inequality which reflects

the fact ﬁhat for every process associated with a dissipative material, a part ’
of the external mechanical work done is always nonnegative. The restriction on

the heat conduction vector, along with a restriction on the internal energy,

were discussed previously (2;) on the basis of the classical concept that heat

cannot spontaneously flow from a cold to a hot part of the body; the former

restriction was obtained from consideration of the heat flux response in

equilibrium cases for which heat flow is steady, while the latter was deduced
when the body 1s in the state of mechanical equilibrium with the temperature
field belng spatially homogeneous.

In the present paper we extend the ldeas and procedure of Green and Naghdi

(gg,b) to mixtures of interacting continua. We begin in §2 by adopting the same ;
i
conservation lews for mass and momenta as those employed previously by Green and ' ?

Naghdi (2), and by Craine, Green and Naghdi (g). Further, with reference to thermsl

properties, in {3 we admit for each constituent of the mixture a different field %
of temperature and a different field of entropy, as well as related thermal |
fields; and, in parallel with the balances of momenta, we postulate for each
constituent a balance of entropy. Next, we recall the balance of energy for the ﬁ
mixture a8 a whole and, after elimination of external body forces and external | %
entropy supplies, regerd the resulting equation as an identity to be satisfied %

for all thermo-mechanical processes. Thls procedure should be contrasted with :

existing methods for mixtures in which uge is made of balances of energy (rather K
than & single energy equation for the mixture as a whole) and in general l.eads
to different constitutive results. For example, in the case of a mixture of |

ideal flulds with different constituent temperature discussed in §4, our procedure {

§ s a0
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yields constitutive relations for the partial pressures and diffusive forces ;
which differ from those found by Craine, Green and Naghdi (%), except when :
all constituents have a common temperature. Inequalities resulting from an
appropriete form of a second law for mixtures, as well as restrictions on the

heat conduction vectors end internal energies, are discussed in §§3,5,6.

We return to a further discussion of inviscid flulds when the mass of each
constituent is separately conserved in §6 and also examine briefly the implica-
tion of the second law and restrictions on the heat conduction vectors. The
next section (§7) is concerned with some aspects of the flow of an incompressible
Newtonian viscous fluid through a porous solid (taken for simplicity as rigid)
whose temperature may be different from that of the fluld, Thermodynamic restric-
tions by the procedure of §3 are obtained for various coefficients of the appropri-
ate linearized constitutive equations, representing small departures from an
equilibrium state at which the fluid and the solid have the same constant
temperature., Also included in the development of §7 is a brilef statement of a
uniqueness theorem for the initlal boundary-value problem for the determination
of the temperature flelds in the fluld-rigld solid; and, by way of illustration,

a discussion of heat conduction in an infinite stationary rigld porous solid
conteining an incompressible viscous fluld at rest. We conclude the precent
paper with some additional remarks in §8 concerning certain features of the
present and the previous procedures for studying the thermodynamics of mixtures
of Interacting continua and also comment on the lmpllcition of an entropy
inequality of the Clauslus-Duhem type for . xtures ag c¢contzosted with the

thermodynami.c restrictions resulting from the vocedure provosed huere, =8 tell

as from our present interpretation of the second . = »f thermodynamice.
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2. Mechanics of mixtures: Summary of basic equations.

Consider a mixture consisting of v finite constituents c, (=1,2,.00sv),
each regarded as a continuum with material points Xa, and identify the material
point X% of the constituent ca with its pogition z? in some fixed reference
configuration. We suppose that the whole of some region of Buclidean space Ro
is simultaneously occupied by all constituents in their reference configurations.
A motion of ca 1s defined by a sufficiently smooth vector function EF which
assigns position 5?::&?(§F,t) to ecach material point E? at each instant of
time t. In thelr present configurstions at time t, all constituents ca
simultaneously occcupy the same region of space R which varles with time and
which is pounded by a closed surface 3R. Simlilerly, in the present configura-
tion, an arbitrary material part of ca occuples a portion of the region of
space R, which we denote by e, (SR) bounded by a closed surface apa.

Let Py ™ pd(K?,t) be the mass density of ca and designate its velocity

vector at time t by

A}

%
o4 ~
Voo —D_t— (2.1)

~

where D¥( )/Dt denotes material timc derivative holding X% fixed. At the

place x, namely at

ﬁa =X (@ 1,25000,v) (2.2)

we define the density p of the mixturc, the mean (or the barycentric) veloclty

v of the mixtwre and the partlal diffusion velocitles, respectively, by

\Y]
’ px‘f'i'. pva , 11a=ia-v . (2.3)

v
R @l ~ ~

a1l @
™Mnee avery constituent occuples the same ropion of spuce R at ench instant of

time, -t the plaoc x wo hove

'
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~ ~

(¢=1,2,00.4v) on 3R , (2.4)

where n is the outward unit normal to 2R.
For every material part of ca occupying a region P& in the present con-
figuration, we adopt the following equations for conservation of mass, momentum

and moment of momentum:

d . -— [ =
at J‘P Py dv = J.p m, dv (2.5)
o o
iL.I P . o_ o I a
i o Py dv Ip m, v dv Ip (paE n Yav + " t7da (2.6)
o o o
d o .o o
- dv - m X xv dv
dt j. pd 5 X'Y‘ I o~ ~
o e
=Ip [gfx (pdgd- g‘a) +L°']dv+fap axg“ da . (2.7)
o

n (2.5) to (2.7), m is the rate at which mass is supplied to qa per unit
volume ' b¥ is the external body force per unit mass, p* is essentislly a
measure of diffusive force per unit volume, and ’)f is the internal body couple
per unit volume,

Making the usﬁal continuity assumptions, the conservation lews (2.5) to

X
(2.7) yield the local forms

— : oAy z
at + dlv(p v ) = ma ’ (21 7)
o o o o o o o
- = + = .
divE“+pb M mu p f s E EE. s (2.9)

This may include a surface contribution across ap in the form of the divergence
of a vector.

*The detailed development of the conservation laws in the forms {2.5) to (2.7)
and their correspondlng local forms (2.8) to (2.10) can be found in the papers
by Green and Naghdi and by Craine, Green and Naghdi (2). The basic
equations (2.8) to (2. fb are equivalent to, but not the same as, those given
by Truesdell and Toupin (lO ) . For a discussion of equivalence of the two
systems of basic equations, see Green and Naghdi (5) . Supplementary discus-
sion on the correlation of existing forms of mixture theories are given in §6
of Green and Naghdi (8).

5.
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1‘°’+g°‘-'r°‘ =0 , (2.10)

~ ~

where all variables are now regarded as functions of x end t, div stands for

the divergence operator with respect to the place x keeping t fixed, ™ is the
T o d ~

partial stress tensor and E? its transpose, n is the outward unit normal to

the closed surface th, the acceleration vector Ef is given by

awv? @
£ m v 0 (2.11)

and ¥ 1s the skew tensor correponding to the axial vector 5?, so that

'1:“}3‘= kdxg (2.12)

~

for every vector u.

