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On Thermodynamics and the Nature of the Second Law

'1 •for Mixtures of Interacting Continua

by

A. E. Greent and P. M. Naghdi*

Abstract. This paper, which may be regarded as a continuation of a previous
paper on thermodynamics of single phase continua, is concerned with a new
approach to thermomechanics of multiphase continua and extends the previous
ideas and procedure (Green and Naghdi 1977) to mixtures of interacting continua.
In particular, it contains (a) a proposal of a new approach for obtaining
restrictions on constitutive equations, (b) an appropriate mathematical state-
ment of the second law for mixtures and (c) the nature of restrictions placed
by the latter on constitutive results representing the thermo-mechanical
behavior c! mixtures with different constituent temperatures. Our point of
departure is the introduction of balances of entropy and the use of a single
energy equation for the whole mixture as an identity for all motions and all
temperature distributions after the elimination of the external fields. This
procedure is in contrast to the existing approach in most of the current litera-
ture on continuum theories of mixtures based on the use of a Clausius-Duhem

4 • type inequality (or similar entropy inequalities) for mixtures. Our interpreta-
Z tion of the second law is similar to that of the previous paper and leads us to
F postulate an inequality which reflects the fact that for every process associated

with a dissipative mixture, a part of the external mechanical work is always
converted into heat and this cannot be withdrawn from the mixture as mechanical
work. The restriction on the heat conduction vectors is considered separately
and is confined to equilibrium cases in which heat flow is steadyr. Also, a
restriction on the specific internal energies is derived when the mixture is in
the state of mechanical equilibrium with all its constituents at a common
spatially homogeneous temperature. The remainder of the paper deals with the
constitutive results and thermodynamic restrictions for inviscid fluids, a
fairly detailed consideration of the problem of an incompressible Newtonian viscous
fluid flowing through a rigid porous solid whose temperature may be different
from that of the fluid, as well as some additional remarks on the implication
of the use of an entropy inequality of the Clausius-Duhem type for mixtures as
contrasted with the thermodynamic restrictions resulting from the procedure
proposed here and from our present interpretation of the second law.
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1. Introduction

The continuum theory of mixtures has been a subject of intensive study in

recent years from different points of view; and, at present,there appears to

be agreement on the basic thermodynamical equations of the theory. Differences,

however, arise over the manner in which a second law of thermodynamics is

interpreted for mixtures. A second law is usually employed to place restric-

tions on constitutive equations; and, even for a single phase continuum, this

~I•' ~aspect of the subject is a matter of some controversy. We do not attempt a

detailed review of' the literature on mixtures, but restrict our attention to

references which are relevant to our present development. Briefly, an account

of the subject with extensive references prior to 1960 is given by Truesdell

and Toupin (10). An alternative approach for mixtures with a single tempera-

ture by Green and Naghdi (3,5) is based on different primitive concepts and

consequently some of their basic field equations are of different forms from

those of Truesdell and Toupin (10). However, it has been shown by Green and

Naghdi (5) that the basic equations in the two formulations of the theory are

equivalent, although this is not apparent at first sight in the case of some

of the equations. For further details and remarks concerning the relation-

ship between the two forms of the theory and the interpretations associated with

some of the quantities which occur in the equations, we refer the reader to Green

and Naghdi (5,8) and to a recent review articles by Atkin and Craine (1).

The present paper is a companion to the previous work on thermodynamics of

single phase continua by Green and Naghdi (9a,b). The latter paper contains a new

approach to thermodynamics where, in addition to the usual equations for conserva-

tion of mass and momentum, an equation was postulated for balance of entropy and

then the equation for balance of energy was required to be satisfied identically

for all motions and all temperature distributions after the elimination of the

external ficldo. This resulted in a procedure for obtaining restrictions on
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constitutive equations prior to any consideration of a second law of thermo-

dynamics. The particular form of the second law or the law of thermodynamic

irreversibility adopted previously (9a,b) led to an inequality which reflects

the fact that for every process associated with a dissipative material, a part

of the external mechanical work done is always nonnegative. The restriction on

the heat conduction vector, along with a restriction on the internal energy,

were discussed previously (9a) on the basis of the classical concept that heat

cannot spontaneously flow from a cold to a hot part of the body; the former

restriction was obtained from consideration of the heat flux response in

equilibrium cases for which heat flow is steady, while the latter was deduced

when the body is in the state of mechanical equilibrium with the temperature

field being spatially homogeneous.

In the present paper we extend the ideas and procedure of Green and Naghdi

(2a,b) to mixtures of interacting continua. We begin in §2 by adopting the same

conservation laws for mass and momenta as those employed previously by Green and
Naghdi (5), and by Craine, Green and Naghdi (2). Further, with reference to thermal

properties, in 03 we admit for each constituent of the mixture a different field

of temperature and a different field of entropy, as well as related thermal

i1 fields; and, in parallel with the balances of momenta, we postulate for each

constituent a balance of entropy. Next, we recall the balance of energy for the

mixture as a whole and, after elimination of external body forces and external

entropy supplies, regard the resulting equation as an identity to be satisfied

for all thermo-mechanical processes. This procedure should be contrasted with

existing methods for mixtures in which uqe is made of balances of energy (rather

than a single energy equation for the mixture as a whole) anrl in general leads

to different constitutive results. For example, in the case of a mixture of

ideal fluids with different constituent temperature discussed in §4, our procedure
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yields constitutive relations for the partial pressures and diffusive forces

which differ from those found by Craine, Green and Naghdi (2), except when

all constituents have a common temperature. Inequalities resulting from an

appropriate form of a second law for mixtures, as well as restrictions on the

heat conduction vectors and internal energies, are discussed in §§3,5,6.

We return to a further discussion of inviscid fluids when the mass of each

constituent is separately conserved in §6 and also examine briefly the implica-

tion of the second law and restrictions on the heat conduction vectors. The

next section (§7) is concerned with some aspects of the flow of an incompressible

Newtonian viscous fluid through a porous solid (taken for simplicity as rigid)

whose temperature may be different from that of the fluid. Thermodynamic restric-

tions by the procedure of §3 are obtained for various coefficients of the appropri-

ate linearized constitutive equations, representing small departures from an

equilibrium state at which the fluid and the solid have the same constant

temperature. Also included in the development of §7 is a brief statement of a

uniqueness theorem for the initial boundary-value problem for the determination

of the temperature fields in the fluid-rigid solid; and, by way of illustration,

a discussion of heat conduction in an infinite stationary rigid porous solid

containing an incompressible viscous fluid at rest. We con.clude the present

paper with some additional remarks in §8 concerning certain features of the

presenb and the previous procedures for studying the thermodynamics of mixtures

of interacting continua and also comment on the .np :.;,tion of an entropy

inequality of the Clausius-Duhem type for '.,Jres a•'J -on(,,.:-'sted with the

thermodynamic restrictions resulting from tht "r'edu•e proposed hr.e, r, - Iell

as from our present interpretation of the second ýT th,.r io*nynamicu.

3.
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2. Mechanics of mixtures: Summary of basic equations.

Consider a mixture consisting of v finite constituents C (a=],2,...,v),

each regarded as a continuiu with material points X Ct, and identify the material

point X• of the constituent C with its position Xa in some fixed reference

configuration. We suppose that the whole of some region of Euclidean space Ro

is simultaneously occupied by all constituents in their reference configurations.

