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- - ABSTRACT

A scheme is described for enhancing the COMRADE
(Computer—Aided Design Environment) Data Management
System. This scheme would produce benefits in data
management efficiency , user convenience , power , and
cost effectiveness by representing the data structure
of a COMRADE data base apart from the data records
and by adding a system specifically designed to handle
pointer information. In particular , such techniques
would

reduce COMRADE use of disk I/O for data block
relationships ,

simplify the organization and administration
of the data base ,

enable the use of a powerful data—definition !
data manipulation language ,

enable the use of an inferential search
mechanism , and

permit exis ting programs involving pointer
relationships to remain essentially unchanged .

The degree of effectiveness achieved under this
scheme can be further enhanced by giving the data base
administra tor a greater role in developing and main-
taining the data base in a way to capitalize on the
greater flexibility provided .

The procedures involved in implementing the
proposed scheme and the benefits to be realized from
such a scheme are illus tra ted by describ ing a hypo-
thetical COMRADE/GIRS system. GIRS (Graph Information
Retrieval System) is an in—house developed system
written in FORTRAN that is particularly efficient at
manipulating pointers. It is already operable on the
CDC 6700, the PDP—ll/45, and the UNIVAC 1108, and is
easily portable to other machines .
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INTRODUCTION *

The COMRADE (Computer—Aided Design Environment) software

1 
developed at the David W. Taylor Naval Ship Research and

Development Center in support of the CASDAC (Computer—Aided

Ship Design and Construction) effort being conducted by NAVSEA

(Naval Sea Systems Command ) consists of three major compo-

nents——the COMRADE Executive , the COMRADE Data Management

System , and the COMRADE Design Administration System .1 This

report describes a method for enhancing data managment

efficiency, user convenience , power , and cos t effectiveness

of the data management component.

The concept is simple. Under the present COMRADE arrange—

ment, much of the information contained in a par ticular data

block of a common data base is irrelevant for a specific task ,

since a data base must serve different users having different

requirements. B. Thomson2 speaks of the common data base

used for ship design in the following way :

1 Gorham, W. and T. Rhodes, “COMRADE , Computer Aided Design
Environment Project, An Introduction , DTNSRDC Report 76-0001
(NoV 1976). A complete listing of references is given on page
ill.
2 Thomson , B., Plex Data Structure for Integrated Ship
Design ,” Presented at the 1973 National Computer Conference ,
American Federation of Information Processing Societies ,
New York , pp. 347—352 of the Proceedings (Jun 1973).

2 
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I
“The SDF (Ship Design File) solves the data

communications problem by providing a single common ,
current compendium of design information... The
various design disciplines view the ship from
different perspectives and require common data to
be organized in a variety of different ways. The
SDF employs a plex structure* which relies upon
sundry types of pointers to connect data blocks
in the various relationships required by the user
engineers and the applications programs.”

The necessity for providing different pointer information

for each user results in the data base becoming large and

cumbersome to search . Moreover , once the structures (Block

Type Definitions) which define the contents of the data blocks

have been determined and used , they are ex tremely difficult to

modify . Under the current COMRADE scheme , pointer searches

and updates involving pointer searches consume a lar ge amount

of disk I/O in traversing non—hit pointers , since each of the

data blocks containing relevant pointers must be brought into

main memory even though mos t of the contents are unrelated to

that search. Such a necessity makes it impractical for the

user to either recognize or report on a large file structure.

Moreover , pointer information takes up space bet ter reserved

for data.

A scheme is available which can nullify these problems.

Under this scheme , all pointer information is ex trac ted from

the data blocks and collected into a common area which can

exist either as par t of the data file or as a separate file

* A plex structure is the mos t general form of data struc ture
in which  any given node may be related to any other .

3 
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established exclusively for pointers. This collection of

pointers can be eas~1y traversed or man ipulated by a system

especially designed for that purpose.

A data file could hold several different descriptions

of the data structure (several different pointer collections),

including , if desired , a complete descrip tion of the data

base. This requirement of multiple views of the data base

is discussed in Jefferson and Baridurski ,3

“Different users desire different information
from the database, are fam iliar with d ifferen t
naming conven tions and levels of detail , are
permi tted to read and alter differen t par ts of
the database, and impose differen t types of
consistency constraints upon the database.
It is convenien t, then , to have d ifferen t
views , or descr iptions , of the same database
for different users. Further , a program may
remain stable as the database structure changes ,
if the program is prov ided with an unchanging
view of the database .

The user ’s view of the database may be
simplified by elimina ting unnecessary re-
lations , records, and fields——essentiall y, -

by providing him with a subset of the data-
base——and possibly by renamin g the remainin g
relations and fields. ”

Under the approach proposed within this report* , the data

records would be maintained separately from the pointer—

information relating to the data records . The data records

* A network mcdel , not the
4relational model of Baridurski andJefferson . See their paper for the advantages and dis-

advantages of the relational model.

~ Bandurski , A. and D. Jefferson , “Enhancements to the Re—
lational Model for Computer Aided Ship Design ,” DTNSRDC Report
4759 (Oct 1975).

~ Bandurski , A. and D. Jefferson , “Data Description for
Computer—Aided Ship Design ,” DTNSRDC Report 4759 (Sept 1975).

4 
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would be compressed and the excluded pointer data collected

into a concise representation of the file structure so that

a system designed for graph processing could operate on several

pointer relationships without accessing the data blocks.

Thomson cites the need for a system which will allow

flexibili ty in referencing . In his description of the SDF

he has this to say:

“The most significant characteristic of the SDF
is that most data elements have several d istinct
relationships to other data elements. For instance ,
a piece of electronic equipment may belong to a
sonar system , may be located in the Sonar Control
Room , may be classified in weight group 412, and
may be physically connected to various other com-
ponents in the sonar system and in the electrical
d istribution system , the water  cooling system ,
and the f i r e  cont ro l  system . The data  s t r u c t u r e
must allow the electronic component to be referenced
v ia  any o f the above r e l a t i onsh ips .  This  require—
ment reflects the inclination of various disciplines
to view the ship from d if ferent perspectives , and
it dictates a high degree of interconnectivity and
f l e x i b i l i t y  w i t h i n  the SDF .”

Under the proposed system , the- cost of maintaining the data

records would continue to be shared by all users , but the cost

or main taining a particular Data Definition Dictionary (DDD)

de f ined  by the Data Base A d m i n i s t r a t o r  ( DBA ) would be borne by

the p a r t i c u l a r  i nd iv idua l  for  whom it was developed , thus r e —

sulting in a more equitable distribution of the cost.

A COMRADE data base as presen tly struc tured is shown in

F i g u r e  1.

5 
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Figure 1 — Current Structure of a COMRADE Data Base

Under the proposed system , the structure of this same data

base would be changed as shown in F i g u r e  2.

________________________ 
DATA DEFINITION DICTIONARY
AS MANAGED BY A POINTER

EJ E 1  EJ RETRIEVAL ANDMANIPULATION
SYSTEM

~~~~~~~~~J E~~~~BLOCKS

~ J DI~~

BLOCK TYPE 1 INVERTED
DIRECTORY DEFINITION LISTSTABLE

Figure 2 — Proposed Structure of a COMRADE Data Base

Note that the only component affected by this restructuring

would be pointer structure and its attendant subroutines.

6
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To provide maximum flexibility for the manipulation of

pointers in an arbitraril y directed (plex ) graph , an efficient

- 1 system for storing , retrieving , and manipulating information

in main memory is needed . Thomson has this to say about the

data structure design needs of ISDS (Integrated Ship Design

System), a pr ime user of COMRADE:

“Early experience with a list structured
Ship Design File revealed that such a structure
was too restrictive for the requirements of
ISDS...It was accepted that a very gene-r-e-l plex
structure was required .”

Several systems exist which might be applicable for use

within COMRADE for pointer manipulation (see later section en-

titled “Satisfying an Imprecise Query ” ); however , the paged

version of the in—house developed system known as GIRS (Graph

Information Retrieval System5 6 is ideal for representing and

processing “plex” , or arbitrary, graph structures. Moreover ,

GIRS can be adapted to d ifferent computing systems quite

easily, and is curren tly available on the CDC 6700, the PDP—

11/45, and the Univac 1108. For these reasons, the proposed

scheme is described in terms of a hypothetical COMRADE/GIRS

configuration .

GIRS used in conjunction with COMRADE offers a number of

advantages:

Berkowitz , S., “Design Trade—Offs for a Software Associative
Memory,” DTNSRDC Report 3531 (May 1973).

6 Zaritsky, I., “GIRS (Graph Information Retrieval System)
Users Manual” (to be published).

7 
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(1) Dependence on disk I/O for pointer operations is
reduced , which results in .4

(a) reduced wall—clock time at the teletype terminal ,

(b) lowered over—all cost of program execution , and

Cc ) the option of adding an efficient pointer
traversal executive routine

(2) Multiple views of a data base are supported , so that
the DBA can tailor the data structure to each appli-
cation .

(3) A powerful Data—Definition Language/Data—Manipulation
Language (DDL/DML) can be incorporated , which results
in

(a) greater convenience in querying , manipulating ,
and modifying data block relationships , and

(b) greater convenience in inverting pointers to
ans-~er different types of queries

( 4) Back pointers can be add ed automatically

These advantages are not without cost:

1. Implementation costs are incurred .

2. Some additional disk space is needed .

3. Disk space becomes fragmented for systems such as the
CDC which have a fixed PRU size .

For the CDC 6700 computer , with its fixed PRO size of 64

words , the approximate number of PRO ’s needed for pointers can

be determined by d ivid ing the number of pointers in the entire

data base by 64. For data bases composed mostly of data

blocks longer than one PRO, the total amount of disk space

r equ i r ed  under COMRADE/GIRS may a c t u a l l y  be only  slightly

differen t from that required under the COMRADE system .

A brief description of GIRS follows , after which the

trade—offs among time , memory, disk space , and flexibility

will be considered .
8
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- — I OVERVIEW OF GIRS (GRAPH INFORMATION RETRIEVAL SYSTEM)

ELEMENTS OF THE GRAPH STRUCTURE
I

GIRS is a hashed—address associative memory scheme designed

to accommodate the insertion , retrieval , and deletion of in—

formation contained in arbitrary graph structures. Under

this scheme , information is stored conceptually as pr imitive

structures called node—link—node triples with the first node

called the source node and the second node called the sink

node , or value, as indicated in the following diagram .

Figure 3 - Node—Link—Node Triple

Under a COMRADE/GIRS system , the source node A would represent

the parent data block , the sink node C would represen t the

sibling data block , and the link B would represent the

associating pointer or function .

The tr iple can , of course , be combined wi th other triples

to form a more complex graph structure. The triple can be

a component in a list (Figure 4).

9
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- alternatively drawn as

Figure 4 — Multivalued List

The triple can also be a component in a string (Figure 5).

o

_

~~~~~~~~~~~~~~~~® G~
_
~
_
~t~ a~

_
~~alternatively drawn as

Figure 5 — Concatenated Value String

If the triple G,H,A were added to this str ing , each triple

would then represent a component of a circuit.