We restrict our attention here to a local theory of mixtures in which there
is no mess generation within the mixture and in which the internal forces E'.a and
the internal couples ')f' do not give rise to a resultant force and a resultant
couple on the mixture as a whole. Then, for material volumes of each constituent

cd which colncide at time t and which occupy parts F&==P of R, we have

v \Y) o v n ¥
z Rla dv = 0 , by poodv = 9‘ , T J }‘ dv = ::'
a=1 Pa a=1 P& a=1 Pa
and we conclude that
v v v v
£m<0, I ai=0, I AT=0, I [¥=0Q. (2.13)
a=1 a=1 a=1 a=1
6.
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3. Thermal properties., Thermomechanics of mixtures.

We consider here the thermal properties of the mixture and, for each
constituent ca’ introduce first the absolute temperuatw e al cach material
pcint by a scalar field ea= ea(z?,t):-o. Along with the temperature, we admit
the existence of an external rate of supply of heat ra==ra(§?,t) per unit mass
and an external rate of surface supply of heat -Ea per unit area acting across
dR. Also, we assume the existence of an internal surface flux of heat
-h =-hu(§?,t ;n) per unit area across ecch surface 3P the field h , called

the partial heat flux and measured per unit area per unit time, assumes the

value Ha on 3R. We now define the ratlo of heat supply ra to the temperaturc ea

as sa==sa(§?,t) and call this the pertisl external rute of supply of entropy per

unit mass. Similarly, we define the ratios of Ha and ha to the temperature ea’

respectively, as the partial external rate of surfuce supply of entropy E& per

unit area of 3R and the partial internal surface flux of entropy kd==ka(§?,t; ﬁ)

per unit ares of aﬁa. These definitlions may conveniently be summarized by
r =085 , h =86k , h =0k . (3.1)

In addltion, for each constituent ca we assume the existence of a scalar field

na='na(§?,t) per unit mass, called the partiasl specific entropy, end a

pertial internal rate of production of entropy ga = ga(ﬁf,t) per unit mass.

The contribution of the latter to the internul rate of production of hcat is
simply eaga per unit mass.
We now postulate a2 balance of entropy for cvery material volume of ca

occupylng a part Pa in the present configuration snd write

d . - -
% J Pa na dv = j pa(sd+-ga)dv j ka da . (3.2)
Ra F& an

By usual procedures it can be shown from (3.2) that ka is linesr in n, l.e.,
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where p% is called the partial entropy flux vector. Then, from (3.1)3 and (2.3),

ha==9dpa- n and we may define the partial heat flux vector qa by
o
9t =ep - (3.1)

Under suitable continuity assumptions and with the use of (3.3), the local

equation at the place x resulting from (3.2) is

Do’nd o
+ | = - 3 . - ‘)
b, e T Myl T (gt By TV R (3.5)
where
0%y A an
[0 - o + Va . I 4 (3 . 6 )
Dt dt ~ dx

At this point we introduce the first law of thermodynamics or the principle
of balance of energy, which states that heat and mechanical energy are ceguiva-
lent and together they are conserved. We state the law of conservation of
energy only for the mixture as 2 whole. lowever, the conservation cf en-rgy
could also be employed for each constituent Ca provided full sllowance is made
for interaction energy from all other conctituents, but we do not consid=r this
hereT Thus, with reference to the present configuration and for material volumes
which coincide at time t znd occupy parts P&=:P of R, the balancc of :nergy for

the mixture may be stated in the form

+This is in contrast with previous work on many temperatures by Green and
Neghdi (4) and by Craine, Green and Naghdi (2), where it was necessary to have
energy balances for each constituent in vrder to have sufficient equaticens
for the temperature fields.
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a=1 ¥ Yp
v v

=2 [ (o ey Javer [ (2% y%n)ae , (3.7)
o=l Yo R

v
4 1 o o
—_— . +
E ‘ (2 pv v p ¢ )dv

where ca= ca(xa,t) is the partial specific internal energy of the constituent
ca' With the help of (2.8), (2.9), (3.1), (3.4) und (3.5) and under eppronriate
continuity assumptions, the local energy equation st the place x resulting from

(3.7) is

v D% Dana
-afl[Pa(—"“Dt -9, —5-;;-) +ma(‘or' eana)]
v
+ 2 (Y v¥+1Y grad v¥+ 4 mu® . u¥)
d=l E' ~ ~e ~ a~ ~
v o
‘aflfpagded+g + grad ea] =0 (3.8)

where all variebles in (3.8) are regarded as functions of x end t and where
grad stands for the gradlent operator with respect to X keeping t fixed.

Introducing the specific Helmholtz free energy § = va(xa,t) by
¢V =¢ -0 ’ (3.9)

the energy equation (3.8) may be written in the nlternative form

o o
v D7y, D7e
- —% —
Lo (55 * My o) + ¥y
o=l
v
o o, o, @ a
+L g e+ gred U 4g mut e ut]
a=1
v o
- + . == . .
afl[p"'g"’ea p . grad Ba] 0 (3.10)

For a given mixture of v constituente having reference mass densities

T

an(Xa), vhe Jonal fleld equations resulting from the integrel forms of the

conservation lawe involve a set of 12y funetions. These consist of the

d- "ormation functiuns E? and the temperaturcs ea, il.e.,

b e At
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and the various mechanical and thermal fields, namely
o oo o y
m ,T ,€ € ,D 3.12
{ o~ ,E" JL ’T]O/‘ o’ Pa’R } ‘ (.) J
and

(p%s b - (3.13)

The mass densities p are not included in (3.12) since, given {3.11), they can be
calculated from (2.8). We assume that toe fields (3.12) are specified by
constitutive equations which may depend on the eriables (3.11), their space
and time derivatives, as well a: the whole history of deformation and temperatures.
We then adopt the following procedure in utilizing the conservation laws:

(1) The field equations are assumed to hold for an arbitrary choice of
the functions (3.11) including, if required, an arbitrary choice of the space
and time derivatives of these functions;

(2) 'The fields (3.12) are caleulated from their respective constitutive
equations;

(3) The values of Eé and 5, ©3n then be found from the balances of
momenta (2.9) 2rd the balances of entropy (3.5);

(4} The conditions (2.13), the eguations (2..lu) which are deduced from
the balances of moment of momenta and the energy equation (3.10) will be
regarded as identities for every choice of (3.1L). These will place restric-
tions on the constitutive egrhations.