A motion of C! is defined by a sufficiently smooth vector function Xc which

assigns position x X (XaY,t) to each material point X2 at each instant of

time t. In their present confi.gurations at time t, all constituents

simultaneously occupy the same region of space R which varies with time and

which is bounded by a closed surface aR. Similarly, in the present configura-

tion, an arbitrary material part of Ca occupies a portion of the region of

space R, which we denote by P (ýR) bounded by a closed surface bP

Let p p (Xt) be the mass density of C and designate its velocity

vector at time t by

D
V (2.1)SDt

where Do( )/Dt denotes material tim,- derivative holding Xa fixed. At the

place x, namely at

aI× X X (a 2,. V) (2.,2)

we define the density p of the mixturt,, the mean (or the baryeontric) velocity

of the mixtiwc and bhe pz.rti.a. diffusion velocities, respectively, by

-- L P -- v (2..3)

1n(!r--e ývýrry c,.nstituent occupies the -am. r(ýCion of space. R at e..ch instant of

time, 'it th,.! p.n c, x w,.c h1.v,

• , 4.
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V.n = v * n or u= . n = 0 (o=1,2,...,v) on B (2.4)

where n is the outward unit normal to aR.

For every material part of C occupying a region P in the present con-

figuration, we adopt the following equations for conservation of mass, momentum

and moment of momentum:

Sp ddvJ mix dv ,(2.5)

= dv- m xvdvu (pbo- ()dv+ t da (2.6)

dt at-

P xxxt da . (2.7) xx

El ;! In (2.5) to (27,m is the rate at which masis supplied to C per unit

•: voiume4 bJ is the external body force per unit mass, • is essentially a

"•' measure of diffusive force per unit volume, and XJ is the internal body couple

per unit volume

• Making the usual continuity assumptions, the conservation lsws (2.5) to

S(2.7) yield tho lo( li forms

u b + nd iv(pe n = m , (2 e

+This may include a surface contribution across X in the form of the uivergence
of a vector.

The detailed development of the conservation laws in the forms (2.5) to (2.7)
and their corresponding local forms (2.8) to (2.10) can be found in the papers

by Green and Naghdi (Z •) and by Craine, Green and Naghdli (2) . The basicequations (2.8) to (2.10) are equivalent to, but not the same as, those given

by Truesdell and Toupin (3lO) . For a discussion of equivalence of the two
systems of basic equations, see Green and Naghdi. ( 5) . Supplementary discus-sion on the correlation of existing forms of mixture theories are given in c6
of Green and Naghdi (8).
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r+T- T- = 0 (2.10)

where all variables are now regarded as functions of x and t, div stands for

the divergence operator with respect to the place x keeping t fixed, Ta is the
T-

partial stress tensor and TO its transpose, n is the outward unit normal to

the closed surface aP the acceleration vector fJ is given by

-f (2.11)

and ra is the skew tensor correponding to the axial vector Xk, so that

rclu X, ,°Xu (2.12)

for every vector u.

We restrict our attention here to 8 local theory of mixtures in which there

is no mass generation within the mixture and in which the internal forces • and
the internal couples Xý do not give rise to a resultant force and a resultant

couple on the mixture as a whole. Then, for material volumes of each constituent

which coincide at time t and which occupy parts P =P of R, we have

V

E m dv =0 , 0 dv= 0

01 a

and we conclude that

. m = , . - , -(2.13)

6.



3. Thermal properties. Thermnomecharnics of mixtures.

We consider here the thermal properties of thv mixture and, for each

constituent C , introduce first the absolute temporatwLu at Cach material

point by a scalar field e = (Xct)>o. Along with the temperature, we admita a

the existence of an external rate of supply of heat r =r (Xo,t) per unit mass

and an external rate of surface supply of heat --h per unit area acting acrossa

at. Also, we assume the existence of an internal surface flux of heat

-h =-h (X*,t ;n) per unit area across each surface 6P; the field h , called

the partial heat flux and measured per unit area per unit time, assumes the

value h on bR. We now define the ratio of heat supply r to the temperature 9

as s =s (X ,t) and call this the partial external rate of supply of entropy per

unit mass. Similarly, we define the ratios of 1± and h to the temperature 9,

respectively, as the partial external rate of surface supply of entropy k per

unit area of 6R and the partial internal surface flux of entropy k = k(Xo,t ;n)

per unit area of 2' . These definitions may conveniently be sunrlarized by

Tra 9 h( =e , h 9 k .(3)

In addition, for each constituent C1 we assume the existence of a scalar field

S=•(XO,t) per unit mass, called the partial specific entropy, and a

partial internal rate of production of entropy ( = (X0,t) per unit mass.

The contribution of the latter to the internal rste of production of heat is

simply 0 i per unit mass.

We now postulate a balance of entropy for every material volume of C

occupying a part a in the present configuration and write

d P I dv f p (a +a)%dv- k da . (3.2)
dta a f 01

By usual procedures it can be shown from (3.2) that k is linear in n, i.e.,

7•.



k =p P n

where p is called the partial entropy flux vector. Then, from (3.1)3 and (3.3),

ae a
h = e p n and we may define the partial heat flux vector q by

% 
(3.B)

Under suitable continuity assumptions and with the use of (3.3); the local

equation at the place x resulting from (3.2) is

Dt % + m T•'y p (s +± )-div Pa (,)

Poe Dt aY a a a

whet e

DaOe a (3.6)
Dt 6t ax

At this point we introduce the first law of thermodynamics or the principle

of balance of energy, which states that heat and mechanical energy are equiva-

lent and together they are conserved. We state the law of conservation of

energy only for the mixture as a whole. However, the conservation of energy

could also be employed for each constituent C provided full allowance is made

for interaction energy from all other constituents, but we do not consid.t-r this
+

here. Thus, with reference to the present configuration and for material volumes

which coincide at time t and occupy parts P= P of R, the balance of cnergy for

the mixture may be stated in the form

+ This is in contrast with previouis work on many temperatures by Green and

Naghdi (4) and by Craine, Green ond Nar'hdi (2), where it was necessary to have

energy balances for each constituent in order to have sufficient eqintionrs

for the temperature fields.

8. 
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aw d )Ow

= J (pba.va+pr)dv + v (ta va-h )da , (3.7)
at a

aa
where t= € (X )t) is the partial specific internal energy of the constituent

C . With the help of (2.8), (2.9), (3.1), (3.4) and (3.5) and under appro.priate

continuity assumptions, the local energy equation ait the place x resulting from

(3.7) is

l'b Dat DOIC,

M( a a
.+ E ' v+ T' grad v+. + m ua. u]

(P + [a+p .grad eJ o , (3.8)
,. a 0 a

where all variables in (3.8) are regarded as functions of x and t and where

grad stands for the gradient operator with respect to x keeping t fixed.

