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ABSTRACT. A number of image analysis tasks require the registration of a

surface model with an image. In the case of satellite images , the surface
model may be a map or digital terrain model in the form of surface elevat ions

on a grid of points. We develop here an affine transformation between coordin-

ates of Multi-Spectra l Scanner (MSS) images produced by the LANDSAT satellites ,

and coordinates of a system lying in a plane tangent to the earth ’s surface
near the sub-satellite (Nadir) point.

This report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Support for the laboratory ’s
artificial intelligence research Is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Nava l Researc h
contract number N0001 4-75-A-0643.



V ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
•-

~
-- 

~~~~~~~~~~~~~~~ 
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--.- . -

~~

— 1— 

/ 1

1. Introduction.

Some image analysis tasks depend on the availability of a registered sur-

face model. Registration can be accomplished using manually identified ground

control points or by matching the real image wi th a synthetic image calculated

from the surface model using assumed reflectance properties . In either case,

the form of the transformation from image coordinates to model coordinates must

be known. The registration process is then used to determine the unknown par-

ameters of the transformation .

We show here that in the case of satellite images obtained by a mechanica l

scanning system, such as that used on the LANDSAT satellites , an affine trans-

form applies , if small , second-order effects are neglected . Such a transforma-

tion has six parameters which depend on the ~tate of the scanning platform .

Each parameter is exhibited as a function of the components of this state and

other relevant fixed quantities . These equations can then be used to predict

transformation parameters if the state of the scanning platform is known .

A possible application of automatic registration of images and surface

models is the determination of the parameters of a satellite ’s orbit. Unfor-

tunately, a rigid body has six degrees of freedom (position and attitude) and

so its state has twelve components (position , velocity , attitude and attitude

rate). Clearly, then , knowing the six parameters of the affine transformation

at one instant of time is not sufficient to permit a calculation of the vehicle ’s

state.

A series of determinations of the transformation for images taken of dif-

ferent areas of the earth , however , may permi t determinati on of the vehicle ’s

orbit . If we ignore small perturbations , then the position and velocity of 
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the center of mass of the vehicle at one instant of time fully determine its

orbit. We prefer to use orbital parameters to describe this component of the

state in some circumstances.

F

I
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LANDSAT is in a near-po lar , retrograde , sun-synchronous orbit which is

nearly circular. The nominal parameters of this orbit include a semi -major

axis of 7,294,690 meters, that is , 916,525 meters above an earth wi th equational

radius of 6,378,165 meters and oblateness of 1 in 298.3. The nominal period is

103.267 minutes , which brings the sub-satellite point back to the same spot on

earth after 251 orbits in 18 days. At the equator , neighboring sub-satellite

tracks are spaced 159,380 meters. The descending node is nominally passed

at 9:42 A .M. The orbital inclinati on is nominally 99.092°, which brings the

satellite within ~ 9.092° of the north pole at the vertex V (see Figure 1).

All of the parameters drift with time due to perturbing influences such as

solar wi nd, light pressure, atmospheric drag , non-spherical distribution of

masses in the earth , effects of mass expulsion , and so on. The orbit is re-

adjusted at time using small gas discharges to maintain the positions of the

ground-tracks within about 35 km of nominal and to prevent the time of north

to south crossing of the equator from drifting too far from the nominal 9:42

A.M. The orbital data is derived from radio tracking information .

Points on the orbit may be conveniently referenced to the vertex V. The

orbital travel distance p is measured from it , and the reference meridi an

passes through it. The change in geographical longitude 
~ 

i s measured from

the reference meridian (see Figure 1).

Ignoring for a moment the rotation of the earth , we find that the nominal

position of the satellite , S . lies at (geocentric) latitude •
‘ . The nominal

heading of the satellite relative to the local meridian is given by the angle

H5. The relationship between orbi tal parameters ~~ , p and the geographical co-
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ordinates 
~~ •‘ can be established using products of rotation matrices [1].

Here we follow a more direct route using spherical trigonometry .

Considering the right spherical triangle N E5 S~ (see Figure 1), applying

the sine theorem, one finds that

sin (~ ‘) /sin (90° - c )  = sin (90° -p)/sin (90°)

or ,
/1

sin •‘ = cos c COS p (1 )

Next, from right spherical triangle V P S5, one finds,

sin A~/ s1n p = sin H 5/ sin c

and , applying the cosine theorem (for angles),

cos = - cos H
~ 

cos 900 + sin H
~ 

sin 900 cos p

or ,

cos = sin cos p

• • Hence ,

tan • tan p/sin c (2)

- -
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• Equations (1 )  and (2) determine geographical coordinates •‘~ 
x~ in terms of

orbital parameters 
~
-
, p. Similarly ,

cos H
~ 

- cos A cos 90° + ~~ sin 900 cos c

or ,

cos H~ s in  cos c

Hence ,

tan H
~ 

= tan c/sin p (3)

Equation (3) determines nominal heading H
~ 

in terms of orbital parameters c , p .

As it turns out, the earth does rotate and so the sub-satellite point is

displaced an additional amount In the direction of the local geographical para-

llel , from point ~ to point S. The latitude •‘ remains unchanged , of course ,

while the longitude is increased by Xe and the sub-satellite track deviates

by an angle He from the nominal direction. In order to calculate these quantities ,

one must know the angular velocities of the earth and of the satellite in its

orbit. Let these quantities be We and w 5 , respectively .

Since the satellite retraces its path almost exactly every 18 days , after

completIng 251 orbits , we know the ratio of these two quantities ,

r 
~e~

Ws 
= d A e/dP = 18/251 (4)



• ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ • 
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

‘- --
~
--

~
- : ‘