Tn the corrent literature on continuucr moclenlize somelimes certain terminologies

such as 2 thermodynamic process (or simply = Qﬁgcess} ond an admissible process

are cmployed, In the context of the present pever, the former refers to the

specification of 12v funciions (2.11) Lo {3.13) such ‘hai they are compatidble

(O




with the field equations resulting from the conservation laws (2.5), (2.6),
(2.7) and (3.2). In order to specify a thermodynamic process it will suffice
to prescribe the 10v functions (3.1l) and (3.12) and the rema‘ning 2v functions

) (3.13) are determined by the field equations resulting from (2.6) and (3.2),
which corresponds to (3) above. A thermodynamic process is said to be admissible
in the mixture if it is8 compatible with the constitutive assumption at each point
of the mixture for all times, and this corresponds to (1) and (2) in the above
procedure. The last step (4) then places restrictions on admissible processes.

Some additional remarks are necessary concerning the entropy equations

!*,5)., Suppose that the external fields (3.13) have prescribed values and
that the constitutive equations have been specified for the set (3.12) in
terms of (3.11) and their histories by

A
Ba™ " ’Zaz./f ’ E'.a=}? ’ Ka=? )

o a

and the temperatures must satisfy the differential cquations which result from

gubstitution of (3.14) into (2.9)l and (3.5). Now, let the constitutive

T

S W ——

equations be changed to

1 A A A Ao A A (3.14 ) 1

i = = = L = + .

| To*Ta 2 YoV 2 5a=% * RZR s 6=V 80, 3
5; i %
?l' Then, the requirement that the energy equation (3.10) be identically satisfied i
gf leads to the following identity %
v Py A |
: E | Pl B * Ny D) T MoV i
4 o= j
3 v A i
: + 2 [C“. v¥e ™ gred v¥ 1l mu ) ] %
1 v A A i
% - . . == O (3 . 15 ) A
i E [p,8,0," D *ered 6] | i
3 a=1 |
5 relating the response functions in (3.1h4). Also, the defornation functions %
: ?.
P

1

]

5

i
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f Mo = Mot fy 0 Pfy ™ Pubat Py BT+ Mf, (3.16)
A A A
Vo ™ Yo~ 8Py 2 S ¥t Ty

where fa are arbitrary scalar functions of' the variables (3.11), their space

and time derivatives and functionals of thelr past histories. The partial
stress tensors, the diffusive forces and couples, the entropy flux vectors
(and hence the heat flux vectors) and the partial specific lnternal energies
A4
(3.14)

on the response functionals in (3.14) is ulso unchanged. If now (3.16)l to

are unchanged and the energy equation (3.15) which imposes restrictions

(3.16)6 are substituted into (2.9)1 and (3.5), we obtain the same differential

AT TETEIRTA £
D g SRR

SR

equations for the variables (3.11) as those resulting from the set (3.14).

’ .
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Also the boundary conditions imposed on %ﬁ or 2? and on 6% or g?, together

] with appropriate initial conditions on &? and ea, are unaltered. Once the

solutions for the deformatione and temperatures have been determined, there

remains some arbitrariness in nd,ga,wa t0 the extent of the functionals fa in

;g (3.16), even though the differential equations and the boundary and the initial

conditions do not involve fa' An examination of the balance of entropy for the

ath constituent as given by (3.5) reveals that fa represents an internal genera=
tion of entropy which is accounted in (3.%) by an internal rute of production of
entropy ga. Moreover, this internal rate of production of entropy can be sustained
in any part Pa without change in the partlal specific internal energy ca and with
no supply of entropy from external sources. This is a form of internal generation
of entropy which seems to be physically unreslistic. 1In order to exclude this,

we remove the arbltreriness in ga by setting

%
[*4

< + = 0 ’ 2 Y - a o .
‘ Po Dt mafa ’ pafa det Ea pao(z')fao(i ) s (3.17)




where ¥ 1is the partial deformation gradient defined by F_ =3y %/x” and £ o
is an arbitrary function of 5?. Then, § is determined uniquely and n, is only
arbltrary to the extent of an additive function fa given by (3.17). The function
fao(ze), and hence £ 1s determined by specifying a value for ﬂa in some
reference state.

The cace in which all constituents are ot a common temperasture g is of
particular interest and may be regarded as & special case of the above theory

in which all constituent temperatures are constrained to be equal, i.e.,

8y = Q (= Ly2,0005v) (3.18) 4

A constraint of this kind is possible only if v-l of the external rates of
i supply of entropy are chosen so &g to balance v-=1 of the entropy equations (3.5)

while the total external rate of supply of entropy

v

o P5 = T pySq (3.19)

remains at our disposal. Equations (3.2) asre then replaced by a single equation

? for the mixture as a whole in the form

v
| z & on ev=] eleigay - [k (3.20)
l a=1 dt . P oo P . P a
| o o o :
v where
v v vV o a , ‘
PE=% p& , k=L k =p.n , p=L P (3.21)
d:l o a a:l o ~ d::.l

and where the total heat flux and the total heat flux vector are given by

Lt e e

\Y
h - Sl- & , % - EL gld = QR . (3.22)
Q.

The local field equation which follows from (3.20) rcuds as

it a7 Nt bl s




: v Da
afl(%‘ = * m M) =p(s+g) -div p (3.23)

and the energy equation (3.10) now becomes
o

v D7y a
- a D e L]
afl[ pa( 5t o )+ma*a]

v
+ 2 WY v¥+ 1%, graa v°'+-§ mu®. u¥)
u=l~ ~ ~ ~ “\o ~

- pE8-prgrad 8 =0 . (3.24)

Before considering what restrictions arise from some form of second law
of thermodynamics, we discuss in the next section a special case of the above
thermo-mechanical theory for a mixture of inviscid fluids.

For later use, we need to record the expressions for the external mechanical

work and the externasl heat supplied to the whole mixture occupying the region of

space R during the time interval tlstitz. First, however, we Observe that in

the case of the mixture of inviscid fluids discussed in §4 the response functions

R e v

for Wa’na’ca depend only on the constituent densities pB and the constituent i

i ‘ temperatures @, but are independent of their rates, the velocities x? and the E

Ao 8
temperature gradients grad ¢

B’ An elestic mixture of this kind will be regarded

as nondisslpative in a sense that will be made precise later; and, in conjunction

with an expression for the external mechanical work supplied to R, will be used

E R T

as & basis for establishing in §5 an inequality representing the second law of

; thermodynemics for dissipative materials. Keeping this background in mind, we
5 assume that the constitutive response functions for ‘a’na include also dependence
on the set of varlsbles x?,éd,grad ea and their higher space and time derivatives

and refer to this set collectively as y. Further, let e;,n; denote the respective

A i 2 LR en S Sl e T DRl T b S

values of 'a’na vwhen the set Y is put equal to zero in the response functions?

z : Thus, for example,

*
These definitions of ¢',n’ do not exclude their dependence on the past
histories. oo

i 1h. '
i— 4
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¢y = ta(Pateas\l) ’ C; C;(Pa’98)=¢a(93995p0) ’