Introducing the specific Helmholtz free energy * , (Xa,t) by

*=-,-en , (3.9)

the energy equation (3.8) may be written in the nilturnative form

D D
- Z [p(- + T a )+ma* I

Dt aDt

awKl
01z a .,+,,.ra Of +-- a 01 •vo •

a=a
S[P 8 +p . grad a 0 (3.10)

For ag iven mixture of v constituents having reference mass densities

po (7X), -h'c-al field equations resulting from the integral forms of the

conservation TawL involve a set of 129% functions. These consist of the

d: 'ormation functilo.s Xa and the temperatures a , i.e.,

a

'I 9.



and the various mechanical ard thermal I'i,2dds, narf.ly

[-a T E: ,~, 312)

and

£bsj 3 3.13)

The mass densities p are not included in (3.12) since, given (3.11), they can le

calculated from (2.8). We assume that the field; (3.12) are specified by

constitutive equations which may depend on the variables (3.11), their space

and time derivatives, as well aý: the whole history of deformation and temperatures.

We then adopt the following procedure in utilizing the conservation laws:

(I) The field equations are assumned to hold for an arbitrary choice of

the functions (3.11) including, if required, an arbitrary choice of the space

and time derivatives of these functions;

(2) The fields (3.12) are calculated, from their respective constitutive

equations;

(3) The values of ba and s can then be found from the balances of
momenta (2.c) -:nJ the b-ilances oft entropy (3.5);

moert (2( enrp whchar-5du,.d ro

(4) The conditions (2.13), the equna.ions (;..LU,) which are dedlced from

the balances of moment, of momenta and the energy cquatiuýi (3.10) will be

regarded as identities for every choice of (3.1.1). These wil] place restric-

tions on the constitutive eq',ations.

Tn thU cu.'rurnt literature on continulv, mc C.-•io sometmaes certain terminologies

such as a thermodynamic process (or simply a process) and an admissible process

are employed. In the context of the presnt pap-r, the former refers to the

specification of 12v functions (3.1i) to (.) s...uch Ihat they are compatibl. ,



I
with the field equations resulting from the conservation laws (2.5), (2.6),

(2.7) and (3.2). In order to specify a thermodynamic process it will suffice

to prescribe the 10v functions (3.11) and (3.12) and the. rema.ning 2v functions

(3.13) are determined by the field equations resulting from (2.6) and (3.2),

which corresponds to (3) above. A thermodynamic process is said to be admissible

in the mixture if it is compatible with the constitutive assumption at each point

of the mixture for all times, and this corresponds to (1) and (2) in the above

procedure. The last step (4) then places restrictions on admissible processes.

Some additional remarks are necessary concerning the entropy equations

".5). Suppose that the external fields (3.13) have prescribed values aiid

that the constitutive equations have been specified for the set (3.12) in

terms of (3.11) and their histories by

M.=m Tot T~ X

(3.14)
A A A A A

lot a O *a ) at Ca o a w

Then, the requirement that the energy equation (3.10) be identically satisfied

leads to the following identity

[P + + M rdv!I u

cr=A

[p A - Nt (3.15)

relating the response functions in (3.14). Also, the deformation functions

and the temperatures must satisfy the differential uquations which result from

substitution of (3.14) into (2.9) and (3.5). Now, le't the constitutive

equations be changed to

U].



n = =m T T h=-

SA A Daf A
n (7 f Of .f P t p ot D + m Off (3.16)

A A A

where f are arbitrary scalar functions of the variables (3.11), their space

and time derivatives and functionals of their past histories. The partial

stress tensors, the diffusive forces and couples, the entropy flux vectors

(and hence the heat flux vectors) and the partial specific internal energies

(3.14) are unchanged and the energy equation (3.15) which imposes restrictions
9

on the response functionals in (3.14) is ilso unchanged. If now (3.16)1 to

(3.16)6 are substituted into (2.9)l and (3.5), we obtain the same differential

equations for the variables (3.11) as those resulting from the set (3.14).
Also the boundary conditions imposed on X or Ta and on 8 or p , together

with appropriate initial conditions on XK and 8, are unaltered. Once the

solutions for the deformations and temperatures have been determined, there

remains some arbitrariness in T,) , to tha extent of the functionals f in

(3.16), even though the differential equations and the boundary and the initial

conditionrs do not involve f . An examination of the balance of entropy for the

ath constituent as given by (3.5) revwuls that f represents an internal genera-

tion of entropy which is accounted in (3.5) by an internal rate of production of

entropy • Moreover, this internal ratc of production of entropy can be sustained

in any part V awithout change in the partial specific internal energy c and with

no supply of entropy from external sources. This is a form of internal generation

of entropy which seems to be physically unrealistic. In order to exclude this,

we remove the arbitrariness in CY by setting

D a a
P + m f =0 , p f det F p (XPa)f (x)(
at Dt Of CY (YC ao0- o-

12.



where F is the partial deformation gradient defined by F -6x/Ux and f
a ow CYO

is an arbitrary function of X0. Then, • is determined uniquely and I is onlya a

arbitrary to the extent of an additive function f given by (3.17). The function

f (X2), and hence f, is determined by specifying a value for 1 in some

reference state.

The cace in which all constituents are at a common temperature B is of

particular interest and may be regarded as a special case of the above theory

in which all constituent temperatures are constrained to be equal, i.e.,

a - (a,=±,2,...,v) . (3.18)

A constraint of this kind is possible only if v-i of the external rates of

supply of entropy are chosen so as to balance v-i of the entropy equations (3.5)

while the total external rate of' supply of entropy

V
Ps E p s (3.19) ,

remains at our disposal. Equations (3.2) are then replaced by a single equation

for the mixture as a whole in the form

-I
Vp ' T dv - k cdv a (3.20)

where

q k p (3.21)

aj~l a

and where thz. total heat flux and the totaL heat flux vector are given by

VI

h -qc.* n E %I~ ja ep .(3.22)

The local field equation which follows from (3.20) ruds as

S13.



V D Tl
S(p - + mctc) P p(S+9) div p (.3

and the energy equation (3.10) now becomes

"E = (T + +a,:=

V+ vC [ .v+ Ta grad v Cy+ m ua u a]

- p•-, grad8=O . (3.24)

Before considering what restrictions arise from some form of second law

of thermodynamics, we discuss in the next section a special case of the above

thermo-mechanical theory for a mixture of inviscid fluids.

For later use, we need to record the expressions for the external mechanical

work and the external heat supplied to the whole mixture occupying the region of

space 9 during the time interval tl tSt2. First, however) we observe that in

the case of the mixture of inviscid fluids discussed in §4 the response functions

for )C a depend only on the constituent densities p, and the constituent

temperatures a but are independent of their rates, the velocities v and the jI
1, temperature Eradients grad e9. An elastic mixture of this kind will be regarded

as nondissipative in a sense that will be made precise later; and, in conjunction

with an expression for the external mechanical work supplied to R, will be used

as a basis for establishing in §5 an inequality representing the second law of

thermodynamics for dissipative materials. Keeping this background in mind, we

assume that the constitutive response functions for ,01 include also dependence

on the set of variables v ,e ,grad 9 and their higher space and time derivatives

and refer to this set collectively as Ii. Further, let c',q' denote the respective

values of s ,T when the Bet 'V is put equal to zero in the response functions.
ata

Thus, for example,

These definitions of , do not exclude their dependence on the past
histories. i.a

14.