- 
- 10
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PAGED (OUT-CORE) VERSION OF GIRS

I
! There are three versions of GIRS currently available.

Two are designed to use a working space or buffer which

contains the entire graph structure in main memory. In one

HI of these two , the b u f f e r  is divided into fou r  separate

arrays that store the node , list , conflict list , and flag

functions ; in the other , the four functions are packed into

a single array . The third version , a paged (out—core)

extension of the one which packs the functions into a single

array , is the one that concerns us here. It is this version

that is suggested for use with COMRADE.

In this out—core version of GIRS , the triple is assigned

to a page that can extend its length as needed by a specified

increment , called a continuant. These adjustable—length pages

exist to enable information to be logically divided . Each

page contains one or more logical records (continuants) of

- u n i f o r m  leng th , as illustrated in the following diagram .

PAGE 1 PAGE 2 PAGE 3 PAGE 4
CONTINUANT O 0 — 0 0

CONTINUANT 1 1 — 1

CONTINUANT 2 2

3

11
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A continuant may be used either as a logical subdivision of

the graph on that page or merely as an area for overflow from

the previous con t inuan t .  Thus , although all of the pages have

the same l imi t  as to the number of source nodes they may con-

tain , the sets of source nodes on the differen t pages are d is-

joint. Each continuant contains a subset , which may or may not

F- - be distinct, of the set of source nodes assigned to the total

page. GIRS will automatically create continuants as needed .

By ass igning an ind iv idua l  address to each continuan t, the

user can conveniently partition a graph into a number of

“local” subgraphs. “Localness” of a subgraph may be defined

in a number of ways. For example, all descendants of a node

comprise a subgraph of “local” character. All or part of the

. . . . .nodes in a string or list may be considered local . To minimize

th rash ing  (excess d isk  1/0 due to a poorly designed data

partition ), the user must carefully partition the graph into

local subgraphs which may be placed onto separate continuants.

Note that the DBA is responsible for partitioning the graph

in a way that  wil l  make optimum use of the local q u a l i t y

of a subgraph . Although thrashing cannot ever be completely

eliminated (unless the entire graph structure can be stored

within the buffer ), the technique of partitionin g represents

an improvement over the current situation which can result in

a new data  block having to be brought  in for  each pointer

access.

a 12
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The following excerpt from Berkowitz5 indicates some of the

- 
f problems involved in relating the graph structure to the paged

GIRS architecture. Consult Berkowitz5 for a more detailed

description of local graph processing .

“The central problem is to de te rmine  on which
page one should place a newly created node. If
the program is creating a list of names of major
graph locali t ies, each new node should be on a
different page than the curren t one, since.., each
page will have the capacity to contain at least the
beginning of a graph locality . On the other hand ,
if the list is part of a hierarchical directory, then
only the terminal  nodes of the d i r e c t o r y  should be
on differen t pages than the current one . Similarly,
if the program is se t t ing  up strings to operate on
a trace mode , then the newly created sink nodes
should be on the c u r r e n t  page or at worst on few
enough other pages so that primary memory could
contain all of them . More generally, graph mani-
pulations are , in par t, combinations of direc tory
searches and string traces. While a directory
search can result in a separate disk access to a
new graph locality , it is most desirable that a
trace take place within a given locality on one
page. For example , consider a stack search which
provides the in fo rmat ion  to cont inue a trace . In
this case , the stack nodes are best represented
as a l i s t — — i . e . ,  a terminal directory——on a single
page. The s ink node addresses , however , are in-
tended to represent links in a single graph locality,
and hence are all used on the same page. If the link
addresses are never used as source nodes, their
place of definition is irrelevant. ”

The DBA also determines the continuant size and the

maximum numbe r of con t inuan ts  to be res ident  in main  memory

at any one time . The length of the con t i nuan t  de te rmines

the maximum number of un ique  source nodes that may be defined

on a given page.

13 
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RELATIONSHIP OF DATA STRUCTURE TO GRAPH STRUCTURE

Under COMRADE , the POINTER is stored in the data BLOCK as

a “data value” . GIRS would represent this same relational

information as triple (Fi~gure 6).

BLOC K ‘ nsw block n.m

Figure 6 — GIRS Representation of a
Data Block Relationship

A relational triple such as that shown in Figure 6 would be

packed into a single word of the GIRS buffer. Multivalue lists

which can expand and contract  in size dynamical ly  would re—

present pointer a r r ays  and would r equ i r e  one ex t ra  word of

overhead just as at present under COMRADE .

Random values assigned by GIRS to BLOCK and POINTER (names

assigned by the user ) serve to place and locate the relationship

within the GIRS buffer under a hashing technique. All new

block names are assigned a random number along with a cross—

file reference number if necessary. The cross—file reference

number would associate a new block name with the appropriate

COMRADE f i l e  in the data base. If the new block name is a hit ,

its random number is used in r e t r i ev ing  its Hol le r i th  name which

will be stored along with it in the GIRS buffer. The Hollerith

name will then be given to the COMRADE Data Storage Facility

14
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(CDSF)7 which will bring the hit block into the COMRADE buffer.

The procedure is discussed in greater detail later under the

heading “Implementation” .

The GIRS representation for both the intra—file pointers and

the cross—file pointers would be identical . With a paged GIRS

structure , a DEA could set up cross—file pointers and intra—

file pointers for each file in the data base on a single page.

This setup would be particularly suitable for a hierarchical

directory. The pr imary effect of the shift of emphasis from

the file structure to the page structure is that the Cross File

Reference Table (CFRT) has to be modified . Under the present

COMRADE system each file has its own CFRT. In a COMRADE/GIRS

architec ture , a single , universal CFRT for all of the files

in a data base would be established , as will be d iscussed

later in more detail .

TIME/SPACE/FLEXIBILITY/TRADE-OFFS , COMRADE/GIRS VERSUS COMRADE

DISK USE

Pointer Traversal under COMRADE

• COMRADE Dependence on Disk I/O

As already noted , under COMRADE the relational information

about a COMRADE data block is physically a par t of that block ,

so the block itself must be in main memory if the relationships

of that data block with others are to be determined . Only a

7 Bandurski, A. and M. Wallace , “COMRADE Data Management System —

Storage and Retrieval Techniques ,” Presented at the 1973 National
Computer Conference , New York (Jun 1973) American Federation of
Information Processing Societies Proceedings , pp. 353—357.
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— very small portion of the data blocks of a COMRADE data base

• 
- 

may reside in the working buffer at any one time (only 20 may

be accommodated). Other data blocks not in the buffer may be

needed to complete a traversal . To bring a block in , one , and

sometimes two, disk accesses are needed.* The disk location of

the desired data block is contained in a subdirectory, and when

the subdirectory present in main memory is not the one that has

the address of the particular block in question , the appropria te

subdirectory must first be brought in. The data block is then

accessed. As an example provided later will demonstrate , a

pointer search involving more than just a few pointers will

make extensive use of disk I/O under the COMRADE system .

Cross File Poin ter Traversal under COMRADE

It is in the area of cross—file pointer chasing that a

COMRADE/GIRS combination is of the greatest value . Under

COMRADE , a pointer chase at the QUERY language level can

extend to only one other file at a time . Thus if the user

has opened PE RMFILE 1, he may temporarily open and access

PERMFILE2 but he may not go on to PERt4FILE3. He must first

return to PERMFILE1 , after which he may then go to PERMFILE3.

This procedure is both ted ious and time consum ing as the

following sequence indicates:

* In the unlikely event that the size of the data block should
exceed the size of the COMRADE I/O buffer and that the desired
element should not be included in the retrieval portion of that
data block , a third disk access would have to be made to obtain
the relevant portion .
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1. Close PERMFILE1

2.  ATTACH PERMF ILE2

— 3. Open PERMFILE2

4. Read from PERMFILE2

5. Close PERMFILE2

6. UNLOAD PERMFILIE2

7. Open PERMFILE1

Depending upon the size of the load on the CDC 6700 computer

system and the size of the file to be attached , the response

time at the terminal might be quite slow .

Pointer Traversal under GIRS

General Considerations

Under GIRS, poin ter traversal is a relatively quick , flex-

ible, and efficient operation . Moreover , since GIRS has been

developed “ in—house ” , it offers DTNSRDC users the added ad—

• vantage of ease of maintenance .

One of the main reasons for selecting GIRS to handle

COMRADE’s pointer chasing would be for the reduction of d isk

I/O GIRS provides. Retrievals and insertions involving disk

I/O are relatively slow compared to those performed in main

memory and——due to the current cost of channel time——expensive .