V= (za,DaeJDt’Sl'ad eas“-) 3

where the dots in (3.25)3 refer to the higher space and time derivatives of

(3.25)

xa,Daeo/Dt sgrad ea. Then, with the help of (2.9) and the integral of (3.8) with

respect to time, we obtain

t v V)
\D-IZ[I b pba-xadv+_f T Ea-x“da]dt
t, "R o=l > R o=l
v [ v®rpear]
=z voev +p e )dv
1
t2 v 2 , . o v
- + dt
+ ‘[tl'[a[ E 8,137 (PgMly) *8tv(p Ny )} 5 P¥gl
and
t v v A
¥ = J"Z[j' T p radv-j £ h%aelat
top v alp.n) v
= Izj [z o [-—a%-"-+ atv(p 'vM}- £ pw lav at ,
t,°R o=l o oo~ gl @@
where

'#‘;=C'OT\' s

(3.26)

(3.27)

(3.28)

o ado
0% D“n[;
I —) o - ] o, o a. d+ a. o
P = pa( 55t 9% Dt) ma(‘a Oand)+émag u g e vi+T . grad v,
o /
v v D%(n_-n!)
= - —“—.—L.’. -’
21 P o,fl 90'[ Pa Dt ma(na 'ﬂa)]
v o ie)
+ .
a'fl(pa§d0d Y- grad o,
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b, Mixture of inviscid fluids.
Consider a mixture of inviscid fluids with v constlituents. We define the
propertles of each constituent by the constitutive assumptions that the aset of

variables (3.12) are functions of

pal ep: grad Pso grad ea ‘(ﬂﬂl,2,...,\0) . (4.1)

As indicated in §3 [following (3.13)], the equations (2.10), the conditions
(2.13) and the energy equations (3.10) are regarded here as identities to be
satisfied by all motions and all temperature dletributions. Using this

procedure and meking use of (2.8), the application of standard techniques leads

to
Vo ™ Vo = ¥olpgr8g) » m =0, (b.2)
. Y oy a v '
Pulla = Pala =7 T, g TP A . ey " Z gty (4.3)
v [-1]
E"aﬂ-iafl pdpsa_pg s AT =0 (b.b)
o
2 pfl(pd 399 grad Pa” Pp 3, grad pa)

v Y Ay
+le(9a 3—9-: grad ea- pB S-ej- grad ea) ) (b.5)

= o

v v

a:l P =a§1(pdeaga+£d' grad 6“) =0 (4.6)

where I is the identity tensor and in writing (4.6) we have also recalled (3.28)3.
In view of (4.6), we put

v
o [
=-p¥. grad o +
Palafq =R Ered 8 Palale * §l A

Then, from (3.5) and (k.7) we have

16.
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, . D% v %
Pl P 5 -ty g¥ = p 8 ~=¥ , pr-divg-= L Pl . X (4.8)
i

where the rate of supply of heat for the mixture and the total heat flux vector
are defined by
v v
" E e 3L o

For a mixture of inviscid fluids characterized by (4.4) to (4.8), with the
help of (4.8) and the results of §§2,3, we record below the expressions for the
mixture as a whole representing (i) external work by body and surface forces on
the mixture and (1i) external supply of energy to the mixture arising from the
rete of supply of heat and the total surface flux of heet, both over a finite

time interval tl§ t <t2:

t v v
W= I 2[ T 9 vy . v dv-ﬁj L ¥ -x? daldt

Roa=l ¥ ~ M a=1 "™
t,
j(ﬁpv ~v+pc )av
d-l tl
(p 11
a
J EJ z t + div(pana'f)]dv at (4.10)
and
M= f [I pF AV - J' ; h%aa dt
R a=l o AR a=l
"a“ ‘)
I I 21 o -_-SE-- + div(p n v¥)jav at . (4.11)

In the above discussion of & mixture of invisecld fluids the response func-
tions ere scsumed to depend only on the set of variabl~s (4.1) which excludes
the velocity vectors x?. An extension of the discussion to include dependence
on the velocity vectors 1s carr .ed out in §6. 1In the meantime, we obscrve that
the development of the present section can be extended to include a mixture of

elastic solids, or elastic sollds and invisecid fluilds. In general, the
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constitutive assumption for a rixture of elastic materinls requires that the
variables (3.12) be functions of the temperature, temperature gradients,
deformation gradlents and second deformation grudients. With the help of
(2.10), (2.13) and (3.10), it follows that thc response functions for LN
deperd only on the temperatures and deformation gradients. With these results
and recalling the notations of §3, we may put ¢&= ¢a, n;='na, and it can then
be shown that the expressions for the external mechanlcual work W and the external
heat ¥ supplied to the mixture again reduce to the forms (4.10) and (4.11),
respectively. We make use of these results in §5.

In the cage in which all constituent temperatlures ure equal, instead of
(3.10), the energy equation is given by (3.24) and the results (4.2) to (4.6)

are replaced by

‘#a = Wa(pa,e) ’ md =0 , (4.12)
v v -1}
= —8 1
afl Pl 551 s 2 (h25)
or
v v
e85 T ey s RS T oogg (4.138)
o= =,
v -1
-1 T o0 52 N0, (4.14)
v ooa A, ‘ o4
g =B>=J_l (pa 5}? grad pg = py 'g;‘; grad p ) ! pu('“d-gq + c)l)ézrad 9 (k.15)
pEB+ P < grad o = 0 . (4.16)
Also, lnstead of (h.8)2, we now have
Y Daﬂ
pr-divg =0 L p_ Dtu . (L.17)

a=l

18.

RSN TN A,

haznha e




For a mixture with many constituent temperatures, Craine, Green and
Naghdl (E,) have discussed more general constitutive equations than is
implied by the dependence of (3.12) on the variables (4.1), The detailed
development of their work on a mixture of viscous elastic materials is such
that direct comparison of their rosults with (4.2) to (4.5) is difficult.

However, 1f the energy equation (3.10) is not regarded as an ldentity and the

entropy inequality employed by Craine et al. (% ) is used to impose restric-
tions on the forms of E?,va,na,H?,L? a8 functions of the variables (4.1), then

the following results emerge:

A = - g
| v opg Y ;
' T |
: i
v p_p. O 1
é. T°‘=-£ea 5 —g—ﬂ-a—-i s }f=g , (4.20) 1
& ' p=l %5 %Py é
! vy AN, %
) ¥ ' a = * 4 ‘ -E ——E %
% M 9 pEl(e 399 gzad pB eB apa grad pd) é
. 3y, Py O 7
g + 9 2 (e ae gra ad es '62 -a—éﬂ grad ea) (d=l, se ’V"l) ’ (lh2l) 5!
‘ : % p=1 %« %8 p
: . “ _ !
| : &V =- L E‘a . (4.22)
; '; a=1

' The above resulin differ from ucse miven by (4.2) to (4.5), although the

ST L il et

differences dlsappear when al. the temperatures wre egual. TF SlLouia be

emphaesized that the formulae ('1.2) to (4.5) have been obtained without any
appesl to a second law of thermodynamics, in contrast to the results (4.18)
to (4.22), which are obtained here in the spirit of ew l!.r procedures with

the use of an entropy inequality.