~~~ 
•

-6-

Then,

Xe 
= (5)

Actua lly, 
~ 

is not constant, unless the satellite is in a circular orbit --
we w i l l  return to this point later.

• At latitude • ‘~ 
the earth surface is displaced a distance Rwe cos • ‘ dt

in a time interval dt , where R i s the distance of the surface from the

earth ’ s center.

The calculation of the change in heading is a little bit more complicated.

If we let the satellite heading H He + H
~. 

then one can see that (Figure 2)

tan H = (r cos • ‘ + s in H5)/cos H~ (6)

Next,

tanH e = tan ( H_ H
a) • (tanH- tan H5)/(l + tan H t a n H )

tan He = r cos •‘ cos H
~
/(l + r cos 4 ’ s i n H

~
) (7)

Now , from the right spherical triangle P V S5 (Figure 1), one obtains

sin (900 - •‘)/sfn (90°0) = sin p/Sin H
~

That is,

cos •‘ sin H
~ 

sin c (8)
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Sim ilarly, one finds ,

sin (90° — •‘)/sin (90°) = sin ~/sIn

That is,

cos • ‘ = sin p /sin (9)

In deriving (3’, we determined tha t cos H
~ 

= sin cos ~~~, so that

cos • ‘ cos H
~ 

= sin ~ cos (10)

Finally, we can use equations (8) and (10) to simplify the expression for

H (7),

tan H = r cos sin ~/(] + r sin c )  (11)e

Equation (11) determi nes He in terms of orbital parame ters ~
-
, ~‘ and the constant

Note that r sin ~ is quite small (.0112) and can be iqnored in approximate

calculations [1].

Also , now using (8) and (10), we can simplify the expression for tan H (6),

tan H (r cos 2 
• ‘ + sin ~- ) /(cos c s in ~

)

or,

tan H [r ( l  — cos 2 e cos 2 ~
.) + sin J/[cos t- sin ,‘) (L)



• - c—~ ---- ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ —-C— 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