No poin ter retrieval/manipulation scheme can reduce the

amount of disk I/O required for reading in “hi t” blocks. If it

were feasible to main tain the GIRS representations of the entire

data structure in main memory at all times , d isk I/ O for  poin ter

chasing would never be needed and only the in—core version of

17 
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GIR S, with its resultan t lower space requirements , would be

needed . However , since this is not always possible and out—core

storage is sometimes needed , the use of disk I/O can at least be

kept to a bare minimum by partitioning the data base . Somewhat

less optimally, if the data base can be partitioned so as to com—

bine on a single continuant all those relationships that are to

be used together , a single disk read to bring that continuant

into main memory will suffice . In this case, a simple, in—core

GIRS retr ieval would serve , instead of the several disk accesses

ordinarily required to bring into main memory information which

is mostly irrelevan t. If more than one continuant is needed ,

the DBA must be clever enough to partition the data base so as

to reduce the number of disk accesses required per query. In

practice , it would be d ifficul t to choose a partition so awkward

that pointer traversals under GIRS/COMRADE would resul t in as

many disk accesses per query being needed as under COMRADE alone.

The paged version of GIRS allows more than one page to exist

in main memory at a time . Therefore , depending on how the work-

space has been allocated , a continuant of a page may or may not

have to be swapped into main memory. If GIRS should need the

space occupied by a continuant , and should find that the con—

tinuan t had already been mod ified when it was in main memory,

the worst that could happen would be that the continuan t would

have to be written out to disk before a new continuant could

be brought in. However , continuan ts are never mod ified as a

result of a query. GIRS will allow a page to grow , continuant

18 
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HI by continuan t, to absorb new portions of a graph . Note that

if a retrieval fails——either because of the absence of a block

name or because of a misspelled block name——all of the continuants

of a page may have to be brought into main memory to be searched .

Judicious choice of page size should minimize the number of

continuants needed , and thus minimize GIRS I/O.

Part of the design philosophy of COMRADE is to maximize the

use of a data block while it is in main memory and to thus

forestall the need to bring back that same data block over and

over again . The GIRS philosophy is similar . The graph , which

represen ts the logical struc ture of the data, should be parti-

t ioned onto pages in such a way tha t the “localness” of the

subgraphs will be preserved . In other words , whenever possible,

subgraph s should be maintained on the same page and on the same

continuant .

To illustrate, note that a graph can be broken up into

lists and strings. A typical multivalued list might be

struc tured as shown in Figure 7.

SHIP 1

DECK

1 2

Figure 7 — A Typical Multivalued List

19

- F



— - -••-

~

--—-

~~~ 
—w.-.---- - 

~~— ~~~~~~~~~~~~~~~~~~ 
—.••---—- 

~~~~~~~~— — - ~~~ - —--~~~—‘--—
___ — 

-
- ~~~~~~~~~~~~~

4

A string might assume the form of Figure 8.

Q

~~~~~~~~~~~~~~~~~~~~~~C~~~PART 1 E~~~IP7~~~~~
Q

SII P1

Figure 8 — A Typical String

A group of strings may have a common source node, as indica ted

in Figure  9:

SHIP1

DECK 1 DECK2 DECKN

Figure 9 — A Collection of Length—One Strings
Having a Common Source Node

In some cases, traversal is restricted to strings or to

lists. In others , traversal may span total subgraphs of a given

string length and list depth . In the latter case, it is to the

advantage of the programmer to keep such a subgraph on a single

continuant.

20
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• Cross—File Pointer Traversal under GIRS

As already mentioned , COMRADE allows only one file to be

traversed at a time at the QUERY language level. Under GIRS,
1

there is no such limitation . GIRS can handle cross—file pointers

easily as intrafile pointers, since a universal Cross—File

Reference Table would be set up and the cross—file reference

number would be stored as part of every value (sink node) re-

presenting a data block. This feature would be beneficial for

COMRADE applications involving distributed data bases.

Under GIRS, the pointer to data records in various different

files may be traverse d by a sin gle query, usin g li ttle if any

disk I/O, since cross—file and inter—file pointers may be

mixed on the same GIRS page. This capability can be assured

by collecting all of the necessary pointer relationships onto

a single or a relatively small number of continuants. Of course ,

severe thrashing can result if the necessary relationships of

a subgraph are scat tere d across many continuan ts , mos t of which

are not in main memory at the time they are needed . It is

up to the DBA to ma ke sure that the gra ph s truc ture is though t-

fully prepared .

RESPONSE TIME

Response T ime of a COMRADE Retrieval

A COMRADE retrieval is heavily depen dent on disk I/O, which

can consume a lot of wall—clock time . This dependence needs to

be reduced . COMRADE permanent files are stored on both the 841

and 844 disk drives for the CDC 6700 computer system. An I/O

21
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access to a CDC 844 disk drive will generally take between 40

and 1000 milliseconds , depending upon the amount of time lost

while waiting for an available I/O channel. Although statis—

tics on the average disk I/O service time for the CDC 6700

computer system are not available , those for the CDC 6400

computer system indicate that the average disk I/O service

time for the CDC 6400 computer ranges between 200 and 280

milliseconds. The average disk I/O service time for the CDC

6700 computer is thoug~ t to be comparable. Average access

times in milliseconds for the different disk drive units are

provided in Table l.*

TABLE 1 - CDC DISK DRIVE SERVI CE TIME REQUI REMENT S
.9 (in milliseconds)

CDC 841 CDC 844

Average positioning time 69.5 30.0

Latency time (50% of rotation 12.5 8.4
time)

Time to read one sector or PRO 3.6 1.4

Channel wait time (range ) 0.0 — 960.0 0.0 — 960.0

Total service time (range) 85.6 —1046.0 40 —1000.0

* This information was obtained from Kenneth C. Rieck of the
Center.
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Using the “Presidents” Data Base8 (described in Appendix

A ) and operating from a 10—character—per—second teletype

terminal , a COMRADE query of the form

PRINT STATE , CAPITAL .OF. HEAD/ADMIN/PRESPTR/ADMIN/STATEPTR/

required approximately 230 data block accesses for pointers.

On two tries , this query took 7—8 minutes. On an earlier

occasion , involving an older model CDC disk drive system , the

query took 13 minutes. Fifty of the 230 data blocks retrieved

were hits , while the remain ing 180 were extraneous. The buffer

size was set to 1025 words , which allowed as many as 16 data

blocks to reside in main memory at a time. A table has been

prepared which shows, for N = 2 subdirectories , the prob-

abilities of the following situations and the number of d isk

accesses needed for each. (Of course , these probabilties

assume a random distribution of the blocks to be retrieved):

1. The desired data block is alread y in the buffer .

2. The data block is not in the buffer but the appropriate
subdirectory is.

3. Neither the desired data block nor the appropriate
subdirectory is in main memory.

8 Willner , S. et al., “COMRADE Data Management System ,” Presented
at the 1973 National Computer Conference , New York , (Jun 1973)
American Federation of Information Processing Societies, 1973.
pp. 345—349.
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TABLE 2 — PROBABILITY OF A DATA BLOCK OF THE “PRESIDENTSTM
DATA BASE RE SIDING IN MEMORY

