V" AD-A055 097 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 9/2

FEASIBILITY STUDY FOR INCORPORATING A DATA STRUCTURE DEFINITION==ETC(U) .
MAY 78 I S ZARITSKY
DTNSRDC=78/045

UNCLASSIFIED

260SS0 VY

B

o

UNCLASSIFIED

ECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

REPORT DOCUMENTATION PAGE

REPORT NUMBER

DTNSRDC-78/045 [~)\

4._TITLE (and Subtitle) ~J 5. IYPE OF REPORT & PERIOD COVERED

FEASIBILITY STUDY FOR INCORPORATING A :
“ STRUCTURE DEFINITION AND MANIPULATION— Final \ JE = p))

" FACILITY WITHIN THE COT{RADE 6. PERFORMING ORG. REPORT NUMBER

“ DATA MANAGEMENT SYSTEM e
GRANT NUMBER(s)

: (8_CONTRACT OR GR|
- V08 | Iy == e "?'//
Irving SV/Zaritsk;il {/?z% —-—IZ;::;;;;Z—E;;Z,H_"Q.«--mm..

: L[19
9. PERFORMING ORGANIZATION NAME AND ADDRESS S W T R UMBE RS

David W. Taylor Naval Ship Research
and Development Center

Bethesda, Maryland 20084 — (See reverse side)

11. CONTROLLING OFFICE NAME AND ADDRESS ;’ J.JLM*DATE
{ 4;} !May W78

13. N F PAGES
-) r/'

-

T4a. MONITORING AGENCY NAME & ADDRESS(!! ditferent from Controlling Office) 18. § . (O 8 repo

UNCLASSIFIED
T5a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
COMRADE Graph - A.
Computer-Aided Design Data Base

Data Management Associative Memory

Data Base Management System Data Definition Language

Information Retrieval Sys
20. ABSTRACT (Continue on reverae aside If 'y and id fy by block ber)

> A scheme is described for enhancing the COMRADE (Computer-Aided Design
Environment) Data Management System. This scheme would produce benefits in
data management efficiency, user convenience, power, and cost effectiveness
by representing the data structure of a COMRADE data base apart from the
data records and by adding a system specifically designed to handle pointer
information. In particular, such techniques would:>

___-» (Continued on reverse side)

DD o' 1473 4 Eoimion oF 1 noOV 68 1s OBsOLETE
S/N 0102-LF-014-6601

28 Te5 2

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data h0n7 X /)

\}

ey 70y

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

T s L

(Block 10)

Program Element 6276N
Project F53532

Task Area ZF53532001
Work Unit 1-1808-009 .

o i

R

(Block 20 continued)

{

P y ‘j) reduce COMRADE use of disk I/0 for data block relationships,

. * simplify the organization and administration of the data base;

* enable the use of a powerful data-definition/data manipulation

, language;

¢ enable the use of an inferential search mechanism; and

¢ permit existing programs involving pointer relationships to
remain essentially unchanged.

The degree of effectiveness achieved under this scheme can be further
enhanced by giving the data base administrator a greater role in
developing and maintaining the data base in a way to capitalize on the
greater flexibility provided.

The procedures involved in implementing the proposed scheme and the
benefits to be realized from such a scheme are illustrated by describing
a hypothetical COMRADE/GIRS system. GIRS (Graph Information Retrieval
System) is an in-house developed system written in FORTRAN that is
particularly efficient at manipulating pointers. t ds. already operable
on the CDC 6700, the PDP-11/45, and the UNIVAC 1108 and>is’ easily
portable to other machines.

,4’

.-__‘,‘_.__—-"-‘y
lwissm M i ®
s White Soctied {
(14 ot Sactioa / O l
ENANKOUNCED 0
4 R I |

»w =
ummunnn “llLAElLlﬂ WB]

E st A fiA mu ang/or SPECIAL v SPECIAL |

FEL]

g UNCLASSIFIED
SECURITY CLASSIFICATION OF“THIS PAGE(When Date Entered)

T

e ————

L A i 5 ot - K s IR

TABLE OF CONTENTS

L k"}',ﬁ,;l" iy

Page

LIST OF FIGURES..Q.QQ.....C.no.o..o-.oo..noo.o.o-o-o.c..o v

R =

LIST OF TABLES............-..o-o-...oo..oo.olooo.o....oo- Vi

ABSTRACT.-0..nto-.-o.c..o0........0..-.-00.-'.o.o.o.loo.a 1

v‘:" INTRODU‘CTION...‘..........l.n..o.l.o.'0.0..-..-..0.0..-... 2

OVERVIEW OF GIRS (GRAPH INFORMATION
RETRIEVAL SYSTBM).'.......l.............................. 9

ELEMENTS OF THE GRAPH STRUCTURE..¢ccccceeccccscccscccss 9
PAGED (OUT-CORE) VERSION OF GIRS:..ccecccoccsccccscscsses 1l

RELATIONSHIP OF DATA STRUCTURE
To GRAPH STRUCTURE.......'.............I...l.....l.... 14

TIME/SPACE/FLEXIBILITY TRADE-OFFS,
COMRADE/GIRS VERSUS COMRADE...ccccceccccccoscscscsscsccssecs 15

DISK USE....................I.I..........l..'...'..... 15
Pointer Traversal under COMRADE..ccecececccccccssosss 15
Pointer Traversal under GIRS...ccccccecceccccscsees 17

RESPONSE TTME . ¢« s ac o 6 slsis oisolsiaie sis aisic als e sieaissnieisiosisonoe 21
Response Time of a COMRADE
REEE1eValieie . el dels) s slatatelisiste sioislsls e o slsterstsrelle shstetoreslatotoroti V2L
Response Time of a GIRS
Retrieval.cccececcccccccccccsccscsocossocccsscsscsscscas 25

UTILIZATION OF DISK SPACE:csscscsssssocsosnscsssonsese &
Data Block Size, Percentage of :
Pointers per Data Block, and
Eragmentat ion oo s «iie sisla s sie o alsis os s visisioie s sie s Slaiseleiwints ave s BT
GIRS Continuant Size and Unused
; ERELY SPaCE@iiccsisseeiveseasscsiosseessnssssoesssssesse 32
‘ Example of Disk Use under COMRADE
- and under COMRADE/GIRS:s cscssossessvsncssesosssnsssss 32

CORE REQUIREMENTS FOR COMRADE/GIRS.ccccccecccccccscssss 37

FLEXIBILITY i s s06 505 sneivie vssleicis ¢ 6isiore aie ol s steibibbinieveonssse 39
Modifying Data Block RelationshipS..ccececececcceses 39
Pointer Traversal Executive
ROGCING v v sa s v0 0050 000006000060 0508005006 565 w0 A eeeee 99
Adding a Data Definition/Data-
| : : Manipulation Language tO COMRADE...:ecsesccccsccsces 42

iii

BEECE POINEOTE . o onisibeidseithaliasecnnsanissassanne &3 -
Pointer Inversion and Query Type

SR C I A QN s tels s s eiate aialoie ok 'shois aiaiaalslnisieiin s lere s ale slsial "N D

Storage of Nonpointer Dat@....ceeceeecccsscccscseecs 46

Satisfying an Imprecise QUerY...cccecececsscsccscsscs 46

THE ROLE OF THE DATA BASE ADMINISTRATOR.:.eeecececssccces 52

POINTER OPERATIONS UNDER COMRADE AND
UNDERCOMRADE/GIRS'...‘....‘.......‘.............'.I.'... 54

DEFINING DATA STRUCTURES......‘.........'f...........' 54 !
LOADING POINTERS INTO THE DATA BASE..c..ececscsccsscsss 55

UPDATING AND DELETING DATA STRUCTURE
COMPONENTS'....-...‘..'.....l.....-........’.......'.. 58

RETRIEVING DATA FROM THE DATA BASE:.:cccceccccccsccsssss 60
Retrieval at a Higher Level....ccceceeeeecessccssces 60
Retrieval at a Lower LevVel..ccceccecocccccccccsccacses 62

COPYING/SEARCHING ALL OR A PART OF
ASUBSTRUCTURE..0.0...'...'.....l...l..'.......'l‘.'.’ 64

CONVERSION OF A COMRADE DATA BASE FOR
THE COMRADE/GIRS SYSTEMQ.......‘......................... 68

REMOVAL OF POINTERS.:.cssscisassscnsssossscsosncnssons 08

DEVELOPMENT OF NEW PROGRAMS
INVOLVING POINTERS........‘.-............'...I...‘.... 69

IMPLEMENTATION...'........'...l'l-ll'.....‘l.l...n..‘l 72
SUMMARY..Q.........o-oo.-ooo..ooo..-o'ottl-..-o.n.-onoooo 76

ACKNOWLEDGMENTS.l...........-...-........l.l...'......... 79

T

APPENDIX A - THE "PRESIDENTS" DATA BASE...cccoceescsssess 8l

APPENDIX B - SEARCH PROCEDURE WRITTEN IN
GIRL/FORTRAN FOR INDIRECT,
MEMORY-RELATED QUERIES...0.~100.-t.o-o.ono'- 87

FORTRAN FOR CDMS AND GIRS,

A

E APPENDIX C - TWO SUBROUTINES, AS CODED IN

4

l AND AS CODED IN GIRL....IOI..........'...... 89

REFERENCESI............’.Q.l.....l...l..".....l.l......I lll

W W —

Gl o

>

S U e W

~

10
11
12

13

14
15
16
17

18
19
20
21

LIST OF FIGURES

Current Structure of a COMRADE

Data Baseolotocnono.l-oo.-o.o..n.o...coo.'ooooacocoao

Proposed Structure of a COMRADE

Data BaS€.cccececssscesscccccsoscecosssosssssoccocossscas
Node-Link-Node Triple...cccccceeccccoccccccsssscsonns
Multivalued List..ecceeccececcccceccsccoccccscoccnccns
Concatenated Value String...ccececcececcccccscscccsscnse

GIRS Representation of a Data
Block Relationship.....l.......l.l......l......l-..'.

A Typical Multivalued LiSt..cccccecececccsacccccccens
ATypiCal String...l.'......I.................'...'..

A Collection of Length-One Strings
Having a Common Source NOd€...eeececcceccsvsoosonnncs

GIRS Structure for Example..ccccccccccceccsccscsscnsss
Ship—DeSign Data Stfucture..-....-...-...-....-..-...

Generic Description of Ship Design
Data StruCtUre..ccceceecscsccccsccscscscescscaccscsnsssncssse

Search Procedure for an Indirect,
Memory-Related Query-ooooo--o-ooo-oo.o-oo-..-oo.oooo.

BLOKl o PTR Relationships...-....................--..
Format of Input to Bulk Data Loade€r....cccececccccses
EQUIP-WEIGHT Relationship.......-.............-......

Algorithm for Copying/Searching Tree-
Structured Data.'......'..l...l.l'..".........'....Q

Graph Modification for Copy/Search...cceccececccnccns
Structure of "Presidents" Data BaS€...ecscceccccccncn
Block Type PRES.l..l!...........l....l.....'.’l.l....

BlOCk Type ELECTION.-....-nol...loo.o......o.l'o...'o

v

Page

10
10

14
19
20

20
35
47

48

49
55
56
63

65
66
81
83
84

P —

22
23
24

BlOCk Type STATES...II..C.....l...l....lll‘ll........
BlOCk Type ADMINII........‘.....Oll.‘.l.'.....l...l..

BlOCk Type CONGRESS..........'.......Cll.........."..

LIST OF TABLES

CDC Disk Drive Service Time
Requirementsl.......l.l.I..00...C..l...............'.

Probability of a Data Block of the
"PRESIDENTS" Data Base Residing
in Main MemOLY.ccccececcecscccccscccoscccsssosscsssaccne

Disk Space Ratio (DSR), COMRADE/
GIRS to CoMRADE......I.....‘..'..I......l.‘.l........

Probability of a Data Block of the

Time/Space Example Residing in

Main Memory‘......l.......'.l.............I'I.I..l...
PTREXEC Operation Codes...........ll..l...ll.l..l....

Ratio of GIRL Statements to COMRADE
Statements.....l....ll‘-........l.".’.l...........l.

84
85
85

22

24

31

33
71

89

e

ABSTRACT

A scheme is described for enhancing the COMRADE
(Computer-Aided Design Environment) Data Management
System. This scheme would produce benefits in data
management efficiency, user convenience, power, and
cost effectiveness by representing the data structure
of a COMRADE data base apart from the data records
and by adding a system specifically designed to handle
pointer information. 1In particular, such techniques
would

. reduce COMRADE use of disk I/0 for data block
relationships,

. simplify the organization and administration
of the data base,

. enable the use of a powerful data-definition/
data manipulation language,

. enable the use of an inferential search
mechanism, and

. permit existing programs involving pointer
relationships to remain essentially unchanged.

The degree of effectiveness achieved under this

scheme can be further enhanced by giving the data base
administrator a greater role in developing and main-
taining the data base in a way to capitalize on the
greater flexibility provided.

The procedures involved in implementing the
proposed scheme and the benefits to be realized from
such a scheme are illustrated by describing a hypo-
thetical COMRADE/GIRS system. GIRS (Graph Information
Retrieval System) is an in-house developed system
written in FORTRAN that is particularly efficient at
manipulating pointers. It is already operable on the
CDC 6700, the PDP-11/45, and the UNIVAC 1108, and is
easily portable to other machines.

T T T VT

= TEETR———

—

=

INTRODUCTION

The COMRADE (Computer-Aided Design Environment) software
developed at the David W. Taylor Naval Ship Research and
Development Center in support of the CASDAC (Computer-Aided
Ship Design and Construction) effort being conducted by NAVSEA
(Naval Sea Systems Command) consists of three major compo-
nents--the COMRADE Executive, the COMRADE Data Management
System, and the COMRADE Design Administration System.l This
report Gescribes a method for enhancing data managment
efficiency, user convenience, power, and cost effectiveness
of the data management component.

The concept is simple. Under the present COMRADE arrange-
ment, much of the information contained in a particular data
block of a common data base is irrelevant for a specific task,
since a data base must serve different users having different

2

requirements. B. Thomson“® speaks of the common data base

used for ship design in the following way:

: Gorham, W. and T. Rhodes, "COMRADE, Computer Aided Design
Environment Project, An Introduction, DTNSRDC Report 76-0001
(Nov 1976). A complete listing of references is given on page
111.

: Thomson, B., "Plex Data Structure for Integrated Ship

Design," Presented at the 1973 National Computer Conference,
American Federation of Information Processing Societies,
New York, pp. 347-352 of the Proceedings (Jun 1973).

T B T T T Vg y =

"The SDF (Ship Design File) solves the data
communications problem by providing a single common,
current compendium of design information... The
various design disciplines view the ship from
different perspectives and require common data to
be organized in a variety of different ways. The
SDF employs a plex structure* which relies upon
sundry types of pointers to connect data blocks
in the various relationships required by the user
engineers and the applications programs.”

The necessity for providing different pointer information
for each user results in the data base becoming large and
cumbersome to search. Moreover, once the structures (Block
Type Definitions) which define the contents of the data blocks
have been determined and used, they are extremely difficult to
modify. Under the current COMRADE scheme, pointer searches
and updates involving pointer searches consume a large amount
of disk I/O in traversing non-hit pointers, since each of the
data blocks containing relevant pointers must be brought into
main memory even though most of the contents are unrelated to
that search. Such a necessity makes it impractical for the
user to either recognize or report on a large file structure.
Moreover, pointer information takes up space better reserved
for data.

A scheme is available which can nullify these problems.
Under this scheme, all pointer information is extracted from

the data blocks and collected into a common area which can

exist either as part of the data file or as a separate file

* A plex structure is the most general form of data structure
in which any given node may be related to any other.

established exclusively for pointers. This collection of
pointers can be easily traversed or manipulated by a system
especially designed for that purpose.

A data file could hold several different descriptions
of the data structure (several different pointer collections),
including, if desired, a complete description of the data

base. This requirement of multiple views of the data base

is discussed in Jefferson and Bandurskiﬁ

"pDifferent users desire different information
from the database, are familiar with different
naming conventions and levels of detail, are
permitted to read and alter different parts of
the database, and impose different types of
consistency constraints upon the database.

It is convenient, then, to have different

views, or descriptions, of the same database

for different users. Further, a program may
remain stable as the database structure changes,
if the program is provided with an unchanging
view of the database.

The user's view of the database may be
simplified by eliminating unnecessary re-
lations, records, and fields--essentially,
by providing him with a subset of the data-
base--and possibly by renaming the remaining
relations and fields."

Under the approach proposed within this report*, the data
records would be maintained separately from the pointer-

information relating to the data records. The data records

* A network mcdel, not the ,relational model of Bandurski and

Jefferson. See their paper4 for the advantages and dis-
advantages of the relational model.

3Bandurski, A. and D. Jefferson, "Enhancements to the Re-

lational Model for Computer Aided Ship Design," DTNSRDC Report
4759 (Oct 1975).

4 Bandursk@, A. and D. Jefferson, "Data Description for
Computer-Aided Ship Design," DTNSRDC Report 4759 (Sept 1975).

4

aill

would be compressed and the excluded pointer data collected
into a concise representation of the file structure so that

a system designed for graph processing could operate on several
pointer relationships without accessing the data blocks.

Thomson cites the need for a system which will allow
flexibility in referencing. In his description of the SDF
he has this to say:

"The most significant characteristic of the SDF

is that most data elements have several distinct

relationships to other data elements. For instance,

a piece of electronic equipment may belong to a

sonar system, may be located in the Sonar Control

Room, may be classified in weight group 412, and

may be physically connected to various other com-

ponents in the sonar system and in the electrical

distribution system, the water cooling system,

and the fire control system. The data structure

must allow the electronic component to be referenced

via any of the above relationships. This require-

ment reflects the inclination of various disciplines

to view the ship from different perspectives, and

it dictates a high degree of interconnectivity and

flexibility within the SDF."

Under the proposed system, the cost of maintaining the data
records would continue to be shared by all users, but the cost
of maintaining a particular Data Definition Dictionary (DDD)
defined by the Data Base Administrator (DBA) would be borne by
the particular individual for whom it was developed, thus re-
sulting in a more equitable distribution of the cost.

A COMRADE data base as presently structured is shown in

Figure 1.

DATA BLOCKS CONTAINING
POINTER INFORMATION

BLOCK TYPE
DIRECTORY DEFINITION DT
TABLE

Figure 1 - Current Structure of a COMRADE Data Base

Under the proposed system, the structure of this same data

base would be changed as shown in Figure 2.

DATA DEFINITION DICTIONARY
AS MANAGED BY A POINTER
O O O RETRIEVAL AND MANIPULATION
SYSTEM
s v o L
BLOCKS
|) S “
BLOCK TYPE INVERTED
DIRECTORY DEFINITION LiETs
TABLE

Figure 2 - Proposed Structure of a COMRADE Data Base

Note that the only component affected by this restructuring

would be pointer structure and its attendant subroutines.

ST N W AN

0 T e

S A i

3
3
E
£
L

4

———

To provide maximum flexibility for the manipulation of
pointers in an arbitrarily directed (plex) graph, an efficient
system for storing, retrieving, and manipulating information

in main memory is needed. Thomson has this to say about the

data structure design needs of ISDS (Integrated Ship Design
System), a prime user of COMRADE:
"Early experience with a list structured
Ship Design File revealed that such a structure
was too restrictive for the requirements of
ISDS...It was accepted that a very general plex
structure was required."

Several systems exist which might be applicable for use
within COMRADE for pointer manipulation (see later section en-
titled "satisfying an Imprecise Query"); however, the paged
version of the in-house developed system known as GIRS (Graph
Information Retrieval System5 6 is ideal for representing and
processing "plex", or arbitrary, graph structures. Moreover,
GIRS can be adapted to different computing systems quite
easily, and is currently available on the CDC 6700, the PDP-
11/45, and the Univac 1108. For these reasons, the proposed
scheme is described in terms of a hypothetical COMRADE/GIRS
configuration.

GIRS used in conjunction with COMRADE offers a number of

advantages:

5 Berkowitz, S., "Design Trade-Offs for a Software Associative
Memory," DTNSRDC Report 3531 (May 1973).

6 Zaritsky, I., "GIRS (Graph Information Retrieval System)

Users Manual" (to be published).

R

T e e v o R

R R R s S S S

(1) Dependence on disk I/0 for pointer operations is
reduced, which results in

(a) reduced wall-clock time at the teletype terminal,
(b) 1lowered over-all cost of program execution, and

(c) the option of adding an efficient pointer
traversal executive routine

(2) Multiple views of a data base are supported, so that
the DBA can tailor the data structure to each appli-
cation.

(3) A powerful Data-Definition Language/Data-Manipulation
Language (DDL/DML) can be incorporated, which results
in

(a) greater convenience in querying, manipulating,
and modifying data block relationships, and

(b) greater convenience in inverting pointers to
ancwer different types of queries

(4) Back pointers can be added automatically
These advantages are not without cost:

1. Implementation costs are incurred.

2. Some additional disk space is needed.

3. Disk space becomes fragmented for systems such as the
CDC which have a fixed PRU size.

For the CDC 6700 computer, with its fixed PRU size of 64
words, the approximate number of PRU's needed for pointers can
be determined by dividing the number of pointers in the entire
data base by 64. For data bases composed mostly of data
blocks longer than one PRU, the total amount of disk space
required under COMRADE/GIRS may actually be only slightly
different from that required under the COMRADE system.

A brief description of GIRS follows, after which the

trade-offs among time, memory, disk space, and flexibility

will be considered.

e N B i N

L)

o

OVERVIEW OF GIRS (GRAPH INFORMATION RETRIEVAL SYSTEM)

ELEMENTS OF THE GRAPH STRUCTURE

GIRS is a hashed-address associative memory scheme designed
to accommodate the insertion, retrieval, and deletion of in-
formation contained in arbitrary graph structures. Under
this scheme, information is stored conceptually as primitive
structures called node-link-node triples with the first node
called the source node and the second node called the sink

node, or value, as indicated in the following diagram.