—
~~~~~

--
~~

--- •- 
-

-8-
• :fr

To sum up, given c and 4’, we find the orbital travel distance p using

equation (1) , the longitude relative to the reference meridian A = A
~ 

+ Xe
usin g equations (2) and (5) and the heading H = H5 + He using equations (3)

and (11), or (12).

L ~~~~~~~~~~~~~~~ _  ,~~~~~~~~~~ ••~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r :  r- - •
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3. Local Solar Time at the Point of Observation.

An imediate appl ication of the results developed so far is the determina-

tion of the local solar time at the sub-satellite point. (This gives one some

idea of what the position of the sun is likely to be). Let the time of the

descending node be T0. That is , the satellite crosses the equator from North

to South when the local solar time is T0 (for LANDSAT this is nominall y 9:42 A.M. ,

but tends to vary as the orbit drifts and is readjusted).

If a point is observed when the satellite has progressed p in its orbit

from the vertex V . then it still has to travel through an angle (90° - p ) be-

fore reaching the equator . This will take an amount of time which can be ex-

pressed in hours as r (90° - p)/15.

Furthermore, the point of observation lies (90° - A 5) ahead of the point

of equator crossing in longitude. Thus the local solar time is later by a time

which , when expresse d i n hours , comes to (90° - x )/15. Finally, then , one

sees that the local solar time at the sub-satellite point is

T = T0 + (90° - x5)/15 
- r (900 — p)/l5 (13)

where tan A
5 

= tan p /slnc (2). Because r = 18/251 , one finds that the first

term predominates. As a result, points North of the equator , imaged earlier

in the orbit, are observed at local solar time after T~, while points South

of the equator, imaged later in the orbits , are observed at local solar time

before T0.

H. 
_ _ _ _ _ _
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V

4. The Scannin~ Platform .

The satellite uses an oscillating mi rror to produce the across-the-track

scan. Individua l line -, of the image are obtained by this means. The sate llite s

motion in orbit provides for the other scanning direction . Successive lines

are disp laced along the sub-satellite track. Nomina lly, the optical system

points straight down and the mirror scanning motion is perpend icular to the

veloc i ty vector of the vehicle. In practice , there are small but signif icant

departures from this i deal state (Figure 3).

Pitch and rol l are measured to an accuracy of .07° us ing horizon scanners

sensitive to the infrared radiation (around 14 un) emitted by the atmosphere .

Yaw is measured with similar accuracy using a gyro compass. Pitch and roll are

main ta ined within * .4’~ us ing the vehicle ’s att i tude contro l system , while

yaw i s ma i nta i ned within . .7°. A major component of the attitude control

system is a set of i nertia wheels which are used in order to keep down gas

expenditure .

An attempt is also made to minimi ze rates of change of attitude wh i ch re-

sult from adjustments. The maximum attitude rates are .015 degree/second .

Attitude rates are estimated from time-histories of measured attitudes. For

further information on the scanning platform and its motion , see references

[1 - 4].

Ground tracking information provides good ephemeris data . However , since

a picture cell in the image is only about 79 meters by 56 meters. one cannot

expec t the position of the satellite to be known accurately enough to predict

e~act1y which point of the earth is imaged . Similarly, on-board horizon

sensors permi t a good determination to be made of the attitude of the satellite
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platform . Nevertheless , these measurements are not accurate enough to permit

the direct calculation of the ground coordinates corresponding to a particular

picture cell. Errors of several kilometers may be encounte red when th i s  is

attempted [3).

“Prec i s ion process ing” of satellite image information entails the manual

i dentification of known ground control points on each image and the derivation

of a suitable transformation based on this information. So far, this has

prove d too ex pens ive and LANDSAT i mages are “bulk processed” , that is, treated

• as if the calculated position and atti tude of the satellite were exact. As

a resul t, the final photographic products may have errors in translation of

• several kilometers . Fortunately, non-linear effects introduced by this ap-

prox imation are sma l l .

One might envision systems which automatically register image information

with map or surface model information . In such a system, one has to model

the imaging operation so that the registration process can be used to deter-

mi ne the un known parame ters , suchas satellite position and attitude. A clear

understanding of the scanning process is required to accomplish this.
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5. Fineness of the Scanner Model.

A large variety of effects contribute to the imaging transformation .

Amongst these are large effects which must be considered , such as the motion

of the satellite in its orbit and the rotation of the earth beneath it. There

are also smaller effects which have to be j udged individually. Some of these

produce non-linear effects. Examples are panoramic scan distortion (the mirror

scans evenly in angle , not tangent of the angle), perspective projection (which

can be dealt with only if a surface model is available) and second-order effects

of errors in attitude of the spacecraft. The relative importance of these ef-

fects has already been discussed by others [1 - 4]. The most important criterion

for inc l uding an effect in our model was linearity .

Fortunately, all major components of the image transformation turned out

to produce linear transformation of Image coordinates. Second order , non-linear