Contained in Number of Disk Probability
Main Memory Accesses Needed of Situation

to Retrieve De-
sired Data Block

Situation 1: 0 
~~~ 

(1024/64)/28l .057
Block

Situation 2: 1 p
5= (l—P B)/N= .47lSubdirec tory but

not block

Situation 3:
Neither block 2 P • = (l—P )(N—].)/N=.47l
nor subdirectory ith~~ B

The number of disk accesses likely to be needed per data

block retrieval is computed as follows:

E = 

~s 
2(1 — P

~ 
- P

3
) = 2 - P

5 
— 

B
where P

5 
is the probability that the data block is in main
memory

— buffer size/average data block size
— 

total number of data blocks in data base

P5 is the probability that the subdirec tory is in mainmemory

— _ _ _ _ _ _ _ _ _ _ _ _ _ _ _— Number of subdirectories

For the “President’s” Data Base , E = 1.4146. Thus there

are l8OE = 255 unnecessary disk accesses. I/O time is computed

as follows: T = number of data blocks retrieved times E times

the disk I/O service time. Por the “Presidents ” Data Base ,

T ranges between 1.08 and 1.52 minutes. The time required 

_
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for the equivalent operation in a COMRADE/GIRS scheme is

discussed in the nex t section .

One final remark. P5 was computed on the basis of random

allocation of block names to the subdirectories. If the user

were allowed to specify to the lower level CDSF routines that

cer tain collections of data block names should be kept on the

same subdirectory, P5 could be greater and both E and T could

be reduced. The argument for this approach is analogous to

that for par titioning the data block represen tation in GIRS,

and will not be pursued further.

Response Time of a GIRS Retrieval

So far , there have been no timing tests performed on the

out—core version of GIRS , although the in—core packed—word

version has been tested . In the in—core version , a simple

retrieval for a triple (which might contain poin ter or other

informa tion ) requires 78 microsecon ds, a magnitude three orders

faster than that required to access the 844 disk drives. Other

retrievals take up to 142.6 microseconds (worst case).

Average inser tion , deletion , and re trieval times for the

present unpaged and unpacked version of GIRS are documen ted in

Berkowitz.4 Assuming that the proper page—continuant already

exists in main memory, similar operations under the out—core

version might reasonably be expected to take slightly longer ,

since rela tive add resses wi thin the GIRS buffer would have to

be resolved .

25 
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The disk I/O time for a query under COMRADE/GIRS (T ) could
G

be determined as follows:

T
G 

= (number of hit blocks) x E + (number of GIRS continuants

brough t in) x (disk I/O service time)

In the COMRADE example involving the “Presidents” Data Base

(given in the previous section), there were 626 pointers and

274 data blocks.* Two hundred thir ty data blocks were read

in to obtain the 50 desired data blocks (180 data block re-

trievals were extraneous). If GIRS were to be used along with

COMRADE , this entire data block representation could be con—

- 
-

~ tam ed within main memory, thus obvia ting the need for  any

I/O for GIRS. If , for some reason , the entire data base did

[ not fit within main memory, dislc I/O would be needed to bring

in the necessary continuants. Even so, the total amount of

I/O needed would be substantially less than that required

under COMRADE alone. The speed advantage of GIRS is extremely

query—dependent and would be even greater if more non—hit

blocks were involved . The speed advantage for a single query

is expressed as

D
(H + C/E)

where D is the total number of data blocks brought into the
buffer in the present system

H is the number of hit blocks for the query

C is the number of GIRS continuants that must be
brought into main memory

* These figures were supplied by Stanley E. Willner , developer
of the “Presidents” Data Base.
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For this example , the speed advantage would be D/H or (230/50)

- 
- - or 4.6, since the entire relational structure would fit entirely

within main memory.

UTILIZATI ON OF DISK SPACE

Data Block Size, Percentage of Pointers per Data Block ,
and Fragmentation

The SCOPE disk operating system can handle words only in

64—word groups , these groups known as physical record units

(PRU’s). As a result, any record written out to disk must take

up some multiple of 64 words. All data records of a size from

1 to 63 words (not counting the end—of—record marker) would

require the same amount of space (64 words), and those of 64—

127 words would take twice that amount of space, and so forth.

• Thus a great deal of fragmentation——unused but available space——

could result.

At the present time, COMRADE users work approximately 90

percent of the time with blocks containing from 20 to 50 words.*

Thus , so far as space allocation is concerned , it would be of

no great advantage to them to have the size of these data blocks

reduced by removing pointers. However , future plans for the

use of COMRADE envision the need for data blocks larger than

one PRO. The question , then , is: At what point does it become

advantageous spacewise to compress the data blocks by removing

the pointers and assembling them elsewhere on a file of their

* Data obtained from Bernard M. Thomson of the Center.
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own or at the end of the data file? (Other reasons for separ-

ating the pointers are discussed elsewhere in the section

• entitled “Time/Space/Flexibility Trade—Offs , COMRADE versus

COMRADE/GIRS.”)

In the current COMRADE scheme , each data block relation-

ship takes up one word of storage plus any space needed for

pointer names in the BTD tables. In a COMRADE/GIRS setup ,

one word is needed for each data block relationship repre—

sented by a node—link—node triple. However , add itional space

is needed to link the GIRS random number representing the

sink node with its Hollerith block name and vice versa , since

CDSF canno t use the GIRS random number , and the block name —

must be converted to a unique random number to be operated

on by GIRS. Conversion of the random number to the block name

requires one or two additional words per name , depend ing on

the length of that name .

To conver t the Hollerith name to its associated random

number , at least one add itional word per block name is

necessary ; however , the exact amoun t of space required

varies. The less the correlation among the block names , the

greater the amount of space required . Thus , the three names

EQUIP1 , EQUIP2, and EQUIP3 will require less space than the

names EQUIPMNT, MACHINE S, and MOTORS. Block names in COMRADE

data bases generally exhibit a high degree of correlation .

This will be discussed in further detail in the section

entitled “Implementation ” .
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For programs needing successive runs , additional space may

be needed under COMRADE/GIRS to store the values of nodes and

links , depending upon which of two method s is used . In the

one method , all of the nodes and links are written out to

disk at the end of the program and then read back in at the

-
- 

- beginning of each run ; in the other , values for the nodes

— and links are reassigned by the GIRS pseudo random number

generator at the beginnin g of each ~un (the same sequence

of values will be used), so no extra storage space is needed .

The disk space allocation under the two d ifferen t systems

is computed as follows:

Under the COMRADE system :

Total number of PRO ’s = M ([h.] + i)

Under the COMRADE/GIRS System :

Total number of PRtJ ’s* = M([~~~~~~] +i) ÷ C 
[MwP/C+h] + 1

where M = number of data blocks

w = average number of words/data block

p = average percentage of pointers

[ ]  = greatest integer function (i.e., 3.8+3)

c = total number of continuan ts for all pages

h = nine header words/continuant

* This computation includes the space needed to store data
block names.
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From the expressions just given , one can see that under the

proposed system a data base would require slightly more space

than under COMRADE, except in those cases in which the data

blocks would be one PRU in length . If, however , a computer

system having variable length PRO ’s (such as the IBM d isk

operating system) were to be used , the ra tio of COMRADE disk

space to COMRADE/GIRS disk space would be approximated as

follows:

- 
COMRADE/GIRS disk space* - 

~ + 
2M+9CDisk Space Ratio (DSR) - COMRADE disk space 

— Mw

=~~~+~~~ ÷ 
9c

w total number of words in
orig. data base

Let us now determine the range of this ratio for a ship

described in a mature data base of the Ship Design File . A

typical data base in this case might consist of 40 to 60 per—

cent pointers. We have chosen a very conservative working

space/available—space ratio of 7 to 3. Furthermore , as an

upper bound on term 2/w of the DSR, the num ber of elements to

be included per data block has been set at nine . Since the

latter number and the given GIRS ratio are unrealis tically

low, values thought to be more typical will also be considered .

For example , the average number of elements per data block

might more reasonably be 30. Thus, for an average of 9—30

elements per data block , the term 2/w would then range from

.22 to .07. Table 3 gives the DSR for six different cases.

* This number includes the space needed to store the data
• block names.
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TABLE 3 - DISK SPACE RATIO (DSR), COMRADE/GIRS TO COMRADE
(Quan tities expressed in number of words)

Number of attril*ite
elements 66000 66000 66000

Number of pointer
elements 44000 66000 99000

Total num ber of
~ elements in

data base 110000 132000 165000

Percen tage of
Pointers 40 50 60

* ** * ** * **
Continuant size 100 25 100 25 100 25

Percentage of GIRS
b u f f e r  being
used (no t in
Available Space) 85 70 85 70 85 70

Required GIRS . - -

buffer space 51725 62858 77647 94286 116470 141429

Num ber of
con tinuan ts
needed 518 2515 777 3772 1165 5658

Third term of DSR .04 .21 .05 .26 .06 .31

Minimum DSR 1.11 1.28 1.12 1.33 1.13 1.38

Maximum DSR 1.26 1.43 1.27 1.48 1.28 1.53

* Typical case
** Conserva tive case

As Table 3 shows , the th i r d  term of the DSR equa tion ran ges

from .04 to .31. Therefore , the DSR ranges from 1.11 to 1.53 ,

wi th 1.11 the more typical .
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GIRS Continuant Size and Unused Entry Space

The continuant size must be determined in advance by the

DBA. The hashing scheme employed by GIRS results in the

size of the continuan t determinin g the maximum number of

identifiers or node and link names that can be created for

a page. All of the continuants throughout the GIRS structure

of a given data base will be of the same size .

Under GIRS, the use of many small continuan ts rather than

a few large continuants for a given size graph structure might

resul t in the need for more disk I/O, since more search ing

might be needed to find a requested relationship. However ,

using more but smaller—sized continuants could result in a

fuller use of the entry space in GIRS. If the continuants

-)  are used merely to store overflow , only the last continuant

of each page will have any unused entry space. Moreover ,

with the GIRS hashing scheme , any par tially empty continuants

will have what are known as short conflic t lists which

facilitate quick retrieval response.

Example of Disk Use under COMRADE and under COMRADE/GIRS

The following example compares the time and space require-

ments under COMRADE with those under COMRADE/GIRS. This example

illustrates that, when the search path of a pointer chase ex-

ceeds one level , COMRADE/GIRS can perform the query in less

time than COMRADE at a cost of only slightly more disk space.

In the nomenclature of COMRADE , assume three pointer array s

DECK(L), COMPART(M), and EQUIP(N)——with the respective lengths
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L, M and N. The pointer array COMPART(M) is repeated in L

different data blocks and the pointer array EQOIP(N) is

repeated in LM different data blocks , resul ting in LMN number

of hits. The following query is made:

PRINT COST .OF. SHIP1/DECK/COMPART/EQUIP

Assume also 1000 data blocks and six subdirectories. Under the 
-

COMRADE system , only one subdirectory may be in main memory at

a time . The minimum block size is 64 words , and the COMRADE

I/O buffer is set at 1281 words. Therefore , as many as 20 data

blocks may be in main memory at any one time. The following

table ind icates the probability of the desired item resid ing

in main memory and the number of disk accesses involved :

TABLE 4 - PROBABILITY OF A DATA BLOCK OF THE TIME/SPACE
EXAMPLE RESIDING IN MAIN MEMORY

Possible Situations Number of Disk Probabili ty of
in Main Memor y Accesses Situa tion

Needed to
Retr ieve Desired
Data Block

Situation 1 0 P =(128l/64)/1000 .02
Block B

Situation 2
Subdirectory
but not block 1

Situation 3
Neither the block
nor the sub—
directory 2 

~neither
1
~~

02
~~

5”6
~

= .8166...

- 
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The number of disk accesses expected per data block retrieval

E for any one data block would be expressed as

2 — .l633...— (2 x .02) = 1.7966...
ii

Under COMRADE , this query would result in E(l+L+LM+LMN)

number of disk accesses where 5(0< E <2) is the expected number

of disk accesses per data block.*

The actual number of disk accesses under COMRADE might even

be greater , since the COMRADE buffer may contain only 20 data

blocks at a time , forcing certain data blocks to be brought

into main memory more than once .

In the GIRS scheme, the contents of each pointer array

are represented as a multivalued list. The data block names

are assigned unique “random ” numbers which are represented

by dollar Cs ) signs. For example , SHIP1 has the value “$~~~
“ .

The COMRADE pointers DECK, COMPART , and EQUIP become GIRS

functions or links. The links must also be assigned unique

“random” values. The GIRS pointer graph would have to contain

the following struc ture to handle the query of the example:

* In the unlikely event that the data block size should exceed
the buffer size and the desired element were not present in the
retrieved portion , then 0< E < 3 .
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IDECK ,/ EL+1 (
~f~ /

‘COMPART ‘ 
.

V F • ‘~ .EQUIP •

COMPARP~~~N~~~

$ EQUIP $

Figure 10 — GIRS Struc ture for Example

Using COMRADE/GIRS , the query g iven would result in

L + LM + LMN GIRS retrievals to traverse the graph , and LMN

re tr ievals for the Hollerith representations of the block

names. (Conceivably, all of the nodes could be contained

within main memory, resulting in no need for disk I/O.) The

CDSF routines would be given LMN hit block names which would

result in E(LMN) d isk accesses , thus eliminating the need for

E(1 + I~ + LM) disk accesses.

Clearly, there is a potential time——and , therefore ,

cost——savings under COMRADE/GIRS , due to the reduced need for

F 

disk I/O. On the average , the time savings would range from

.36(1 + I, + LM) to .5(1 + L + LM) seconds.
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— Under the present COMRADE system , the pointer arrays require

L + L(M + 1) + LM(N + 1) words , as well as a small amount of

additional space to describe them in the Block Type Definition

(STD) file. In comparison , a COMRADE/GIRS system would require

somewhat more disk space. Recall that 1000 data blocks exist

in the data base. Under this GIRS scheme, at least (L + 2) +

L(M + 1) + LM(N + 1) words would be needed to store the graph

that describes the relational structure of the data base, as

well as one or two additional words for each data block name.

For each partition (continuant) of the relationship graph , an

add itional nine words for GIRS overhead would be needed . The

out—core version of GIRS maintains a directory of the contin—

uants that are in main memory at any given moment. The

directory size , which is determined by the applications

programme r , is set at one more than the first multiple of

64 that is greater than the number of in—core continuants.

A copy of the dir~ ’~tory is stored on disk at the star t of

the program . In general , the d irec tory will take up only

one or two PRW5 . For example , say that GIRS used the

COMRADE buffer (1281 words) for its own buffer . Even if the

continuant size were set at only ten words , the d irec tory

size d would be

(1281 — +i) 64) 
= 64 

([s] ÷‘) —

= 128 words or two PRO ’s
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Let us now determine how much extra disk space would be

required under COMRADE/GIRS for the same graph . If L, M , N

are 20 , 30, and 40 respectively, and if the continuant size is

set to 100 , the directory will require one PRO or 64 words.

Let us also assume a 15 percent available space in the GIRS

buffer. This graph would then require a pointer space of 29697

words , requiring 297 continuants. Accordingly , the COMRADE !

GIR S system would take 1 + (9 x 297 + 200 + 64 )/25242 words of

storage , or 1.188 as much disk space as under COMRADE , plus

.15 of that amount to account for the available space thereby

total ing 1.388. Of course , if this “data base ” contained

attribute data , that ratio would be lower. For example , 50

percent attribute data would bring the ratio down to 1.169.

CORE REQUIREMENTS FOR COMRADE/GIRS

The out—core version of GIRS can be conveniently separated

into two parts , a major part and a minor part. The major part ,

which takes up 73 508 (3800) wor ds plus an add itional 110 words

for  APAGE , a CDSF routine , performs all of the main functions.

The GIRS buffer , which contains the in—core portion of the data

block relat ionship graph, would not use up any addit ional main

memory since the COMRADE buffer and the GIRS buffer would share

the same memory space. If the DBA could be certain that the re—

lat ional informa t ion would fit entirely within the GIRS buffer ,

only the in—core packed version of GIRS , which takes up about

4300 8 (2250) words, would be needed. Even if GIRS were split

- 
j up wi th about 3340 8 (1760) words going to the major portion ,

37 
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the major functions could Ftill be performed . If only querying

of the relational structure were to be performed , only 3708
(250) words of the GIRS package would be needed . A query using

the out—core version of GIRS would still require 73508 words.

GIRS is a subroutine package which requires an executive

routine to create the subroutine calls. It is similar to Sub-

routine QUERY in this respect. Subroutine QUERY handles a

parsed “ .WHERE.” clause , whereas this new executive routine

would be required to handle a parsed “ .OF.” clause. Since an

executive routine has not yet been written , we canno t accura tely

gauge its size; however , a program for using GIRS interac t ively

at the terminal already exists which takes 10608 (560) words.

This program has func t ions similar to those needed by an

Executive routine .

The amoun t of CDC main memory available to an appl ications

programmer is limited to 60K8(24,600) words when a remote

terminal is used . Currently, 27K8 (11,800 ) wor ds are allotted

for COMRADE func t ions , although plans are being made to reduce

this size to 20K8 (8200) words in the near future. Also ,

approximately 1K is used for the COMRADE I/O buffer.

Since COMRADE is being revised , i n f o r m a tion is no t ye t

available as to the amount of main memory to be required . From

the numbers just discussed , however , we can state that, at

wors t, GIRS will require 10,400 8 (4360) words. COMRADE

developers feel that COMRADE/GIRS will fit within the 20K

constraint.
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FLEXIBILITY

Modify ig Data Block Relationships

A COMRADE/GIRS architecture would provide a great deal more
1

flexibility in handling data . Such a system would enable the DBA

to create , update , and remove all or any part of a description

of the data base with relative ease. The data definition

dictionary could be created and modified independently of the

data base itself , so there would be no necessity for moving data

records into and out of main memory.

Pointer Traversal Executive Routine

Currently, COMRADE allows the data base to be queried at two

differen t levels — namely, via the CDMS subroutines and via the

QUERY processor — which provides the user with flexibility!

-‘ convenience trade—offs. The latter level accepts English—like

requests , parsing and conver ting them into CDMS subroutine

calls. Although COMRADE already has an inverted query exe-

cutive routine (called QUERY), it does- not have a pointer—

traversal executive routine. The advantage of such a routine

for COMRADE may be illustrated by a discussion of the way in

which COMRADE presently must handle the following three

different queries.

1. PRINT SN .WHERE. AREA .EQ. 20;

2. PRINT COST .OF. BLOCK1/PTR1/PTR2;

3. PRINT HEIGHT .OF. BLOCK2/PTR3/PTR4 .WHERE . AREA .GT. 1000;

In the first instance , and using the higher level query pro—

cedure , AREA must be on an inverted list. The .WHERE. clause

-t
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will be parsed and then the equivalent code to Subroutine QUERY

(which is part of the QUERY processor ) will be called to bring

in and search the inverted lists and then return the names of

the data blocks having AREA = 20. These blocks are the “hit”

blocks. The query could also have been handled in COMRADE at

the lower level with the applications programme r calling a

COMRADE executive subroutine (also called QUERY) directly,

supplying input parameters in the equivalent of a parsed

.WHERE. clause. This method , which is convenient to use ,

would allow an applications program to use the output of

the Subroutine QUERY immediately.

In the second instance , the QUERY processor must call a

series of routines to bring in BLOCK1 and the data records

associated with PTR1 and PTR2. The applications programmer ,

in order to have greater flexibility (for example, to be able - 
-

to use the retrieved data immediately or to restrict the

pointer chasing to blocks found in the nth repeating group),

will have to make several subroutine calls for a typical

pointer chase query, since there is no pointer—traversal

executive routine currently in COMRADE analogous to Subroutine

QUERY to handle the parsing of an .OF. clause. Under the

present system of COMRADE, use of a pointer chasing rout ine

would be inefficient, since hit blocks would have to be re— —

moved and later brought back into main memory when the buffer

was filled . A pointer executive routine under a COMRADE/GIRS

combination would accept the equivalent of a parsed .OF. clause

a 40 
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as input. The first input parameter (the starting data block)

would be treated as a source node and the rest of the input

parameters (the pointer names) as link names. Output would

be a list of (potential) hit blocks. Therefore , the number

of hits per query would then be available. This same type

of query will be discussed for the data definition/data mani-

pulation (DDL/DML) language level in the section on adding

a DDL/DML to COMRADE.

In the th ird instance , the pointer list is traversed as

in the second instance , resulting in a sequence of potential

hits. Each of these potential hit blocks is brought in (along

with the non—hit blocks needed for the pointer traversal ) at

which point the proper attributes are tested against the con—

ditions of the .WHERE. clause to determine whether or not

the block is truly a hit.

As already mentioned , most of the disk I/O needed under

COMRADE for retrieving the non—hit blocks would be eliminated

under the COMRADE/GIRS scheme. In addition , disk  I/O use

could be reduced even further by including a pointer executive

routine within a COMRADE/GIRS system. Such a routine would

bring into main memory only those potential hit blocks which

could ultimately satisfy the WHERE. conditions. It would

accomplish this by inverting the conditional elements involved

in a query composed of both .WHERE. and .OF. clauses , and by

then ANDing the potential hits listed by the pointer executive —

routine with the potential hits of the output list of the

.WHERE. clause.

~
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It seems clear that some kind of a CDMS—level routine is

needed which could efficiently handle a parsed .OF. clause .

The COMRADE/GIRS comb ination could satisfy this need , as is

explained later on in the section entitled “Implementation .”

Adding a Data Definition/Data Manipulation Language
to COMRADE

Basically, a Data Definition Language (DDL) is used to

create the data base structure, whereas a Data Manipulation

Language (DM14 is used to access and modify the data base.

The necessary and optional characteristics of DDL/DML’s are

detailed in Martin9 and by the National Bureau of Standar ds~~°

A COMRADE/GIRS sys tem would enable the introduc tion of a

concise , powerful DDL/DML, since GIRS is designed for pointer

manipulation . Structural relations described by a DDL/DML1

would be easier to visualize and therefore easier to work

with. Because the one—to—one correspondence between the

pointer relationship and its DDL/DML code would s implify the

conversion of the conceptual relational graph from paper

to a DDL/DML computer program , programming time would be

reduced . Further , a DDL/DML would allow the user to more

easily write subroutines capable of performing such functions

as deleting a block and all of its descendan ts or connec ting

9Mar tin, J., “Computer Data Base Organization ,” Prentice—
Hall , Inc., New Jersey (1975), pp. 100—1. 

- =
10” CODASYL Data Description Language ,” U.S. Department of
Commerce , NBS Handbook 113, (Jun 1973), pp. 2.11—2.12.

42 

— — -  —-- — —  
S



p 
-