Figure 3 ~ Node-Link-Node Triple

Under a COMRADE/GIRS system, the source node A would represent
the parent data block, the sink node C would represent the
sibling data block, and the link B would represent the
associating pointer or function.

The triple can, of course, be combined with other triples
to form a more complex graph structure. The triple can be

a component in a list (Figure 4).

N Tt v -;.;»..

iy T

ERE L b r R

alternatively drawn as

Figure 4 - Multivalued List

The triple can also be a component in a string (Figure 5).

SRS cROMoNOBEG

alternatively drawn as
Dl G ORI T
Figure 5 - Concatenated Value String

If the triple G,H,A were added to this string, each triple

would then represent a component of a circuit.

10

T

o e S

PRSI TSE R

ORI s oeris

e

PAGED (OUT-CORE) VERSION OF GIRS

There are three versions of GIRS currently available.

Two are designed to use a working space or buffer which
contains the entire graph structure in main memory. In one
of these two, the buffer is divided into four separate
arrays that store the node, list, conflict list, and flag
functions; in the other, the four functions are packed into
a single array. The third version, a paged (out-core)
extension of the one which packs the functions into a single
array, is the one that concerns us here. It is this version
that is suggested for use with COMRADE.

In this out-core version of GIRS, the triple is assigned
to a page that can extend its length as needed by a specified
increment, called a continuant. These adjustable-length pages
exist to enable information to be logically divided. Each

page contains one or more logical records (continuants) of

.uniform length, as illustrated in the following diagram.

PAGE 1 PAGE 2 PAGE 3 PAGE 4
CONTINUANT 0 0 0 0
CONTINUANT 1 1 1
CONTINUANT 2 2

11

—

A continuant may be used either as a logical subdivision of
the graph on that page or merely as an area for overflow from
the previous continuant. Thus, although all of the pages have
the same limit as to the number of source nodes they may con-
tain, the sets of source nodes on the different pages are dis-
joint. Each continuant contains a subset, which may or may not
be distinct, of the set of source nodes assigned to the total
page. GIRS will automatically create continuants as needed.
By assigning an individual address to each continuant, the
user can conveniently partition a graph into a number of
"local" subgraphs. "Localness" of a subgraph may be defined
in a number of ways. For example, all descendants of a node
comprise a subgraph of "local" character. All or part of the
nodes in a string or list may be considered local. To minimize
thrashin§ (excess disk 1/0 due to a poorly designed data
partition), the user must carefully partition the graph into
local subgraphs which may be placed onto separate continuants.
Note that the DBA is responsible for partitioning the graph
in a way that will make optimum use of the local quality
of a subgraph. Although thrashing cannot ever be completely
eliminated (unless the entire graph structure can be stored
within the buffer), the technique of partitioning represents
an improvement over the current situation which can result in
a new data block having to be brought in for each pointer

access.

12

The following excerpt from Berkowitz® indicates some of the
2 problems involved in relating the graph structure to the paged
_i ' GIRS architecture. Consult Berkowitz® for a more detailed
description of local graph processing.

2 "The central problem is to determine on which

- page one should place a newly created node. If
the program is creating a list of names of major

: graph localities, each new node should be on a 3

different page than the current one, since... each |

page will have the capacity to contain at least the 1

beginning of a graph locality. On the other hand,

if the list is part of a hierarchical directory, then

only the terminal nodes of the directory should be

on different pages than the current one. Similarly,

if the program is setting up strings to operate on

a trace mode, then the newly created sink nodes

should be on the current page or at worst on few

enough other pages so that primary memory could

contain all of them. More generally, graph mani-

pulations are, in part, combinations of directory

searches and string traces. While a directory

search can result in a separate disk access to a

? new graph locality, it is most desirable that a

' trace take place within a given locality on one

page. For example, consider a stack search which

E provides the information to continue a trace. 1In
this case, the stack nodes are best represented

as a list--i.e., a terminal directory--on a single

J page. The sink node addresses, however, are in-

E tended to represent links in a single graph locality,

| and hence are all used on the same page. If the link

, addresses are never used as source nodes, their

place of definition is irrelevant."

-

The DBA also determines the continuant size and the
i maximum number of continuants to be resident in main memory
i at any one time. The length of the continuant determines

the maximum number of unique source nodes that may be defined

on a given page.

T T TR G T

A

= ——

RELATIONSHIP OF DATA STRUCTURE TO GRAPH STRUCTURE
Under COMRADE, the POINTER is stored in the data BLOCK as
a "data value". GIRS would represent this same relational

information as triple (Ff@ure 6).

BLOCK ° new block name

Figure 6 - GIRS Representation'of a
Data Block Relationship

A relational triple such as that shown in Figure 6 would be
packed into a single word of the GIRS buffer. Multivalue lists
which can expand and contract in size dynamically would re-
present pointer arrays and would require one extra word of
overhead just as at present under COMRADE.

Random values assigned by GIRS to BLOCK and POINTER (names
assigned by the user) serve to place and locate the relationship
within the GIRS buffer under a hashing technique. All new
block names are assigned a random number along with a cross-
file feference number if necessary. The cross-file reference
number would associate a new block name with the appropriate
COMRADE file in the data base. If the new block name is a hit,
its random number is used in retrieving its Hollerith name which

will be stored along with it in the GIRS buffer. The Hollerith

name will then be given to the COMRADE Data Storage Facility

¢

3
ki
& |
<3

s W

-

i w

(CDSF)7 which will bring the hit block into the COMRADE buffer.
The procedure is discussed in greater detail later under the
heading "Implementation".

The GIRS representation for both the intra-file pointers and
the cross-file pointers would be identical. With a paged GIRS
structure, a DBA could set up cross-file pointers and intra-
file pointers for each file in the data base on a single page.
This setup would be particularly suitable for a hierarchical
directory. The primary effect of the shift of emphasis from
the file structure to the page structure is that the Cross File
Reference Table (CFRT) has to be modified. Under the present
COMRADE system each file has its own CFRT. In a COMRADE/GIRS
architecture, a single, universal CFRT for all of the files
in a data base would be established, as will be discussed

later in more detail.
TIME/SPACE/FLEXIBILITY/TRADE-OFFS, COMRADE/GIRS VERSUS COMRADE

DISK USE
Pointer Traversal under COMRADE

. COMRADE Dependence on Disk I/0

As already noted, under COMRADE the relational information
about a COMRADE data block is physically a part of that block,
so the block itself must be in main memory if the relationships

of that data block with others are to be determined. Only a

7

Computer Conference, New York (Jun 1973) American Federation of
Information Processing Societies Proceedings, pp. 353-357.

15

Bandurski, A. and M. Wallace, "COMRADE Data Management System -
Storage and Retrieval Techniques," Presented at the 1973 National

T

rie/A

very small portion of the data blocks of a COMRADE data base

may reside in the working buffer at any one time (only 20 may

be accommodated). Other data blocks not in the buffer may be
needed to complete a traversal. To bring a block in, one, and
sometimes two, disk accesses are needed.* The disk location of
the desired data block is contained in a subdirectory, and when
the subdirectory present in main memory is not the one that has
the address of the particular block in question, the appropriate
subdirectory must first be brought in. The data block is then
accessed. As an example provided later will demonstrate, a
pointer search involving more than just a few pointers will

make extensive use of disk I/O under the COMRADE system.

. Cross File Pointer Traversal under COMRADE

It is in the area of cross-file pointer chasing that a
COMRADE/GIRS combination is of the greatest value. Under
COMRADE, a pointer chase at the QUERY language level can
extend to only one other file at a time. Thus if the user
has opened PERMFILEl, he may temporarily open and access
PERMFILE2 but he may not go on to PERMFILE3. He must first
return to PERMFILEl, after which he may then go to PERMFILE3.
This procedure is both tedious and time consuming as the

following sequence indicates:

* In the unlikely event that the size of the data block should
exceed the size of the COMRADE I/O buffer and that the desired
element should not be included in the retrieval portion of that
data block, a third disk access would have to be made to obtain
the relevant portion.

16

l. Close PERMFILEl

2. ATTACH PERMFILE2

3. Open PERMFILE2

4. Read from PERMFILE2

5. Close PERMFILE2

6. UNLOAD PERMFILEZ2

7. Open PERMFILEL
Depending upon the size of the load on the CDC 6700 computer
system and the size of the file to be attached, the response
time at the terminal might be quite slow.

Pointer Traversal under GIRS

. General Considerations

Under GIRS, pointer traversal is a relatively quick, flex-
ible, and efficient operation. Moreowver, since GIRS has been
developed "in-house", it offers DTNSRDC users the added ad-
vantage of ease of maintenance.

One of the main reasons for selecting GIRS to handle
COMRADE's pointer chasing would be for the reduction of disk
I/0 GIRS provides. Retrievals and insertions involving disk
I/0 are relatively slow compared to those performed in main
memory and-~-due to the current cost of channel time--expensive.

No pointer retrieval/manipulation scheme can reduce the
amount of disk I/O required for reading in "hit" blocks. 1If it
were feasible to maintain the GIRS representations of the entire
data structure in main memory at all times, disk I/O for pointer

chasing would never be needed and only the in-core version of

GIRS, with its resultant lower space requirements, would be
needed. However, since this is not always possible and out-core
storage is sometimes needed, the use of disk I/O can at least be
kept to a bare minimum by partitioning the data base. Somewhat
less optimally, if the data base can be partitioned so as to com-
bine on a single continuant all those relationships that are to
be used together, a single disk read to bring that continuant
into main memory will suffice. In this case, a simple, in-core
GIRS retrieval would serve, instead of the several disk accesses
ordinarily required to bring into main memory information which
is mostly irrelevant. If more than one continuant is needed,
the DBA must be clever enough to partition the data base so as
to reduce the number of disk accesses required per query. In
practice, it would be difficult to choose a partition so awkward
that pointer traversals under GIRS/COMRADE would result in as
many disk accesses per query being needed as under COMRADE alone.
The paged version of GIRS allows more than one page to exist
in main memory at a time. Therefore, depending on how the work-
space has been allocated, a continuant of a page may or may not
have to be swapped into main memory. If GIRS should need the
space occupied by a continuant, and should find that the con-
tinuant had already been modified when it was in main memory,
the worst that could happen would be that the continuant would
have to be written out to disk before a new continuant could
be brought in. However, continuants are never modified as a

result of a query. GIRS will allow a page to grow, continuant

18

by continuant, to absorb new portions of a graph. Note that

if a retrieval fails--either because of the absence of a block
name or because of a misspelled block name--all of the continuants
of a page may have to be brought into main memory to be searched.
Judicious choice of page size should minimize the number of
continuants needed, and thus minimize GIRS I/0.

Part of the design philosophy of COMRADE is to maximize the
use of a data block while it is in main memory and to thus
forestall the need to bring back that same data block over and
over again. The GIRS philosophy is similar. The graph, which
represents the logical structure of the data, should be parti-
tioned onto pages in such a way that the "localness" of the
subgraphs will be preserved. In other words, whenever possible,
subgraphs should be maintained on the same page and on the same
continuant.

To illustrate, note that a graph can be broken up into
lists and strings. A typical multivalued list might be

structured as shown in Figure 7.

SHIP1

Figure 7 - A Typical Multivalued List

DECK

19

A string might assume the form of Figure 8.

DECK1 ‘COMPART1 EQUIP1

SHIP1

Figure 8 - A Typical String

A group of strings may have a common source node, as indicated

in Figure 9:

Figure 9 - A Collection of Length-One Strings
Having a Common Source Node

In some cases, traversal is restricted to strings or to
lists. In others, traversal may span total subgraphs of a given
string length and list depth. 1In the latter case, it is to the
advantage of the programmer to keep such a subgraph on a single

| continuant.

e

20

f{ . Cross-File Pointer Traversal under GIRS

As already mentioned, COMRADE allows only one file to be
traversed at a time at the QUERY language level. Under GIRS,

f there is no such limitation. GIRS can handle cross-file pointers
easily as intrafile pointers; since a universal Cross-File
Reference Table would be set up and the cross-file reference
number would be stored as part of every value (sink node) re-
presenting a data block. This feature would be beneficial for
COMRADE applications involving distributed data bases.

Under GIRS, the pointer to data records in various different
files may be traversed by a single query, using little if any
disk I/0, since cross-file and inter-file pointers may be i
mixed on the same GIRS page. This dapability can be assured
by collecting all of the necessary pointer relationships onto
a single or a relatively small number of continuants. Of course,

severe thrashing can result if the necessary relationships of

a subgraph are scattered across many continuants, most of which
are not in main memory at the time they are needed. It is
; up to the DBA to make sure that the graph structure is thought-

fully prepared.

RESPONSE TIME

Response Time of a COMRADE Retrieval

A COMRADE retrieval is heavily dependent on disk I/O, which
can consume a lot of wall-clock time. This dependence needs to
be reduced. COMRADE permanent files are stored on both the 841

and 844 disk drives for the CDC 6700 computer system. An I/O

e
” o —

21

access to a CDC 844 disk drive will generally take between 40
and 1000 milliseconds, depending upon the amount of time lost
while waiting for an available I/0O channel. Although statis-
tics on the average disk I/0 service time for the CDC 6700 !
computer system are not available, those for the CDC 6400

computer system indicate that the average disk I/O service

time for the CDC 6400 computer ranges between 200 and 280

milliseconds. The average disk I/O service time for the CDC

6700 computer is thought to be comparable. Average access

times in milliseconds for the different disk drive units are

provided in Table 1.*
TABLE 1 - CDC DISK DRIVE SERVICE TIME REQUIREMENTS
b (in milliseconds)
CDC 841 CDC 844
Average positioning time 69.5 30.0
Latency time (50% of rotation 12.5 8.4
time)
E Time to read one sector or PRU 3.6 1.4 |
; Channel wait time (range) 0.0 - 960.0 0.0 - 960.0 %
; Total service time (range) 85.6 -1046.0 40 -1000.0
|

TR

; * This information was obtained from Kenneth C. Rieck of the
i Center.

Al w

22

Using the "Presidents" Data Base® (described in Appendix
A) and operating from a l0~-character-per-second teletype
terminal, a COMRADE query of the form

PRINT STATE, CAPITAL .OF. HEAD/ADMIN/PRESPTR/ADMIN/STATEPTR/

required approximately 230 data block accesses for pointers.
On two tries, this query took 7-8 minutes. On an earlier
occasion, involving an older model CDC disk drive system, the
query took 13 minutes. Fifty of the 230 data blocks retrieved
were hits, while the remaining 180 were extraneous. The buffer
size was set to 1025 words, which allowed as many as 16 data
blocks to reside in main memory at a time. A table has been
prepared which shows, for N = 2 subdirectories, the prob-
abilities of the following situations and the number of disk
accesses needed for each. (0Of course, these probabilties
assume a random distribution of the blocks to be retrieved):

1. The desired data block is already in the buffer.

2. The data block is not in the buffer but the appropriate
subdirectory is.

3. Neither the desired data block nor the appropriate
subdirectory is in main memory.

8

at the 1973 National Computer Conference, New York, (Jun 1973)
American Federation of Information Processing Societies, 1973.

Willner, S. et al., "COMRADE Data Management System," Presented

|
1
1
:
j
%
1
]

"“r-‘ s« ki e P 3 -
D o A ke { - (5

TABLE 2 - PROBABILITY OF A DATA BLOCK OF THE "PRESIDENTS"
DATA BASE RESIDING IN MEMORY

Contained in Number of Disk Probability
Main Memory Accesses Needed of Situation
to Retrieve De-
sired Data Block

Situation 1: 0 Pp= (1024/64)/281=.057
Block

Situation 2: 1 PS= (l-PB)/N=.471
Subdirectory but

not block

Situation 3:
Neither block 2 P

; =(1-Pg) (N-1)/N=.471
nor subdirectory neither B

The number of disk accesses likely to be needed per data
block retrieval is computed as follows:

E-=P.= 2(1' -P: = P =2 =P - 2P
(B) S B

S S
where PB is the probability that the data block is in main
memory

< buffer size/average data block size
total number of data blocks in data base

P. is the probability that the subdirectory is in main
memory

1 - PB

= Number of subdirectories

For the "President's" Data Base, E = 1.4146. Thus there
are 180E = 255 unnecessary disk accesses. I/0 time is computed
as Follows: T = number of data blocks retrieved times E times
the disk I/0 service time. For the "Presidents" Data Base,

T ranges between 1.08 and 1.52 minutes. The time required

|
L
4
i

for the equivalent operation in a COMRADE/GIRS scheme is

discussed in the next section.

One final remark. Py was computed on the basis of random
allocation of block names to the subdirectories. If the user
were allowed to specify to the lower level CDSF routines that
certain collections of data block names should be kept on the
same subdirectory, Py could be greater and both E and T could
be reduced. The argument for this approach is analogous to
that for partitioning the data block representation in GIRS,

and will not be pursued further.

Response Time of a GIRS Retrieval

So far, there have been no timing tests performed on the
out-core version of GIRS, although the in-core packed-word
version has been tested. 1In the in-core version, a simple
retrieval for a triple (which might contain pointer or other
information) requires 78 microseconds, a magnitude three orders
faster than that required to access the 844 disk drives. Other
retrievals take up to 142.6 microseconds (worst case).

Average insertion, deletion, and retrieval times for the
present unpaged and unpacked version of GIRS are documented in
Berkowitz.4 Assuming that the proper page-continuant already
exists in main memory, similar operations under the out-core
version might reasonably be expected to take slightly longer,
since relative addresses within the GIRS buffer would have to

be resolved.

i :

The disk I/0 time for a query under COMRADE/GIRS (Tb) could

be determined as follows:

W o v 5 e
Slid _ 2 o b ¥ i i

TG = (number of hit blocks) x E + (number of GIRS continuants

| brought in) x (disk I/O service time)

1'£ In the COMRADE example involving the "Presidents" Data Base
(given in the previous section), there were 626 pointers and
274 data blocks.* Two hundred thirty data blocks were read

in to obtain the 50 desired data blocks (180 data block re-
trievals were extraneous). If GIRS were to be used along with
COMRADE, this entire data block representation could be con-
tained within main memory, thus obviating the need for any

I/0 for GIRS. 1If, for some reason, the entire data base did
not fit within main memory, disk I/O would be needed to bring
in the necessary continuants. Even so, the total amount of
I/0 needed would be substantially less than that required
under COMRADE alone. The speed advantage of GIRS is extremely
query-dependent and would be even greater if more non-hit
blocks were involved. The speed advantage for a single query
is expressed as

FELON S|
(H + C/E)

where D 1is the total number of data blocks brought into the
buffer in the present system

H 1is the number of hit blocks for the querj

C 1is the number of GIRS continuants that must be
brought into main memory

! * These figures were supplied by Stanley E. Willner, developer
] of the "Presidents" Data Base.

26

s

i v

For this example, the speed advantage would be D/H or (230/50)
or 4.6, since the entire relational structure would fit entirely

within main memory.

UTILIZATION OF DISK SPACE

Data Block Size, Percentage of Pointers per Data Block,
and Fragmentation

The SCOPE disk operating system can handle words only in
64-word groups, these groups known’as physical record units
(PRU's). As a result, any record written out to disk must take
up some multiple of 64 words. All data records of a size from
1l to 63 words (not counting the end-of-record marker) would
require the same amount of space (64 words), and those of 64-
127 words would take twice that amount of space, and so forth.
Thus a great deal of fragmentation--unused but available space--
could result.

At the present time, COMRADE users work approximately 90
percent of the time with blocks containing from 20 to 50 words.*
Thus, so far as space allocation is concerned, it would be of
no great advantage to them to have the size of these data blocks
reduced by removing pointers. However, future plans for the
use of COMRADE envision the need for data blocks larger than
one PRU. The question, then, is: At what point does it become
advantageous spacewise to compress the data blocks by removing

the pointers and assembling them elsewhere on a file of their

* pata obtained from Bernard M. Thomson of the Center.

27

—_—

own or at the end of the data file? (Other reasons for separ-

ating the pointers are discussed elsewhere in the section
entitled "Time/Space/Flexibility Trade-Offs, COMRADE versus
COMRADE/GIRS.")

In the current COMRADE scheme, each data block relation-
ship takes up one word of storage plus any space needed for
pointer names in the BTD tables. In a COMRADE/GIRS setup,
one word is needed for each data block relationship repre-
sented by a node-link-node triple. However, additional space
is needed to link the GIRS random number representing the
sink node with its Hollerith block name and vice versa, since
CDSF cannot use the GIRS random number, apd the block name
must be converted to a unique random number to be operated
on by GIRS. Conversion of the random number to the block name
requires one or two additional words per name, depending on
the length of that name.

To convert the Hollerith name to its associated random
number, at least one additional word per block name is
necessary; however, the exact amount of space required
varies. The less the correlation among the block names, the
greater the amount of space required. Thus, the three names
EQUIP1l, EQUIP2, and EQUIP3 will require less space than the
names EQUIPMNT, MACHINES, and MOTORS. Block names in COMRADE
data bases generally exhibit a high degree of correlation.
This will be discussed in further detail in the section

entitled "Implementation".

28

For programs needing successive runs, additional space may
be needed under COMRADE/GIRS to store the values of nodes and
links, depending upon which of two methods is used. 1In the
one method, all of the nodes and links are written out to
disk at the end of the program and then read back in at the
beginning of each run; in the other, values for the nodes
and links are reassigned by the GIRS pseudo random number
generator at the beginning of each zun (the same sequence
of values will be used), so no extra storage space is needed.