effects were neglected , but turn out to contribute errors which are typically

smaller than a picture cel l in size . Compound ing these linear transformations

l eads to an overall affine transfo rmation which is easy with which to deal .

Such a transformation has six parameters, which may be found using the registra-

tion of the image wi th some surface information in the form of a map or a digital

terrain model.

The six parameters, as one might expect, depend rather directly on the

position of the satellite in its orbi t, the attitude of the scanning platform ,

the orbita l velocity , and the mirror-sweep velocity . It is conceivable that a

system which automatically determined the parameters of the affine transformation

using a matching process of real with synthetic images obtained form a terrain

model , could also then proceed to estimate the underlying orbita l data . A
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Isatellite equipped with such a system would be able to determine its position

or attitude more accurately than it might using predicted ephemeri s data ob-

tained from expensive ground tracking efforts.
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6. Nominal Parameters of LANDSAT imaging System (Orbita l Parameters Drift).

Orbit: Apogee 917 km Perigee : 898 km
Inclination 99.10 (Retrograde orbit)
Anomalistic period : 103.267 minutes
[That is , 251 orbits in 18 days]
Equatorial Earth radius 6378 km
Polar Earth radius 6357 km
Equatorial speed of rotation 463.8 rn/sec
Average ground track speed of satellite = 6457 rn/sec

Mirror-Scanner: Frequency = 13.260 Hertz
[That is , 6 lines are scanned every 73.42 msec]
One line every 12.237 msec
Lines spaced by 79.0 meters at nominal height
390 scans per image
Tha t is , 2340 scan-lines per image
[This takes 28.63 seconds and covers 185 km]

Pixel Information: Instantaneous field of view : 79 m x 79 m
Mirror amplitude ±2.8860
Total scan distance 11.545°
That Is 185 km at nominal altitude
Pixels per line (nominal) 3240
Sampling Interval = 9.958 ~sec
That is , about 55.8 - 56.5 m on the ground
Conseque ntly, W

m : 6.21 radians/second
Time to scan (six) lines (in parallel) 32.238 msec

Total Image Size: 2340 x 3240 7,581,600 pixels
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7. Image Coordinate Transformation.

Let the pixels be numbered sequentially wi thin each scan line and let the

scan lines be numbered sequentially. Then x5 will be the number of a pixel

counted from the beginning of a scan-l ine, while y5 will be the number of a line

counted from the beginning of a particular image. (Actually, this is arbitrary

since the scanner does not start or stop at image boundaries; the continuous

stream is segmented into images by ground processing). These will be called

satellite coordinates.

Now erect a coordinate system in the region of interest. First construct

a tangent plane and let the x-axis run in the west-to-east direction , and the

• y-axis in the south-to-north direction . Now add a z-axis going vertically up

(we ignore the non-spherical nature of the earth and other such minor effects ).

We will use the notation (x~~y~) for points on the surface. The satellite

can also be located in this earth coordinate system. At some reference time

it is at (x0,y01z0) and has attitude a (roll), ~(pitch), and y(yaw) (Figure

3). The three atti tude angles will be assumed to be small.

At time t0, the scanner will also be at a particular point in its scan

of the image . Let it be scanning the x50-th pixel in the y50
-th line of the

image . If the sensor were pointing straight down (tha t is , a = 0 and ~ = 0),

it would be imaging the sub-satellite point (x 0 ,y0 ) (Figure 4).

At this point we Introduce a convenient artifice , a spherical earth fixed

relative to the orbit of the satellite . That is , a spherica l surface which

is also sun-synchronous , rotating once a year. Later we will take into ac-

count the fact that the earth rotates underneath the satellite . We will first

develop the coordinate transformation for the case of a fixed surface because
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it is easier to understand this transformation .

Here it is convenient to refer pixel locations to the reference point

(x
50

1y
50

) (Figures 4 and 5).

x 1 = (x
~ 

— x
50

) and y1 = (y
50 

— y5 ) (14)

Let the angular scanning velocity produced by the mi rror during its linear

phase be Wm (about 6.21 rad/sec ) and let t5 (9.958 psec ) be the sampling in-

terva l during the scan , then, on a surface at a distance z0 from the satellite

and perpendicular to the extension of the optical axis of its scanning system,

we find a cross-track scanning amplitude x2 as fol lows ,

= 

~ m z0 t5) x 1 (15)

In the along-the-track direction , the motion of the satellite in its orbit

provides for the scanning and so ,

= ~~~ R t~) y1 (16)

where R is the distance of the surface from the center of the earth (about

• 6370 km), while is the angular velocity of the satellite in its orbit (about

l.Ol4milli-rad/sec) and t~ is the interval between successive scan-lines (12.237

milli.seconds). [Actually six lines are scanned simultaneously every 73.42

mu ll-seconds.]

At this point , we note that because of possibly non-zero yaw , the across-
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r
track scanning may not be perfectly perpendicular to the along-track scan.

This skewing effect can be taken care of as follows (Figure 6),

= x2 cos y and y3 = 
Y2 

- x2 s in  y (17)

We still have to deal wi th the effects of roll and pitch. For small angles ,

these will have the effect of shifting the imaged area by an amount proportional

to the product of the angles and the distance to the surface being imaged .

Secondary, non-linear effects (such as bending of the scanning line) will be

ignored, as will non-con~nutativity of rotations.

Thus the effects of non-zero roll and pitch can be Introduced ,

x~, = x 3 - a z 0 and y~~= y 3 _
~~~z0