(3.25)

= (v*,Dae ,Dtgrad e,...) ,

where the dots in (3.25)3 refer to the higher space and time derivatives of

va,DaeIDtgrad . Then, with the holp of (2.9) and the integral of (3.8) with

respect to time) we obtain

wrt2[Er• v av

jt E pba. va dv- + E . dadt
tI a=l ~ - =i

~~1

c v + pC )d 2
awl R it

2j E- (A- (pala) + iv p.,I v )} + E p w,] dv dt; (3.26)
tI 0 =1 ct=i 0

and

x- E p rmvu- E hodsgdr

aw d (3.27)

£Dwhetra

a-i• a-(i'%

Dt~ Orlt of D

V ~ VD

+ C p grad e )
a-(pofa f 5.at

=.•i~15.



4. Mixture of inviscid fluids.

Consider a mixture of inviscid fluids with v constituents. We define the

properties of each constituent by the constitutive assumptions that the set of

variables (3.12) are functions of

PO) S. grad py grad 0 (0-=l,2,...,v) . (4.1)

As indicated in §3 [following (3.13)], the equations (2.10), the conditions

(2.13) and the energy equations (3.10) are regarded here as identities to be

satisfied by all motions and all temperature dictributions. Using this

procedure and making use of (2.8), the application of standard tectniques leads

to

4•==.4(P,e) m 0 , (4.2)

IV

POl •," •=• c o (4.3)

T -I E , ~O =o , (4.4)

= (p grad p0 - p0 ! grad p

+ E (p - gred 6grad) a (4.5)

F3= 0-P PO• beP r 0

V V
E Pw = E (p +Pa. grad e ) " 0 , (4.6)
1~ 01 Omla01o

where I is the identity tensor and in writing (4.6) we have also recalled (3.28)3.

In view of (4.6), we put

V

p 0 9.grade +p e9' 9 E p e g o . (4.7)

Then, from (3.5) and (4.7) we have

16.



I'd DTq v
p r .p(4.8)

ot Ot U AC t ala a

where the rate of supply of heat for the mixture and the total heat flux vector

are defined by

pr P - r , . (4.9)
ami 4=

For a mixture of inviscid fluids characterized by (4.4) to (4.8), with the

help of (4.8) and the results of §§2,3, we record below the expressions for the

mixture as a whole representing (i) external work by body and surface forces on

the mixture and (ii) external supply of energy to the mixture arising from the

rate of supply of heat and the total surface flux of heat, both over a finite

time interval t 9 t < t

p = . vl dv+ t . daldt

fta=1

- S2p' eat + div(pl )]dV dt (4.10)

tI g -l

and

O= It V

S•(•+ div(p 'Y)}dv dt (.

= an ( )+E~~~~ p v- ida7dt

t ;a-

E at +¶ div(p,,jIva))dv t(.1

In the above discussion of a mixture of inviscid fluids the response func-

tions are assumcd to depend only on the set of variablcs (4.1) which cxcliider

the velocity vectors v An extension of the discussion to include dependence

on the velocity vectors is carr .ed out in §6. In the meantime, we obscrve that

the development of the present section can be extended to include a mixture of

elastic solids, or elastic solids and inviscid fluids. In general, the

17.
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constitutive assumption for a rI-xture of elastic materifils requires that the

variables (3.12) be functions of the temperaturre, tempera.ture gradients,

deformation gradients and second deformation grudients. With the help of

(2.10), (2.13) and (3.10), it follows that the respons- functions for ,

depend only on the temperatures and deformation gradients. With these results

and recalling the notations of §3, we may put ' , f f, and it can then

be shown that the expressions for the external mechanicnl work W and the external

heat 1 supplied to the mixture again reduce to the formn (4.10) and (4.11),

respectively. We make use of these results in §5.

In the case in which all constituent temperatures are equal, instead of

(3.10), the energy equation is given by (3.24) and the results (4.2) to (4.6)

are replaced by

,e) , m , (4.12)

or

orp P :Z=* (4.13a)

T=I I E 
(4.14) A

TP =- P a grad(Cp F )grad e (4.15)

pFO+P grad e0 0 . (4.16)

Also, instead of (4.8) we now have

,• D "qe

pr-divq= 8 P D- (4.q17)1 =lB.
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For a mixture with many constituent temperatures, Craine, Green and

Naghdi (2) have discussed more general constitutive equations than is

implied by the dependence of (3.12) on the variables (4.1). The detailed

development of their work on a mixture of viscous elastic materials is such

that direct comparison of their results with (4.2) to (4.5) is difficult.

However, if the energy equation (3.10) is not regarded as an identity and the

entropy inequality employed by Craine et al. (2 ) is used to impose restric-

tions on the forms of T of 01 A a as functions of the variables (4.1), then

the following results emerge:

* i(pOle , ma =0 ,(4.18)

" 1 o••p= ,., o ,(4.2o1).

•'.~ ' ,.•. grad -ga ,
e E (4.219)

V (4.22)
a BP

+Et _ (-- grad _ -rad p

The above resulof differ from ine ln by (t.2) to (4.5)t although the

differences disappear when :%l1J. the temperatures "ve e i•,] T+ .h5;,.••

empha i e th t t ef r u a 1-.2) to (4.5) have been obtained without any

appeal to a second law of thermodynamics) in c~utrast to the results (4.16)

to (4.22), which are obtained here in the spirit of eatl!-..r procedures with

the use of an entropy inequality.
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9. The second law of thermodynamics. Restrictions on heat conduction
vectors and internal eneraies.

Previously [see Green and Naghdl. (9), §4], we examined the nature of

thermodynamic irreversibility arising from a mathematical interpretation of a

statement of the second law of thermodynamics, namely that "it is impossible

completely to reverse a process in which energy is transformed into heat by

friction." This led us to postulate an inequality which is different from

the Clausius-Duhem inequality; some of the undesirable features of the latter

inequality are discussed in 07 of Green and Naghdi (2)

Here we follow a procedure for mixtures which is similar to that used

previously for single phase continua. First, we observe that the expressions

(3.26)1, when evaluated for a given process, may be either positive or negative

depending on whether the external work is supplied to, or is withdrawn from, R.

This external work is also represented by (3.26)2 in terms of both thermal and

mechanical variables but not every term in (3.26)2 need necessarily be positive

(zero or negative), even though the external work may be positive (zero or

negative). Thus, following a discussion similar to that in (2,10), with

reference to a dissipative mixture we ass~me that in every admissible process

a part of the external work done is always nonnegative. Then, in a process and

its reverse process at the, end of which the mixture has returned to its same

statel some of the work done is always transformed into heat. Hence, we write

The above also implies that

-r ., .,ounded below, th, bound depending on the process.