The disk space allocation under the two different systems
is computed as follows:

Under the COMRADE system:

Total number of PRU's = M ([%K] + 1)

Under the COMRADE/GIRS System:

Total number of PRU's* = M(Eﬁi%ifl] +4> 4 ¢ [MW%£C+h] & 1
2M
*[6—4]*3

where M number of data blocks
w = average number of words/data block

p = average percentage of pointers

—_
[—
"

greatest integer function (i.e., 3.8 > 3)
¢ = total number of continuants for all pages

h = nine header words/continuant

* This computation includes the space needed to store data
block names.

From the expressions just given, one can see that under the

proposed system a data base would require slightly more space
than under COMRADE, except in those cases in which the data
blocks would be one PRU in length. 1If, however, a computer
system having variable length PRU's (such as the IBM disk
operating system) were to be used, the ratio of COMRADE disk

space to COMRADE/GIRS disk space would be approximated as

follows:
: : _ COMRADE/GIRS disk space* _ 2M+9C
Disk Space Ratio (DSR) = COMRADE disk space 1l + M
=1 e a 2=
w total number of words in

orig. data base

Let us now determine the range of this ratio for a ship
described in a mature data base of the Ship Design File. A
typical data base in this case might consist of 40 to 60 per-
cent pointers. We have chosen a very conservative working
space/available-space ratio of 7 to 3. Furthermore, as an
upper bound on term 2/w of the DSR, the number of elements to
be included per data block has been set at nine. Since the
latter number and the given GIRS ratio are unrealistically
low, values thought to be more typical will also be considered.
For example, the average number of elements per data block
might more reasonably be 30. Thus, for an average of 9-30
elements per data block, the term 2/w would then range from

.22 to .07. Table 3 gives the DSR for six different cases.

* This number includes the space needed to store the data
block names.

30

TABLE 3 - DISK SPACE RATIO (DSR), COMRADE/GIRS TO COMRADE
(Quantities expressed in number of words)

GIRS

Number of attribute
elements

Number of pointer

elements

Total number of
elements in
data base

Percentage of
Pointers

Continuant size

Percentage of GIRS
buffer being
used (not in
Available Space)

Required GIRS
buffer space

Number of
continuants
needed

Third term of DSR

Minimum DSR

Maximum DSR

66000 66000 66000
44000 66000 99000
110000 132000 165000
40 50 60
* * % * * * * %
100 25 100 25 100 25
85 70 85 70 85 70
51725 | 62858 77647 | 94286 | 116470 | 141429
518 2515 177 3772 1165 5658
.04 .21 .05 .26 .06 «31
1.11 1.28 1.12 1.33 1.13 1.38
1.26 1.43 1.27 1.48 1.28 1..53

* Typical case

** Conservative case

from

As Table 3 shows,

.04 to .31.

with 1.11 the more typical.

31

the third term of the DSR equation

ranges

Therefore, the DSR ranges from 1.11 to 1.53,

S USSP

A w

GIRS Continuant Size and Unused Entry Space

The continuant size must be determined in advance by the
DBA. The hashing scheme employed by GIRS results in the
size of the continuant determining the maximum number of
identifiers or node and link names that can be created for
a page. All of the continuants throughout the GIRS structure
of a given data base will be of the same size.

Under GIRS, the use of many small continuants rather than
a few large continuants for a given size graph structure might
result in the need for more disk I/0, since more searching
might be needed to find a requested relationship. However,
using more but smaller-sized continuants could result in a
fuller use of the entry space in GIRS. If the continuants
are used merely to store overflow, only the last continuant
of each page will have any unused entry space. Moreover,
with the GIRS hashing scheme, any partially empty continuants
will have what are known as short conflict lists which

facilitate quick retrieval response.

Example of Disk Use under COMRADE and under COMRADE/GIRS

The following example ccmpares the time and space require-
ments under COMRADE with those under COMRADE/GIRS.k This example
illustrates that, when the search path of a pointer chase ex-
ceeds one level, COMRADE/GIRS can perform the query in less
time than COMRADE at a cost of only slightly more disk space.

In the nomenclature of COMRADE, assume three pointer arrays

DECK(L), COMPART(M), and EQUIP(N)--with the respective lengths

32

o

o g

L, M and N.

The pointer array COMPART(M) is repeated in L

different data blocks and the pointer array EQUIP(N) is

repeated in LM different data blocks, resulting in LMN number

of hits.

The following query is made:

PRINT COST .OF. SHIP1/DECK/COMPART/EQUIP

Assume also 1000 data blocks and six subdirectories.

Under the

COMRADE system, only one subdirectory may be in main memory at

a time.

I/0 buffer is set at 1281 words.

blocks may be in main memory at any one time.

The minimum block size is 64 words,

and the COMRADE

Therefore, as many as 20 data

The following

table indicates the probability of the desired item residing

in main memory and the number of disk accesses involved:

TABLE 4 - PROBABILITY OF A DATA BLOCK OF THE TIME/SPACE
EXAMPLE RESIDING IN MAIN MEMORY

Possible Situations

Number of Disk

Probability of

in Main Memory Accesses Situation
Needed to
Retrieve Desired
Data Block
Situation 1 0 P =(1281/64)/1000=.02
Block B
Situation 2
Subdirectory
but not block 1 PS=(1-.02)/6=.1633...
Situation 3
Neither the block
nor the sub-
directory 2 Pneiﬂmm=(1"02)(5/6)

.8166...

33

The number of disk accesses expected per data block retrieval
E for any one data block would be expressed as
2 = «1633...-(2 x .02) = 1.7966..,.

Under COMRADE, this query would result in E(1+L+LM+LMN)
number of disk accesses where E(0< E <2) is the expected number
of disk accesses per data block.*

The actual number of disk accesses under COMRADE might even
be greater, since the COMRADE buffer may contain only 20 data
blocks at a time, forcing certain data blocks to be brought
into main memory more than once.

In the GIRS scheme, the contents of each pointer array
are represented as a multivalued list. The data block names
are assigned unique "random" numbers which are represented
by dollar ($) signs. For example, SHIPl has the value "$;".
The COMRADE pointers DECK, COMPART, and EQUIP become GIRS
functions or links. The links must also be assigned unique
"random" values. The GIRS pointer graph would have to contain

the following structure to handle the query of the example:

* In the unlikely event that the data block size should exceed
the buffer size and the desired element were not present in the
| retrieved portion, then 0<E <3.

34

U S

Figure 10 - GIRS Structure for Example

Using COMRADE/GIRS, the query given would result in
L + LM + LMN GIRS retrievals to traverse the graph, and LMN
retrievals for the Hollerith representations of the block
names. (Conceivably, all of the nodes could be contained
within main memory, resulting in no need for disk I/0.) The E
CDSF routines would be given LMN hit block names which would
result in E(LMN) disk accesses, thus eliminating the need for
E(1 + L + LM) disk accesses.

Clearly, there is a potential time--and, therefore, |
cost--savings under COMRADE/GIRS, due to the reduced need for :
disk I/0. On the average, the time savings would range from
.36(1 + L + LM) to .5(1 + L + LM) seconds.

35

Under the present COMRADE system, the pointer arrays require
L + L(M+ 1) + LM(N + 1) words, as well as a small amount of
additional space to describe them in the Block Type Definition
(BTD) file. 1In comparison, a COMRADE/GIRS system would require
somewhat more disk space. Recall that 1000 data blocks exist
in the data base. Under this GIRS scheme, at least (L + 2) +
L(M + 1) + LM(N + 1) words would be needed to store the graph
that describes the relational structure of the data base, as
well as one or two additional words for each data block name.
For each partition (continuant) of the relationship graph, an
additional nine words for GIRS overhead would be needed. The
out-core version of GIRS maintains a directory of the contin-
uants that are in main memory at any given moment. The
directory size, which is determined by the applications
programmer, is set at one more than the first multiple of
64 that is greater than the number of in-core continuants.
A copy of the dirc¢ctory is stored on disk at the start of
the program. In general, the directory will take up only
one or two PRU's. For example, say that GIRS used the
COMRADE buffer (1281 words) for its own buffer. Even if the
continuant size were set at only ten words, the directory

size 4 would be

(1281 5 ([%7] +l) 64) - ([d] +1) -1

64

10

= 128 words or two PRU's

Let us now determine how much extra disk space would be
required under COMRADE/GIRS for the same graph. If L, M, N
are 20, 30, and 40 respectively, and if the continuant size is
set to 100, the directory will require one PRU or 64 words.
Let us also assume a 15 percent available space in the GIRS
buffer. This graph would then require a pointer space of 29697
words, requiring 297 continuants. Accordingly, the COMRADE/
GIRS system would take 1 + (9 x 297 + 200 + 64)/25242 words of
storage, or 1.188 as much disk space as under COMRADE, plus
.15 of that amount to account for the available space thereby
totaling 1.388. Of course, if this "data base" contained
attribute data, that ratio would be lower. For example, 50

percent attribute data would bring the ratio down to 1.169.

CORE REQUIREMENTS FOR COMRADE/GIRS

The out-core version of GIRS can be conveniently separated
into two parts, a major part and a minor part. The major part,
which takes up 7350g (3800) words plus an additional 110 words
for APAGE, a CDSF routine, performs all of the main functions.
The GIRS buffer, which contains the in-core portion of the data
block relationship graph, would not use up any additional main
memory since the COMRADE buffer and the GIRS buffer would share
the same memory space. If the DBA could be certain that the re-
lational information would fit entirely within the GIRS buffer,
only the in-core packed version of GIRS, which takes up about
43008 (2250) words, would be needed. Even if GIRS were split

up with about 33408 (1760) words going to the major portion,

37

the major functions could still be performed. If only querying
of the relational structure were to be performed, only 3708
(250) words of the GIRS package would be needed. A query using
the out-core version of GIRS would still require 73508 words.

GIRS is a subroutine package which requires an executive
routine to create the subroutine calls. It is similar to Sub-
routine QUERY in this respect. Subroutine QUERY handles a
parsed ".WHERE." clause, whereas this new executive routine
would be required to handle a parsed ".OF." clause. Since an
executive routine has not yet been written, we cannot accurately
gauge its size; however, a program for using GIRS interactively
at the terminal already exists which takes 10608 (560) words.
This program has functions similar to those needed by an
Executive routine.

The amount of CDC main memory available to an applications
programmer is limited to 60K8(24,600) words when a remote
terminal is used. Currently, 27K8 (11,800) words are allotted
for COMRADE functions, although plans are being made to reduce
this size to 20Kg (8200) words in the near future. Also,
approximately 1K is used for the COMRADE 1/0 buffer.

Since COMRADE is being revised, information is not yet
available as to the amount of main memory to be required. From
the numbers just discussed, however, we can state that, at
worst, GIRS will require 10,4008 (4360) words. COMRADE
developers feel that COMRADE/GIRS will fit within the 20K

constraint.

38

e e

i

FLEXIBILITY
Modify ag Data Block Relationships

A COMRADE/GIRS architecture would provide a great deal more
flexibility in handling data. Such a system would enable the DBA
to create, update, and remove all or any part of a description
of the data base with relative ease. The data definition
dictionary could be created and modified independently of the
data base itself, so there would be no necessity for moving data

records into and out of main memory.

Pointer Traversal Executive Routine
Currently, COMRADE allows the data base to be queried at two

different levels - namely, via the CDMS subroutines and via the
QUERY processor - which provides the user with flexibility/
convenience trade-offs. The latter level accepts English-like
requests, parsing and converting them into CDMS subroutine
calls. Although COMRADE already has an inverted query exe-
cutive routine (called QUERY), it does not have a pointer-
traversal executive routine. The advantage of such a routine
for COMRADE may be illustrated by a discussion of the way in
which COMRADE presently must handle the following three
different queries.

1. PRINT BN .WHERE. AREA .EQ. 20;

2. PRINT COST .OF. BLOCK1/PTRl1/PTR2;

3. PRINT HEIGHT .OF. BLOCK2/PTR3/PTR4 .WHERE. AREA .GT. 1000;
In the first instance, and using the higher level query pro-

cedure, AREA must be on an inverted list. The .WHERE. clause

39

s e N

o

will be parsed and then the equivalent code to Subroutine QUERY
(which is part of the QUERY processor) will be called to bring
in and search the inverted lists and then return the names of
the data blocks having AREA = 20. These blocks are the "hit"
blocks. The query could also have been handled in COMRADE at
the lower level with the applicatiéns programmer calling a
COMRADE executive subroutine (also called QUERY) directly,
supplying input parameters in the equivalent of a parsed
.WHERE. clause. This method, which is convenient to use,

would allow an applications program to use the output of

the Subroutine QUERY immediately.

In the second instance, thé QUERY processor must call a
series of routines to bring in BLOCK1l and the data records
associated with PTRl1 and PTR2. The applications programmer,
in order to have greater flexibility (for example, to be able
to use the retrieved data immediately or to restrict the
pointer chasing to blocks found in the nth repeating group),
will have to make several subroutine calls for a typical
pointer chase query, since there is no pointer-traversal
executive routine currently in COMRADE analogous to Subroutine
QUERY to handle the parsing of an .OF. clause. Under the
present system of COMRADE, use of a pointer chasing routine
would be inefficient, since hit blocks would have to be re-
moved and later brought back into main memory when the buffer
was filled. A pointer executive routine under a COMRADE/GIRS

combination would accept the equivalent of a parsed .OF. clause

40

T e T I TR T

g aafinh e | aa

T TR T N T

as input. The first input parameter (the starting data block)
would be treated as a source node and the rest of the input |
parameters (the pointer names) as link names. Output would
be a list of (potential) hit blocks. Therefore, the number
of hits per query would then be available. This same type
of query will be discussed for the data definition/data mani-
pulation (DDL/DML) language level in the section on adding
a DDL/DML to COMRADE.

In the third instance, the pointer list is traversed as
in the second instance, resulting in a sequence of potential
hits. Each of these potential hit blocks is brought in (along
with the non-hit blocks needed for the pointer traversal) at
which point the proper attributes are tested against the con-
ditions of the .WHERE. clause to determine whether or not
the block is truly a hit.

As already mentioned, most of the disk I/O needed under

COMRADE for retrieving the non-hit blocks would be eliminated

under the COMRADE/GIRS scheme. 1In addition, disk I/O use
could be reduced even further by including a pointer executive
routine within a COMRADE/GIRS system. Such a routine would
bring into main memory only those potential hit blocks which
could ultimately satisfy the .WHERE. conditions. It would
accomplish this by inverting the conditional elements involved
in a query composed of both .WHERE. and .OF. clauses, and by
then ANDing the potential hits listed by the pointer executive
routine with the potential hits of the output list of the

.WHERE. clause.

41

W

It seems clear that some kind of a CDMS-level routine is
needed which could efficiently handle a parsed .OF. clause.
The COMRADE/GIRS combination could satisfy this need, as is
explained later on in the section entitled "Implementation."
Adding a Data Definition/Data Manipulation Language
to COMRADE

Basically, a Data Definition Language (DDL) is used to
create the data base structure, whereas a Data Manipulation
Language (DML) is used to access and modify the data base.
The necessary and optional characteristics of DDL/DML's are
detailed in Martin? and by the National Bureau of Standards}o
A COMRADE/GIRS system would enable the introduction of a
concise, powerful DDL/DML, since GIRS is designed for pointer
manipulation. Structural relations described by a DDL/DML
would be easier to visualize and therefore easier to work
with. Because the one-to-one correspondence between the
pointer relationship and its DDL/DML code would simplify the
conversion of the conceptual relational graph from paper
to a DDL/DML computer program, programming time would be
reduced. Further, a DDL/DML would allow the user to more
easily write subroutines capable of performing such functions

as deleting a block and all of its descendants or connecting

9Martin, J., "Computer Data Base Organization," Prentice-
Hall, InC-, New Jersey (1975)' ppo 100-10

10 ncopasyL pata Description Language," U.S. Department of
Commerce, NBS Handbook 113, (Jun 1973), pp. 2.11-2.12.

42

a parent of a block to the sons of that block when that block
is to be deleted.

A particularly convenient DDL/DML already in existence is

GIRL.ll The abstract from the GIRL Programming Manual follows:

"GIRL (Graph Information Retrieval Language) is a
programming language designed to conveniently manipulate
information in graph structures. As such, the language
will play a key role in the construction of the organi-
zational schemes found, for example, in information
retrieval, pattern recognition problems, linguistic
analysis, and process scheduling systems. The language
is written to complement an algebraic language, in the
sense that GIRL statements are distinguished from the
statements of the algebraic language and the statements
may be interleaved. The primary advantage of separating
symbolic and numeric statements is that the programmer is
afforded a linear, one-one trace of graph operations in
the code description."

For example, using GIRL to create or add to the following

structure shown originally in Figure 8,

DECK1 COMPART1 EQUIP1

SHIP1

the following code

G SHIP1 DECK1 $ COMPRT1 $ EQUIP1 $
would suffice. To find the EQUIP1 data block of SHIP1l, the
code

G SHIP1 + DECKl1 + COMPRT1 + EQUIP1
might be used. Modification and deletion would be equally
straightforward. Further examples are provided in the section,

"pointer Operations under COMRADE and under COMRADE/GIRS".

11Berkowitz, S., "Graph Information Retrieval Language; Pro-
gramming Manual for FORTRAN Complement," Naval Ship Research
and Development Center Report 4137 (Jun 1973).

43

Note that, in the COMRADE QUERY language, the ".OF." list
for a single query is limited to eight distinct levels of
pointers and a total of 16 pointer accesses.* This limitation
is built into COMRADE to prevent a pointer chase from con-
tinuously looping on a circuit. Of course, at the CDMS level,
even under the present COMRADE setup, an applications programmer
may first create temporary pointers to tag data blocks as
having been visited and them remove these pointers, although
this procedure would result in an even heavier use of disk
I/0 and would require the applications programmer to generate
several CDMS subroutine calls. Under GIRS, and with the use
of a DDL/DML such as GIRL, it would be a simple matter to
temporarily tag a node (data block) or thread a subgraph.

The previously mentioned limitations would no longer apply.
GIRL code can be imbedded within a FORTRAN program. Although
a preprocessing step would be necessary to translate GIRL to
FORTRAN, a GIRL preprocessor already exists which is portable
and currently operational on the CDC 6700 and the PDP-11/45.
Moreover, a GIRL/FORTRAN compiler is already being written for
the PDP-11/45.

A single GIRL statement can take care of either a single
CDMS pointer operation or a series of CDMS pointer operations

that ordinarily require several lines of code (See Appendix C).

* COMRADE, however, does not permit the pointer name of a level
to be tacitly repeated if the sink block contains the pointer,
giving rise to a tree of pointer strings.

44

B T —

Back Pointers

There are other advantages to the COMRADE/GIRS combination.
One is the ease of adding back pointers. This could be done
at the DDL/DML level with the following statements:

C ADD POINTER RELATIONSHIP
A B C

ADD BACK POINTER

Q 0 @

€ B A
These two GIRL statements can themselves be combined

G A B C B A
By setting a mode flag in the applications program to .TRUE.,
the programmer could even cause back pointers to be created
within the pointer executive routine automatically. This
automatic creation would continue until the flag is changed

to .FALSE.

Pointer Inversion and Query Type Specification

The preceding discussion has shown that not only the
question A B ? but also the question C B ? can be answered.
What about the questions ? B C or A ? C. These queries might
translate to "What objects have DECK1?" and "How are ships and
decks related?" A COMRADE/GIRS scheme would handle these
questions by hashing (C,B) and (A,C). A flag would be set to
indicate the appropriate query type.

At the cost of creating, maintaining, and storing some ring
structures, the queries A ? ?, ? B ?, and ? ? C could also be

satisfied. This topic is discussed by Berkowitz.’

45

-

Storage of Nonpointer Data

GIRS not only has the ability to store and manipulate
pointer relationships, but also to store integer and Hollerith
data. Numbers as large as 218 and with as many as three char-
acters may be stored directly within the word in the buffer
that holds the triple. This capability would be valuable to a
programmer who wanted to associate a particular relationship
with a subgraph level. Hollerith and integer data exceeding
the stated 1limits could be stored in a separate, sequentially
allocated buffer called SEQSPC. This arrangement provides

space for the rapid retrieval of data such as data block names.

Satisfying an Imprecise Query

Under COM%ADE, an engineer wishing to locate attribute
data stored several levels below his starting block must have
knowledge of the pointers at each and every level involved in
the pointer traversal. All of the pointers must be specified
to satisfy his query. This situation can be circumvented, at
the expense of some software design and computer time and
space, by having the DBA provide a generic description of the
data structure as well as the actual data structure, as illu-

strated by the following example. i

Let us say that an engineer wishes to query the structure

of Figure 11.

B e S VS

e N —————

ppacw

DISPLACEMENT
HULLNO

TYPE.

STRUCTURES

LENGTH pe oy HEIGHT DECK. oy BULKHD oo .
XCOORD XCOORD XCOORD
WEIGHT 1D / WEIGHT et

Figure 11 - Ship-Design Data Structure

He may ask, "What types of structures do ships have?" This
query is easily answered, since "structures" are only one
level below "ships" in the graph. This is known as a direct

query.

But what if he wishes to ask "Which decks do ships have?"
This query could not be satisfied at present, since "deck" is
more than one level below "ships" in the graph. Since "ship"
and "deck" are not immediately related, this query would be
called indirect. An indirect query could be handled by
allowina the GIRS retrieval routine (FIND) to use the know-
ledge of the different types of permissible relationships

.in the graph. Aside from the data base itself, an indirect

47

T

query also requires the relationship graph and a special graph

which describes the data structure in a general way, and a

method of searching it. This special graph may take any
number of forms, depending un the types of queries expected.
It would also be feasible to monitor the use of this
mechanism, allowing the program to create direct links for
commonly issued indirect queries which could then be answered
directly.