where z0 is the height of the satellite above the surface as before. The co-

ordinate system above lies on the tangent place of the (fixed) sphere. One

coordinate axis (y) points backward along the sub-orbital track, while the

other (x) lies at right angles to it. We would prefer to work with a system

which is aligned wi th local north. The angle between the local meridian and

the sub-satellite track (on the fixed earth) is H
~
. We can rotate coordinates

into a new system as follows (Figure 7),

x 5 = x~ cos H s + y~ sin H
~ 

(19)

y~ = -X k sin H 5 + y~ cos H 5 (20 )
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In this new coordinate system, the y-axis points north and the x-axis

east. Finally, we are ready to introduce the rotation of the earth. It has

no effect on the va lue of y, of course , but does introduce a s h i f t  in x which

depends on the time when a particular pixel is imaged . For a particular line

of the image, this time can be calculated relative to the time t~ , when the

reference line was imaged. For line ntmiber y5, this time Interval equals

- y
50) 

= -t
~
y
~
. In this time interval, the earth has rotated in an

easterly direction by an amount which depends on the lati tude.

= + 
~ e R cos •‘ t

~
) Yi and Y6 = y5 (21 )

where 
~e is the angular rate of the earth (about 72.722 micro-radians /sec)

while p ’ as before is the (geocentric) latitude , and R the distance of the

surface from the center of the earth.

To obtain coordinates in the original system (x e ye )
~ 

we must add the

coordinates of the sub-satellite point (x0 ,y0),

X
e 

= x6 + x0 and ‘~e y6 + y0 (22 ) 

-~-• - - • - - •
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8. The Overall Transformation.

All the partial transformations can now be combined ,

Xe 
= xz, cos H

~ 
+ y4 sin H

~ 
+ (w e R t

~
) cos •‘ y1 + x

0

= -x~ sin H 5 + y~ cos H5 + y

Or,

X
e 

= X3 cos H
~ 

+ y~ sin H
~ 

+ (~ R t
~

) cos + ‘ Yi -

(ci cos H5 + ~~sin H~) z0 + x

= -x 3 s in  H
~ 

+ y
~ cos H 5 - (-a sin H 5 + B cos H5) z~ + y0

That is ,

Xe 
= cos (H

~ 
+ y )  x 2 + sin H

~ Y2 + (~ R t
~

) cos $ ‘ Yi + X
0 

-

(ci cos H 5 + B sin H
~

) z0

= -sin (H
~ 

+ y)  x2 + cos H
~ 

V 2 + y0 - (-a sin H
~ 

+ B COS H~
) Z0

Or ,

X
e 

= cos (H
~ 

+ y ) (~ z0 t5 )x 1 + [sin H
~ 

(
~~ R t

~
) + cos $ ‘~~eR tL)] y1 +

[x0 - (ci cos H
~ 

+ B sin H
~

) z0]
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. •

= -sin (H
~ 

+ Y ) ( w
m 

z
0 

t5) x 1 + cos H
~ 

(w
5 

R t
~

) Yi +

[y0 - (— a s in Hs + B cos H
~

) z0]

____________ A I J
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9. Form of the Transformation.

The transformation is of the form,

Xe = a x I + b y 1 + c  (23)

(24 )

This  is an affine transformation , where the six parameters are given by

= 

~ m z0 t~
) cos (H

~ 
+ y )  (25)

b = 

~~ R t~) sin H
~ 

+ 
~~e 

R t
~

) cos 
~ ‘ (26)

c = x0 
- (a cos H

~ 
+ B sin H

~
) z0 (27)

d = _ (w
m z0 t5 ) sin (H5 + y)  (28)

e = (w
~ 

R t
~

) cos H
~ 

(29 )

f y 0 -(-a sin H5 + B cos H 5 ) z 0 (30)

We can use these equations to predict approximate transformat ion parameters from

es timated values of satellite position , attitude and veloc ity in orbit. Con-

versely, if we can use ground control points or digital terrain models to

determine the coefficients of the transformation more precisely, we can try and

• improve the estimates we have of satellite position and attitude .

From the form of the equations for c and f it becomes imediately clear ,

however, that there are some limi ts to this process. That is , one cannot dis-
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tinguish in our model between displacements of the sa tellite across the track

and small rol l errors. Similarly, displacements along the track have the

same effects as small pitch errors. Thus two of the six components of position

and attitude cannot be found this way.

H
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• 4 .

4,
10. Attitude Rates.

Pitch , roll and yaw drift during the scanning of a single image. The

rates are less than .015 degrees/second. A constant rate of change , ~ of pitch

has the same effect as a change in along-track ground veloc i ty of ~ z0
. That

is , equation (16) becomes ,

(w R + ~ z~~) t~ Yi (31)

The transformation is altered only in the appearance of (w
~ 

R + ~ z~~) t~ in

place of (w ~ R ti). Typica l values for ~5R and ~~ are 6458 and 32 meters!

second respectively (when ~ = .002 degrees/second). This , then , is a small

but noticeable change (: .5%).

A constant rate of change , &, of roll has little effect on the scanning

of a single line since W
m 

>> & z~. Successive lines , however , are shifted

laterally by & z0 t~. That is , equation (17) becomes,

x 3 = x2 cos y + (a z0 t 2 )y1 and y3 = y2 - x 2 s in  y (32)

This causes additional skewing of the image .

Here , typical values are W
m 

z0 t5 56.5 meters and & t o ~~ = .4 meter

(for & = .002 degree /second ). Aga in we see a smal l , but noticeable change

(: .7%), resulting in additional skewing ( .4%).