K ?0,



In order to identify the two parts Vý and Uý, we note from (I4.6) and (3.26)

that in the case of a mixture of inviscid fluids or elastic materials discussed

in §4 the expression for the external mechanical work supplied to R reduces to

(4.10). We now regard an elastic mixture of this kind as nondissiDative in the

sense that no restriction is placed on the external mechanical work supplied to

R and identify V3, with the right-hand side of (3.26)2 after setting E p w =0.
a=l

Keeping this in mind, we rewrite the last inequality as

t 2  t 2  • I')
itVa.V+ )d 2 2j E f t + div(p r~vo)]dv dt (5.1)

*-I Ptv v+ 1)vt i R tI- of at1lc*

and assume that (5.1) holds for every thermo-mechanical process. The combination

of (3.26)2 and the assumption (5.1) yields

E. awd tt 0 (5.2)

for all times t 1 ,t 2 (tlAt 2 ). Since tl 1 t 2 are arbitrary and Y p W haw

already been assumed to be continuous, it follows that

j wdi (5.3)

for all thermo-mechanical processes. With the help of (3.27) and (5.3), we

also have

V tI V =i
~ ~ e~~---+ div(p ,j'v"))dv dt (5.4)

ce=1 it it (=l a

so that the external heat supplied to the whole mixture is bounded above in

every process. Alternatively, some of the heat supplied to the mixture in

every process is always nonpositive.

tIt may be recalled that the expressions (4.10) and (4.11) hold also for a
mixture of elastic solids (or fluid-solid) in which dependence on the velocity
vectors is excluded, as was noted in the paragraph following (4.11).

21.
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The development of this section began with an examination of the expression

for the supply of external mechanical work to the whole mixture occupying the

region R at time t and this led us to postulate the inequality (5.1) from which

the thermodynamic condition (5.3) was deduced. It is also possible to obtain a

similar condition for every part of the mixture. For tho latter, instead of

considering the total mechanical work during a given time interval, we consider

the rate at which mechanical work is supplied to a part of the mixture. Thus,

with reference to the present configuration and for material volumes which

coincide at time t and occupy parts P = P of R, th•e rate W(t) at which external

work is supplied to a part V of the mixture is

W(t) f • vada •

Using results similar to (3.26) and (3.28) but with R replaced with P and the

limit of integration t 2 replaced with t, the last expression can be put in the form

IIW(t) E Pf (~vav + P )dv

S -- -- div( • + w)dv (5.6)

By an argument similar to that which led to (5.1), for each part P of the

mixture we write

V

W' t" ;K E( v + oTv't)ddt

j t div(p CiT k V")]dv (5.7)

and assume that (1.) iI , 1-r evory thermo-mechunical process. The combina-

tion of (5.6) and the assumption (o.') yields

p w p dv tO (5.8)
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for every part P. From this last inequality follows the local form

V
E pw io , (5.9)a=i

which must hold for all thermo-mechanical processes.

We supplement the above interpretation of the second law with two further

inequalities which stem from the statement that "heat cannot pass spontaneously

from a body of lower temperature to a body of higher temperature." To this end,

we consider first the heat flux response in equilibrium cases for which the heat

flow is steady. By equilibrium we mean that

v= , F= , e=e , pa= p for all t , (5.10)

where F is the deformation gradient for the constituent C, the tensor F,

the cQmmon temperature 9 and the densities p~o' as well as all other relevant

functions, are independent of t but may depend on x. Then, m = 0 and the

conservation equations (3.5) and (3.8) become

p (s + div p, Z (p te +po grad e) 0 . (5.11)
a=l

Also, since

pr E p1 r E p- O 8 ots= e t p_

(5.12)

it follows from (5.11) that

pr=divcj . (5.13)

The equation (5.13), which is obtained hure for a mixture in equilibrium,

has the same form as the corresponding result for a single phase continuum;

and thus, for equilibrium cases under discussion, we again adopt the classical

heat conduction inequality

23.
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q.- grad e 0 (5.14)

for all time-independent temperature fields (5.10) . Wc note that the inequality
3*

(5.14) can be written in the alternative form

V

P gra t , (5.15)

in view of (5.12) and since 0>0.

In the remainder of this section, we suppose that the mLxture is at rest

with v = 0 for all time and with the densities p and with the deformation

gradients bX/ everywhere constant for all, tim.. Then m 0 and the total

mass density p= Ep which is positive, is constant. In addition, we

restrict the temperature fields to be spatially homogeneous and equal so that

=9 e(t). The specific internal energies s which will depend on p, ) / ax,

I and its history will be functions of tindependent of x. Moreover,

recalling (4.9), from combination of (3.5) and (3.8) we have

V
pr-div q a= (pc) , pc = pC , (5.16)ot=l p¢

where s is a function of t independent of x. Since vat O everywhere, no

mechanical work is supplied to the whole mixture occupying the region R at

time t. Then, by inbegration of (5.16)1 with respect to t, the heat supplied

to R during the time interval t% -t-•t is

+ t

r 2 t 2pC dv i [eltI p Pdv . (5.17)

We now suppose that the mixture has been in thurmal uquilibriLu during some

interval of time up to the time tI with constant temperature e 1 and constant

internal energy c. We then assume that whenever heat iL supplied to the mixture

according to (5.17), the temperature 0(t) throughout R will be increased. Hence,

we impose the condition thot

24.
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t 2[e3tl > 0 whenever )I> 0 . (5.18):

Since p is positive, it follows from (5.17) and (5.18) that

9(t) - 9, > 0 whenever c(t) -' > 0 (5.19)i

for a1l times t > t1 .
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6. Further discussion of inviscid fluids.

In order to illustrate the nature of the preceding thermodynamical

developments, we return to a mixture of inviscid fluids which is partially

discussed in §4. For simplicity, however, we limit attention to a mixture of

two fluid constituents whose masses are separately conserved. Thus, we write

+PP1  1dv = 0 + D P2+ div v2  0 (6.1)

and, in view of (2.13)2,3' we adopt the notations

1 2 1I 2 6

Constitutive equations for such fluids usually include the dependence on the

velocity vectors but these were omitted in the discussion of section 4. We

now assume that the set of variables

1T 2 1 2 (63)

are functions of

P1' P2' grad pI, grad P 1 ) I ?2 grad 9,, grad (6.4)

1 2
and v ,v2. In view of invariance conditions under superposed rigid body motions,

however, the variables vl,v2 must be replaced by-1 2

V1-V2 = a (6.5)

In accordance with the procedure of §3, since (2.10), (2.13) and the energy

equation (3.10) must be satisfied as identities for all motions and all tempera-

ture distributions, we then obtain
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*"l(P1, P2,ez,)a) , 12 - 2 (P-,1 , 0 ,02 ,9 )

A
* P" P 201 + 4 2 , • " 4(p1,p2 ,e1,e2 ) , (6.6)

A A"P11 P""• p2Tý p be2
2

A Al A2.. at at,

A 2(6.7)

2 p grad -2 62

S1 (6.8)
2 1

1P 2 1
+ P I b grad '2- P2 be , gr d e l

P1~1e1 i2 • 2 e2• ÷ *grad 91 + .p grad e-•. a, 0 (6.9)

where is a function of the variables (6.4) and (6.5). APert from invariance

considerations no further reduction in the form of these results is possible..

without the use of the thermodynamic restrictions (5.3) or (5.9) and (5.15) or

without employing more restrictive constitutive assumptions. Here we up* the

inequality (•.9) with w given by (3.28). From this inequality, we may deduce

the result

a 0 (6.1o)

for all thermo-mechanical processes. Now put

where is the part of the response function for when a is set equal to

zero. Then, assuming that is a continuous function of its arguments, from

(6.10) we deduce the results
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tj•M- , a",•,o . (6.11).

Also some restrictions on the forms of the response functions mal be

I found with the help of (5.15), but we leave the discussion at this point.

II
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r
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7. Flow of a fluid through a rigid solid.