To answer questions similar to the engineer's second
query, relationships such as those indicated in Figure 12

would have to be added to the relationship graph.

uP up up
DOWN l SO DOWN
@ STRUCTURES HULLNO DISPLACEMENT

up

LENGTH HEIGHT

Figure 12 - Generic Description of Ship Design Data Structure

48

e w

Under COMRADE/GIRS each user would design his own search
mechanism, to be called by FIND when a direct query fails. 1If
he did not wish to do so, his query would be unsuccessful. An
alternative but possibly less efficient way of handling this
problem would be to permanently embed a general, fixed strategy
into the system which would require only that the applications
programmer submit a list of relationships. Such a strategy
might perform a level-by-level, breadth-first search of the
graph, as indicated by the flowchart of Figure 13, taken from

Berkowitz.>

Does B(A) exist? Yes > ':f:'nt::‘ut

No

Breadth—first search of relationship
graph to product list of DOWN finks
from C. LISTA holds the list and each list
item has back—pointer REFER to its
generating DOWN link.

\

LISTA ends when B
link is reached.

y

Using back—pointers, compile a STRING
containing DOWN links from LISTA which form
a chain from A to the nodes REFERred to by B

Y

On the basis of the STRING of DOWN links, generate
a LISTB which is a tree of nodes in the data
graph traversed by the STRING links.

Figure 13 - Search Procedure for an
Indirect, Memory-Related Query

49

R YO YT

The GIRL/FORTRAN code, also from Berkowitz,5 is included in
the Appendix. Note that the retrieval--or, for that matter,
the insertion or deletion--strategy is essentially embedded
in GIRS, but may be written in GIRL (as has been done in
Appendix B) for descriptive convenience.

To apply the algorithm of Figure 13 to the engineer's in-
direct query, the variables A, B, and C might represent ships,
decks, and the next level of nodes retrieved, respectively.
DOWN, STRING, and REFER are used as reserved GIRS link identi-
fiers, and LISTA and LISTB are reserved GIRS node identifiers.

This procedure is guaranteed to work, but such a "brute
force" method may take excessive time. There are many other
procedures available which, although more complex, are more
power ful.

There are various languages other than GIRL which might be
considered for use with COMRADE, such as ’I'RAMI-",]'2 for example,
which possess inferential capabilities but are relatively in-
flexible. This inflexibility is due to the use of a fixed
predetermined strategy as opposed to the user-embedded strategy
of GIRS/GIRL. The more sophisticated LISP-based languages

13 14

such as PLANNER ™~ or CONNIVER are designed to handle complex

12Ash, W. and E. Sibley, "TRAMP, An interpretive Associative
Processor with Deductive Capabilities,” Proceedings of the 23rd
National Conference of the ACM, pp. 143-156 (1968).

3 . s : : :
Hewitt, C., "Description and Theoretical Analysis (using
schemata) of PLANNER," MIT Artifical Intelligence Laboratory

AI-TR-~258 (1972).

14
McDermott, D.V. and G.J. Sussman, "The CONNIVER Reference
Manual," MIT Artificial Intelligence Laboratory AIM-2599 (1974).

50

-

R

L kbt arv A st

strategies but are not interfaced with a numeric language like
FORTRAN or ALGOL, and are relatively non-portable. On the
other hand, they may indeed be suitable candidates for a DDL/
DML if the prime emphasis is to be on the inherent "intelli-
gence" of the data management system. For a system with modest
inferential capability and relatively low overhead, however,
the COMRADE/GIRS combination seems preferable.
There are other types of indirect, possibly inverted,
queries which the engineer may wish to submit, as for example,
What objects have the structure A?
What ships have the structure C?
How are ships and decks related?
A different algorithm would be required for each of these
queries.
In conclusion, the search mechanism of the proposed system
is a powerful tool which would provide the user of COMRADE
with a great deal of flexibility, even though it would require

more memory and additional computing time.

51

THE ROLE OF THE DATA BASE ADMINISTRATOR

The effectiveness of a data base is largely dependent upon
the degree of involvement of the DBA in coordinating and carry-
ing out the design and maintenance of the data base. A typical
role for the DBA is desribed in Bandurski énd Jefferson.?

"The data base administrator plays a key role in

CAD [Computer Aided Design]. He must design and

maintain the data structures used by a diversity of

designers and applications programs, so must be

familiar with the entire design process as well as

data management. Ideally, he should provide inter-

faces to protect the user from unnecessary details

of programming and data structures. Each user should

view the data in as natural a form as possible, even

though the actual physical structure as determined

by the data base administrator, is quite different.

It would be the task of the data base administrator,

for example, to provide implicit links to satisfy

infrequent queries, and highly efficient explicit

links to provide data to the pre-programmed analysis

routines."

The DBA must insure that the logical structure is designed
to allow for its efficient use by applications programs.
Specifically, he must be concerned with minimizing the operating
cost of the data base and with eliminating unnecessary I/O
and redundance in the structure while still accommodating
different views of the data base. He must also try to make the
interface between human and computer as smooth as possible.

The addition of GIRS to COMRADE will aid the DBA in
handling these problems. Of course, the DBA will have to
satisfy certain GIRS parameters. One of the main concerns of
the DBA will be to determine how best to partition the graph

onto GIRS pages and continuants. This involves determining

I —————

{ - an optimum continuant size, the maximum number of continuants
&1 to be in main memory at any one time, and also which (classes

| of) relationships are to reside on which pages and continuants.

Although determination of page and continuant residence can be
left to default (onto a single page with successive continuants)
fine-tuning the graph partition will improve performance. This
is not a trivial task. To do this fine tuning, the DBA must
design a STRATEGY. This is described in the section, "Removal
of Pointers."

The DBA will perform other tasks also. He must determine
what extra information is needed to answer an imprecise query
(see section, "Satisfying an Imprecise Query") and whether or
not the ability to answer it is worth the memory cost. It
will also be up the DBA to assign a unique identification to
every file associated with the data base, since the Cross File
Reference Table must be unified across that data base.

The COMRADE/GIRS system offers speed as well as an option
for greater flexibility at the cost of more storage, a trade-

off which must be weighed by the DBA. The DBA would be charged

with making the applications programmers fully aware of the

potential of these new flexibilities.

53

POINTER OPERATIONS UNDER COMRADE
AND UNDER COMRADE/GIRS

This section compares the methods of performing the major
operations involved in creating and maintaining a data base
under the COMRADE system and under COMRADE/GIRS. The following
operations are considered:

« Defining data structures

. Loading pointers into the data base

. Updating and deleting data structure components

. Retrieving data from the data base

. Copying all or part of substructure
Under COMRADE, pointers are treated in much the same manner as
alphanumeric, integer, real, and text data. Therefore, many of

the operations described will hold true for other data types.

DEFINING DATA STRUCTURES

The data structure is presently defined by creating data-
block fozmats called block type definitions. The following
description is taken from Martin and Belfﬁ, page 16.

"A block type definition can be defined by executing
permanent file COMRDMDEFINEBLOCKTYPEABS or the DEFINE
BLOCK TYPE option of the COMRADE Command Procedure
BTMAINT.

The user must first define a suitable data structure.
The elements must be logically grouped and the type of
data each is to contain must be determined. Names and
the block type may also be changed but elements may not
be reorganized, deleted or added."

15Martin, R. and C. Bell, "A Primer for the COMRADE Data
Management System," NSRDC Report 4605 (Jan 1975).

(i s d

B b o oot dulbiabinbitanin abt v bR oadinbt o gna bl S g

AR . ol o Aot e i

Under COMRADE/GIRS , the data structure would no longer need
to adhere to a rigid, possibly confining, format. The data
structure for each relationship would be defined at the time
the relationship was added to the graph and so it could be
easily changed, as will be shown in a later section. If
desired, it may be defined prior to loading via a STRATEGY
routine called by the GIRS pointer insertion routine INSERT.

Use of STRATEGY is discussed later in the section, "Conversion

of a Data Base for the COMRADE/GIRS System."

LOADING POINTERS INTO THE DATA BASE

Under the COMRADE system, the Bulk Data Loader performs the
initial loading of the data base. The Loader can also add new
data blocks to an existing data base.

To add the relationships of Figure 14 to the data base, the

format in Figure 15 would be used.

PTR1
BLOK1 NXTBLOK
PTR2
BLOK1
NXTBLK1
NXTBLK2

.
.
.

O NXTBLKN

Figure 14 - BLOK1 - PTR Relationships

55

S e

BLOCK NAME -~ BLOK1

element name PTR1 (from the block type definition—btd/
NXTBLOK, permanent file name

element name PTR2 (from the btd)/dimension/pointer
value list

Figure 15 - Format of Input to Bulk Data Loader

Briefly, the Bulk Data Loader builds the data base by first
creating a skeleton file for items such as a directory, sub-
directory, inverted name list, reallocation table, using Sub-
routine DEFIL. Next, Subroutine DEFINB creates a skeleton data
block. The interpreter (LOADB) then calls LDEL or LDRG, de-
pending upon whether or not the element to be loaded is part
of a repeating group. Either of these two routines will call
on PTR and then CHANGE to add the pointer to the data base.

If a cross-file pointer is to be inserted, PTR will call PFNIN.
PFNIN returns a cross-file pointer value for the specified
permanent file name. It will create this value if one does not
already exist.

Creating the pointer structure with COMRADE/GIRS would best
be accomplished with the use of a DDL/DML such as GIRL. First,
the user would declare a continuant size and an initial number
of pages. Next, the user would declare all of the block names

{nodes) and pointer element names (links) in a DEFINE statement.

56

The nodes and links would be assigned unique sequence-dependent

"random" numbers which the user would either store or regenerate
for future update runs.

The user would then be ready to create the relationship
graph. To insert the first relationship (referred to in Figures
14 and 15), in which the element name is PTRl, the following
GIRL code would be required:

G BLOK1 PTR1 NXTBLOK

FORTRAN code can be interleaved with GIRL code, allowing for
attendant logic or calls to the CDMS subroutines. A multivalue
list (pointer array), where the element name is PTR2, would be
inserted similarly with the following code:

G BLOK1 PTR2 (NXTBLK1l, NXTBLK2,...)

The GIRL preprocessor would then convert these statements
into FORTRAN calls to Subroutine INSERT. An entire FORTRAN
program would then be created by the preprocessor and executed
by the user. Let us say that the continuant size had been set
to 500 words, and that BLOK1l, PTRl, and NXTBLOK had been
assigned the random numbers 326, 205, and 92, respectively.
INSERT would then determine the necessary offset for placing
92 in the GIRS buffer by computing (326+205) MOD 500. It would
then determine the appropriate page and continuant to receive
this value by extracting a non-zero page and continuant number
from BLOK1l, or, if the page number had not yet been defined,
by calling a user-defined STRATEGY for page definition. 1If

the user defaulted, the triple would be placed on the page

and continuant last used. For further details, consult

Berkowitz.5

UPDATING AND DELETING DATA STRUCTURE COMPONENTS

Under COMRADE, there are three methods of modifying and
deleting (pointer) data. 1In the first method, a user calls
the CDMS subroutines directly. 1In the other two methods, the
subroutines are called either by the INTERACTIVEUPDATE pro-
cedure or by the Bulk Data Modifier. All these methods call

on the following CDMS subroutines:

CHANGE Adds or modifies non-repeating group
elements of an existing data block.

CHANGO Changes values in an occurrence of a repeat-
ing group in an existing data block.

ADDO Adds a single occurrence of a repeating
group in an existing data block.

ADDU Creates a locally defined element to a data
block.

DELETE Deletes the value of an element in a speci-

fied block.

The following example illustrates the way in which a
request to change a block name (sink node) is handled under
COMRADE. Assume that the data block EQUIP1 contains a WEIGHT
pointer to the data block BLOK05, and that we desire to have
it point to BLOKO0O7 instead. The parameters to CHANGE (ICODE,

IBN, ISBN, IEN, DATA) are set as follows:

ICODE = 0 (does not have to be set for this example)

IBN = 6HEQUIP1

ISBN = 4HSUB1

IEN = 6HWEIGHT

DATA = 6HBLOKO07

Under GIRL, this same request would look as follows:

G EQUiPl WEIGHT -.1 BLOKO7
(Note that under COMRADE/GIRS, the parameter ISBN, which refers
to the subblock number, is not needed for pointer updates.)
The GIRL preprocessor would convert this code into a call
to the GIRS subroutine INSERT.

This request to change a block name could also be handled
by the routine PTREXEC, described later in the section which
discusses the conversion of a data base to the COMRADE/GIRS
system. Parameters for PTREXEC would be the same as for CHANGE,
except that ISBN would be replaced by an operatior code which,
for this example, would be eight. The relationship in question
can be deleted with the following GIRL code:

G EQUIP1 - WEIGHT

Before a GIRS operation can be performed, all nodes and
links must be defined -- that is, be given unique numeric re-
presentations. Any previously defined nodes and links must have
their o0ld values returned, and new nodes and links must be de-
clared in a DEFINE statement. The user may store the old values
on disk, or he may redeclare the old nodes and links following

the same sequence as that used originally for the creation of

the data structure.

RETRIEVING DATA FROM THE DATA BASE

Retrieval at a Higher Level

Data can be retrieved from a COMRADE data base at either of
two different leveis, a convenience which affords the user a
flexibility versus convenience trade-off. The higher level
offers more convenience for simple requests; the lower level
offers fewer restrictions. At the higher level, the QUERY pro-
cessor parses English-like requests from a remote terminal
and converts them into CDMS subroutine calls. All possible
hits are returned to the terminal. If the programmer wishes
to make further use of the values, he must re-enter them into
the machine. Moreover, he may not restrict a search to specific
occurrences of repeating groups or to non-repeating group
elements.

The queries are basically of three different types:

1. Query on condition.

2. Query via pointers.

3. Query on conditional values returned via pointers.
The examples provided earlier for each of the three types in
the section entitled "Pointer Traversal Executive Routine"
are repeated here for convenience.

1. PRINT BN .WHERE. AREA .EQ. 20;

2. PRINT COST .OF. BLOCK1l/PTR1/PTR2;

3. PRINT HEIGHT .OF. BLOCK2/PTR3/PTR4 .WHERE.

AREA .GT. 1000;

A brief description of the COMRADE method of handling these
queries has already been given. Under COMRADE/GIRS, operations

for dealing with the first type of request would be the same.

60

s w

For queries of the second type, the calls to FETCH to bring
into main memory each and every data block involved in the
search would no longer be made, since, under a COMRADE/GIRS
system, a pointer chase could be processed largely in main
memory via a single call to the pointer traversal executive
routine PTRCHSE. PTRCHSE would convert an .OF. list from a
query to a series of calls to the GIRS retrieval routine
FIND. For example, the query
PRINT COST .OF. BLOCK1l/PTR1l/PTR2
would be handled as follows:
C NODE BLOCK1
LINK PTR1
CALL FIND (NODE, LINK, VALUE)
NODE = VALUE
LINK = PTR2
CALL FIND (NODE, LINK, VALUE)
C VALUE NOW CONTAINS THE NAME OF THE HIT BLOCK
IBN = VALUE

CALL FETCH (...,IBN,...,DATA,...)
PRINT DATA

If either PTRl1 and PTR2 were pointer arrays, PTRCHSE would
generate stacks to handle the situation. Also, as a worst
case for the present system, if a pointer chase were to be
expanded to its maximum of 16 levels,* resulting in a single
hit block, and if the pointer relationships were partitioned
properly in a GIRS graph, there would be as much as a 16 to

1l reduction in the use of disk I1I/0.

Another restriction under COMRADE * prevents a query from

extending to more than one other file at a time. It does so

* This restriction holds only for the Query processor of
COMRADE.

61

in a manner described in the section, "Cross-File Pointer
Chasing in COMRADE." 1In contrast, COMRADE/GIRS would treat
cross-file pointers in the same way as it treats intra-file
pointers.

Under COMRADE, a type-3 query would require the QUERY
processor to first perform a pointer chase (again bringing in
all data blocks involved in the traversal) and to then test
the specified values from the "hit" blocks against the con-
ditions of the .WHERE. clause. Thus an inordinate amount of
disk I/0 would be used, both for pointer traversals and for
those "hit" blocks which subsequently proved not to contain
any values that satisfied the .WHERE. condition.

A COMRADE/GIRS system would avoid this excessive use of
disk I/0 in the following manner. All values to be condi-
tionally tested, such as those returned by a type-3 query
would be placed on the inverted list so that they could be
treated as queries of the first type. Thus a type-3 query
would result in two lists, one with the names of all the hit
blocks from the pointer chase, and the other with the names
of only those data blocks having values satisfying the .WHERE.
condition. By ANDing these two lists, the names of only those
blocks actually qualifying (to be brought in by FETCH) would

be obtained.

Retrieval at a Lower Level
At the lower level, none of the restrictions associated

with the QUERY language would apply. The user would set up

62

the necessary logic and then call the CDMS routines himself.

O MG S g (1

Following are the major CDMS retrieval subroutines.

A,

FETCH Retrieves the value(s) of a single element,
array, or repeating group.

FETCHR Retrieves the values from a set of repeating |
group elements. i

FETCHN Retrieves the values from a set of non- {4
repeating group elements.

:

QUERY Returns the hits from a .WHERE. clause (this |
subroutine is not to be confused with the }

QUERY processor) i

Suppose that a programmer wishes to determine the block
name in that EQUIP block which is pointed out by the pointer

WEIGHT, as shown in Figure 16.

WEIGHT

e

EQUIP ?

Figure 16 ~ EQUIP-WEIGHT Relationship

He might use the following code in calling FETCH.

IBN = SHEQUIP :
ISBN = 1 |
IRGN = 0

IRGR = 0

1IEN = G6HWEIGHT

LENGTH =] i1
CALL FETCH (IERR,IBN,ISBN,IRGN,IRGR,IEN,DATA,LENGTH) ;

FETCH would bring the EQUIP block into main memory and return
a block name in the DATA parameter:
DATA = 6HBLOK20
If the programmer uses the PTREXEC facility, code such

! as the following might be used:

63

IBN = EQUIP

IEN = WEIGHT

I0P = 5

CALL PTREXEC (IERR,IBN,IEN,IOP,DATA)
PRINT DATA

The GIRL code for this retrieval would be

G EQUIP + WEIGHT' DATA
PRINT DATA

COPYING/SEARCHING ALL OR A PART OF A SUBSTRUCTURE

As already mentioned, under the present COMRADE system, one
and sometimes two disk accesses are required to bring a needed
association into main memory. Consequently, any program which
must copy all or any part of a substructure becomes seriously
I/0 bound. Under paged GIRS, on the other hand, and assuming
that the structure has been skillfully enough partitioned so
that the desired portion (substructure) of the graph is con-
tained on a single continuant or page, the copy operation con-
sists merely of indicating the appropriate page and continuant
number of a user-callable GIRS report generator, LVDUMP. Each
desired continuant is then transferred with a single FORTRAN
READ followed by a WRITE.

If the user wishes to take advantage of Subroutine LVDUMP,
but finds that the graph has not been properly partitioned be-
forehand to have the desired information isolated on a single
page, additional steps must be performed. Two of the methods
available for performing these steps are particularly suited
for use with GI.)S because they are essentially in-core

operations and offer trade-offs as to time, flexibility, and

64

tif : space. Both methods require an entry point to the graph

33 (starting node). (Note that these two methods apply for

¥ searching through a graph, also.) The first method requires
the user to supply a stack of pointers or link names at run
time. Portions of this method form the basis for all three

versions of Subroutine DELEQ, listed in Appendix C. The

flow of operation of this first method is indicated in Figure
17. NODSTAK temporarily stores the values or sink nodes

encountered.

¥

CREATE NEW PAGE TO STORE
SUBGRAPH TO BE TRANSFERRED
BY LVDUMP.

>

Y

WITH A SET OF STARTING
NODES, SEARCH PTRSTAK
FOR POSSIBLE
RELATIONSHIPS.

Y

F PUSH THE VALUE OR SINK
3 NODE ONTO NODSTAK

: FOR EACH RELATIONSHIP
FOUND.

i

INSERT RELATIONSHIP ONTO
] NEWLY CREATED PAGE.

\

POP NODSTAK; IF EMPTY,
CALL LVDUMP
AND STOP.

3

, Figure 17 - Algorithm for Copying/Searching
3 Tree-Structured Data

Under the second method, although it is more costly in
terms of space, links need not be supplied at run time, since
the programmer will already have supplied a list of links
associated with each non-terminal node when the graph was
created (Figure 18). All that is required for the copy or
search operation to proceed is either a set of boundary (or
terminal) blocks (nodes) or an integer value representing

the depth or number of levels to be spanned.

This:
BLOCKR2

DISPLACEMENT

EMPTY GROSS

Becomes this:

BLOCK2

DISPLACEMENT

DISPLACEMENT

EMPTY

son(}

| Figure 18 - Graph Modification for Copy/Search

In conclusion, copying (or searching) a graph structure

would be easier, and would take less time to program and

execute, under a COMRADE/GIRS system with GIRL than under

the COMRADE system.

‘At.“-":é_i\ﬂh ‘“:.' v _‘

CONVERSION OF A COMRADE DATA BASE
FOR THE COMRADE/GIRS SYSTEM

Conversion of a COMRADE data base to one suitable for use
with GIRS would involve modification of the Block Type Def-
initions (BTD's), the Cross File Reference Tables, and the
data base itself. All pointers would have to be eliminated
from the data base and all pointer element names would have
to be eliminated from the BTD's. Under the direction of the
DBA, Cross File Reference Tables would have to be unified
across a data base. Note, however, that present applications
programs would not be affected, since COMRADE could be modi-
fied to call the GIRS routines directly when a pointer

operation was recognized.

REMOVAL OF POINTERS

A program would have to be written (under the supervision
of the DBA) to separate the pointers in the COMRADE data base
from the data. 1Input to this program would consist of a com-
plete list of all of the data blocks in the data base.