19.
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5. The second lav of thermodynamics. Restrictions on heat conduction
vectors and internal energies.

Previously [see Green and Naghdi. (2), 84], we examined the nature of
thermodynamic irreversibility arising from a mathematical interpretation of a
statement of the second law of thurmodynamics, namely that "it is impossible
completely to reverse a process in which energy is transformed into heat by
friction." This led us to postulate an inequality which is different from
the Claueius=-Duhem inequallity; some of the undesirable features of the latter
inequality are discussed in §7 of Green and Naghdi (2).

Here we follow a procedure for mixtures which is similar to that used
previcusly for single phase continua. First, we obsepve that the expressions
(3.26)1, when evaluated for a glven process, may be elther positive or negative
depending on whether the external work is supplied to, or is withdrewn from, R.
This external work is also represented by (3.26)2 in terms of both thermal and
mechenical variables but not every term in (3.26)2 need necessarily be positive
(zero or negative), even though the external work may be positive (zero or
negative). Thus, following a discussion similar to that in (2,;9), with
reference to & dissipative mixture we assume that in every admissible process
a part of the external work done is always nonnegetive. Then, in a process end
its reverse process at the end of which the mixture has returned to its same

atate? some of the work done is always transformed into heat. Hence, we write

byt B EO

The above also implies that

b2 wl

ol e 1 vounded below, the hound depending on the process.
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In order to identify the two parts ) and ly,, e note from (4.6) and (3.26)
that in the case of a mixture of inviscid flulds or elastic materials discussed
in §4 the expression for the external mechanical work supplied to R reduces to
(h.lo)f We now regard an elastic mixture of this kind as pondissipative in the
sense that no restriction is placed on the external mechanical work supplied to
R and identify b with the right-hand side of (3.26) after setting z ) wa.-o

a=l
Keeping this in mind, we rewrite the last inequality as

bes | o (b v vee dav £ o f—&8 + atv(p /v lav at  (5.1)

t, Ita v ap 1)
qul @ ¢ 7 7 @ Uy

) b
and assume that (5.1) holds for every thermo-mechunical process. The combination

of (3.26)2 and the assumption (5.1) ylelds

t2 v '
J L PV dvdt 20 (5.2)
t R a=l
v
for all times tl,ta (tlﬁtz). Since tl,t2 are arbitrary and aEJ. Py hes
already been assumed to be continuous, it follows that

j o Qv &0 (5.3)

ol
for all thermo-mechenical processes. With the help of (3.27) and (5.3), we

also have
u;g J j 3 e{—-ﬁ-ﬂ-+div(pn )}dv dt (5.4)

so that the external heat supplied to the whole mixture is bounded above in
every process. Alternatively, some of the heat supplied to the mixture in

every process 1s always nonpositive.

It may be recalled that the expressions (4.10) and (4.11) hold also for a
mixture of elastic solids (or fluid-solid) in which dependence on the velocity
vectors is excluded, as was noted in the paragraph following (4.11).

21,
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The development of this section began with an examination of the expression
for the supply of external mechanical work to the whole mixture occupying the
reglon R at time t and this led us to postulate the inequality (5.1) from which
the thermodynemic condition (5.3) was deduced. It is also possible to obtain e
similar condition for every part of the mixture. For the latter, instead of
considering the total mechanical work during a glven time interval, we consider
the rote at which mechanical work is supplied to a part of the mixture. Thus,
with reference to the present configuration and for material volumes which
colncide at time t and occupy parts Qu= P of R, the rate W(t) at which external

work is supplied to a part P of the mixture is

v
W) =z [ o p¥evlave 4 I e (5.5)

o=l VP a=1 v

Using resulte similar te (3.26) and (3.28) but with R replaced with @ and the

limit of integration te replaced with ¢, the last expression can be put in the form

\Y
W(t) =% d%;j‘ (% oy v¥ e y®s g LY

a=l
2 'E

v

[
= p a + div(p&nq& )]+—pdwa]dv . (5.6)

Dy an argument similar to that which led to (5.1), for each part P of the

mixture we write

v ,
d | o o
Wit)zg = | Gov¥. v¥+p ¢ dav
a=l dt JP o~ : ~ 3 o o
Voo 3lp M
-z | e f—fE 4 atv(p ) lav (5.7)
- o
a=1l " f
and assume that (...) nolds rur cvery thermo-mechanical process. The comblna-
tion of (5.6) mnd the assumption (.7} yields
I )
L pwdvgo (5.8
Pa=l %@

R2.
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for every part P. From this last inequality follows the local form
v
afl P, EO (5.9)
which must hold for all thermo-mechanical processes.
We supplement the above interpretation of the second lsw with two further
inequalities which stem from the statement that "heat cannot pass spontaneously
from a body of lower temperature to a body of higher temperature." To this end,

we conelder first the heat flux response in equilibrium cases for which the heat

flow is steady. By equilibrium we mean that

v¥e0 , =1 , ¢%=0 , o

fad

o« Poo for all t , (5.10)

where E? is the deformation gradient for the constituent ca, the tensor Eg,
the common temperature 6 and the densities Pyo® B8 well as all other relevant
functions, are independent of t but may depend on X Then, ma==0 and the

conservation equetions (3.5) and (3.8) become

v
o o
+ = + . = . .
pa(sa ga) aiv p~ aEl(pagae p” - grad 8) =0 (5.11)
Also, since
v \ v
’ —a§1 Paa =w§1 Palafa = ¢ otzl Poa
v v v (5.12)
=2 q"=2 ep¥=9 L p% ,
3 =1 " =l & a=1 "

pr = div ¢ . (5.13)

The equation (5.13), which is obtained hure for a mixture in equilibrium,
has the same form as the corresponding result for a single phase continuum;
and thus, for equilibrium cases under discussion, wc again adopt the classical

heal conduction inequality
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~q-grad 920 (5.14)

for all time-independent temperature fields (5.10) We note that the inequality

3.
(5.14) can be written in the alternative form
Vo a
- p cgrad 620 , (5.15)
o=1

in view of (5.12) and since @>0.