Li •~~~~ • _ _ _
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Finally, the transform parameters are now :

a = 

~ m z0 t5) cos (H~ 
+ -y) (33)

b = ~ R + ~ z~ ) t~ sin H~ 
+ (& z0 t2,) cos Il

~ 
+ (~ R t~ ) cos ~~~

‘ (34 )

• c = x 
~ 

-(ci cos H
~ 

+ B sin H
~

) z0 (35)

d = 

~~~ 
z0 t5) sin (H~ 

+ y) (36)

e = (w
5 

R + ~ z~ ) t~ cos H
~ 

- (& z0 t~
) sin H5 (37)

f = y 0~~(~a sin H~~+ 8 cos H5)z0 (38)

We see here that the transformation parameters depend on the timi ng (t
~
,t
~
)

of the scanning system , the mirror scan velocity 
~ m~’ the position of the

satellite relative to the tangent plane coordinate system (x0,y0,z0), the

• orbital velocity vector (as it affects and Ha), the attitude of the scanner

(~ , ~, ~), the attitude rates (&, ~
, 

~
), and the latitude , ~~~

‘ .

The vertical component of the velocity vector (altitude rate) and also

the yaw rate do not contribute to linear changes in the imaging transformation .

The first produces a change of lateral scale from one end of the image to the

other , the second a tilt of image lines at one end of the image relative to

those at the other end. Such small , non-linear effects are ignored . Except

for these two , however , all twelve components of the state of the scanner

platform infl uence the transformation parameters .
p . If yaw rate and altitude rate ~~~ included , one finds small terms in x 1y 1

(and y~ ). The transformation is then no longer an affine transformation .
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For small regions, the effects of these terms can be Ignored -- for images

which are large fractions of a standard LANDSAT image , they can not. In the

latter case, one has to include other non-linear terms we have ignored in any

case and then the transformation can be expressed wi th sufficient accuracy by

two second-order polynomials.

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

j
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11. Figure of the Earth.

To calcula te the displacement of points due to the rotation of the earth ,

and to relate the geocentri c distance of the satellite to its altitude above

the surface , one needs to be able to calcu late the distance of a point on the

earth’ s surface from the earth ’ s center. To a first approximation , a meridonal

cross-section through the earth is an ellipse (Figure 8) wIth semi-major axis ,

a = 6,378,165 meters at the equator; and semi-minor axis , b = 6,356,783 meters

at the poles .

If we introduce a coordinate system with the x-axis along the semi-major

axis and the y-axis along the semi-minor axis , then the geocentric latitude ,

•‘ is defined by,

tan • ‘ = y/x (39)

• The more comonly used geographic latitude , $, is  the angle between a local

normal to the surface and the equatorial p lane . Thus ,

-1/tan • = (40)

Using the equation for the ellipse ,

(x /a)2 + (y/ b)2 = 1

one flnds that,
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~ f (b)
2 X

so that

tan • ‘ = (b/a )2 tan • (41 )

Further ,

x = (  ab
,4~2 + a2 tan2 

• ‘

= ab 
) tan • ‘

~‘b2 + a 2 tan2 q~

The distance of a point  from the center , then , is ,

_______ ab
R = /~ ~~~~ = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _X /a2 sin 2 

~
p ’ + b2 cos 2 

• ‘ (42)

The height of a surface feature above mean sea-level must be added to this.



• •-. 
- ‘ . r . . .~~~ - — ‘ - - I . -— -- ~~~~~-~ -~~~r -  •__ . -~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•

-29-

12. Orbi tal Velocity .

Since one scanning motion depends on the sate l l i te ’s angular veloc ity i n
I ts  orbi t , it is useful to relate this to other quantities . Using Kepler ’ s
second law , one immediately sees that

2 d6 hr 
~~~~~~~~~~ (4 3)

where r is the radius vector (geocentri c altitude of the satellite), while h
is a constant. Now the area of an ellipse with semi -major axis , a , and semi -
minor axis , b, is itab , so that