The DBA at this point, would defihe a continuant size,
keeping in mind the time versus memory trade-off between long
internal conflict lists and unused space in the GIRS contin-
uant, as described by Berkowitz? The program would then bring
in each block and its block type definition. A call to the

GIRS insertion routine (INSERT) would then be generated with

the data block name as the source node, the pointer name from

the block type definition as the link name, and the value
or new block name as the sink node of a GIRS pointer triple.

To partition the graph, the user would have the choice of
either allowing GIRS to create a single page (letting the
number of continuants grow as needed to handle graph overflow),
or taking an active role in designing the replacement (or new)
graph. This could be done by designing a STRATEGY routine.

STRATEGY would be called by INSERT and might contain the
following instructions: "If the data block (source node) is an
EQUIP block, place the triple on page two; if the pointer
(link) is a WEIGHT pointer, place the triple on page three,
continuant one; if the data block is DECK, create a back
pointer to it from its value; otherwise, place the triple on
the current or most recently accessed page."

When the pointer-removal procedure is complete, all of
the pointers will have been removed from the COMRADE data
base and placed into the GIRS buffer. More relationships can
be added at this point with calls to PTREXEC, the pointer
executive routine which is discussed in the next section. The
data blocks and block type definitions would then be compressed
and the cross file reference table would be updated, if

necessary, resulting in a converted data base.

DEVELOPMENT OF NEW PROGRAMS INVOLVING POINTERS
The COMRADE/GIRS applications programmer would have a num-

ber of options for setting up a program with pointer operations:

.

"‘v;ﬂ,nh ri Gotasn. 7

(1) He could continue to call on the CDMS subroutines di-
rectly as at present, although this would be inefficient,
since the CDMS routines must determine whether or not to call
the GIRS routines.

(2) He could use GIRL, as imbedded in FORTRAN, which
would save both programmer and computer time, and would also
allow for a better conceptualization of the data base
structure even though the use of GIRL would require a pre-
processing step* already described in the section
"Adding a Data-Definition/Data Manipulation Language to

COMRADE."

(3) He could use PTREXEC, a pointer executive routine
which would have a calling sequence similar to the present
CDMS routines. Use of PTREXEC would avoid the ineffic-
iencies mentioned in the first two methods but would not
present a one-to-one trace of the pointer operation to the
code.

PTREXEC would also translate Hollerith block names into

their respective random numbers to be used by GIRS. The first
input parameter to PTREXEC would be the operations code, an
integer which would define the pointer operation. Table 5

contains a partial list of possible pointer operations.

* The GIRL preprocessor accepts a GIRL program as input and
creates a new all FORTRAN applications program.

70

AP T TR TPy They U e a_—

Vo —

TABLE 5 - PTREXEC OPERATION CODES

Operation
Operation Number

Insert a new triple at the end of a

list* 1
Insert a new triple in front of the nth

value in a list 2
Delete array (multivalue list) 3
Delete triple 4
Retrieve (first) value 5
Retrieve nth value from the top of

the list 6
Retrieve nth value from the bottom of

the list 7
Replace DATA value 8
* Note that if no list exists a new triple

is created

The other input parameters would be the block name for the
source node (IBN), the pointer name for the link (IEN), and the
value (DATA) as the sink node. ICODE is présently used for
both input and output and would continue as such. For example,
as an input parameter to the .CDMS routine CHANGE, ICODE is used
for arrays; under a COMRADE/GIRS system it would be used for
multivalue lists. As an output parameter, it is an error code

and its function would not change.

71

IMPLEMENTATION

Under COMRADE, pointers are treated as just another type of
data, along with alphanumeric, integer, real, and text. Since
under COMRADE/GIRS there would no longer be any pointer data
within the data block, CDMS references to pointers would no
longer be relevant and could be removed at the leisure of the
COMRADE managers.

CDMS routines which deal specifically with pointers would
have to be modified, replaced, or eliminated. The following
areas of COMRADE would be involved:

In the QUERY program. To handle a parsed .OF. clause,

subroutine PNTRCE (Overlay (3,0)) would be replaced by a sub-
routine (PTRCHSE) which would take the output of Subroutine
PARSEP and treat the first word in the parsed list as a source
node and the following words in the list as links and translate
this list into one call per link or pointer to the GIRS re-
trieval subroutine FIND. PTRCHSE would then éenerate an array
of hits or potential hits to be ANDed with the output list of
a .WHERE. clause, thus reducing disk I/O. (The conditional
elements involved in a query composed of both .WHERE. and .OF.
clauses would then have to be inverted.) As a result, the
number of hits per query would become available.

Overlay (3,1), which handles the data file switching to ac-

commodate cross-file pointer chasing, would no longer be needed.

In the CDMS Subroutine Library. Under COMRADE, the cross

file reference numbers are local to a particular file within a

COMRADE data base. This feature would be modified so that

there would be a single Cross File Reference Table (CFRT),
since pointers would no longer be oriented to particular data
files. Each file in the data base would have a unique number
associated with it. Therefore, this number must be packed into
every sink node in the pointer graph. Data bases composed of
only one file would not be affected. The following subroutines
might be affected:

PTR. PTR is a routine in the Bulk Data Loader which
sets thé pointer word in main memory. It
would no longer be needed.

INPFN. INPFN is a retrieval routine which returns the
permanent file name from the Cross File Refer-
ence Table. The input to this routine is a
cross-file pointer value which has been packed
into the block name. The function of this
routine would not change; however, the routine
would not be needed until the search was
complete, at which time it would be called once
per query and would return a list of permanent
file names when handed a list of hits.

To prevent existing applications programs from being affected
by the addition of GIRS, CDMS routines would have to be modified
to recognize requests involving pointer information. A pointer
operation may be assumed if a search of the proper Block Type
Definition results in failure. The CDMS routine would then have

to call the proper GIRS routine directly.

73

e

Certain software would have to be added to COMRADE.

(1) The GIRS subroutines would have to be added to
COMRADE's subroutine library.

(2) Two new permanent files would have to be created;
one, the Interactive Pointer Manipulation Package, to handle
pointer manipulation at the terminal, and the other, a Bulk
Pointer Data Program to handle batch jobs involving bulk data

description input. The Interactive Pointer Manipulation

Package would allow for updating, inserting, deleting, and
retrieving data block relationships at the terminal. It would
consist of two parts. One part, the program PTREXEC, would be
a pointer executive routine with both long and short tutorials.
This program would convert tutorial responses directly into
calls to the GIRS subroutines. A similar program is already in
existence. The other part would be a collection of subroutines
created to parse and handle such typical graph manipulation
operations or requests as:

. Delete all references to Data Block (Node) gz

. Delete Node x and its descendants

. Delete Node x and reconnect its ancestor to all of its

descendants

. Add Node x to List y

. Retrieve all of the descendants to Node «x
(0f course, some of these operations would require that the
graph be adequately constructed with back pointers and also that

the pointer (link) names be available, in a stack, perhaps.)

74

The Bulk Pointer Data Program for use primarily in bulk

pointer operations for batch input would process whatever DDL,
such as GIRL, were used. A GIRL language preprocessor has al-
ready been made available, which allows FORTRAN statements
(such as calls to routines in the CDMS subroutine library)
to be interspersed with GIRL statements thus making possible
the performance of efficient operations of the form:
Delete data block x at the end of the pointer search.

The proposed method of converting a COMRADE data base to
a COMRADE/GIRS data base best serves the interests of both
the applications programmer and the DBA. As more needs are

defined, the implementation may be extended.

75

SUMMARY

The advantages of removing the logical structure

(pointers) from the data blocks and collecting them into a

single area are several:
Most of the disk I/O presently needed for accessing and
modifying data block relationships can be eliminated--and
thus response time for a COMRADE retrieval reduced--since
a large collection of pointers can be brought into main
memory at one time.
Partitioning of pointer sets can be flexible (at the cost
of keeping a certain amount of space always "available"),
so that a programmer need no longer be constrained by
the predetermined data block formats known as Block
Type Definitions.
The data base structure can be conveniently operated on
by a pointer manipulation scheme, since pointers are
concentrated in a single area.
Using such a pointer manipulation scheme enables the
introduction of a powerful data-definition/data manip-
ulation language such as GIRL (Graph Information
Retrieval Language) into the system, with the following
benefits:
(i) Programming and debugging time can be reduced by vir-

tue of the one-to-one correspondence between the DDL/

DML code and the pointer relationships represented.

.

(ii) 1Imprecise queries can be handled, albeit at the

expense of memory and disk space.

(iii) The data base administrator is provided with such
features as (a) automatic addition of back pointers,
and (b) automatic connection of the parents and off-
spring of a data block to be removed.

. The logical structure need not be created at the same
time that the data base is created.

. The recognition and reporting out of large file
structures becomes feasible.

. Only finally qualifying "hit" blocks are brought into
main memory when both a pointer search and a conditional
test are involved.

An effective scheme for manipulating pointers, known as
GIRS (Graph Information Retrieval System), has already been
developed in-house. This system, written in FORTRAN and
readily portable, allows a user-defined "STRATEGY." Although
a price must be paid for the gain in speed, flexibility, and
convenience it provides, the amount of extra memory and disk
space involved is generally in direct proportion to the degree
of convenience and flexibility to be gained.

GIRS offers a new tool for the data base administrator.
The DBA will, of course, be responsible for (1) determining
certain GIRS parameters to optimize performance, and (2)
determining how best to partition the relationship graph.

Fortunately, existing applications programs need not be con-

77

g,

verted, since the pertinent COMRADE routines can be modified
to call the GIRS routines.

In conclusion, the speed, flexibility, traceability (in
the case of GIRL), and the manageability of the proposed
COMRADE/GIRS system are the most compelling arguments for
the implementation of such a system. The advantages must
be weighed against the additional space requirements and the

extra costs involved.

78

ACKNOWLEDGMENTS

The contributions and helpfulness of T. Rhodes and

S. Willner, both of DTNSRDC, are gratefully acknowledged.

|
|

e

APPENDIX A

THE "PRESIDENTS" DATA BASE 4 |

The "Presidents" Data Base8 has been designed by

Stanley E. Willner of DTNSRDC for tutorial purposes.l It con-

tains political and personal information on the U.S. presidents

and is structured as illustrated in Figure 19.

LOGICAL DATA
STRUCTURE

¥eres ¥

STATEPTR

ELECTION

1 ADMIN

1 CONGRESS

 / iL
ELECTION CONGRESS ADMIN STATES

3 L-' PRESPTR PRESPTR

E STATEPTR

i Figure 19 - Structure of "Presidents" Data Base

3 81

The "Presidents" Data Base is composed of block types
(data block formats) PRES, ELECTION, CONGRESS, ADMIN, and
STATES, as illustrated by Figures 20 through 24, respec-
tively. There are 35 data blocks of the type PRES, one for
each president; 45 data blocks of the type ELECTION, one for
each presidential election up to 1964; 53 data blocks of the
type ADMIN; 90 of the type CONGRESS; and 50 of the type STATES.
Altogether there are 281 data blocks, two subdirectories,
and 291 pointers in the entire data base. The average data

block length is 23.55 words.

BLOCK TYPE-PRES

SUB-BLOCK

ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT

REPEATING

REPEATING

SUB-BLOCK

ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT

REPEATING

SUB=-BLOCK

ELEMENT
ELEMENT

1- PERSONAL
1- SURNAME ALPHA
2= FIRSTNAM ALPHA
3- INITIAL ALPHA
4= MONTHB ALPHA
5- DAYB INTEGER
6- YEARS INTEGER
7- STATEB ALPHA
8- STATEPTR POINTER
9= HEIGHT ALPHA
10- PARTY ALPHA
11- COLLEGE ALPHA
12~ ANCESTRY ALPHA
13- RELIGION ALPHA
16- OoCCuP ALPHA
15- MONTHD ALPHA
16=- DAYD INTEGER
17- YEARD INTEGER
18- CAUSE ALPHA
REPEATING GROUP 1- NAME
ELEMENT 1
ELEMENT 2
ELEMENT 3
GROUP 2~ BIRTH
ELEMENT 4
ELEMENT 5
ELEMENT 6
ELEMENT 7
GRIUP 3- DEATH
ELEMENT 15
ELEMENT 16
ELEMENT 17
ELEMENT 18
2= FAMILY
1- FATHER ALPHA
2= MOTHER ALPHA
3- WIFE ALPHA
4= MONTHM ALPHA
5= DAYM INTEGER
6= YEARM INTEGER
7- CHILDREN INTEGER
GROJP 1= MARRIAGE
ELEMENT 3
ELEMENT 4
ELEMENT 5
ELEMENT 6
ELEMENT 7
3= HISTORY
1= ELECTION POINTER
2- ADMIN POINTER
3~ CONGRESS POINTER

ELEMENT

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC e

INVERTED
INVERTED
INVERTED
INVERTED
INVERTED
INVERTED

ARRAY

ARRAY

ARRAY

ARRAY

Figure 20 - Block Type PRES

V,

S L e g A

AT e R &

i

e

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC e

BLOCK TYPE-ELECTION
SUB-BLOCK 1- SuB1

ELEMENT 1- YEAR INTEGER INVERTED
ELEMENT 2= WINNER ALPHA INVERTED
ELEMENT 3= PRESPTR POINTER
ELEMENT 4= WPARTY ALPHA INVERTED
ELEMENT 5= VOTES INTEGER

ELEMENT 6= OPPNAME ALPHA
ELEMENT 7= OPPPARTY ALPHA
ELEMENT 8- OPPVOTES INTEGER

REPEATING GROUP 1- OPPONENT

ELEMENT 6
ELEMENT 7
ELEMENT 8

Figure 21 - Block Type ELECTION

BLOCK TYPE-STATES
SUB-BLOCK 1- SuBi

ELEMENT 1- STATE ALPHA INVERTED
ELEMENT 2- YEARA INTEGER INVERTED
ELEMENT 3- CAPITAL ALPHA
ELEMENT 4= AREA INTEGER INVERTED
ELEMENT 5= AREARANK INTEGER INVERTED
ELEMENT 5= POPUL INTEGER INVERVED
ELEMENT 7- POPRANK INTEGER INVERTED
ELEMENT 8- ELECVOTE INTEGER
ELEMENT 3= JITY ALPHA INVERTED
ELEMENT 10~ CITYPOP INTEGER INVERTED
REPEATING GROJP 1- CITVIES

ELEMENT 9

ELEMENT 1)

Figure 22 - Block Type STATES

84

THIS PAGE IS BEST QUALITY PRA: CABLE
CTICA
FROM COPY FURNI SHED 0DC ____—

BLOCK TYPE=-ADMIN
SuB-BLOCK 1~ SsuBl
ELEMENT 1= MONTHI ALPHA

ELEMENT 2= DAYI INTEGER

ELEMENT 3- YEARI INTEGER INVERTED
ELEMENT 4= VPFIRNAM ALPHA

ELEMENT 5= VPSURNAM ALPHA INVERTED

ELEMENT 6= PRESPTR POINTER

ELEMENT 7= SECSTATE ALPHA

ELEMENTY 8- SECWAR ALPHA

ELEMENT 9- SECTRES ALPHA

ELEMENT 10- ATTYGEN ALPHA

ELEMENT 11- NEWSTATE ALPHA INVERTED
ELEMENT 12- STATEPTR POINTER

REPEATING GROUP 1- INAUG |4
ELEMENT . i

(ELENENT

ELEMENT

NN -

REPEATING GROUP 2- VICEPRES
ELEMENT
ELEMENT

w &

REPEATING GROUP 3- CABINETY
ELEMENT
ELEMENT
ELEMENT
ELEMENT 1

owoe N

REPEATING GROJP 4- STATES
ELEMENT 11
ELEMENT 12

Figure 23 -~ Block Type ADMIN

BLOCK TYPE-CONGRESS
SUB-BLOCK 1- SuBi

ELEMENT 1~ NUMBER INTEGER INVERTED
ELEMENT 2~ SPARTY ALPHA

ELEMENT 3- SENATORS INTEGER

ELEMENT b= HPARTY ALPHA

ELEMENT 5~ EPS INTEGER

REPEATING GROUP 1- SENATE
ELEMENT 2
ELEMENT 3

REPEATING GROUP 2= HOUSE
ELEMENT L)
ELEMENT 5

Figure 24 - Block Type CONGRESS

5 pOwige |

EH Y o et 2

.

-

APPENDIX B

SEARCH PROCEDURE WRITTEN IN GIRL/FORTRAN FOR INDIRECT,

The following procedure taken from the report by Berkowitz

MEMORY-RELATED QUERIES

5

indicates code typical of search procedures.

INFER:
(o] £ 1 1]
G 2
3
G 4
G 5
G 6
c hhk
G 7
G 8
(o] ARk
9
G
G 10
G 11
[
G 12
(o] Ak
13
G 14
15
16

B of A given that A is of type C. If (C=0) RETURN

LISTA HOLDS DOWN LINKS OF C

LISTA(HOLDS C 'TEMP, REFER TOP)

JTEMP=0

J=0

TEMP + DOWN/6 .'J=J+1'/6=B/'NEXT 5/7

LISTA(HOLDS NEXT, REFER 'JTEMP'//4)
LISTA(+HOLDS, ' JTEMP-JTEMP+1' /15/'TEMP3)

COMPILE STRING OF LINKS FROM C DOWN TO B

LISTA STRING(B,TEMP)

LISTA(+REFER ,JTEMP' JTEMP=TOP//9,+HOLDS . JTEMP ' TEMP , STRING
TEMP//8)

GENERATE LISTB:TREE OF NODES BASED ON LINK STRING
J=0

A'NODE

LISTA+STRING, 'J=J-1' 'TEMP=B//13

K=0

NODE+TEMP . ' K=K+1' /12" NEXT

LISTB(STRING NEXT,REFER 'J'//11)
LISTB(+STRING/16(.1'NODE,-.1,+REFER(.1'J,~-.1//10)))
OUTPUT NODES LINKED BY B

JJ=0

NODE+B. ' JJ=JJ+1'/12'OUT

PRINT (OUT)

GO TO 14

PRINT('FAIL')

RETURN

END

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED T0 DDG e

87

2 APPENDIX C
:g, TWO SUBROUTINES, AS CODED IN FORTRAN FOR CDMS AND GIRS,
& AND AS CODED IN GIRL

Two subroutines, DELEQ and DLEQPT, have been selected
from the DTNSRDC Ship Design File to illustrate the coding
differences for COMRADE and for COMRADE/GIRS. DELEQ is used
to delete a particular data block and all of its descendants
from the Ship Design File. DLEQPT is used to disconnect any
pointers pointing to the deleted blocks and to reconnect them
to the parent of the deleted block.

DELEQ operates on a simple "preorder" traversal technique
for both CDMS and GIRL versions, whereas DLEQPT uses a much
more involved algorithm which will not be considered here.
The sequence of events for the GIRL version of DLEQPT is
similar to that used in the CDMS version.

The GIRS version of both routines has been produced by
; the GIRL preprocessor. Handwritten GIRS code would be a bit
more efficient and would also take less space in main memory.

Table 6 compares the number cf statements needed to accomplish

the task under CDMS and under GIRL.

TABLE 6 - RATIO OF GIRL STATEMENTS TO COMRADE STATEMENTS

Number of Statements Needed

Subroutine COMRADE GIRL Ratio of GIRL
Name Statements to
5 COMRADE Statements
DELEQ 107 42 «3925...
DLEQPT 160 71 .44375
Total 267 113 04232. 4.

One final comment: After becoming familiar with the two

routines, the author was able to write the GIRL code for DELEQ
in approximately half a day, and that for DLEQPT in approxi-
mately one and a half days.