In the remainder of this section, we suppose thot the mixture is at rest
with ,‘f,d=9, for all time and with the densltles Py and with the deformation
gradients a&“/a’)_{u“ everywhere constant for all time. Then m,= 0O and the total
mass density p= \él Py’ which is positive, is constant. In addition, we
restrict the temg;rature ficlds to be spatially homogeneous and equal so that
0y = 9(t). The specific internal energies <, which will depend on Pe’ aﬁ’/a;g“,
§ end its history will be functions of t,independent of X, Mereover,
recalling (4.9), from comhination of (3.5) and (3.8) we have

P!‘-diVQ=-a-(pc) sy pE=% pe. (5.16)
<~ 3t -
where ¢ 1s a function of t independent of X Since L“-—-g everywhere, no

mechaenical work is supplied to the whole mixture occupying the region f at

time t. Then, by integration of (5.16)1 with respect to t, the heat supplied

to R during the time interval tl§t§t2 is
"2 by
W= Y pe dvi © = [el, I pav . (5.17)
R tl 1R

We now suppose that the mixturc has been in thermul cquilibrium during some
interval of time up to the time tl with constunt temperature el and constant
internal energy . We then assume that whenever heat 1s supplied to the mixture
according to (5.17), the temperature 6(t) throughont R will be increased. Hence,

we impose the conditlon that

w22 Y {25

Rt e e T B

i
i

s




t
[Oltz > 0 whenever H>0 .
1

Since p is positive, it follows from (5.17) and (5.18) that
8(t) - @, >0 whenever ¢(t)-¢ >0

for al) times t>tl.

25.

(5.18)

(5.19)

et g bt et T o e MR gt a2

T T e L POy NI, P T LT PR W . A

L e R

o

P P R R Ry S

BRI 7Y




NG

TFXTILLT YRS T T ey

T

6. Further discussion of inviscid fluids.

In order to illustrate the nature of the preceding thermodynamical
developments, we return to u mixture of inviscid fluids which is partially
discussed in §4. For simplicity, however, we limit attention to a mixture of
two fluld constituents whose masses are separately conserved. Thus, we write

1 2

D7p D7p
mo= Rt VY =0, my= R gy atv =0 (6:2)

and, in view of (2.13). ., we adopt the notations

2,3
1 2
R I IR AR N (6.2)

Constitutive equations for such fluids usually include the dependence on the
velocity vectors but these were omitted in the discussion of section 4. We

now assume that the set of variables

l.,.2 1l .2
2 ,,E ,wl,wg,ﬂl,%@l,{z»g,k.g ’E‘ (6.3)
are functions of
Py P> grad Py> grad Po > 91, 02, grad 91.’ grad 62 (6.)4-)

and x},x?. In view of invarience conditions under superposed rigid body moticns,

however, the variables x},vz must be replaced by
1 2
AR AR (6.5)

In accordance with the procedure of §3, since (2.10), (2.13) and the energy

equation (3.10) must be satisfied as identities for all motions and all tempera-

ture distributions, we then obtain
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P* - pl'l*' 92*2 ’ * = G\(plapz;el,ez) 9 (6.6)

A A
=-o 2L -
it =P 3e R R

3¢ ) an
2 11 L
T = (5 a9, * Pife apl)£+ L 3~
A A A (6.7)
= a

22"(91923'52"'9253_2');"91 3 &

~

o W,
k=Rt ey 3p, B8 Rt Ry o B )
(6.8

b M a,

1 2 -
P80 * PpBa8, *R @red 8 +p- . gred 6,-p-e =0 , (6.9)

where E is a function of the variables (6.4) and {(6.5). Apert from invarience

considerations no further reduction in the form of these results is possible

without employing more restrictive constitutive assumptions. Here we ure the

inequality (5.9) with w  &iven by (3.28), From this inequality, we may deduce

the result

g o &0 (6.10)

: 'Lﬁ
{ without the use of the thermodynamic restrictions (5.3) or (5.9) and (5.15) or %
i

]

i

{

’l : for all thermo-mechanical processes. Now put 1
|

T

- =ty Tu
Il
where E' is the part of the response function for Ewhen 8 is set equal to

zero. Then, assuming that E 1s a continuous function of its arguments, from

(6.10) we deduce the results
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7. Flow of a fluid through a rigid solid.

T T U SR

In many problems involving the flow of a fluid through a porous solid, the

latter is often regarded as a rigild, rather then deformable, solid; and, in

.

interest here is to explore a further application of the theory of earlier

sections with reference to the flow of a homogeneous incompressible viscous

T TR R T T RO - JrI

fluid through a porous solid when the fluld and the solid are at different

J

|

i . addition, both media are assumed to be at the same temperature. Our main

{

\

[

|

i constituent temperatures; and, in order to avoid undue complications, we con-

sider the so0lid to bve stationary, homogeneous and rigid.

Let the incompressible viscous fluid, with its mass element conserved,

D U P, T SO 2 ¥ 15—

be referred to as the constituent vy and let the stationary, homogeneous and

PR

A AR R Lo ot L RN AL
=S i : P L

rigid solid be identified as the constituent Vo Then, PL and () are constants,

e et pen

i

S

. m =0 , my=0 , atv v =0 , v*=0Q (7.1) |

el

' and by (2'13)2,3,h we also have

T e S

n P f
L T e

~ ~4

The energy equation (3.10) in this case becomes

1 1
Dy pre W 28

1 | P 5,
ot ) oty Y

) 1 1. .1 1 i
! ey +INegrad vi-p 8,8 - py8,0,
1 2
-p -erad 8, -p -grad 8, = 0 . (7.3)

Because of the incompressibility condition (7.1)3, the stress tensor g} is

undetermined to the extent of an additive hydrostutic pressure 6 go that

T1 =-E~+

~

(7.4)

3l
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vhere p is an arbitrary scalar function of ﬁ,t and E is tou be specified by 8
constitutive equation.
For the two constituents under consideration, we introduce the constitutive

assumptions that : .