h 2,r
= -

~~

- ab

where T is the complete period of the satellite. Using w
5 

for the angular
velocity of the satellite , one f inds ,

2ir ab . ab
w~ 

-
~~
-

~~~~~~ - -  h —2- (44 )

where the average angular rate h = 2it/T. Further,

h2a 3 = = GM (45)

by Kepler ’s third law , where G is the gravitationa l constant and M is the mass
of the earth , ~ 396.08 x 1012 radian 2 meter 3/second2 .
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For orbits wi th small eccentricity , there is very little difference be-

tween a and b, so perigee, ~~ and apogee , ra~ 
are given instead , where

r~~= a  (1 - e )
(46)

ra a ( l + e)

and

a2 (1 — e2) = b2

F ~
- Thus ,

a = ( r a + r p)/2
(47)

b = /ra r~

e = ~~~ ÷ ? (48)

Note that perigee and apogee are frequently given as distances from the surface

of the earth and the equatorial radius of the earth (6,378 ,165 m) has to be

added to this In order to find r~ and ra . For a more detailed analysis, see

Lyndanne’s modification of Brouwer ’s analysis of satellite orbits .

C
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l3.~~~~p Distortion~.

So far we have ignored the fact that the spherical surface of the earth

cannot be represented on a planar map without distortion . Up to this point,

coordinates have been referred to a hypothetica l plane tangent to the earth ’ s
• surface at a point  in the region of interest. Typically, a digital terrain

model will be derived from a map wi th a different projection and a transformation

must be established between the two coordinate systems.

• It can be shown that for typical map projections such as transverse

Mercator and conformal oblique axis cylindrical there exists a small rotation

Hm of map coordinates , where

s i n Hm sin sin (e - e~ ) (49)

• Here the projection is centered on a point at longitude e
~ 

and latitude

and the point of interest is at longitude 8 and latitude •. Consequently,

the map coordinates , (km~
ym)

~ 
are related to the geographical coordinates on

the tangent plane (x 9
,y

9
) by

cos Hm -sin Hm X g
(50)

s in  Hm cos Hm Y9

where s ic the scale of the given map. There w ill also be a small scale change

which varies with 1/cos (~ 
- e

~
) for transverse Mercator and with 1/cos (~ 

-

for conformal oblique axis cylindrical projection. Typically, this effect is
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so small that it may be ignored.

The affine transformatIon, (23) and (24) must be pre-multiplied by an

augmented rotation matrix M to correctly relate satellite image coordinates

to map coordinates.

cos H -sin H 0

sin Hm cos Hm 0 (51 )

0 0 1

I
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14. Exaitip3 e of Map Rotation.

The national map of Swi tzerland is based on a conformal oblique ax i s
cylindrical projection with center at the city of Bern.

= 7O~~~~~~ S~~~~~~ II 46°57’lO”

The region of interest covered by an available terrain model lies at

: 7°8’ 46°l5’

F

The map rotation then is - .225° (- .00393 radians). The transformation matrix

becomes

1.0 +.00393

-.00393 1.0

(The scale error is less than one part in 10,000 and can be ignored). For more

deta il s regardi ng suitable map transformati ons see Colvocoresses paper on the
“Space Obliq ue Mercator ” projection.
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15. Numerical Example -- Estiirating Transform Parameters.

LANDSAT image number 1078-09555 , produced l972/October/9 show s a region

of Switzerl and including a mountain range called “Dent de Hord es ” . The image

annotation data suggest that at the nadi r  the geographic latitude was 45.9197°

and the heading 193.11324°. Using equation (41), we see that the geocentric

latitude of the nadir point is 45.7274° and so, using equation (8), it appears

that the orbital inclination must have been c : 9 11°

The altitude is given as 915,724 meters near the region of Interest, which

lies at an average of 1700 meters above average sea l evel . So z
~ 

914 km. The

angular velocity of the satellite is slightly above its average rate,

= 24 x x 60 x 251 x 1.00967 radians/second

The region of interest lies at geographic latitude • = 46.25° (and thus at

geocentric latitude • ‘ = 46 .06°), while the scanner at that time is above

geographic latitude • = 46.40° (that is , geocentric latitude • ‘ = 46.21°).

Further ,

We = 
24 ~ 60 ~ 60 radians / second

Wm 
= 6.21 radians/second

= 91958 psecond

13.62 x 6 seconds
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The image annotation also gives ,

a ( r o l l )  = - .20370° 8 (pitch) = .06688° y (yaw) = .23387°

& = - .00160° /second = -.00109°/second ~ = .00189°/second

The earth radius (equation 42) near the region of interest is 6 ,367 ,081 meters .

Adding the average elevation above sea level , we get

R 6,368,800 meters

Using equation (1), one finds that p = 43.021° and by equation (8), that H
~ 

=

13.226° . Further , (H
~ 

+ y) = 13.460° . Then also , W
m 

20 t5 = 56.521 meters ,

R + 
~ 

z0)t
~ 

= 79.582 meters , & z0 t~ = - .312 meter , and W e R t~ = 5.667

meters.

So, finally,

a =  54 .969 b = 2 1 . 8 3 7  c = x 0 + 2919

d = - l 3 . l 5 6  e = 7 7 . 5 4 3  f = y 0 - l782

See Figure 9 for a graphical illustration of this transformation . It shows as

a parallelogram the region of the surface scanned when an image wi th a number

of lines equal to the number of pixels per line is gathered.

We can take the Inverse of the 2 x 2 sub-matrix and obtain,
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x 1 = .01704 Xe 
- .00480 + x~

Yi = .00289 Xe + .01208 
~‘e +

where ,

- 

a b 1 c

y~ d e f

See Figure 10 for a graphical illustration of this transformation . It

shows as a parallelogram the appearance in the image of a square region on the

ground a l igned ~4+h the north-south and east-west axes. Finally, i f  we have

a terrain model on a 100 x 100 meter grid , such that Xe 
= 100 * i and =

100 * j, then ,

= 1.704 i - .480 j +

= .289 1 - 1.208 j + y~

Finally, we have to introduce the map distortion by post-mul tiplyi~~ by the

Inverse of the map transformation matrix introduced earl ier (the inverse of a

rotation matri x equals its transpose). The matrix then becomes

1.702 - .487

.294 1.207

_ _  ~~~~~~~~~~~~~~~ -~~~~- - - •~~~~~~~•~~~~~~ - - - -- - --• -
~~~~ 

- -••~~~
_ _ _
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16. Determining Orbit Parameters from Transformation.