~~~~~~

- --

~~~~

-

~~~

---- - -

~~

—

~~

-- —- —

~~

-----

~~~~~~~

-- 

a parent of a block to the sons of that block when that block

is to be deleted .

A particularly convenient DDL/DML already in exis tence is

GIRL.11 The abstract from the GIRL Programming Manual follows:

“GIRL (Graph Information Retrieval Language) is a 
—

programming language designed to conveniently manipulate
information in graph structures. As such , the language
will play a key role in the construc tion of the organi-
zational schemes found , for example , in information
re trieval , pattern recognition problems , linguistic
analysis, and process scheduling systems. The language
is written to complement an algebraic language , in the
sense that GIRL statements are distinguished from the
statements of the algebraic language and the statements
may be interleaved . The primary advantage of separating
symbolic and numeric statements is that the programmer is
afforded a linear , one—one trace of graph operations in
the code description.”

For example , using GIRL to create or add to the following

structure shown originally in Figure 8,

Q

~~~~~~~~~~~~~~~~~~~~~~COMPART1 EOUIP~~~~~~

Q

SHIP1

the following code

G SHIP1 DECK1 $ COMPRT1 $ EQUIP1 $

would suffice . To find the EQUIP1 data block of SHIP1, the

code

G SHIP 1 + DECK 1 + COMPRT1 + EQUIP 1

might be used . Modification and deletion would be equally

straightforward . Further examples are provided in the section ,

“Pointer Operations under COMRADE and under COMRADE/GIRS” .