In many problems involving the flow of a fluid through a porous solid, the

latter is often regarded as a rigid, rather than deformable, solid; and, in

addition, both media are assumed to be at the same temperature. Our main

interest here is to explore a further application of the theory of earlier

sections with reference to the flow of a homogeneous incompressible viscous

fluid through a porous solid when the fluid and the solid are at different

constituent temperatures; and, in order to avoid undue complications, we con-

sider the solid to be stationary, homogeneous and rigid.

Let the incompressible viscous fluid, with its mass element conserved,

be referred to as the constituent v and let the stationary, homogeneous and

rigid solid be identified as the constituent v2 . Then, p, and p2 are constants,

m =0 , divv , 0 v2 = 0 (7.1)

1 m2

and by (2.13)234 we also have

2 _ r (7.22
S=• , ~ 4-x , r =-r .(72

The energy equation (3.10) in this case becomes

DI l D12,

-P( + 1 "l-) - 2%(- + !92)

+ v +T grad v- " p 2 e2• ~' P:lel'lP292

1grad 2 - grad 82= 0 . (7.3)

Because of the incompressibility condition (7.1)3, the stress tensor TI is

undetermined to the extent of an additive hydrostutic pressure p so that

P~- (7.4)ST =-pI+T

29.
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where p is an arbitrary scalar function of xt and T is to be specified by a

constitutive equation.

For the two constituents under consideration, we introduce the constitutive

assumptions that

- 3 1 .1o 21•,•*1 ,*~• ~ 2, tl2 O, , t,.2 (7 .5)

are functions of the set of variables

el, 02, grad el, grad v), ' grad v (v3 V) (7.6)

In the absence of the stationary rigid solid, inveriunce requirements under

superposed rigid body motions would indicate that the velocity v and the skew

part of grad v should be excluded from the list of variables (7.6). However,

in the present study in which the fluid flows through n stationary rigid solid

no reduction in the variables (7.6) is possible.

According to the procedure outlined in D3, the. envrgy equation (7.3) is

to be regarded as an identity for all motions and all temperature fields.

Hence, with the use of (7.4) and the above constitutive assumptions, applics-

tion of standard techniques results in

A A O V ( G0

A A/ AA

*2 = •(e81 ' 2 ) + *2 (elle 2 'l) $ ' 2(lO'e 23 ) = o(7.7)

A
*(e•1 ' 2 ) ' p,= P, +pP21i ' , 1+p 2'O .o2

A A

=1 P , 2 -P .• (7.8)

Hence) 11 and Tý depend only on the constituent temperatures I,2and coincide

respectively with and in the notation of §3. Also, with the help of (7.7)

and (7.8) the identity (7.3) reduces to
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A A

-P1  grad 2+ grad eA)A v

' 2 '2 P2 Be, 1

+ "P " v) " grad v- p,• 1 el- p2 9202

1 2
- .grade 1 -- grad O2  o .(79)

Next, we turn to the inequality (5.9) with w given by (3.28)2 and obtain Al

A A

-o (7.1oiVj' d+ ( 2" p 2 ý grad v ,1 (7,10•

where and T are functions of the variables (7.6) which vanish when v and
grad v are both zero. '

In the rest of this section, we limit the discussion to a linearized theory A

about an equilibrium state in which v 0 and 81= 82 =), being a constant.

We also assume that the rigid solid is homogeneous and isotropic with a center

of symmetry. Thus, we set

I =(.+,+p) , 2 . 9(1+,) (7.-1)

and retain only linear terms in c,0,v in all constitutive equations for

1 1 2
tp ,T,p , , Ti However, in view of the relations (7.8) and the energy

identity (7.9), for consistency we retain both the linear and the quadratic

terms in as,v in the expressions for 1i,2,4,•,•. Thus, making use of

(7.7) and remembering that the rigid solid is assumed to be homogeneous arid

isotropic, we write

A
pl~l 22-- T "'o" •°", - of 03 %1 %• + ,v. -V

A
P22 2 -o- 12-- 28 Y - Ylc' Y2 'Y3Cr Y4 to Y5(7.12)'

A 
2

where the coefficients 6o,...,5 are related to y 0..'Y5 through (7.7)7.
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In addition

SDvv+ D2 grad o+D 3 grad 0

3 Dv D, grad Y-D grad (7.13)

D v D8 grad cx-fD9 grad

and

= (0b+ )grad v + (P P- )(grad v) T

a -D Dnl ÷ + 1 pj (7.14)

p2P 2 =D 1 0 a+D4 1. + PJ 2

where yo,...,65 , DI,...,DI1 , i are constants while is2 are quadratic func-

tions in the variables

a), , grad ot, grad 8, v, grad v (7.15)

and the partial internal production of entropies •1,•2 both vanish in the

equilibrium state. In (7.14) 2 , 3 the linear parts of •1,•2 have been chosen

so that the identity ((.9) is satisfied and the restrictions on the forms of

l or arise through the quadratic terms in (7.9). Also, by (7.8), (7.11)

and (7.12), the cxpressions for the partial specific entropies are

A

pzT1= 1 _ It = 62 . )40 A 6 '

(7.16)
A A

S (" i " •i) = 6 -6 + (-6 )

With the help of ((.) and (714) the inequality (7.10)2 which holds

for all processes may be used to show that

D2 =0 , D3 =0 D , _ , t- (7.17)

32.
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Our second thermodynamic condition (5.15),which holds in equilibrium with

$I- 02s reduces in the present problem to

1?2- g+).grad c > 0 when =0, v=o (7.18)

After substitution from (7.13), we readily obtain the condition

D +D8  o . Cr.19)

Further, when or •=0, the value of PC Pp1 41 + P2 2 is 6o+6 1 +6 3 as

far as the terms linear in a are concerned. Then, the third thermodynamic

condition (5.19) requires that

63 0o . (7.20)

Making use of (7.1), (7.13)2,3, (7.14) and ((.16) and retaining only the

linear terms, the entropy balance equations become

• + 6 P 6. " Dlo " D -10 + D ,2 2+ D 2 ,
64 at + 5 at 1D"5 67~

(7.21)

64) k + (6- 64 ) at p22 10 D 81 +DSv.+D9 V

where 72 stands for the Laplacian operator. The above differential equations,

which serve to determine the teraperatures a and 0, are independent of the

velocity v. For the present discussion, we do not record the differential

equation resulting from the balance of momentum which is an equation for v

and p; the remaining equation involving v io, of course, the incompressibility

condition (7.1)
.3

Returning to (7.21), we note that so far we have only obtained the thermo-

dynamic restrictions (7.19) and (7.20) on the constant coefficients which occur in

the entropy balance equations. Our previous procedure of using an entropy inequality
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of the Clausius-Duhem type [see the inequality (9.5) in the paper of Craine, Green

and Naghdi (2)]would yield further restrictions on the coefficients DsD 6 ,Dg,D 9 ,

D1 0,D11 , but not on 63,64,85; nevertheless, we do not adopt this approach here.

In closing this section, we indicate what further restrictions may be

inposed on the coefficients 63,... ,Dl in order to render, under suiteble

boundary and initial conditions, the solutions of (7.21) unique. We suppose

that the stationary rigid solid always occupies a region of space R and that

the fluid also occupies the same region so that

v.n- =o on 6 . (7.22)

Recalling (7-13) we write the constitutive equations for pP in the forms

p- + ,mD , (7.23)
4 ,v. 7 _

so that

1 1 2 2p.n= n n p, n = m n on •f , (7.24) '

in view of (7.22).