’ CDMS, GIRL, and GIRS code follows:

ST QUALITY PRACTLCABLE

THIS PAGE IS BE
FROM COPY FURNISHED TO DDC
AS CODED IN FORTRAN FOR CDMS
SUBRUUTINE DELEQ Tl T4 OPT=0 ROUNO=®/ TRACE FTN 4.5+R406

1 SUBROUTINE DELEQ(EQINY
c

C=THIS ROUTINE DcLETeS AN &£Q BLOCK(EQGIN) AND ALL SUBBLOCKS FRCM THE
p C-SHIP DESIGM FILcy ANO DELETES ALL FOINTERS TO THOSE BLOCKS.
c
GCOMMCN/UNITS/LFN,ICONNW
ODIKENSICN P(2) yIPV(2) ,'STACK(100),DATA(100) ,IP(100)
DATA P/2HAR,2HSH/Z ,NPTRS/2/,1IPV/1,27
L=INITIALIZE VARIABLES
10 ISun = 0
IS8N = &HPTRS
PNCT1 = BLNOTONE
SEVSIX = 767676767€76767676768
ISTACK = 0
15 PEQ = 2HEG
C-StV EQCUR TO EQIN
EQCUR = EQIN
C-PLACE EQCUR ON STACK
10 4ASTACK = ISTACK * 1
28 STACK(ISTACK) = EQGCUR
Isun = 0
C-FETCH THE POINTEKS FROM EQUUR TO EACH OF THE POSSIBLE P BLOCKS, SEE
C=-WHICH IS EQUAL TC NOTONE, AND SET THE PROPER IP(ISTACK) TO THE SUM OF
C-THE PROPcR IPV¥(S.
25 IRGR = 0
00 30 I=1,NPTRS
EN = P
LENGTH = 1
CALL CCMRLOR(SLFETCH,IERR)EQCURyISBN 909 IRGRy)ENEOUT 3 LENGTH)
34 IF(IERR.NE.O) CALL ERR(SHFETCH,IERR)
C=SET IP SUMMING CCUNTER ISUM
IF(EOUT.EQ.PNOT1) ISUNSISUMeIPV(I)
30 CONTINUE
C=0UT OF LOOF-3ET IP(ISTACK)
35 IPCISTAUK) = ISUM
C~DOES EGCUR HAVE ANY SUB-EQ(S? FETCH THE OUNN POINTERS OF EQCUR
40 IRGR = 0
LENGTH = 100
CALL COMRLOR(SLFETCHyIERR,EQCUR,ISBNySHOPTRS y IKGRy2HEQyDATAZLENGTH
48 1
B0 &5 JK=1,LENGTH
IF(CATA(JK) <NESEVSIX) GO TO &6
45 CONTINUE
IF(IERReNce0) CALL ERRASHFcTCH,lERR)
45 C-ALL ScVEN SIXES INDICATE NO SUB-EQS
GO TO S50
C-EQCUR DOES HAVE SUBEQ(S. SET EQCUR TO FIRST SUB-EQ, THE GO BACK ANC
C=PLACE iT ON STACK AND SET IP
46 EQULUR = DATALJUK)
50 GO 70 10
C-EQCUR DOES NOT HAVE SU8-EQ{S. HOW MANY BLOCKS ARE IN STACK.
50 IF(ISTACK.EQ.1) GO TO 110
C-SET 1POIF
IPOIF = IP(ISTACK=1) =IFC(ISTALK)
55 C-FOLLOWING LOOP OELETES ALL BACK POINTERS TO EQCUR
00 88 I=1,NPIRS
C-SET Isus
ISUB = 2°¢*(NPTRS-I}
IF(IPOIF.LT.ISLB) GC TO 80
60 C=IPCIF IS GE ISUBs FIRST SET PTR
PTR = FINPTIRS~-1e1)
C-FETCH VALUE OF PTR OF EQCUR AND PLAGE IT IN PTCUR
IRGR = 0
LENGTH = 1
65 CALL CCMRLOR(SLFETCHyIERRy)EQGCURyISBN0yIRGRyPTRyFPTCURLENGTH)
IFCIEKR.NE.O) LALL ERR(SHFETCH,IERR)

—

AD-A055 097

UNCLASSIFIED
207 2

Al

ES097

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE==ETC F/6 9/2

FEASIBILITY STUDY FOR INCORPORATING A DATA STRUCTURE DEFINITION==ETC(U)

MAY 78 I S ZARITSKY
DTNSRDC=78/045

NL

.

e,

14

75

100

118

THIS PAGE IS BEST qu;
FROM Copy QUALTTY PRACTICABLE

C-NON MUST DELETE EQCUR FRCH THE EQ FTRS OF FTCUR. FIRST WUST FIND
C=NHICH OCCUSRENCE OF EQ/PICUR IS EQUAL YO EOCUR. FETCH ALL EQ
C=0CCURRENCES
IRGR = 0
LENGTH = 1100
IF (PTR.NE.2HSM) GO TO 55
EQRG = SHITENPTRG
IOPTR = THITENPIR
G0 To S8
55 EQRG = LHEQRG
IOPTR = 2HEQ . \
58 CALL CCMRLOK(SLFETCH,IERR, PTCUR,ISBN,EQRG,IRGR » IDPTR,0ATA ;L ENGTH)
IF(IERRNE e 00 CALL ERR(SHFETCH,IERR)
C-LOCP TO ScE WHICH CCCURRENCE IS ECCUR AND THEN DELETE IT.
0O 60 K=1,LENGTH
IF (EQULURCNE.OATA(K)) GO TO 60
L=EQCUR IS THE KTH OCCURRENCE IN EQ/PTCUR. OELETE IT7.
CALL CCMRLOR(6LOELETE IERRyPTCURy ISBN)EQRG K 0)
IFC(IERR<NE.0) CALL ERR(GHOELETE,LERR
G0 70 70
60 CONTINUVE
C-RESET IPOIF-CONTINUE LOGFING IN NMAJOR LOOP
70 IPOIF = IPOIF-ISUB
80 CONTINUE
C~DELETE 8LOCK EQCUR FROM THE SHIP DESIGN FILE
CALL CCMRLOR(6LOELETS,IERR,EQCUR)
C~THIS ROUTIKE WILL BUILD BACK POINTERS FROM THAT OTHER BLOCK TO EACH
IF(IERR<NE.O) CALL cRRU6HDELETB,IERR)
C~-SET EQLST TO EQCUR
EQLST = EQCULR
C~SET EQCUR TO NEXT BLOCK ON STACK
ISTACK = ISTACK-1
EQCUR = STACK(ISTACK)
IRGR = 0
LENGTH = 100
CALL CCMRLOR(SLFETCHyIERR) EGCURyISBNySHOPTRSy IRGRy2HEQ DATALENGTH
1
C~DELETE EULST FROM EQ/EQCUR(DOMN FOINTER) FIRST FETCH ALL DQWN
C~-POINTERS EG/cQCUR
IF(IERR.NE« D) CALL ERRISHFETCH,IERR)
C-D0 LOQOP TO FIND EQLST ANu DELETE IT.
00 90 K=1,LENGTH
IF(ECLST.NE.DATA(K)) 6O TO 90
C-DELETE IT AS IS KTH OCCURRENGE
CALL COMRLOR(6LDELETE IERR yEQCURy ISBN,SHOPTRS 3K 500
IF(IERRNE.O) CALL ERR(GHOELETE,IERR)
GO TO 180
90 CONTINUE
C-START PROCESS AGAIN WITH NEW EQCUR
1006 GO TO &0

92

e iy

W —

e s e o USRS

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC

C=ONLY 1 BLGCK LEFT ON STACK. FIRSTY SET EQPAR TO THE PARENT OF EQIN
110 IRGR = 1
LENGTH = 1
128 CALL CGMRLOR(SLFETCH, IERR)EQIN,ISBNySHBPTRSy IRGRy2HPR) EQPAR)LENGTH
1)
IFCIERRNEo0) GALL ERB(SHFETCH,IERR)
C-FIND OUT IF EQPAK IS INDcED AN EQ BLOCKe GET FIRST 2 CHARACTERS
C-OF EQPAR WITH MOVE AND TEST ON IT.
125 ARRAYL = 10H
CALL COMRLORCGLMOVE ,ARRAY1919EQPAR192/IERR)
IF(IERR«NE<0) CALL ERRI(SHMOVE, IERR)
C~CHECKX FIRST 2 CHARACTERS AGAINST EQ
IF (ARRAV1.NE.PEQ) GO TO 140
139 C~EQPAR IS AN £Q BLOCK. LOOP TO DELETE BACK POINTERS TO IV.
00 120 K=1,NPTRS
C~SET PTR TO P(K) TO GET TYPE OF PCINTER.
PTR = P(K)
C~PLACE VALUE OF PTR OF EQCUR IN VARIABLE PTCUR
135 IRGR = @
LENGTH = 1
CALL COMRLOR(SLFETCH,IERRy)EQCURyISBNy05IRGRyPTRyPTCUR,LENGTH)
IFC(IERR.NE.O0) CALL ERR(SHFETCH,IERR)
C-CALL OLEQPT TO DELLTE TO AND FROM FTRS AND MAINTAIN HIERARCHY OF PIRS
140 vALL DLEQPT(EQCUR,PTR)
C-ENG OF LOOP
120 CONTINUE
(-DELETE EQCUR FROM EQ(S OF EQPAK., FIRST FETCH ALL EQ(S OF EGPAR
IKGR = 0
145 LENGTH = 100
CALL CCMRLOR(SLFETCHy IERR,EQPAR,ISBN,SHDOPTRS 9 IRGR92HEQ9OATALENGTH

1
IF(IcRReNES Q) CALL ERRISHFETCH,IERR)
C-00 LGUP TO FIND EQUCUR AND GELETE IT.
150 00 130 K=1,LENGTH
IF(EQCURCNE.DATA(K)) 50 TO 130
C-£QCUR IS KTH OCCURRENCE - OELETE IT
CALL CCMRLOR(GLOELETE,IERR,EQPARy ISBN)SHOPTRS, K909
IF (IERR<NE.0) CALL ERR(GHDELETE,IERR)
155 GO TO 140
130 CONTINUE
C-DELETE EQCUR FRUM SHIP DESIGN FILE
140 CALL CCMRLUR(6LOELET8,IERR,EQCUR)
IF(IERR.NE.D) CALL ERR(GHDELETB,IERR)

160 C-FINISHeO-RETURN
RETURN
ENC
STAT1ISTICS
PROGRAR LENGTH 16148 T80
CN LABELED COMMON LENGTH 28 2

93

Sy e cnmn o

THIS PAGE IS BEST QUALRTY PRACTICABLE
FROM COPY FURNISHED TODDC

SUBROUTINE OLEQPT TW/T6 OPT=08 ROUND=®/ TRACE FTN &,5¢R606

19

15

20

25

39

L]]

&5

58

55

60

SUBRUUTINE OLEQPT(EQIN,PTRS
c
C=GIVEN AN cQ BLOCK(EQIN) ANC A POINTER TYPE(PTR) TO ANOTHER BLOCK,
C-THIS RCUTINES

C- 1= CELETES THE POINTER TO THE OTHER BLOCK

G- 2= OELETES THE BACK POINTZR FROW THE OTHER B8LOCK TO THE EQ
C- BLOCK

C- 3- UPOATES POINTERS FRON AND BACK POINTERS TO HIGHER EQ

C- BLCCKS AS NECESSARY TO MAINTAIN THE WIERARCHICAL SEQUENCE
g- OF (NOTONE(S, REAL POINTERSy AND { LINBO(S.

COMMON/UNITS/LFN,ICONN
OINENSION OATA(100),0ATC10D) yARRAY(2)
C-INITIALIZE VARIABLES
PEQ = 10HEQ
ISBN = 4HPIRS
PLINBO = 6HLINBO
FNOT1 = BLNOTCNE
IF(PTR.NE.2HSN) GO 70 3
EQRG = BHITEMPIRG
ELEN = 7HITENPTR
GO TO &
3 EQRG = LHEQRG
ELEM = 2HEQ
& CONTINUE
ICODE = 0
IERR = §
C-FETCH THE PTR OF EQIN AND PLACE ITS VALUE IN PTRINC
IRGR = 0
LENGTH = 1
CALL CCHRLORCSLFETCH,IERRy) EQIN,ISBNy0y IRGRy)PTRyPTRIN,LENGTH)
IF (IERR<NE«O) CALL ERR(SHFETCH,IERR)
C-SET PTCUR AND EQCUR TO EOQIN
ARRAY1 = PTR
CALL CCMRLOR(&4LNOVE) ARRAY193,FLINBOy1y Sy IERR)
IF(IERR.NELO) CALL ERR(4HMOVE, IERR)
C-IS PTRIN A LINBO BLOCK
IMACH = ICAM(PTRINy1,ARRAY1,1,7)
IF(IRACH.NE.DB) GO TO 5
C-PTRIN IS A LIMBO BLOCK., BEFORE RETURNING DELETE EQCUR AS AN EQ/PTR
L=0F PTRINs FIRST, FETCH ALL EQ/PTRS OF PTRIN
LENGTH = 100
IRGR = 0
CALL COMRLOR(SLFETCHIERRy PTRIN,ISBN)EQRGy IRGR9ELEN,OATALENGTHD
IF(IERR.NE«D) CALL ERRI(SHFETCH,IERR)
00 2 1=1,LENGTH
IF(EQINCNE.DATA(I)) GO 70 2
C-DELETE EQCUR FROM EQ/PTRIN
CALL CCMRLOR(6LDELETE»IERRyPTRINy ISBN,EQRG,I,0)
IF(IERR.NE.0) CALL ERR(GHDELETE,IERRS
GO TG 180
2 CONTINUE
60 TO 180
C=SET PTCUR AND EQCUR
5 PTCUR = PTRIN
EQCUR = EQIN
C=DELETE PTR/POINTER OF EQCUR TO PTCUR
10 IRGR = 0
CALL CCMRLOR(GLOELETEIERRyEQCURy ISBNy 0y IRGRyP TRY
IF (IERR<NE.0) CALL ERR(GHOELETE,IERR)
C-SET EAQLST TO EQACUR
€QLST = EQCUR

94

i b

i

B W ——

7

75

85

90

100

110

115

120

125

THIS PAGE IS BEST QUALITY PRACTICABLE
JFROM COPY FURNISHED TODDG _____—

C-GET NEW EQCUR BY FETCHING FARENT OF CURRENT EQCUR AND PLACING ITS
C=VALUE IN EQCUR
IRGR = 1
LENGTH = 1
CALL LOMRLORCSLFETCHy IERR) EQCUR,ISBN) SHBPTRS » IRGRy2HPR ¢ ESHOT JLENGT
1H)
IF(1ERReNE.B) CALL ERR(SHFETCH,IERR)
EQCUR = ESHOT
C=WHAT IS THE S3LOCKTVYPE OF EQGCUR
ARRAYL = 10H
CALL CCMRLOR(4LMOVE, ARRAY1,1,EQCUR,152/,IERR)
IF(IERK.NE.D) CALL ERRILHMOVE, IERR)
C-EQCUR IS NCT AN EQ BLOCK TYPE-DONE-RETURN
IF(ARRAY1.NE.PEQ) GO TO 180
C-EQCUR IS AN EQ BLOCK TYPE., SET PTLST TO PTCUR
PTLST = PTCUR
C-SET A NEW PTCUR BY PLACING IN IT THE VALUE OF PTR OF EQCUR
LENGTH = 1
IRGR = 0
CALL CCMRLOR(SLFETCH,IERRy EQCUR,IS3N;0,IRGRsPTRyPTCUR,LENGTH)
IFCIERR.NE.O) CALL ERR(SHFETCH,IERR)
IF (PTCUR.NE.PTRIN) GO TO 30
C=THE VALUE OF PTCUR IS PTRIN. GET THE NUMBER OF OCNN POINTcRS(EQ{S) OF
C~-BLCCK EQCUR.
IRGR = 0
LENGTH = 100D
CALL CCMRLOR(SLFETCH,IERR)EQCUR,ISBN;,SHOPTRSy IRGRy2HEQ)DATALENGTH
1)
IF(IERR.NE.0) LALL ERR(SHFETCH,1ERR)
C-LENGTH IS 1, SO GO BACK ,ScT EQCUR,ETC.s AND GET NEXT ONE.
IF(LENGTH.EQ.1) GO TO 10
C-LENGTH 6T 1, DONE-=-RETURN
IF(LENGTH.GT.1) GO TO 180
C=LENGTH IS LT 1--ERROR--STOP
WRITE(ICUNN,20)
20 FORNAT (1H ,30HERROR-EQ(S OF EQCUR MUST EXIT)
CALL COMRLOR(&LFLFK, IERRyLFN)
IF(IERRNE.D) CALL ERRI4HFLFNy 1ERR)

sToep
C-THE VALUE CF PTRIN IS NOTCNE. SET IOC TO ZERO
30 I00 =D

C=1S PTLST EQUAL TO NOTONE
IF (PTLST.EQ.PNOT1) GO T0 80
C-PTLST IS NCT NOTONE. DELETE EQLST FROM EQ PTRS OF PTLST. FIRST NUST
C-FETCH ALL EQ(S FRONM PTLST
LENGTH = 100
IRGR = 0
CALL CCMRLOR(SLFETCH,IERRyPTLST ,ISBN,EQRGyIRGR yELEM9OATALENGTH)
IF(IcRR.NE+3) 60 TO 60
C=PTLAT COtLS NOT HAVE ANY EC POINTERS OR EQLST IS NOT AMONG THOSE THAT
C-ARE THERE. ERROR--ABORT
40 MWRITE(ICCNW,50)
S0 FORMAT (1H ,3SHEQLST WAS NOT THERE TO DELETE=-ABORT)
CALL CCNRLORC4LFLFAN, IERR,LFN)
IF(IERR.NE.D) CALL ERR(4HFLFN,IERRO
STOP
C=NOK TRY TO DELETE EQLST
60 IF(IERRNE.D) CALL ERR(SHFETCH,IERR)
D0 70 I=1,LENGTH
IF(EQLST<NE.DATACI)) 60 T0 70
CALL CONRLDRCGLOELETE ¢IERR)PTLSTyISBNyEQRGI,0)
IF(IERR.NE.0) CALL ERR(6HOELETE,IERR)
GO T0 &8
70 CONTINUE

AW P

s

-

130

135

140

145

150

155

160

165

170

175

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHW 10 DDC g

C-EQLST NGT AMONG EQ(S OF EQCUR. NEED TO KNOW HOW MANY THERE ARE(LEN)
80 LEN = 100
IRGR = 0
CALL CCMRLURESLFcTCH, IERR,) EQCUR ISONySHOPTRSy IRGRy 2HEQ DATA,LEN)
IF(IERR.NE.0) CALL ERR(SHFETCH,IERR)
IF(LENGNE.1) GO T0 120
C-LeN IS ONE. NMUST OELETE EQLST FRCN EQ(S OF PTCUR
IkGR = 0
LENGTH = 100
CALL CCMRLOR(SLFCTCH,IERR) PTCUR)ISBN)EQRGy IRGR9ELEM DATA ,LENGTH)
IF (IERR.NE.3) GO TO 100
C=PTCUR CLOES NOT HAVE ANY EQ POINTERS OR EQLST IS NOT AMONG THOSE
C=EQ(S THAT CO cXIST. ERROR-ABORT
90 GO 70 &0
C-NOW TRY TO OELETE EQLST
100 IF(IERK<NE.0) CALL ERR(SHFETCH,IERR)
U0 110 I=1,LENGTH
IF(EQLST.NE.OATA(I)) GO TO 11D
CALL CCMRLOR(G6LODELETE) IERR9yPTCURy ISEN,EQRGyI,0)
AF(IERR.NE.0) CALL ERR(6MOELETE,IERR)
GO TO 170 !
110 CONTINUE
C-EQLST NOT AMGNG EQ(S OF PTCUR--ABORT
GO0 TG 90
L=LtN IS GREATcR THAN ONE NOW HAVE LOOP TO SEE ABOUT TJE PTR OF EACH
C-SUBcQ OF EQCUR
120 00 140 I=1,LEN
C-SEE IF THE 1TH SUBEQ IS EOQLST. IF IT IS CCNTINUE
IF(UATA(I) .EQ.EQLST) GO TO 140
C=CHECK CN IOO
IF(IDUNE.O0) GO TO 130
C=I0C IS ZERC., SET IT TO ONE AND SET SAME TO PTR OF DATALI)
1006 = 1
LENGTH = 1
BN = DATA(I)
IRGR = 0
CALL COMRLOR(SLFETCH,IERR;BNyISBN 0y IRGRyPTRyS ANE9LENGTH)
IF(IERR.NE. D) CALL ERR(SHFETCH,IERR)
GO TGO 140
C=-I0C WAS NOT ZERO. SET PTRSUB TO PTR OF DATA(D)
130 LENGTH = 1
8N = CATA(D)
IRGR = 0
CALL CCMRLDRISLFETCH,IERRyBN,ISBNy0, IRGR,PTR,PTRSUBLENGTH)
IF(IERR.NE.0) CALL ERR(SHFETCH,IERR)
C=1F PTKRSUB 1S NOT &£QUAL TO SAME, OONE--RETURN
IF(FTRSUB.NE.SANE) GO 70 180
C-ENC OF LCGOP
160 CONTINUE
C-IF SAMc IS NOCTONE, OONE--RETURN
IF(SAME.EQ.PNOT1) GO TO 180

96

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC ____—

C=SANE IS NGT NOTONE. MNUST OELETE EQ OF SANE POINTERS FROM ALL EQ(S
C-UNDER PAKENT (EQCUR). FIRST, HAVE ALL EQ(S OF EQCUK FROR ABOVE IN
C=ARRAY DATA. NEXT, MUST FETCH ALL EQ PTRS OF SANE.
LENGTH = 100
IRGR = 0
CALL COMRLOR(SLFETCH,IERRy SANE 9y ISBNoEQRG) IRGR, ELEN, DAT o LENGTH)
IF(IERR.NE.3) GO TO 158
C=SANE HAS NO EQ PTRS, SO WAS NO SUBEQ PTRS
60 T0 170
C-NON GO THROUGH PROCESS OF DELETING FROM SAME ALL EQ PTRS WHICH ARE
C-SUBEQ(S OF EQCUR
150 0O 160 K=1,LEN
DO 168 J=1,LENGTH
IF (BATACK) <NE-UAT(J)) GO TO 160
CALL COMRLORCG6LODELETE yIERR ySAME sISON,EQRG Jy B9
IF(IERR<NE<D) CALL ERR(6HOELETE,IERR)
160 CONTINUE
C-ADDO EQCUR AS AN EQ POINTER OF SANE
178 IF(PTR.NEJ2HSW) GO TO 175
ARRAY(1) = THITENPTR
60 TO 178
175 ARRAY(1) = 2HEQ
178 ARRAY(2) = EQCUR
IRGR = 0
CALL CCMRLOR(&LADDG, IERRA, SAME » ISBN,EQRGy IRGR) ARRAY 920
E | IF(IERRACNE.O) CALL ERR(4HADDO,IERRAY
E C=SET PTR OF EQCUR TO SAME
| 205 CALL COMRLOR(6LCHANGE,ICODEEQCUR,ISONPTR,SANED
: IFC(ICODE<NE.0) CALL ERR(6HCHANGE,ICODE)
C-SET EQLST TO EQCUR
£QLST = EGCUR
C-SET VALUE OF EQCUR TO THE PARENT NAME OF THE PRESENT EQCUR
1 210 LENGTH = 1
L iRGR = 1
r CALL COMRLOR(SLFETCHy IERRy EQCURy ISBNySHBPTRS) IRGRy2HPRy ESHOT LENGT

1H)
IF(IERRNE.0) CALL ERR(SHFETCH,IERR)
215 EQCUR = ESHOT
C-FIND IF BLCCK TYPE OF EQCUR IS EQ CR NOT
ARRAYL = 10H
CALL CCOMRLOR(&SLMOVE)ARRAY151,EQCURy152yIERR)
IF(IERReNECO) CALL ERRIGHMOVE, IERR)
220 C-EQCUR IS NCT AN £Q BLGCCK=DONE==RETURN
3 IF (ARRAY1.NE.PEQY GO TO 180
C-EQCUR IS AN EQ BLGCK. SET PTCUR TO PTR OF EQCUR
LENGTH = 1
IRGR = 0
225 CALL COMRLOR(SLFETCH,IERR, EQCUR)ISBN 50y IRGRy PTR9PTCUR» LENGTH)
IF(LERR.NE.0) CALL ERR(SHFETCH,IERR)
C=60 TO WHeRc GETTING THc SUBEQ(S OF EQCUR AND RESUME PROCESS FROM

: C=-THERE.
60 To 80
230 C-ENO OF ROUTINE
180 RETURN
END
: STATISTICS
PROGRAN LENGTH 17058 965

CR LABELED COMMON LENGTH 28 2

AS CODED IN GIRL S

g
9
8
2
7
2
&
g
\3

8 SUBROUT INE DELEQ(EQIN)
c

C~THIS ROUTINE OELETES AN EQ BLOCK(EQIN) AND ALL SUBBLOCKS FROM THE
C-SHIP OESIGN FILE, AND DELETVES ALL PCINTERS TO THOSE BLOCKS.