~~ Berkowitz, S., “Graph Information Retrieval Language; Pro—
gramming Manual for FORTRAN Complement ,” Naval Ship Research
and Development Center Report 4137 (Jun 1973).

a 43 
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Note that, in the COMRADE QUERY language , the “.OF.” list

for a single query is limi ted to eight distinct levels of

pointers and a total of 16 pointer accesses.* This limitation

is buil t into COMRADE to prevent a pointer chase from con-

tinuously looping on a circuit. Of course , at the CDMS level ,

even under the present COMRADE setup, an appl icat ions programmer

may first create temporary pointers to tag data blocks as

having been visited and them remove these pointers , although

this procedure would result in an even heavier use of disk

I/O and would require the applications programme r to generate

several CDMS subroutine calls. Under GIRS, and wi th the use

of a DDL/DML such as GIRL , it would be a s imple matter to

temporarily tag a node (data block) or thread a subgraph .

The previously mentioned limitations would no longer apply.

GIRL code can be imbedded within a FORTRAN program . Although

a preprocessing step would be necessary to translate GIRL to

FORTRAN , a GIRL preprocessor already exis ts which is por table

and currently operational on the CDC 6700 and the PDP—ll/45.

Moreover , a GIRL/FORTRAN compiler is already being written for

the PDP—ll/45. —

A single GIRL statement can take care of either a single

CDMS pointer operation or a series of CDMS pointer operations

that ordinarily require several lines of code (See Appendix C).

* COMRADE , however , does not permit the pointer name of a level
to be tacitly repeated if the sink block contains the pointer ,
giving rise to a tree of pointer strings.
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Back Pointers

There are other advantages to the COMRADE/GIRS combination .

One is the ease of adding back pointers. This could be done

at the DDL/DML level with the following statements:

C ADD POINTER RELATI ONSHIP

G A B C

C ADD BACK POINTER

G C B A

These two GIRL statements can themselves be comb ined

G A B C B A

By setting a mode flag in the appl ications program to .TRrJE.,

the programmer could even cause back pointers to be crea ted

within the pointer executive routine automatically. This

9 
automa tic crea t ion would cont inue until the flag is changed

to .FALSE.

Poin ter Invers ion  an d Quer y Type Spec i f i cat ion

The preced ing d iscussion has shown that not only the =
question A B ? but also the question C B ? can be answered .

What about the questions ? B C or A ? C. These queries might

translate to “What objects have DECK1?” and “How are ships and

decks related?” A COMRADE/GIRS scheme would handle these

questions by hashing (C ,B) and (A ,C). A flag would be set to

indicate the appropriate query type.

At the cos t of crea t ing, main taining, and storing some ring

-: structures , the quer ies  A ? ?, ? B ?, and ? ? C could also be

satisfied . This topic is discussed by Berkowitz.5

45

- - ~~‘-~~~~—~~~ — -~~~~~~~~~ — - - . -—~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - 
- A



--—

~~~~

-----

~~

---

~~~~~~~~~~~~

---

~~~~

--.--- -——-- ..—-- ----

~~

--------

~~

- -.- —-—-- - - . -— 1i~T~~~

Storage of Nonpointer Data

GIRS not only has the abili ty to store and manipulate

pointer relationships , but also to store integer and Hollerith

data. Numbers as large as 218 and wi th as many as three char-

acters may be stored directly within the word in the buffer

that holds the triple. This capability would be valuable to a

programmer who wan ted to associate a par ticular relationship

with a subgraph level. Hollerith and integer data exceeding

the stated limits could be stored in a separate , sequentially

allocated buffer called SEQSPC. This arrangement provides

space for the rapid retrieval of data such as data block names.

Satisfying an Imprecise Query

Under COM~ADE , an eng ineer wishing to loca te attribute

data stored several levels below his starting block must have

knowledge of the pointers at each and every level involved in

the pointer traversal . All of the pointers must be specified

to satisfy his query. This Situation can be circumvented , at

the expense of some software design and computer time and

space , by having the DRA provide a generic description of the

data Struc ture as well as the ac tual data struc ture , as illu—

strated by the following example.

Let us say that an engineer wishes to query the struc ture

of Figure 11.
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(=) FLEET

T -
SHIP

DIMENS .
~~~~~~ 

DISPLACEMENT

LENGTH BEAM HEIGHT DEC:~~~~~~~~~~LKHD~~~~~~~~~~~~~~~~~~~~ GROSS

- XCOORD N~CCOORD

o

’

~~~~~~~~~~~~~~~~~~~~~~~~~~ $

’

~5b ~~~~~~~~~~~~~~~~~~~~~~~

Figure 11 — Ship—Design Data Structure

He may ask , “What types of structures do ships have?” This

query  is easi ly answered , since “struc tures ” are only one

level below “ships” in the graph . This is known as a direct

query.

But what if he wishes to ask “Which decks do ships have?”

This que ry  coul d no t be sa ti s f i ed at pr esen t, since “deck” is

more than one level below “ships ” in the graph . Since “ship ”

and “deck” are not immediately related , this query would be

called indirect. An indirect query could be handled by

allowing the GIRS re trieval routine (FIND) to use the know-

ledge of the d i fferent types of perm issible relationships

in the graph. Aside from the data base itself , an indirect

47 
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query also requires the relationship graph and a special graph

which describes the data structure in a general way , and a

method of searching it. This special graph may take any

number of forms , depending un the types of queries expected .

It would also be feasible to monitor the use of this

mechanism , allowing the program to create direct links for

commonly issued ind irec t queries which could then be answere d

directly.

To answe r questions similar to the engineer ’s second

query, relationships such as those indicated in Figure 12

would have to be added to the relationship graph .

LEET

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEC 

UP 

FRAME BULKHD

LJ~ 

DOWN 
DOWN

ID WEIGHT XCOORD ID WEIGHT XCOORD ID WEIGHT XCOORD

Figure 12 — Generic Description of Ship Design Data Structure
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Under COMRADE/GIRS each user would design his own search

mechanism , to be called by FIND when a direc t query fails. If
-

he did not wish to do so , his query would be unsuccessful . An

alternative but possibly less efficient way of handling this

problem would be to permanently embed a general , fixed strategy

into the system which would require only that the applications

programmer submit a list of relationships . Such a strategy

might perform a level—by—level , breadth—first search of the

graph , as indicated by the flowchar t of Figure 13, taken from

Berkowitz. ~

Does B(A) exist?~~ ,j P
:: ;~

t
~
ut

-

~~ jNo

Breadth—first search of relations hip
graph to product list of DOWN links

from C. LISTA holds the list and each list
item has back—pointer REFER to its

gene rating DOWN link.

I LISTA ends when B

[ 
link is reached.

I Using back—pointers , compile a STRING
I containing DOWN links from LISTA which formL__a chain from A to the nodes REFERred to by B

4
On the basis of the STRING of DOWN links , generate

a L~STB which is a tree of nodes in the data
grap h traversed by the STRING links.

Figure 13 — Search Procedure for an
Indirect, Memory—Related Query 

__ _
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= The GIRL/FORTRAN code , also from Berkowitz,5 is included in

the Appendix. Note that the retrieval——or , for that matter ,

the insertion or deletion——strategy is essentially embedded

= in GIRS, but may be written in GIRL (as has been done in

Appendix B) for descriptive convenience .

To apply the algorithm of Figure 13 to the engineer ’s in—

F direct query, the variables A, B, and C might represent ships,

decks , and the next level of nodes retrieved , respectively.

DOWN , STRING, and REFER are used as reserved GIRS link identi-

f i e r s , and LISTA and LISTB are reserved GIRS node identifiers.

This procedure is guaranteed to work , but such a “brute

force ” method may take excessive time. There are many other

procedures available which , although more complex , are more

9 powerful .

There are various languages other than GIRL which might be

considered for use with COMRADE , such as TRAMP ,12 for example,

which possess inferential capabili ties but are relatively in-

flexible. This inflexibility is due to the use of a fixed

predetermined strategy as opposed to the user—embedded strategy

of GIRS/GIRL. The more sophisticated LISP—based languages

such as PLANNER13 or CONNIVER 14 are designed to handle complex

12Ash , W. and E. Sibley, “TRAMP, An interpretive Associative
Processor with Deductive Capabilities,” Proceedings of the 23rd

L National Conference of the ACM , pp. 143—156 (1968).
13Hewit t, C., “Description and Theoretical Analysis (using
schemata) of PLANNER,” MIT Artifical Intelligence Laboratory
AI—TR—258 (1972).
14McDermott , D.V. and G.J. Sussman , “The CONNIVER Reference
Manual ,” MIT Artificial Intelligence Laboratory AIM—2599 (1974).
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strategies but are not interfaced with a numeric language like

FORTRAN or ALGOL, and are relatively non—portable. On the
1

other hand , they may indeed be suitable cand idates for a DDL/

DML if the pr ime emphasis is to be on the inherent “ intelli-

gence ” of the data management system. For a system with modest

inferential capability and relatively low overhead , however ,

the COMRADE/GIRS combination seems preferable.

There are other types of ind irect, possibly inverted ,

queries which the eng ineer may wish to submit, as for example,

Wha t objec ts have the struc ture A?

Wha t ships have the struc ture C?

How are ships and decks related?

A different algorithm would be required for each of these

queries.

In conclus ion , the sear ch mec hanism of the proposed system

is a powerfu l tool which would provide the user of COMRADE

with a great deal of flexibility , even though it would require

more memory and additional computing time .

— 51



- - —-