Consider now an initial boundary-value problem characterized by the dif-

ferential equations (7.21) with s =sS = O. We assume that the dependent variables
2 1

'1,p are: (i) of class C with respect to x and of class C with respect to t in .the

open region R for tO; and (ii) of cl.Rss C,1 with respect to *x and of class C with

respect to t in the closed region R U 6R for t O. In Eddition, we assume the

initial and boundary data

a = 0 , =0 in R U fR for t a 0

= 0 , 0 on N. for t j; , (7.25)

n m
S Q on bit- R. for t t 0

p ,nN Nm .n,, 0

:n order to establish uniqueness, from (1.21) and (7.2'5), we obtain

34.



dt S (6a+264  5
2 )dv

Tri' 131 24O+6o- (DOt+ lo$ 0 - l g a]to r d adv (7. 26)

which is an identity. Then, with suitable classes of functions a and •, the

usual type of energy criteria for uniqueness follow from (7.26) provided

6 2+ P-84" +65 ,)

(Dlo + D110)m 0 , (7.27)

-m •grad(o+t)- . grad o _0

for all teuperature fields L,•. Furtherp with the holp of (7.14) and (7.23),

it follows from (7.27) that

D5 +D8 a 0 , D , 4D6 (D5 +) ) (D,.+D 6 +D9 )2

(7.28)

D 0 D a 0 , a 8 0 , t 0 6 , is 8r

and we note that (7.28)i and (7.28)6 are the same as the thermodynamic restric-

tions (7.19) and (7.20), respectively.

In order to illustrate some of the featurt-s of the equations (7.21) subject

to the ro•strictions (7.28), we consider a simple example of heat conduction in

an infinite stationary rigid porous solid bounded by the planes x= 0, x 5e

and containing an incompressible viscous fluid at rust. At time t=O, the

temperature throughout the interior of the solid and fluid is constant end

eqi i1 to 8. Let the temperature of the walls of the solid be changed to, and

iintained at, another constant temperature. Then, when 0<x <a, the

quantities aO satisfy (7.21) with is= s 0 and are functions of t and
1,2 1 2

x1 . Also,
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- 0 0 =O (t=O ; O<xl<a) ,

(7.29)
0 O 0 = 0 (x-=0a ; t;1O)

00wh•ere •ois a constant. Following a routine method we look for solutior~s of

(7.21)1,2 in the forms

SAe t sin(nTx1/a) , • = Bet sin (rrxl/a) , (7.30)

where X satisfies the quadratic equation

(8365- 64)X 2 . ?Jt63D6 + 65 (D5 + n8 ) - 64(1 5 +D6 + D9 )) en + 3 D1 ]
+ (D6 D8 - D D )e2  = o0 (7.31)

68 5 9 +D 11(f 5 +D8)

and

= n2n2/s2  (7.32)

Recalling the conditions (7.28), we readily obtain the restrictions

6 6 6 re 0 , D6D8-D D D P , DI(D.+D8) i O0

3 5 4 6859 1 5
(7.33)

63 D6 + 65 (D5 4- 60(D5 + D6 +D8 ) _ 0 , 0

and then we conclude that the roots of (7.33) are in general of the form

k - n , - n (n , ,. .

(7. 3 4)
On >0 , On > ,

where a en,n are unequal and real, or are of the form

36 (n . 1,2 .. , (7.35)in n"
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where onAnare real and n are non-zero. Exceptional cases can arise but

these can be dealt with similarly. The solution to the initial-boundary

problem may now be completed in a usual way. We note, in particular, one

result which follows from the solution, namely that

I o 0-o as t- . (7.36)

According to (7.36), which is an expected result, the temperatures in the

fluid and solid tend to the same values as t -. .

3
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8. Further remarks.

We close this paper with some additional remarks concerning the present

and previous procedures of studying the thermodynamics of mixtures of inter-

acting continua with different constituent temperatures. First, we observe

that the field equations resulting from momenta balances for each constituent

involve only the mechanical fields while those obtained from balances of energy

for each constituent involve both the thermal and the mechanical fields. In

the traditional developments of thermomechanics, after the specification of

constitutive equations, the former field equations yield a system of differential

equations for the determination of deformations for each constituent while the

latter is regarded as differential equations for the determination of the

temperatures, after elimination of the external body forces with the use of

the local equations of motion. In contrast, the thermodynamical development of

the present paper is such that the balances of entropy, which involve only the

thermal fields, provide the differential equati.ons for the temperatures in

parallel with the fact that the differential equations for the deformations are

derived from the balances of momenta. Consistent with this, the energy equation

for the mixture as a whole (after the elimination of the external body forces

and the external heat supplies) is employed as an identity for all thermo-

mechanical processes; and, hence, it does not yield any new differential equa-

tion for temperatures or deformations. It is noteworthy that the energy equa-

tion for the mixture as a whole as used here provides all the essential results -

other than those arising from inequalities - concerning the relationships between

the constitutive response functions or functionals prior to any appeal to a

second law of thermodynamics. Tn this sense, the inequalities (5.3) or

(5.8) have been assigned a more subdued role relative to those of the conservation laws.

It is understood that the differential equation for temperatures, as .ell as

those for the defuoniations, contain also coupled terms.
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In the spirit of the present paper, we could use the energy equations for

each constituent as energy identities provided allowance is made for the inter-

action terms. However, this can be acco•.plished at the cost of introducing

further variables requiring constitutive equations, and it does not appear likely

to yield additional useful information.

We now turn to an entropy inequality of the Clausius-Duhem type for

mixtures, namely

V dV p r ~ V q-
E d dr- E dv+ E da 0 (8.1)

which is proposed by Truesdell (11) , and adopted in a number of recent papers

on the subject, e.g.i 1:een and Naghdi (c, 6. '7 and iraine et al. ( 2)

The inequality (8.1) may be regarded as a natural generalization of the Clausius-

Duhem inequality for single phase continua and does lead to reaaonable results

in some special situations. For regions containing no surfaces of discontinuity,

it follows from (8.1), (3.4) and (3.5) that
v Porv 1 (8.2)

E= a e 8(P +m'n P r + div - p,".grad ]o (8.2)
U,-1 0ý--' ] C

for all thermo-mechanical processes. In previous papers on mixtures the external

heat supplies r were eliminated from (8.2) with the help of the energy equations

postulated for each constituent. Such a reduction cannot be effected here since

in the present development we only have one energy equation. As a result,

detailed comparison of the inequality (8.2) with that proposed in the present

paper, namely (5.9), is difficult. However, some comparison can be made when

all constituent temperatures a are constrained to be eqi to 9(>O) as in

(3.18). Then, using the energy equation (3.7) and the various definitions in

§3, we may replace (8.2) by
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÷+ E(•. VV+ T . gad vor- p Vgrade
V-1

=vv D•(Qn- L'. Po w -V rad E p-LDI -~

÷ m (• - )] ] _ o .(8 .3 )

For mixtures whose thermo-mechanical response is such that 4,") , are

independent of the set of variables (3.25), the specific Helmholtz free energies

and the specific entropies reduce to *= 0 , * = V ' and then (8.3) becomes

V V o
SEi p ei : (pW-p 'grad 9) o . (8.4)

If the variables p,•To , w in (3.2 8 )1 do not depend on the

temper ture gradient grad e and its history, then it readily follows from (8.4)
V

that E p w !5 0 and this is the same as our inequality (5.9) • On the other
hand, r grad <o, the inequality (8.4) could allow 0w to

hmprovided E p rd8<. h nqalt 84 ol lo E p wt•r~l ~ O=I

be negative for some materials undergoing particular admissible processes.