> c
E I:;E:ER EQIN,HOLNAMPEQsPTR9ARRAY14,EQCURsPTCURsP ¢ EQPARPARENT
o * K .
k1 CONMON /NAME/ LVNAME
1 COMMON /NODES/ PNOT1,EQeARySHs ITEMPTR,PR
£ DIMENSION P(2)4STACK(100)
! 6 DEFINE PNCT1,EQeARySHoITEMPTRPR
DATA NPTRS/2/
v 6 EXECVUTE
; C-INITIALIZE VARIABLES
P 1) =AR
P(2)=SH
PEQ=2LEQ
ISTACK =)

C-SET EQCUR TO EQIN
EQCUR = EQIN
C-PLACE EQCUR ON STACK
: 10 ISTACK = ISTACK ¢ 1
; STACK(ISTACK) = EQCUR
c PERFORM PREORDER TRAVERSAL TO TERMINAL NODES
C-FETCH THE POINTERS FROM EQCUR TO EACH OF THE POSSIBLE P BLOCKS, SEE
| C-MHICH IS EQUAL TO NOTONE, AND SET THE PROPER IP(ISTACK) TO THE SUM OF
i C-THE PROPER IPV°’S.
C-DOES EQCUR HAVE ANY SUB-EQ°S? FETCH THE DOWN POINTERS OF EQCUR
6 &40 EQCUR+EQ/S0 °EQCUR/10
C-EQCUR DOES NOT HAVE SUB-EQ°S. HOW MANY BLOCKS ARE IN STACK.
50 IF(ISTACK.EQ.1) 60 TO 110
C-FOLLOWING LOOP DELETES ALL BACK POINTERS TO £QCUR
D0 80 I=1,NPTRS

PTR=P(I)
C-FETCH VALUE OF PTR OF EQCUR AND PLACE IT IN PTCUR
P‘ 6 EQCUR#PTR/99 °*PTCUR
1 IOPTR=EQ

IF(PTR.EQ.SW) IDPTR=ITEWPIR
C-NOW MUST DELETE EQCUR FROM THE EQ PTRS OF PTCUR. FIRST WUST FIND
C-WHICH OCCURRENCE OF EQ/PTCUR IS EQUAL YO EQCUR. FETCH ALL EQ
C-0CCURRENCES
C-LOOP TO SEE WHICH OCCURRENCE IS EQCUR AND THEN DELETE IT.
C-EQCUR IS THE KTH OCCURRENCE IN EQ/PTCUR. DELETE IT.
K=0
6 60 PTCUR+IOPTR/99(."K=K¢1" 3EQCUR/60+=oK)
80 CONTINVE
i C DELETE TERWINAL BLOCK EQCUR FROM SHIP DESIGN FILE
| 6 EQCUR+L VNAME * HOLNAM
| CALL COMRLOR (6LDELETB,TERRs HOLNAN)
i IF(IERR.NE.0) CALL ERR(GHOELETBoIERR)
C-SET EQCUR TG NEXT BLOCK ON STACK
ISTACK = ISTACK-1
EQCUR = STACK(ISTACK)
C-DELETE EQLST FROM EQ/EQCUR(DOMN POINTER) FIRST FETCH ALL DOMN
: C-POINTERS EQ/EQCUR
| 3 EQCUR+EQ-.1
| 60 TO &0
f C-ONLY 1 BLOCK LEFT ON STACK. FIRST SEV EQPAR TO THE PARENT OF EQIN
G IS PARENT AN EQ BLOCK
G 110 EQIN®PR/39 *PARENT+LVNANE *EQPAR
i ARRAY1= EQPAR.AND.777700000000000000008
: IF (ARRAY1 JNE<PEQ) GO TO 140
] =BePAR IS AN EQ BLOCK. LOOP TO DELETE BACK POINTERS TO IT-
C DELETE POINTER FRON PARENT TO EQIN
. 1=0
3 6 130 PARENT4EQ(.=I=1+41"/99 =EQCUR/130¢=01)
G 160 EQCURSL VNANE * HOL NAN
CALL COMRLOR(6LDELETB IERRs HOLNAM)
C-F INJ SHED=RE TURN
RETURN
C DESIRED POINTER NOT FOUND - ERROR
99 CALL ERR(SHFETCH,IERR)
| ¢ COMPLETE

e TR, TSy

Fo S

Ty e
e vp—...._.
U -

2 QUALLTY PRACTICABLE
o

SUBROUTINE OLEQPT(EQIN,PTR)

C-GIVEN AN EQ BLOCK(EQIN) AND A POINTER TYPE(PTR) TO ANOTHER BLOCK,
C-THIS ROUTINES

c- 1- DELETES THE POINTER YO THE OTHER BLOCK

g' 2- DELEYES THE BACK POINTER FROM THE OTHER BLOCK TO THE EQ

- B8LOCK

C- 3- UPDATES POINTERS FROM AND BACK POINTERS TO HIGHER EQ

C- BLOCKS AS NECESSARY TO MAINTAIN THE HIERARCHICAL SEQUENCE
g' OF (NOTONE°®S, REAL POINTERS, AND { LINBO°S,

INTEGER EQINsHOLNAMsPEQePTRy ARRAYLEQCURsPTCURARDATALEQsPNOTE,
¢ PTRNAMSAME s TENPNAM . ARRAY ;BN ELEMoEQLSToPLINBOoPRoPTLSToPTRINe
¢ PTRSUB,SM

COMMON /NAME/ LVNAME

COMMON/UNITS/LFNy ICONN

. COMMON /NODES/ PNOT1,EQeAR,SH.ITEMPTR,PR
[EXECUTE
C-INITIALIZE VARIABLES

PEQ=2LEQ

PLINBO = 6HLIMBO

ELEN=EQ

IF(PTR.EQ.SH) ELEN=ITEMPTR
C-FETCH THE PTR OF EQIN AND PLACE ITS VALUE IN PTRIN
6 EQIN®PTR/99 °*PTRIN®LV NAME ‘PTRNAN
C-1IS PTRIN A LIMBO BLOCK
TEMPNAM=SHIFT (PTRNAMy12)
IF(TEMPNAM.NE.PLINBO) 6O TO 5
C-PTRIN IS A LIMBO BLOCK. BEFORE RETURNING DELETE EQCUR AS AN EQ/PTR
C-OF PTRIN. FIRST, FETCH ALL EQ/PTRS OF PTRIN
C-OELETE EQCUR FROM EQ/PTRIN
I=0
62 PTRINC®ELEN/99 (.“I=I+1" =EQIN/24-.1)
RETURN
C-SET PTCUR AND EQCUR
S PTCUR = PTRIN
EQCUR = EQIN
C-DELETE PTR/POINTER OF EQCUR TO PTCUR
C-SET EQLST TO EQCUR
C=GET NEW EQCUR BY FETCHING PARENT OF CURRENT EQCUR AND PLACING IVS
C-VALUE IN EQUUR
G 10 EQCUR’EQLST (-PTRy*PR’EQCUR®LVNANME*HOLNAN)
C-MHAT IS THE BLOCKTYPE OF EQCUR
ARRAY1=HOLNAM.AND.777700000000000000008
C-EQCUR IS NOT AN EQ BLOCK TYPE-DONE-RETURN
IF(ARRAY1.NE.PEQ) RETURN
C-EQCUR IS AN EQ BLOCK TYPE. SET PTLST TO PTCUR
PTLST = PTCUR
C-SET A NEW PTCUR BY PLACING IN IT THE VALUE OF PTR C* EQCUR
6 EQCUR*PTR/99 °PTCUR=PTRIN/30
C-THE VALUE OF PTCUR IS PTRIN. GET THE NUMBER OF DOWN POINTERS(EQ®S) OF
C-BLOCK EQCUR.
C-LENGTH IS 1, SO GO BACK ,SET EQCURJETC.s AND GET NEXT ONE.
C-LENGTH 6T 1, DONE--RETURN
C-LENGTH IS LT 1--ERROR--STOP
(4 EQCUR®EQ/98 .2/10/RETURN
98 MRITE (ICONW,20)
20 FORMAT(1H ,30HERROR-EQ’S OF EQCUR MUST EXIT)
CALL COMRLDR(4LFLFN,IERR.LFN)
IF(IERR.NE.O) CALL ERRUGHFLFN,IERR)
sToP
a@uiNE~MsLUE OF PTRIN IS NOTONE. SET I00 TO ZERO
30 100 =0
C-IS PTLST EQUAL TO NOTONE
IF(PTLST.EQ.PNOT1) GO TO 80
C-PTLST IS NOT NOTONE. DELETE EQLST FROM EQ PTRS OF PTLST. FIRST MUST
C-FETCH ALL EQ(S FROM PTLST
C-NOM TRY TO OELETE EQLST
I=0
G 70 PTLSTOELEM/60 (“I=I¢1"=EQLST/704=o1I)
60 T0 89

99

.‘

ZHIS PAGE IS BEST QUALITY PRACTICABLA
FHON COPY FURNISHED T0 DDG P LS

C~PTLAT 00ES NOT HAVE ANY EQ POINTERS OR EQLST IS NOT AMONG THOSE THAT
C~ARE THERE. ERROR--ABSORT
40 MWRITE(ICONW,50)
50 FORMAT(1H o3SHEQLST WAS NOT THERE TO DELETE-ABORTY)
CALL COMRLOR(4LFLFN+IERRoLFN)
IFCIERRNE.G) CALL ERRUGHFLFN,IERR)
stop
C-EQLST NOT AMONG EQ’S OF EQCUR. NEED TO KNOM HOM MANY THERE ARE(LEN)
6 80 EQCURCEQ/99 .2/85/7120
C-LEN IS ONE. MUST DELETE EQLST FROM EQ°’S OF PTCUR
C- IF PTCUR DOES NOT HAVE ANY EQ POINTERS OR EQLST IS NOT AMONG THOSE
C-EQ°’S THAT DO EXIST. ERROR-ABORT

(1] I=0
G 110 PTCURCELEN/40(."I=1¢1" /40 =EQLST/110+-.1)
60 T0o 170

C-LEN IS GREATER THAN ONE NON HAVE LOOP TO SEE ABOUT THE PTR OF EACH
C-SUBEQ OF EQCUR
C-SEE IF THE ITH SUBEQ IS EQLST. IF IT IS CONTINUE
120 I=0
6 121 EQCURCEQ/99 .“I=1¢1"/140 =EQLST*BN//121
C-CHECK ON IDO
IF(IDO.NE.O) GO YO 130
C-IDO IS ZERO. SET IT TO ONE AND SET SAME TO PTR OF DATA(D)
100 = 1
& BN¢PTR*SAME
60 TO 140
C-ID0 MAS NOT ZERO. SET PTRSUB TO PTR OF DATA(D)
C-IF PTRSUB IS NOTV EQUAL YO SAME, DONE-~RETURN
6 130 BN+PTR/39°PTRSUB=SANE /RETURN/121
C-IF SAME IS NOTONE, DONE-~RETURN
160 IF(SAME.EQ.PNOT1) RETURN
C-SAME IS NOT NOTONE. MUST DELETE EQ OF SANE POINTERS FROM ALL EQ(S
C-UNDER PARENT(EQCUR). FIRST, HAVE ALL EQ(S OF EQCUR FROM ABOVE IN
C-ARRAY DATA. NEXT, MUST FETCH ALL EQ PTRS OF SAME.
I=0
6 150 EQCURSEQ/99 .“I=I¢1"/160 °OATA
C-NOM GO THROUGH PROCESS OF DELETING FROM SANE ALL EQ PTRS NHICH ARE
C-SUBEQ*'S OF EQCUR
160 J=0
6 155 SAME+ELEM/170(."J=J+1=/150=DATA/150+~4J)
G0 70 150
C-ADD EQCUR AS AN EQ POINTER OF SAME
170 IF(PTR.NE.SW) GO TO 175
ARRAY=ITEMPTR
60 To 178
175 ARRAY=EQ
6 178 SAME ARRAY EQCUR
C-SEV PTR OF EQCUR TO SAME
6 EQCUR PTR =~.1 SAME
C~-SEY EQLST TO EQCUR
EQLST = EQCUR
C=SET VALUE OF EQCUR TO THE PARENT NAME OF THE PRESENT EQCUR
6 EQCURCPR/99°EQCURSLVNANE *HOLNAM
C-EQCUR IS NOT AN EQ BLOCK-DONE-—RETURN
ARRAY1=HOLNAM.AND.777700000000000000008
IF(ARRAY1.NE.PEQ) RETURN
«w@uBACUA IS AN EQ BLOCK. SET PTCUR TO PTR OF EQCUR
& EQCURPTR/99°PTCUR
C-60 TO MMERE GETTING THE SUBEQ’S OF EQCUR AND RESUME PROCESS FROM
C-I'NEIE.
60 T0 80
c DESIRED POINTER NOTV FOUND - ERROR
99 CALL ERR(SHFETCH, IERR)
& CONPLETE
/ COMPLETE

100

e e L e — "

THIS PAGE IS BEST QUALITY PRACTICABLE
: FROM COPY FURNISHED TO DDG o

AS CODED IN FORTRAN FOR GIRS

SUBROUTINE DELEQ 76/T64 OPT=0 ROUND=®/ TRACE FTN &.50018

SUBROUTINE DELEQ(EQIN)

COMNON /LVARGS/ LVFUNCLVVARGoLVVPOS,LVYVTYP,LVVAL,
- SLVVNVL JLVSKIPoLVVTR,LVVINCoLVVALS (10),LVTYPE(10)
C~THIS ROUTINE OELETES: AN EQ BLOCK(EQIN) AND ALL SUBBLOCKS FROM THE
g°$NIP DESIGN FILE, AND DELETES ALL POINTERS TO THOSE BLOCKS.

INTEGER EQIN,HOLNAM,PEQsPTR,ARRAY1,EQCUR, PTCUR.PoEQPAR, PARENT, !
! + STACK v f
E COMMON /NAME/ LVNAME i
- COMMOM /NODES/ PNOTL,EQeAReSHs ITENPTR, PR i
. ODIMENSION P(2) +STACK (160) :
INTEGER
+PNOT14EQeAR,SH+ITENPTR,PR
DATA NPTRS/2/
CALL LVGRN(PNOT1)
CALL LVGRN(EQ)
CALL LVGRN(AR)
CALL LVGRN(SH)
CALL LVGRN(ITENPT)
CALL LVGRN(PR)
; 60 TO 25001
3 25000 CONTINUE
| C-INITIALIZE VARIABLES
P(1)=AR
P(2)=SH
PEQ=2LEQ
ISTACK = 0
C-SET EQCUR TO EQIN
3 €QCUR = EQIN
; C-PLACE EQCUR ON STACK
t 10 ISTACK = ISTACK ¢ 1

. TR

STACK(ISTACK) = EQCUR
C PERFORM PREORDER TRAVERSAL YO TERMINAL NODES
C-FETCH THE POINTERS FRON EQCUR VO EACH OF THE POSSIBLE P BLOCKS, SEE
C-MHICH IS EQUAL TO NOTOME, AND SET THE PROPER IP(ISTACK) TO THE SUN OF
C-THE PROPER IPV°’S.
C-D0ES EQCUR MAVE ANY SUB-EQ’ST FETCH THE DOWN POINTERS OF EQCUR
40 CONTINGE
Co0 EQCUR*EQ/S0 °*EQCUR/10
’ LVVAL=EQCUR
LVVARGSLVVAL
LVFUNC=EQ
‘ CALL LVFIND
- IF(LVVIR .€Q. -1) GO TO 7]
EQCUR=LVVAL
] IF(LVVTR .NE. -1) &0 TO 10
: C-EQCUR DOES NOT HAVE SUB-EQ’S. HOW MANY BLOCKS ARE IN STACK.
; 50 IF(ISTACK.EQ.1) GO TO 110
: C-FOLLOMING LOOP DELETES ALL BACK POINTERS TO EQCUR
00 85 I=1,NPTRS
PTR=P(I)
: C-FETCH VALUE OF PTR OF EQCUR AND PLACE IT IN PTCUR k
4 c EQCUR¢PTR/99 *PTCUR
LVVAL=EQCUR
LVVARG=LVVAL |
LVFUNC=PTR
CALL LWIND
IF(LVVIR .EQ. ~1) GO TO 99
PTCUR=LVVAL
IOPTR=EQ
IF(PTR.EQ.SW) IOPTR=ITEMPTR

P —

101

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDG ____—

70

5

100

110

115

120

125

130

C-NOW MUST DELETE EQCUR FROM THE EQ PTRS OF PTCUR. FIRST WUSY FINO
C-NHICH OCCURRENMCE OF EQ/PTCUR IS EQUAL TO EQCUR. FETCH ALL EQ

C-0CCURRENCES
C-LOOP TO SEE MHICH OCCURRENCE IS EQCUR AND THEN OELETE IT.
C-EQCUR IS THE KTH OCCURRENCE IN EQ/PTCUR. OELETE IT.
K=0
60 CONTINUE
C68 PTCURCIDPTR/99(."KaK¢1~ SEQCUR/68 o=« K}
LVVAL=PTCUR
LVVARG=LVVAL
LVFUNC=IDPTR
CALL LVFIND
IF(LVWTR .EQ. -1) 60 YO 99
LVY i=LVVAL
LVVY 2=LVFUNC
LVV 3=LVVARG
K=Keq
LVVPOS= K
CALL LVFNVILY 1)
LVVIR==-4
IF(LVVAL .EQ. EQCUR
¢) LVVIR=1
IF(LVVTIR .EQ. -1) 6O TO 68
LYFUNCE=LVY 2
LVVARG=LVV 3
CALL LVFIND
LVVPOS= K
CALL LVFNVILY 2}
CALL LVDLTI
80 CONTINUE
c OELETE TERMINAL BLOCK EQCUR FROM SHIP DESIGN FILE
c EQCUR+LVNAME *HOLNAN
LVVAL=EQCUR
LVVARG=L VVAL
LVFUNC=LVNAKE
CALL LVFIND
HOLNAN=LVVAL
CALL COMRLDR(GLOELETBs IERR,HOLNANY
IF(IERR.NE.0) CALL ERR(GHDELETS, IERR)
C~SET EQCUR TO NEXT BLOCK OM STACK
ISTACK = ISTACK-1
EQCUR = STACK(ISTACK)

C~DELETE EQLST FROM EQ/EQCUR(DONN POINTER) FIRST FETCH ALL DOWN

C-POINTERS EQ/EQCUR

c EQCUR¢EQ-.1
LVVAL=EQCUR
LVVARG=LVVAL
LVFUNC=EQ
CALL LVFIND
CALL LVFNVILY 3)
CALL LVOLTI
GO Y0 &0

C-ONLY 1 BLOCK LEFT ON STACK. FIRST SET EQPAR TO THE PARENY OF EQIN

c IS PARENT AN EQ BLOCK
110 CONTINUE
C110 EQIN+PR/99 °PARENT ¢LVNANE® EQPAR
LVVAL=EQIN
LVVARG=LVVAL
LYFUNC=PR
CALL LW IND
IF(LVVIR .EQ. ~1) 60 TO 99
PARENT=LVVAL
LVVARG=LVVAL
LYFUNC=LVYNAKE
CALL LVFIND
EQPAR=LVVAL
ARRAYi= EQPAR.ANO.777700000086000000008
IF {ARRAY1 . NE.PEQ) GO TO 140

i

s 1S et

e
e

»

135

160

145

150

155

160

165

170

STATISTICS
PROGRAM LENGTH

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC _—

C-EQPAR IS AN EQ BLOCKe LOOP VO DELETE BACKX POINYERS 7O IV,
c DELETE POINTER FROW PARENT TO EQIN
1=0
130 CONTINUE
C130 PARENT#EQ(."I=1+1=/99 =EQCUR/130+-.I)
LVVAL=PARENT
LVVARG=LVVAL
LVFUNC=EQ
CALL LWIND
LVV 1=LVVAL
LVV 2=LVFUNC
LVY 3=LVVARG
IsXey
LVVPOS= I
CALL LVFNVILY W)
IFILVVIR .EQ. =-1) GO TO 99
LVVARG=LVVAL
LVVIR=~-1
IF(LVVAL .EQ. EQCUR
+) LVVIR=q
IF(LVVTR .EQ. -1) GO TO 130
LVFUNC=LYV 2
LVVARG=LVV 3
CALL LVFIND
LVVPOS= I
CALL LVFNV(LY 5)
CALL LVOLTI
140 CONTINUE
C140 EQCUR¢LVNAME®HOLNAN
LVVAL=EQCUR
LVVARG=LVVAL
LVFUNC=LVNANE
CALL LVFIND
HOLNAM=LVVAL
CALL COMRLOR(6LDELETBIERR<HOLNAM)
C-FINISHED-RETURN
RE TURN
c DESIRED POINTER NOT FOUND - ERROR
99 CALL ERR(SHFETCH,IERR)
RE TURN
25001 CONVINUE
LV 1=0
LV 2=0
iv 3=0
LV &=0
LV 5=0
G0 TO0 25000
END