~~~~~~~~~~

- -

~~~

-- 
~~~

--

~

--- 

_ _  

- - -~~~w - ~~ —-
_ _ _ ____  LI -~~

THE ROLE OF THE DATA BASE ADMINISTRATOR

The effectiveness of a data base is largely dependent upon

the degree of involvement of the DBA in coordinating and carry-

ing out the design and maintenance of the data base. A typical

role for the DBA is desribed in Bandurski and Jefferson.4

“The data base administrator plays a key role in
CAD [Computer Aided Design]. He must design and
maintain the data structures used by a diversity of
designers and applications programs , so must be
familiar with the entire design process as well as
data management. Ideally, he should provide inter-
faces to protect the user from unnecessary details
of programming and data structures. Each user should
view the data in as natural a form as possible , even
though the actual physical struc ture as determined
by the data base administrator , is quite different.
It would be the task of the data base administrator ,
for example , to provide implicit links to satisfy
infrequent queries , and highly efficient explicit
links to provide data to the pre—prog rammed analysis
routines.”

9

The DBA mus t insure that the logical struc ture is designed

to allow for its efficient use by applications programs .

Spec i f i ca l ly ,  he must be concerned with minimizing the operating

cos t of the data base and with eliminating unnecessary I/O

and redundance in the structure while still accommodating

differen t views of the data base. He must also try to make the

interface between human and computer as smooth as possible.

The addition of GIRS to COMRADE will aid the DBA in

handling these problems. Of course , the DBA will have to

satisfy certain GIRS parameters. One of the main concerns of

the DBA will be to determine how best to partition the graph

onto GIRS pages and continuants . This involves determining
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an optimum continuant size, the maximum number of continuan ts

to be in main memory at any one time , and also which (classes

of) relationships are to reside on which pages and continuants.

Although determination of page and continuant residence can be

left to default (onto a single page with successive continuants)

fine—tuning the graph partition will improve performance . This

is not a trivial task. To do this fine tuning , the DBA must

design a STRATEGY. This is described in the section , “Removal

of Pointers.”

The DBA will perform other tasks also. He must determine

what extra information is needed to answer an imprecise query

(see section , “Satisfying an Imprecise Query ” ) and whether or

not the ability to answer it is worth the memory cost. It

9 will also be up the DBA to assign a unique identification to

every file associated with the data base , since the Cross File

Reference Table must be unified across that data base.

The COMRADE/GIRS sys tem of fers speed as well as an option

for grea ter flexibility at the cos t of more storage , a trade-

off which must be weighed by the DBA. The DBA would be charged

with making the applications programmers fully aware of the

potential of these new flexibilities.
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POINTER OPERATIONS UNDER COMRADE
AND UNDER COMRADE/GIRS

This section compares the methods of performing the major

operations involved in creating and maintaining a data base

H under the COMRADE system and under COMRADE/GIRS. The following

operations are considered :

. Defining data structures

. Loading pointers into the data base

Updating and deleting data struc ture components

Retrieving data from the data base

. Copying all or part of substructure

Under COMRADE, pointers are treated in much the same manner as

alphanumeric , integer , real , and text data. Therefore , many of

the operations described will hold true for other data types.

DEFINING DATA STRUCTURES

The data structure is presently defined by creating data—

block fo~mats called block type definitions. The following

description is taken from Martin and Bell15, page 16.

“A block type definition can be defined by executing
permanent file COMRDMDEFINEBLOCKTYPEABS or the DEFINE
BLOCK TYPE option of the COMRADE Command Procedure
BTMAINT. 

-

The user must first define a suitable data structure.
The elements must be logically grouped and the type of
data each is to contain must be determined . Names and
the block type may also be changed but elements may not
be reorganized , deleted or added .”

15Martin, R. and C. Bell , “A Primer for the COMRADE Data
Management System ,” NSRDC Report 4605 (Jan 1975).
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Under COMRADE/GIRS , the data structure would no longer need

to adhere to a rigid , possibly confining , format. The data
4 

structure for each relationship would be defined at the time

the relationship was added to the graph and so it could be

easily changed , as will be shown in a later section . If

desired , it may be defined prior to loading via a STRATEGY

routine called by the GIRS pointer insertion routine INSERT.

Use of STRATEGY is discussed later in the section , “Conversion

of a Data Base for the COMRADE/GIRS System.”

LOADING POINTER S INTO THE DATA BASE

Under the COMRADE sys tem , the Bulk Data Loader performs the

initial loading of the data base . The Loader can also add new

data blocks to an existing data base.

To add the relationships of Figure 14 to the data base, the

format in Figure 15 would be used .

PTRI

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PTR2

NXTBLKN

Figure 14 — BLOK1 — PTR Relationships

A
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BLOC K NAME — BLOK 1
1

element name PTR1 (from the block type definition—btd/
NXTBLOK , permanent file name

element name PTR2 (from the btd)/dimenslon/polnter
value list

Figure 15 — Format of Input to Bulk Data Loader

Br iefly, the Bulk Data Loader builds the data base by first

creating a skeleton file for items such as a directory, sub-

directory, inverted name list, reallocation table, using Sub-

routine DEFIL. Next, Subroutine DEFINB creates a skeleton data

9 block. The interpreter (LOADB) then calls LDEL or LDRG , de-

pending upon whether or not the element to be loaded is part

of a repeating group. Either of these two routines will call

on PTR and then CHANGE to add the pointer to the data base.

If a cross—file pointer is to be inserted , PTR will call PFNIN.

PFNIN returns a cross—file pointer value for the specified

permanent file name. It will create this value if one does not

already exist. -

Creating the pointer structure with COMRADE/GIRS would best

be accomplished with the use of a DDL/DML such as GIRL. First,

the user would declare a continuant size and an ini tial number

of pages. Next, the user would declare all of the bloc’
~ names

(nodes) and pointer element names (links) in a DEFINE statement.
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The nodes and links would be assigned unique sequence—dependent

“ random ” numbers which the user would either store or regenerate

4 for future update runs.

The user would then be ready to create the relationship

graph . To insert the first relationship (referred to in Figures

14 and 15), in which the element name is PTR1, the following

GIRL code would be required :

G BLOK1 PTR1 NXTBL OK

FORTRAN code can be interleaved with GIRL code, allowing for

attendant logic or calls to the CDMS subroutines. A multivalue

list (pointer array), where the element name is PTR2, would be

inser ted similarly with the following code:

G BLOK 1 PTR2 (NXTBLK1 , NXTBLK 2,...)

The GIRL preprocessor would then conver t these statements

into FORTRAN calls to Subroutine INSERT. An entire FORTRAN

program would then be crea ted by the preprocessor and executed

by the user. Let us say that the continuant size had been set

to 500 words , and that BLOK1, PTR 1, and NXTBLOK had been

assigned the random numbers 326, 205, and 92, respectively.

INSERT would then determine the necessary offset for placing

92 in the GIRS buffer by computing (326+205) MOD 500. It would

then determine the appropr iate page and continuant to receive

this value by extracting a non—zero page and continuant number

from BLOK1, or , if the page number had not yet been defined ,

by calling a user—defined STRATEGY for page definition. If

the user defaulted , the triple would be placed on the page
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and continuant last used . For further details , consult

Berkowitz .~~

4

UPDATING AND DELETING DATA STRUCTURE COMPONENT S

Under COMRADE, there are three method s of modifying and F:
deleting (pointer) data. In the first method , a user calls

the CDMS subroutines directly. In the other two method s, the

subroutines are called either by the INTERACTIVEUPDATE pro-

cedure or by the Bulk Data Modifier. All these methods call

on the following CDMS subroutines:

CHANGE Adds or modifies non—repeating group
elements of an existing data block.

CHANGO Changes values in an occurrence of a repeat-
ing group in an existing data block.

9 
ADDO Adds a single occurrence of a repea ting

group in an existing data block.

ADDU Creates a locally defined element to a data
block.

DELETE Deletes the value of an element in a speci-
fied block.

The following example illustrates the way in which a

reques t to change a block name (sink node ) is handled under

COMRADE . Assume that the data block EQUIP1 contains a WE IGHT

pointer to the data block BLOKO5, and that we desire to have

it point to BLOKO7 instead . The parameters to CHANGE (ICODE,

IBN, ISBN , lEN , DATA ) are set as follows:
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ICODE = 0 (does not have to be set for this example)

IBN = 6HEQUIP 1

ISBN = 4H SUB 1

lEN = 6HWEIGHT

DATA = 6HBLOK O7

Under GIRL, this same request would look as follows:

G EQUiP1 WEIGHT — .1 BLOKO7

(Note that under COMRADE/GIRS, the parame ter ISBN, which refers

to the subblock number , is not needed for pointer updates.)

The GIRL preprocessor would conver t th is code into a call

to the GIRS subroutine INSERT.