TI';,H]"}\ 3 1, zs\vls‘ye:n]ﬂb !;1,52 7(7-5) .

~~~~

are functions of the set of variables

8,5 6, grad 8, grad 6,, Vv, gred v (vr=v) . (7.6) -

In the absence of the stationary rigid sclid, invariunce requirements under
superposed rigid body motions would indicate that the velocity v and the skew
part of grad v should be excluded from the list of variables (7.6). However,
in the present study in which the fluid flows through a stationsry rigld solid
no reduction in the variables (7.6) is possible.
According to the procedure outlined in §3, the encrgy equation (7.3) is ‘

to be regarded as an identity for all motions and all temperature fields.

! Hence, with the use of (7.4) and the above constltutive essumptions, epplica-

tion of standard techniques results in

A
@1 -4 1(8y58, )+¢l(el, V) s 47(859,50) =0
A "\” .
‘l’e = ¢2(91»32)+\h (9 s 2;\’) s W?_(el’ezsg) =0 , (7.7)

A
b= 4(8058,)) 5 pY = ok tely o P Tl =0

A A
"1“1:“’3%*; , p2n2=-p§e‘2- : (7.8)

Hence, ™ and n2 depend ouly on the constituent temperatures 91,92 and colncide
respectively with n{ and “é in the notation of §3. Also, with the help of (7.7)

and (7.8) the identity (7.3) reduces to

30-
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a0 ac
1 !
(W -py %, grad 8y * Py Tp, €704 6 ).

AII
- oV
+(T-p) 3y ¥) cerad V- 06,8 - p80,

-p e erad o -p o graag, = 0 . (7.9) ]

Next, we turn to the inequality (5.9) with v, given by (3.28)2 and obtain

A
1 L aw
£ = P 3p 39 grad 92 po ae grad 9 +& s

ay” (7.10)
- = 1
b‘».'.‘L‘f(?i'Pl -B-T)grad VEO , K
where E and E are functions of the variables (7.6) which vanish when v and
grad v are both zero.

In the rest of this section, we limit the discussion to a linearized theory
about an equilibrium state in which .Y.“Q. and el= 02 =8, 8 being a constant.,
We also assume that the rigid solid 1s homogeneous and isotropic with a center

of symmetry. Thus, we set
0 = B(l+a+p) , 8, = 8(l+a) (7.10)!

and retain only linear terms in a,s,x‘ in all constitutive equations for
&l,z,gl,gg,nl,%. However, in view of the relations (7.8) and the energy
identity (7.9), for consistency we retain both the linear and the quadratic
terms in a,a,x‘ in the expressions for q;l,qfe,\y,gl,ge. Thus, making use of
(7.7) and remembering that the rigid solid is assumed to be homogeneous and

isotropic, we write

A
Py Y 2 o
-*l%-l-= Yo~ 10" YpB =% vaa - yoB-d v B Hvy. v
oo, |
- - = - 2 - -2
%=Yo-Yla'YQBm%Y3a2'YuaB-%Yt)E 'Yx"x ’ (7 12)

A
I’ - _ . 2 _ - 2
5 8, - 8,2~ 8,8 3 850" - 8,08 3 858"
where the coefficients 50,...,65 are related to ?O,...,% through (7.7)
31,
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In addition

] o= Dlx"' D2 gred d+D3 grad 8

| 1 _pv D, grad o-D; grad B ' (7.13)
| BT d ’ ‘

! 2 D.v = D, grad @ -D_ grad

i R = 8 g B 983 B

and

T = (u+nplgrad y + (u-ny)(ared ot
P& ==Dyo @By B P&y (7.14)

pofs = Pyo @+ Dpy BHefy o
where Yo"“’t’s’ Dl""’Dll’ Woly &re constants whilc EL,EQ are quadratic funce
tions in the varilables

(7.15)

o, B, grad a, grad B, V, grod v .
and the partiel internal production of entropies gl ,g2 both vanish in the .
equilibrium state. In ("/.1’4)2 5 the linear parts of €,,f, have been chosen
\ L
! so that the identity (1.9) is satisfled and the restrictions on the forms of
€, or 'g'g arige through the quadratic terms in (7.9). Also, by (7.8), (7.11)
and (7.12), the cxpresslons for the partisl specific entropies ere
- .2 .1 -
SRl = byt Bt BB
(7.16)
PRI
ol = " (35-58) = & 62+(63-6u_)a+(6,+-65)5 -
With the help of ('{.\13)1 and (7-ll+)l, the inequality ("{-10)2 which holds
for ell processes may be used to show thet ‘
D2=0,D3=O,D150,u.!0,p.1E0. (7.17)
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Our second thermodynamic condition (5.15),which holds in equilibrium with

§; = 6, reduces in the present problem to .

-(El+gz)-grada>0 when B=0, v=0 . (7.18)

L B

After substitution from (7.13), we readily obtain the condition

D5+D8 20 . (7.19)

Further, when el= 92 or =0, the value of pg = py6qy * Poes is 50 + 51 + 530, as
fer as the terms linear in « are concerned. Then, the third thermodynamic i

condition (5.19) requires that

| 5,50 . (7.20) %

i Making use of (7.1), (7.13)2 39 (7.14) and ('7.16) and retaining only the E:
: ’
lineayr terms, the entropy balance equations become K
= 8B . - - 2 2
8 3t * 8 3t = P1%1 7 Do - Dy Pt DT+ D8,

(7.21)
; & ; B _
(3= 8,) 35 * (8= 85) 3¢ = PoBp * D@+ Dy B+ Da"z"’ * D9VEB ’

where VE stands for the Laplaclan operator. The ahove differential equations,

which serve to determine the temperatures « and 8, are ilndependent of the

veloclty V. For the present discussion, we do not record the differential
equation resulting from the balance of momentum which is an equation for v
end p; the remaining equation involving v is, of course, the Incompressibility
condition (7.1)3.

Returning to (7.21), we note that so far we huve only obtained the thermo-

dynamic restrictions (7.19) and (7.20) on the constant coefficients which occur in

the entropy balance equations. Our previous procedure of using an entropy inequality {
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of the Clausius-Duhem type [see the inequality (9.5) in the psper of Craine, Green
and Neghdl (g)]would yield further restrictions on the coefficients Ds,bé,DB,Dq,
DlO’Dll’ but not on 63,6h,65; nevertheless, we do not adopt this approach here.

In closing this section, we indicate what further restrictions may be

imposed on the coefficlents § ’Dll in order to render, under sulteble

3’!..
boundery and initiml conditions, the solutions of (7.21) unique. We supposa
that the stationary rigid solid always occupies a region of space R and that

the fluid also occuplies the same region so that

v.ns= O on R . (7.22)
Recalling (7.13)2’3, we write the constitutive equations for E}’Q? in the forms
peny+n , pPeDyend (7.23)
80 that
P on-nton , Fen-uwon on W, (7.24)

in view of (7.22).
Consider now an initial boundary-value problem characterized by the dif-

ferential equations (7.21) with sl==52==o. We assume that the dependent variables

'a,ﬁ are: (1) of class 02 with respect to X and of class Cl with respect to t in the
open region R for tZ0; and (1i) of class Ul with respect to x and of class C with

respect to t in the closed reglon RUOR for tZ0. In eddition, we assume the

initial arid boundary data

a=0 , =0 In RUIR for tE20 ,

-

¥=0 , B=0 on 2 for tE0 , (7.25) .

1
R 'n=>m -n=20
i r~
~ ~ lald ~

‘n order to establish uniqueness, from (7.21) end (7.25), we obtain
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345 Iﬁ %( 63a2 +28,ap+ 65B2 )dv
= -I [(D10°+ Dlla)a - xlx‘l « grod(a+p) -111‘2 . grad aldv (7.26)
R/

which 1s an identity. Then, with sultable classes of functions « and g, the

usual type of energy criteria for uniqueness follow from (7.26) provided
2., 2
63a +28,a8 + 653 20 ,
(Dyq@+D,,p)B & O (7.27)
1 2
-m" . grad(a+g) -m . gred ¢ £0

for all temperature fields a,B. TFurther, with the help of (7.14) and (7.23),

it follows from (7.27) that

2
D5+D8 80 , D 20 , hD6(D5+])8) z (D,)+D6+D9) , .
(7.28)

_ 2
DlO-O ’ Dll!O ’ 63!O , 6520 ’ 636536)4 ’