5478 359

CH LABELED COMMON LENGTH L4B 36

»

103

ol i ada Dat alogiion sy

LN e

i o i

-

THIS PAGE 1S BEST QUALITY PRACTICANLE
EROM COPY FURNISHED 10 e

SUBROUTINE DLEOQPTY 76/76 OPT=0 ROUND=%/ TRACE FIN 450414

10

15

20

25

o0

45

7%

SUBROUTINE OLEQPT(EQINJPTR)
COMMON /LVARGS/ LVFUNCLVVARG,LVVPOS,LVVTYP,LVVAL,
SLVVNVL JLVSKIPoLVVTRoLVVINC \LVVALS (100 +LVTYPE(10)

c
C-GIVEN AN €Q BLOCK(EQIN)? ANO A POINTER TYPE(PTR) TO ANOTHER BLOCK,
C~-THIS ROUTINES
c- 1- DELETES THE POINTER YO THE OTHER BLOCK
g' 2- DELETES THE BACK POINTER FROM THE OTHER BLOCK TO THE EQ
% BLOCK
c- 3- UPDATES POINTERS FROM AND BACK POINTERS TO WIGHER EQ
C- BLOCKS AS NECESSARY TO MAINTAIN THE HIERARCHICAL SEQUENCE
g- OF (NOTONE’S, REAL POINTERS, ANO C (LINBO’S,
INTEGER EQINoHOLNANM, PEQyPTReARRAY1,EQCURs PTCUR+ AR DATALEQ,PNOT1,
¢ PTRNAM,SAME ; TENPNAN ARRAY oBNoELENJEQLST s PLINBOsPRoPTLST,PTRIN,
+ PTRSUB, SN
COMMON /NAME/ LVNANE
COMMON/UNITS/LFN, ICONN
COMMON /NODES/ PNOT1,EQeARoSHe ITENPTR, PR
c
60 T0 25001
25000 CONTINUE
C~INITIALIZE VARIABLES
PEQ=2LEQ
PLINBO = G6HLINMBO
ELEW=EQ
IF (PTR.EQ.SH) ELEM=ITENPTR
C~FETCH THE PTR OF EQIN AND PLACE ITS VALUE IN PTRIN
c EQIN¢PTR/99 *PTRINCLVMAME® PTRNAMN
LYVAL=EQIN
LVVARG=LVVAL
LVFUNC=PTR
CALL LVFINOD
IF(LVVIR .EQ. ~1) 60 TO 9
PTRIN=LVVAL
LVVARG=LVVAL
LVFUNC=LVNAME
CALL LVFIND
PTRNAM=LVVAL
C-IS PTRIN A LINBO BLOCK
TEMPNAN=SHIFT (PTRNAM+12)
IF (TEMPNAMJNE.PLINBO) GO TO S
C-PTRIN IS A LIMBO BLOCK. BEFORE RETURNING DELETE EQCUR AS AN EQ/PTR
C-OF PTRIN. FIRST, FETCH ALL EQ/PTRS OF PTRIN
C-DELETE EQCUR FROM EQ/PTRIN
I=0
2 CONTINUE
c2 PTRINCELEN/99 (“I=I¢1™ 3EQIN/2¢=.1)
LVVAL=PTRIN
LYVARG=LVVAL
LVFUNC=ELEN
CALL LVFIND
IFILVVTR .EQ. -1) GO TO 99
LVV 1=LVVAL
LYV 2=LVFUNC
LVY 3=LVVARG
I=Xel
LVVPOS= I
CALL LVFNV(LV 1)
LVVTR=~-1
IF(LVVAL .EQ. EQIN
¢) LVVIR=1
IFILVVIR .EQ. -1) 60 TO 2
LVFUNC=LVV 2
LVVARG=LVY 3
CALL LVFIND
LVVPOS= I
CALL LVFNVILY 2)
CALL LVOLTI
RE TURN

104

|
3

Bl Y r—

75

100

105

110

115

120

125

130

THIS PAGE IS BEST QUALITY PRACTICARLE ';
FROM COPY FURNISHED T0 DDC o

C-SET PTCUR AND EQCUR i
5 PICUR = PTRIN
EQCUR = EQIN
C-DELETE PTR/POINTER OF EQCUR TO PTCUR
C-SET EQLST TO EQCUR
C-GET NEM EQCUR 8Y FETCHING PARENT OF CURRENT EQCUR AND PLACING ITS ;
C-VALUE IN EQCUR
10 CONTINUE
C10 EQCUREQLST (=PTR, ¢PR*EQCURSLYNANE*HOLNAN)
LVVALZEQCUR
LVVARG=LVVAL
EQLST=LVVAL
LVV 13LVVARG
LVFUNCSPTR
CALL LVOLEY
LVVALZLWY 1
LVVARG=LVVAL
LVFUNC=PR
CALL LVFIND
EQCUR=LVVAL
LVVARG=LVVAL
LVFUNC=LVNANE
CALL LWIND
HOLNAM=LVVAL
C-WHAT IS THE BLOCKTYPE OF EQCUR
ARRAY1=HOLNAM. AND. 777700000000000000008
C-EQCUR IS NOT AN EQ BLOCK TYPE-DONE-RETURN |
IF (ARRAY1.NE.PEQ) RETURN
C-EQCUR IS AN EQ BLOCK TYPE. SET PTLST TO PTCUR
PTLST = PTCUR
C-SET A NEM PTCUR BY PLACING IN IT TME VALUE OF PTR OF EQCUR
c EQCUR+PTR/99 *PTCUR=PTRIN/ 30
LVVAL=EQCUR
LVVARG=LVVAL
LVFUNC=PTR
CALL LVFIND
IF (LVWVTR .€Qs -1) 60 TO 99
PTCUR=LVVAL
LVVARG=LVVAL
LVVTR=-1
IF (LVVAL +EQ. PTRIN
#) LVVTRsq
IF(LVVIR .EQ. -1) 6O TO 30
C-THE VALUE OF PTCUR IS PTRIN. GET THE WUNBER OF DOMM POINTERS(EQ®S) OF
C-BLOCK EQCUR.
C-LENGTH IS 1, SO GO BACK +SEV EQCUR.ETC.s AND GEV NEXT OME.
C-LENGTH 6V 1, DONE--RETURN
C-LENGTH IS LT 1-~ERROR--STOP
c EQCUR*EQ/98 «2/10/RETURN
LVVAL=EQCUR
LVVARG=LVVAL
LVFUNC=EQ
CALL LVFIND
IF (LVWIR .EQ. -1) GO TO 9 '
LVVPOS= 2 |
CALL LVFNVILY 3) |
IF(LWTR .EQ. -1) GO TO A% |
IF(LVWIR oNE. -1) RETURN {4
98 WRITE(ICONW,20) |
20 FORMAT(1H +30MERROR-EQS OF EQCUR MUST EXIT)
CALL COMRLOR(&4LFLFN, IERRLFN)
IF (IERR.NE.0) CALL ERR(GHFLFN, IERR)
sTop

105

THIS PAGE I'S BEST QUALITY PRACTICABLEF
FROM COPY FURMNISHED T0DDC o™

C-THE VALUE OF PTRIN IS NOTOME. SET IDO TO ZERO
135 30 I00 = 0
C-IS PTLST EQUAL TO NOTONE
IF (PTLST.EQ.PNOTL) GO TO 80
C-PTLST IS NOT NOTONE. OELETE EQLST FROM EQ PTRS OF PTLST. FIRST WuSY
C-FETCH ALL EQ(S FROM PTLST
160 C-NON TRY TO DELETE EQLST
1=0
786 CONTINUE
C70 PTLSTSELEN/&0 (o~IsI+1=sEQLST/70,=+1)
LVVAL=PTLST
145 LVVARG=LVVAL
LVFUNC=ELEM
- CALL LVFIND
& IF(LVVIR .EQ. -1) 60 TO]
v LVV 1=LVVAL
5 150 LVV 2=LVFUNC
! LVV 3=LVVARG
I=1e4
LVVPOS= I
CALL LVFNVILV &)
155 LVVTR=-1
IF(LVVAL .EQ. EQLST
: ¢) LVVTR=1
3 IF(LVVTR .EQ. -1) GO TO 70
P LVFUNC=LVV 2
! 160 LVVARG=LVY 3
i CALL LVFIND
' LVVPOS= I
CALL LVFNVILV 5)
CALL LVOLTI
165 60 TO 80
C-PTLAT DOES NOT HAVE ANY EG POINTERS OR EQLST IS NOT AMONG THOSE VHAT
C-ARE THERE. ERROR--ABORT
40 WRITE(ICONW,50)
50 FORMAT(1M o3SHEQLST WAS NOT THERE TO DELETE-ABORT)
170 CALL COMRLOR(&LFLF Ny IERR,LFN)
g;sgzaa.us.op CALL ERR(GHFLFN, IERR)

C-EQLST NOT AMONG EQ‘S OF EQCUR. NEED TO KNOM HON MANY THERE ARE (LEN) S
80 CONTINUE :

175 C80 EQCUR+EQ/99 .2/85/120
LVVAL=EQCUR

i LVVARG=LVVAL

] LVFUNC=EQ -
CALL LVFIND

: 180 IF(LVVTR <EQ. -1) GO TO 99

3 LVVPOS= 2

CALL LVNVILYV 6)

IF(LVVTR «EQ. -1) 60 TO 85

IF(LVVTR .NE. -1) GO TO 120

W —

— .

185

190
195
- 200
205
219
215
* 220
225
230

260

245

T T TP

T P

L —

THIS PAGE IS BEST QUALLTY PRACTICARLE
FROM COPY FURRISHED TODDC __or

C-LEN IS ONE. WUST DELETE EQLST FROM €Q°S OF PTCUR
C- IF PTCUR DOES NOT HAVE ANY EQ POINTERS OR EQLST IS NOT AMONG THOSE
C-EQ’S THAT DO EXIST. ERROR-ABORY
(1] I=9
110 CONTINUE
C110 PTCURCELEN/&0(."I=I+1" /740 sEQLST/110,~c1)
LVVAL=PTCUR
LVVARG=LVVAL
LVFUNC=ELEM
CALL LVFIND
IF(LVVIR .EQ. -1) GO YO .0
Ly t=tvval
LVV 2=LVFUNC
LVV 3=_LVVARG
Ialed
LVVPOS= I
CALL LVFNVILY T
IF(LVVTR .€Q. -1) 60 TO o0
LVVARGSLVVAL
LVVIR=-1
IF(LVVAL .EQ. EQLST
+) LVVTRst
IF(LVVIR .EQ. -1) 60 TO 110
LVFUNC=LVY 2
LVVARGsLVY 3
CALL LVFIND
LVVPOS= I
CALL LVWNVILY @)
Catt LvoLr:
G0 V0 170
C-LEN IS GREATER THAN OME NOM MAVE LOOP TO SEE ABOUT THE PTR OF EACM
C-SUBEQ OF EQCUR
C-SEE IF THE ITH SUBEQ IS EQLSTY. IF IV IS CONTINUE
120 I=0
121 CONTINUE
C121 EQCUR®EQ/99 .“IsIe1"/140 =EQLST BN//121
LVVAL=EQCUR
LVVARG=LVVAL
LVFUNC=EQ
CALL LVFIND
IFILVVIR .EQ. -1) GO TO 9"
I=Ie1
LVVPOS= | §
CALL LVFNVILY 9
IF(LVVTR .EQ. -1) GO TO 160
LYVARG=LVVAL
LVVTRa-1
IF(LVVAL .EQ. EQLST
¢) LVVIR=1
BN=LVVAL
IFI(LVVTR .NE. -1) 60 TO 121
C'CNEC:‘P:D:N;E 0) GO 7O 130
(} oNE.o
C-I00 IS ZERO. SET IT TO ONE AND SET SAME TO PTR OF DATA(I)
100 = ¢
c BN+PTRSANE
LVVAL=3N
LVVARG=LVVAL
LVFUNC=PTR
CALL LVIND
SAME=LVVAL
GO TO 140

WalS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED T0DDG ™

C-1D00 NAS NOTV ZERO. SET PTRSUB TO PTR OF DATA(I)
C-IF PTRSUB IS NOT EQUAL TO SAME. DONE--RETURM
130 CONTINUE
250 C1386 BN+PTR/99°PTRSUB=SANE/RETURN/121
LVVAL=BN
LVVARG=LVVAL
LVFUNC=PTR
CALL LVFINO
28 255 IF(LVVIR .EQ. -1) GO TO M9
= PTRSUB=LVVAL
{ LVVARG=LVVAL
: LYVTR=-1
= IFILVVAL .EQ. SAME
b 260) LVVIR=1
b IF(LVVIR .EQ. =1) RETURN
{ IF(LVVTR «NE. ~1) GO TO 121
C-IF SAME IS NOTONEs OONE--RETURN
4 160 IF(SAME.EQ.PNOT1) RETURN
265 C-SANE IS NOT NOTONE. MUST DELETE EQ OF SAME POINTERS FROW ALL EQ(S
C-UNDER PARENT (EQCUR). FIRST, MAVE ALL EQ(S OF EQCUR FRON ABOVE IN
C-ARRAY DATA. NEXT, MUST FETCH ALL EQ PTRS OF SANE.
I=0
150 CONTINUE
270 C150 EQCUR®EQ/99 .“1=I+1=/160 °DATA
LVVAL=EQCUR
LVVARG=LVVAL
LVFUNC=EQ
CALL LVFIND
2715 IF(LVVTR .EQ. ~1) 6O TO 9
I=304
LVvpPOS= I
CALL LVFNVILY 100
IF(LVWTR .EQ. ~1) 60 TO 160
200 DATA=LVVAL
C~NOW GO THROUGH PROCESS OF DELETING FROM SAME ALL EQ PTRS WHICH ARE
C~SUBEQ’S OF EQCUR
160 J=0
155 CONTINUE
208 C155 SAME+ELEN/170(,"J=Je1~/1502DATA/1500-0J)
LVVAL=SANE

i LVVARGSLVVAL
LVFUNC=ELEN
CALL LVFIND
29 IF(LVVIR .EQ. ~-1) GO TO 170
3 LVV 1sLVVAL
LVV 2=LVFUNC
LVY 3=LVVARG
Jaget
29s LVWPOS= J
CALL LVFNVILY 11)
IF(LVVIR .EQ. -1) G0 TO 150
LVVARG=LVVAL
LVYTR=-1
30 IF(LVVAL .EQ. DATA
+) LVVTR=1
IF(LVVTR .EQ. -1) GO TO 158
‘ LVFUNCELYY 2
I LVVARG=LVV 3
‘ 3es CALL LVFIND
i LVVWPOS: J
CALL LWNVI(LY 120
g CALL LVOLTI
G0 TO 150
310 C-ADD EQCUR AS AN EQ POINTER OF SAME
3 170 IF(PTR.NE.SW) GO TO 175
' ARRAY=ITENPTR
GO TO 176

]
|

audbalaliie ok aURdR A tuo

|
]

318

348

345

358

370

378

STATISTICS

1S BEST QUALITY PRACTICABLE

GE
e s FURNISHED TO DDC

FR0M COPY

175 ARRAY=EQ
178 CONTINUE
CA78 SAME ARRAY EQCUR
LVVALSSANE
LVVARG=LVVAL
LVFUNC=ARRAY
CALL LVFIND
LVVALS(2)=EQCUR
CALL LWSRT
C-SET PTR OF EQCUR TO SAME
c EQCUR PTR =<1 SAME
LVVAL=EQCUR
LVVARGSLVVAL
LVFUNC=PTR
CALL LVFIND
CALL LVFNVILY 13)
LVVALS (1) =SANE
CALL LVOSIN
C-SET EQLST 7O EQCUR
EQLST = EQCUR
C-SET VALUE OF EQCUR TO THE PARENY NAME OF THE PRESENTY EQCUR
c EQCURPR/99°EQCURSLY NAME *HOLNAN
LVVALSEQCUR
LVVARG=LVVAL
LVFUNC=PR
CALL LVFIND
IFILVVIR .EQ. ~1) GO TO 99
EQCUR=LVVAL
LVVARGaLVVAL
LYFUNCSLVNANE
CALL LVFIND
HOLNAN=LVVAL
C-EQCUR IS NOT AN EQ BLOCK=-OONE-=-RETURN
ARRAY1=HOLNAM.AND. 777700000000000000008
IF(ARRAYL1 «NE.PEQ) RETURN
C-EQCUR IS AN EQ BLOCK. SET PTCUR YO PTR OF EQCUR
c EQCURPTR/ 99°PTCUR
LVVAL=EQCUR
LYVARG=LVVAL
LVFUNC=PTR
CALL LWIND
IF(LVWIR <EQ. ~1) 6O TO 99
PTCUR=LVVAL
g-::ttkg NHERE GETTING THE SUBEQ®S OF EQCUR AND RESUME PROCESS FRON
5= o
60 70 80
c DESIRED POINTER NOT FOUND - ERROR
99 CALL ERRISHFETCH,IERR)
RE TURN
25001 CONTINUE
LY 1=0
LV 2=0
LV 3=0
LV 6=0
LV 5=0
LY 6=0
LV 7=9
LV 8=0
LV 9=0
LV10=0
Lvi1=0
Lvi2=0
LV13=0
GO T0 25000
END

PROGRAM LENGTH 10018 513
CH LABELED COMMON LENGTH 468 38

109

REFERENCES

l. Gorham, W. and T. Rhodes, "COMRADE - The Computer-
Aided Design Environment Project, An Introduction," DTNSRDC
Report 76-0001 (Nov 1976).

2. Thomson, B., "Plex Data Structure for Integrated
Ship Design," Presented at the 1973 National Computer Con-
ference, New York, (Jun 1973). American Federation of Infor-
mation Processing Societies proceedings, pp. 347-352.

3. Bandurski, A. and D. Jefferson, "Enhancements to
the Relational Model for Computer-Aided Ship Design," DTNSRDC
Report 4759 (Oct 1975).

4. Bandurski, A. and D. Jefferson, "Data Description
for Computer-Aided Design," DTNSRDC Report 4750 (Sep 1975).

5. Berkowitz, S., "Design Trade-Offs for a Software
Associative Memory," NSRDC Report 3531 (May 1973).

6. Zaritsky, I., "GIRS - (Graph Information Retrieval
System) Users Manual," (to be published).

7. Bandurski, A. and M. Wallace, "COMRADE Data
Management System - Storage and Retrieval Techniques,"
Presented at the 1973 National Computer Conference, New York,
(Jun 1973), American Federation of Information Processing
Societies proceedings, pp. 353-357.

8. Willner, S., et al, "COMRADE Data Management System,"
Presented at the 1973 National Computer Conference,

New York (Jun 1973), American Federation of Information

Processing Societies proceedings, pp. 339-345.

111

al

9. Martin, J., "Computer Data-Base Organization,”
Prentice-Hall, Inc., New Jersey (1975), pp. 100-1.

10. "CODASYL Data Description Language," U.S. Department
of Commerce, NBS Handbook 113 (Jun 1973), pp. 2.11-2.12.

11. Berkowitz, S., "Graph Information Retrieval Language;
Programming Manual for FORTRAN Complement," NSRDC Report 4137
(Jun 1973).

12. Ash, W. and E. Sibley, "TRAMP, An Interpretive
Associative Processor with Deductive Capabilities," Proceedings
23rd National Conference of the ACM, pp. 143-156 (1968).

13. Hewitt, C., "Description and Theofetical Analysis
(using schemata) of PLANNER," MIT Artificial Intelligence
Laboratory AI-TR-258 (1972).

14. McDermott, D.V. and G.J. Sussman, "The CONNIVER
Reference Manual," MIT Artificial Intelligence Laboratory
AIM-259a (1974).

15. Martin, R. and C. Bell, "A Primer for the COMRADE
Data Management System," NSRDC Report 4605 (Jan 1975).

16. Rhodes, T., "The Computer-Aided Design Environment
Project (COMRADE)," Presented at the 1973 National Computer
Conference, New York (Jun 1973). American Federation of

Information Processing Societies proceedings, pp. 319-324.

g b

]
B

i saca ——
9 INITIAL DISTRIBUTION
Copies Copies Code
+ 1 CHONR/430D, M. 1 1828
Denicoff 1 1828
’4:,"‘
1 NRL 1 l8%ﬁ
: 1 /}658.1
1 S 184
1 1/ 184.1
1 1843
&
1 NAVSUP/0414 \G. / > ig::
Bernstein 4
//’ 1 185
3 NAVSEC y
1 SEC 6114 1 1851
1 SEC 6178D 1 1853
1 Rome Air Develgpment 1 1854
Center 1 1855
12 DDC 1856
187
CENTER DISTRYBUTION
Copies Code Name
1 18 G. Gleissner
1 180Z.2 F. Frenkiel
1 3 S. Rainey - 522.1
1 L. Avrunin £ 522.2
1 E. Cuthill
1 J. Pulos
2 D. Harris
1 A. Camara
1l 1821 D. Jefferson
1 1822 T. Rhodes
1 1824 S. Berkowitz
15 1824 I. Zaritsky
1 1826 L. Culpepper

113

/

7

Nante

o

#C. Godfrey

W. Gorham,
Jr.

M. Wallace

I. Datz

H. Lugt

H. Feingold
J. Schot

S. Dhir
J. McKee

T. Corin

J. Brainin
B. Thompson
H. Sheridan
R. Brengs
M. Skall

M. Zubkoff
R. Ploe

G. Gray
N. Taylor

Reports Dis-
tribution