Many parameters appear in the equations for the six coefficients of the

affine transformation. Some are known accurately, others only approximately.

For example , t~ and t~ are fixed fairly accurately by electronic oscillations

on board the satellite . The angular rate of the earth W
e 

is constant and ac-

curately known , w h i l e  w~~, the angular rate of the satellite , depends on i t s

altitude , semi-major axis , orbit eccentricity , and orbital period . The angular

rate of the scanning mirror , varies somewhat dur ing  each scan , though in

a fairly repeatable fashion . The earth radius , R , can be calculated with

sufficient accuracy i f  the lat i tude , • ‘ , is known approximately.

It is reasonable , then , to assume that one can accurately predict a value

for (A) R t~ cos • ‘ . Then let

b’ = b - (13 R t~ cos ~~~
‘

The following equations permit the determination of useful satellite parameters

from transformation parameters :

+ y = tan ’(-d/a) (52)

(wm z0 t5) 
= ,/á2~~

. d2 (53)

(54)

If the heading H
~ 

can be estimated , one f inds
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i.
(~5 R + ~ z~ ) t~ = b’ s in  lI~ + e cos (55)

(& z0 ) t~ = b’ cos H
~ 

s in  H 5 (56 )

Alternatively , the heading can be calculated if the attitude rates are known ,

b’ (w R + ~~ z) - e (& Z )
- -1 5 0 0- an 

b’ (& z0) + e(w 5 R + 
~ 

z
~J

Clearly there are limi tations to this, since the full state of the scanning

platform cannot be ascerta ined from six parameters alone . A series of such
measurements is needed to determine all twelve components of state .

L - • • ••_
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17. Numerical Example.

Suppose the transformation matrix app licable to a 100 x 100 meter grid

was found by image registration techniques using synthetic images ,

1.694 -.512

.300 1.216

for any area wi th a map distortion as defined previously. Post-multiplying

by the map transformation matrix gives

1.693 -.505

.295 1.217

The area is at geographical latitude ~ = 46.25° . The geocentric latitude is

then • ‘ = 46.06° and so R = 6,367,081 meters. If the region of interest lies

at an average altitude of 1700 meters , and t~ = 11(6 x 13.62) seconds , then

We R t~ cos ~~
‘ = 3.932 meters/scan-line

The inverse transformation matrix then is

55.08 22.86

-13.35 76.63

_ _  ~~~~~~~~~~~~~~~ =~~=~~~
- --- -~~---
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• From this one finds ,

• H
~ 

+ ‘r 13.624°

- Wm Z0 t 5 56.67 meters /pIxe l

And , If the attitude rates are assumed to be very small ,

-~ H
~ 

• 13.874°

and so,

.‘J ,

and

~~ 
Rt~) m 78.93 meters/scan-lIne .
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~8. Using Ground Control Points.

An alternate method of estimating transformation parameters is based on

the identification of points of known ground position in the image . Since

the affine transformation has six parameters , one needs to locate three such

points. Let the coordinates of the points be (x 1, y~), (x 2, Y2 ) and (x 3, y
~

)

in the image and (X j ,  y j ) ,  (xi , yfl and (xi, y~) on the map , then

x = a x ~~+ b y 1 + c

y~~~ d x 1 + e y 1 + f

and so on. Thus ,

x 1 y1 1 a Xj

y2 1 b = x~
x 3 y3 1 c x~

So

a x 1 y1 1 x~
• b = x2 y2 1 x~

C X 3 y
~ 1

Similarly ,
—l

f x 1 y1 1

e x 2 Y2 1 Y~
f x2 y3 1 y~ 

--- •~~
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If more than three points can be identified, better accuracy is available

using a least—squares procedure . That is, if

x 1 y1 1

Y2 1

x~ ~‘n 1

Then a good set of va lues for the parameters is

a xl

b = (MT~l)
_1
MT

C -
IXn

d y j

e = (M TMY’ MT

f : ,• y
~

Typically, the accuracy obtained by fi tting a discrete set of ground control

points has been found to be inferior to the area-based matching of real and

synthetic Images .
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