and we note that (7.28). and (7.28)6 are the same as the thermodynamic restric-

1
tione (7.19) and (7.20), respectively.

In order to jllustrate some of the features of the equations (7.21) subject
to the rostrictions (7.28), we consider a simple exumple of heat conduction in
an inrinite stationary rigid porous solid bounded by the planes Xy = 0, X, =8
and containing an incompressible viscous fluid at rest. At time t=0, the
temperature throughout the interior of the solid and fluid 1ls constant and
egr."1 to 8. Let the temperature of the walls of the solid be changed to, and
ualntained at, another constant temperature. Then, when O<xl<a, the
quentities a,p satisfy ('7.2].)1,2 with s, =8, =0 and ere functions of t and

X, Also,

35.
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=0 , p=0 (t=0;0<xl<a) , f

(7-29) . ;

@=a B=0 (xlzo,e;tso) s 1

; where o 1s a constant. Following a routine method we look for solutiors of -

(7.2:.1.)1’2 in the forms

a = Aer? sin(nmcl/e) y B = peht sin(nﬂxl/a) s (7.30)

( where )\ satisfies the quadratic equation
2,,2
(&365 - 6,4)7\ + Al {63D6 + 65(D5 + D8) - 6,+(D5 +Dg + D9 )} 8, *+ °3D11]

2 -
+ (D Deg = D D9)9n+ Dll(D‘j +D8)°n =0 (7.31)

and

R g O L T - T 5’«4‘;‘2’.‘*‘-\_‘ R e '—-;f;"‘r"'" i

o, = r1211'2/ea2 . (7.32)

5 5,

Recalling the conditions (7.28), we readily obtain the restrictions

: _ 42 - ;
| | 6365 8, 80 , DgDg D5D9 20 , Dll(D5+D8) 80 , 4
g (7.33)

(D +D8) - %(D +D, +D8) , 53D11 20

i 36+6 5

; _ and then we conclude that the roots of (7.33) are in general of the form
t

E ‘ R“‘Q’n ’ K=-Bn (n=l’2’ooo) Y

| (7.34)
: 'f o, > o , Bn >0 , )
! where dn’pn are unequal and real, or are of the form )

g, (n=1,2,...) (7.35)

p o
>
R
1
Q
s
R
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where an’an are reul and Bn are non-zero. Exceptional nases can arise but
these can be dealt with similarly. The solution to the initial-boundary
problem may now be completed in a usual way. We note, in particular, one

result which follows from the solution, namely that

According to (7.36), which is an expected result, the temperatures in the

fluid and solid tend to the same values ag t « w .

(7.36)




8. Further remarks.

We close this paper with some additionsl remarks concerning the present
and previous procedures of studying the thermodynamics of mixtures of inter-
gcting continus with different constituent temperatures. First, we observe !
that the field equatlons resulting from momenta balances for each constituent
involve only the mechanical fields while those obteined from balances of energy
for each constituent involve both the thermal and the mechanical flelds. In
the traditional developments of thermomechanivs, after the specificatlion of
constitutive equations, the former fileld equations yleld a system of dufferentlal

equations for the determination of deformations for each constituent while the

latter is regarded as differential equations for the determination of the

temperatures, after elimination of the external body forces with the use of

a1, e P s i o S A e e ¢ At e mom e e < @ e

»*
the local equations of motion. In contrast, the thermodynamical development of
the present paper is such that the balances of entropy, which involve only the

thermal fields, provide the differentlal equations for the temperatures in

e iae e AR e e

parallel with the fact that the differential equations for the deformations are

derived from the balances of momenta. Consistent with this, the energy equation

for the mixture as a whole (after the elimination of the external body forces

and the externsl heat supplies) is employed as sn ldentity for all thermo-
mechanical processes; and, hence, 1t does not yield any new differentiel equa-
tion for temperatures or deformations. It 1s noteworthy that the energy equa-
tion for the mixture as a whole as used here provides all the essentlal results —
other than those arising from lnequalities — concerning the relatlonships between '
the constitutive response functions or functiocnels prior to any appeal to a

second law of thermodynamics. Tn this sense, the inequalities (5.3) or

(5.8) have been assigned a more subdued role relative to those of the conservation laws.

1 *
i It is understood that the differential equation for temperatures, as :ell as
those for the defurmations, contaln also coupled terms.
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In the spirit of the present paper, we could use the energy equations for
each constituent as energy identities provided allowance is made for the inter-
action terms. However, this can be accovplished at the cost of introducing
further variables requiring constitutive equations, and it does not appear likély
to yleld additional useful information.

We now turn to an entropy inequality of the Clausius-Duhem type for
mixtures, namely '

Pa"a

v o4 v v
afl i J.P pa'f\a dv- ¢ av+ % g—da o , (8.1)

o a=l F; ea a=l aﬂa o

which is proposed by Truesdell (lﬁ.}) » and adopted in a number of recent papers
on the subject, e.g., Green and Naghdi (2, é, 'L) and Craine et al. (,%) .
The inequality (8.1) may be regarded as & natural generalization of the Clausius-
Duhem inequality for single phase continua and does lead to reasonable results
in some special situations. For regions containing no surfaces of discontinulity,
it follows from (8.1), (3.4) and (3.5) that

z p§=;-l"[6(P B—“+mﬂ)-pr +div q¥-p% - gred 8 ] 20 (8.2)

wml X g 8 aa Dt a'a oo ~ o
for all thermo-mechanical processes. In previous papers on mixtures the external
heat supplies r  were eliminated from (8.2) with the help of the energy equations
postulated for each constituent. Such a reduction cannot be effected here since
in the present development we only have one energy equation. As a result,
detailed comparison of the inequality (8.2) with that proposed in the present
paper, namely (5.9), is difficult. However, some comparison can be made when
all constituent temperatures ea are constralined to be eqr to 8(>0) us in
(3.18). ‘Then, using the energy equation (3.7) and the various definitions in

§3, we may replace (8.2) by

39.
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+E(E‘a.x’a+ga.grad va-pa.grad 6)

a‘.:l ~ ~J

v Vv Da !

= T (pw -p¥egrad 8}~ T [p {—(j"-m')'

o=l X ™ oml © Dt

+ ma(na-n;)]] z0 . (8.3)

For mixtures whose thermo-mechanical response is such that * »T, are
independent of the set of variables (3.25), the specific Helmholtz free energiles
and the specific entropies reduce to y = w;, T\d='n& and then (8.3) becomes

v
8 Z o

v
1 oda = 2 (Pa"’a',&a' grad ) 20 . (8.4)
o=

a=l
: -' o a
If thq variables %,T\u,g“ s sm, and hence Pt in (3‘28)1 do not depend on the

temperature gradient grad 6 and its history, then it readily follows from (8.4)

v

that & Py Zz 0 and this is the same as our inequality (5.9) . On the other .
o=l Y Y

hand, provided & ga- grad 9<0, the inequality (8.4) could allow £ Py to

o=1 o=l
be negative for some meterials undergoing particular admissible processes.
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