4~i'

Acknowledgement. The work of one of us (P.M.N.) was supported by the U.S.
Office of Naval Research under Contract N00014-75-C-0148, Project NR 064-436,
with the University of California, Berkeley (U.C.B.). Also, A.E.G. would like
to acknowledge a visiting appointment in U.C.B. during 1976 and P.M.N. held a
Senior Visiting Felluwship of the Science Research Council in the University
of Oxford during 1975-76.

4o.



References

1. Atkin, R. J. & Craine, R. E., Continuum theories of mixtures: basic theory
and historical development. Quart. J. Mech. Appl. Math. ?2 (1976) 209.

2. Craine, R. E., Green, A. E. & Naghdi, P. M., A mixture of viscous elastic
materials with different constituent temperatures. Quart. J. Mech.
Appl. Math. 23 (1970) 171.

3. Green, A. E. & Naghdi, P. M., A dynamical theory of interacting continua.
Int. J. Engng. Sci. 3 (1965) 231.

4. Green, A. E. & Naghdi, P. M., A theory of mixtures. Arch. Rational Mech.
Anal. 24 (1967) 243.

5. Green, A. E. & Naghdi, P. M., On basic equations for mixtures. Quart. J.
Mech. Appl. Math. 22 (1969) 427.

6. Green, A. E. & Naghdi, P. M., A mixture of elastic continua (in Russian).
V. V. Novozhilov's Anniversary Volume, Academy of Sciences, U.S.S.R.,
143, 1970; this is the same as Rept. No. AM-69-7, Division of Appl.
Mech., University of California, Berkeley, April 1969.

7. Green, A. E. & Naghdi, P. M., The flow of fluid through an elastic solid.
Acts Mechanics 2 (1970) 329.

8. Green, A. E. & Naghdi, P. M., On continuum thermodynamics. Arch. Rational
Mech. Anal. 48 (1972) 352.

9. Green, A. E. & Naghdi, P. M., (a) On thermodynamics and the nature of the
second law. To appear in Proc. Royal Soc. (London); and (b) The
second law of thermodynamics and cyclic processes. To appear in
J. Appl. Mech.

10. Truesdell, C. & Toupin, R., The classical field theories. Flugge's
Handbuch der Physik, Vol. III/l, p. 226 (Springer-Verlag, 1960).

11. Truesdell, C., Sulle basi della termodinamica delle miscele. Rend.
Accad. Nazionale Lincei (8), 44 (1968) 381.

41.



UNCLASSIFIED ___

SRCURITy CL ASSI F1CATION 01F ?iitS PAGE (When beta lentered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE DEFORE COMPLETING FORM
IRE NUMBE --- A GOVT ACCESSION NO, 3. RECIPIENT'S CAI ALOG NUMBUER

On Thermodynamics and the Nature of the
Second Law for Mixtures of Interacting,. s.

7.S -q NT0ACT OR GRANT NUMOCR a)

~A. E. Geen MP. M./ aghdi ) N00014-75-C-0148__

S. ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 PEpRMN ORAIAINNM N DRS R GRMEEENT, PROJECT. TASK(

Department of Mechanical Engineeri AtAiOKNTu3R

Uniersit~y o California 9N72 o6-3
Uiersitey o California 94720O~ 43

CONTR1OLLINO OFFICE NAME ANC) ADDRESS :i EOTDAYE
Structural Mechanics Branch
Office of Naval Research It. NUM1EROPP PAGES

Arlington) Virginia 22217 FA41
I4, -MONITORING AGENCY NAME &ADDRESS(II dIllerentltl~N~IijOf IS, SELCURITY CLASS. (of this report)

Unclassified

It. DISTRIBUTION STATEMENT (of Ohio Revolt)

Unlimited. ON STAfl?.r.

17. DISTRIBUTION STATEMENTY (of the Shvt&m01061 ;inu &N look 20# It SIPICATION1OOWNGReport

1.SUPPL9MENTARY NOTES

t.tyWR$(Continue on...I.-ad tncsm n dniyb lc num ort

Mixtures of interacting continua, thermomechanics of multiphase
continuea, second law of thermodynamics for mixtures, balances of
entropy, thermodynamic restrictions, restrictions on heat fluxes
adinternal enrisfrmxuepteflow problem of (continued)

f-$TA (Continue on toy.,.. i essm nd11ntf y lc numb..)

D hspaper, which may be regarded as a continuation of a previous
paper on thermodynamics of single phase continua, is concerned with
a new approach to thermomechanics of multiphase continua and
extends the previous ideas and procedure j~ee
to mixtures of interacting continua. In particular, it contains
~Oa proposal of a new approach for obtaining restrictions on

-~cons~titutive equations, (7an appropriate mathemalical statement-;-. -~ k
7(continued)/O-

DD I O 1473 EDITION OF I NOYV55 I5 ONSOLIETS
S/N 0103-014*66011

SIUNITY CLASSIFICATION OF THIS PAGE fyth.n Data ENtete0d)



UNCLABSIFIED

*i 1t..URITY CLASSIFICATION Or THIS PAGEtWhen Doe Ent•ered)

19. Newtonian viscous fluid through a porous solid, effect of different
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of the second law for mixtures and the nature of restrictions
placed by the latter on constitutive results representing the thermo-
mechanical behavior of mixtures with different constituent temperatures.
Our point of departure is the introduction of balances of entropy and
the use of a single energy equation for the whole mixture as an
identity for all motions and all temperature distributions after the
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the existing approach in most of th iterature on continuum

t b•ries of mixtures based on the use of a Clau type
'l"'e•'ialty (or similar entropy inequalities) for mixtures.
interpretation of the second law is similar to that of the previous
paper and leads us to postulate an inequality which reflects the fact
that for every process associated with a dissipative mixtures, a part
of the external mechanical work is always converted into heat and this
cannot be withdrawn frcm the mixture as mechanical work. The restric-
tion on the heat conduction vectors is considered separately and is
confined to equilibrium cases in which heat flow is steady. Also, a
restriction on the specific intern; L energies is derived when the
mixture is in the state of mechanical equilibrium with all its
constituents at a common spatially homogeneous temperature. The
remainder of the paper deals with the constitutive results and thermo-
dynamic reptrictions fi`ý inviscid fluids, a fairly detailed considera-
tion of the problem of an incompressible Newtonian viscous fluid
flowing through a rigid porous solid whose temperature may be different
from that of the fluid, as well as some additional remarks on the
implication of the uze of an entropy inequality of the Clausius-
Duhem type for mixtures as contrasted with the thermodynamic restric-
tions resulting from the procedure proposed here and from our present
interpretation of the second law.
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