This request to change a block name could also be handled

by the routine PTREXEC , descri bed later in the sec tion which

discusses the conversion of a data base to the COMRADE/GIRS

system . Parameters for PTREXEC would be the same as for CHANGE ,

except that ISBN would be replaced by an operation code which ,

for this example , would be eight. The relationship in question

can be deleted with the follow ing GIRL code:

G EQUIP1 — WEIGHT

Before  a GIRS opera tion can be p e r f o r m e d , all nodes and

links must be defined —— that is , be given unique numeric re—

presentations. Any previously defined nodes and links must have

their old values returned , and new nodes and links mus t be de-

clared in a DEFINE statement. The user may store the old values

on disk , or he may redeclare the old nodes and links following

the same sequence as that used originally for the creation of

the data structure.
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RETRIEVING DATA FROM THE DATA BASE

Retrieval at a Higher Level -

Data can be retrieved from a COMRADE data base at either of

two different levels , a convenience which affords the user a

flexibility versus convenience trade—off. The higher level

offers more convenience for simple requests; the lower level

offers fewer restrictions. At the higher level , the QUERY pro-

cessor parses English—like requests from a remote terminal

and converts them into CDMS subroutine calls. All possible

hits are returned to the terminal . If the programmer wishes

to make further use of the values, he must re—en ter them into

the machine. Moreover , he may not res trict a search to specific

occurrences of repeating groups or to non—repeating group
9

elements.

The queries are basically of three different types:

1. Query on condition .

2. Query via pointers. -

3. Query on conditional values returned via pointers.

The examples provided earlier for each of the three types in

the section entitled “Pointer Traversal Executive Routine ”

are repeated here for convenience .

1. PRINT BN .WHERE. AREA .EQ. 20;
2. PRINT COST .OF . BLOCK1/PTR1/PTR2;
3. PRINT HEIGHT .OF. BLOCK2/PTR3/PTR4 .WHERE.

AREA .GT. 1000;

A brief description of the COMRADE method of handling these

queries has already been given . Under COMRADE/GIRS, operations

for dealing with the first type of request would be the same.
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For queries of the second type , the calls to FETCH to bring

into main memory each and every data block involved in the

search would no longer be made, since , under a COMRADE/GIRS

system , a pointer chase could be processed largely in main

memory via a single call to the pointer traversal executive

routine PTRCHSE. PTRCHSE would convert an .OF . list from a

query to a series of calls to the GIRS retrieval routine

FIND. For example , the query

PRINT COST .OF. BLOCK1/PTR1/PTR2

would be handled as follows :

C NODE = BLOCK1
LINK = PTR1

= CALL FIND (NODE, LINK , VALUE)
NODE = VALUE 

- 
-

LINK = PTR 2
CALL FIND (NODE, LI NK , VALUE)

C VALUE NOW CONTAIN S THE NAME OF THE HIT BLOCK
lEN = VALUE
CALL FETCH (...,IBN,...,DATA ,...)
PRINT DATA

If either PTR1 and PTR2 were pointer arrays , PTRCHSE would

generate stacks to handle the situation . Also , as a wors t

case for the present system , if a pointer chase wer e to be

expanded to its maximum of 16 levels ,* resulting in a single

hit block , and if the pointer relat ionships were par tit ioned

proper ly  in a GIRS g raph , there would be as much as a 16 to

1 reduction in the use of disk I/O.

Another res tric t ion under COMRADE * prevents a query from

extending to more than one other file at a time. It does so

* This restric t ion holds only for the Query processor of
COMRADE.
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in a manner described in the section , “Cross-File Pointer

Chasing in COMRADE.” In contrast , COMRADE/GIRS would treat

cross—file pointers in the same way as it treats intra—file

pointers.

Under COMRADE , a type— 3 query would require the QUERY

processor to first perform a pointer chase (again bringing in

all data blocks involved in the traversal ) and to then test

the spec ified values from the “hi t” blocks against the con-

ditions of the .WHERE. clause. Thus an inordinate amount of

d isk I/ O would be used , both for pointer traversals and for

those “hit” blocks which subsequently proved not to contain

any values that satisfied the .WHERE. condition .

A COMRADE/GIRS system would avoid this excessive use of

disk I/O in the following manner. All values to be cond i-

tionally tes ted , such as those returned by a type—3 query

would be placed on the inverted list so that they could be

treated as queries of the first type. Thus a type—3 query

would result in two lists , one wi th the names of all the hit

blocks from the pointer chase , and the other wi th the names

of only those data blocks having values satisfying the .WHERE.

condition. By ANDing these two lists, the names of only those

blocks ac tually qualifying (to be brought in by FETCH) would

be obtained .

Retrieval at a Lower Level

At the lowe r level ,- none of the restrictions associated

with the QUERY language would apply. The user would set up
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the necessary logic and then call the CDMS routines himself.

Following are the major CDMS retrieval subroutines.

FETCH Retrieves the value (s) of a single element ,
array , or repeating group .

FETCHR Retrieves the values from a set of repeating

= group elements.

FETCHN Retrieves the values from a set of n-on—
repeating group elements.

QUERY Returns the hits from a .WHERE . clause (this
subroutine is not to be confused wi th the
QUERY processor )

Suppose that a programmer wishes to determine the b lock

name in that EQUIP block which is pointed out by the pointer

WEI GHT , as shown in Figure 16.

WEIGHT

EQUIP

Figure 16 — EQUIP—WEIGHT Relationship

He might use the following code in calling FETCH.

IBN = 5HEQUIP
ISBN = 1
IRGN 0
IRGR = 0
lEN = 6HWEIGHT
LENGTH = 1
CALL FETCH (IER R,IBN ,ISBN ,IRGN ,IRGR ,IEN ,DATA ,LENGTH)

FETCH would bring the EQUIP block into main memory and re turn

a block name in the DATA parameter:

DATA = 6HBLOK2O

If the programmer uses the PTREXEC facility, code such

as the following might be used :
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IBN = EQUIP
lEN = WEI GHT
lop = 5
CALL PTREXEC (IERR ,IBN ,IEN ,IOP,DATA)
PRINT DATA

The GIRL code for this retrieval would be

G EQUIP + WEIGHT’ DATA
PRINT DATA

COPYING/ SEARCHING ALL OR A PART OF A SUBSTRUCTURE

— As already mentioned , under the present COMRADE system , one

and sometimes two disk accesses are required to bring a needed

association into main memory. Consequently, any program which

must copy all or any par t of a substruc ture becomes seriously

I/O bound. Under paged GIRS, on the other hand , and assuming

that the struc ture has been skillfully enough par titioned so
a

that the desired portion (substructure) of the graph is con—

tam ed on a single continuant or page , the copy operation con-

sists merely of indicating the appropriate page and cont inuant

number of a user—callable ~IRS report genera tor , LVDUMP. Each

desired continuant is then transferred with a single FORTRAN

READ followed by a WRITE.

If - the user wishes to take advantage of Subroutine LVDUMP ,

but finds that the graph has not been properly par titioned be-

forehand to have the desired information isolated on a single

page , additional steps must be performed. Two of the methods

available for performing these steps are particularly suited

for use with GI.’S because they are essentially in—core

operations and offer trade—offs as to time , flexibili ty, and 
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space. Both methods require an entry point to the graph

(starting node). (Note that these two method s apply for

4 searching through a graph , also.) The first method requires

the user to supply a stack of pointers or link names at run

time . Portions of this method form the basis for all three

versions of Subroutine DELEQ, listed in Appendix C. The

flow of operation of this first method is indicated in Figure

17. NODSTAK temporarily stores the values or sink nodes

encountered .

CREATE NEW PAGE TO STORE
SUBGRAPH TO BE TRANSFERRED

BY LVDUMP.

WITH A SET OF STARTING
NODES, SEARCH PTRSTAK

FOR POSSIBLE
RELATIONSHIPS.

I PUSH THE VALUE OR SINK
NODE ONTO NODSTAK

I FOR EACH RELATIONSHIP

L FOUND.

INSERT RELATIONSHIP ONTO
NEWLY CREATED PAGE.

I POP NODSTAK; IF EMPTY,
I CALL LVDUMP

L AND STOP.

Figure 17 — Algorithm for Copying/ Searching
Tree—Structured Data
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Under the second method , although it is more costly in

terms of space , links need not be supplied at run time , since

the programmer will already have supplied a list of links

associated with each non—terminal node when the graph was

created (Figure 18). All that is required for the copy or

search operation to proceed is either a set of boundary (or

terminal ) blocks (nodes) or an integer value representing

the depth or number of levels to be spanned .

This:
BLOCIQZ

DISPLACEMENT

* EMPTY GROSS

Becomes this:

BLOCK’2

LIST

DISPLACEMENT DISPLACEMENT

LIST EMPTY GROSS

EMPTY

GROSS

Figure 18 — Graph Modification for Copy/Search
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In conclusion, copying (or searching ) a graph structure

would be easier , and would take less time to program and

execute, under a COMRADE/GIRS system with GIRL than under

the COMRADE system.
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CONVERSION OF A COMRADE DATA BASE
FOR THE COMRADE/GIRS SYSTEM

Conversion of a COMRADE data base to one suitable for use

with CIRS would involve modification of the Block Type Def-

initions (BTD’s), the Cross File Reference Tables, and the

data base itself. All pointers would have to be eliminated

from the data base and all pointer element names would have

to be eliminated from the BTD ’s. Under the direction of the

DBA , Cross File Reference Tables would have to be unified

across a data base. Note, however , that presen t applications

programs would not be affected , since COMRADE could be mod i-

fied to call the GIRS routines directly when a pointer

operation was recognized .

REMOVAL OF POINTER S

A program would have to be wri tten (under the supervision

of the DBA) to separate the pointers in the COMRADE data base

from the data. Input to this program would consist of a com-

plete list of all of the data blocks in the data base .

The DBA at this po int, would define a continuant size ,

keeping in mind the time versus memory trade—off between long

internal conflict lists and unused space in the GIRS contin—

uant, as described by Berkowitz .5 The prog ram would then bring

in each block and its block type definition . A call to the

GIRS insertion routine (INSERT) would then be generated wi th

the data block name as the source node , the pointer name from
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the block type definition as the link name , and the value

or new block name as the sink node of a GIRS pointer triple.
1

To partition the graph , the user would have the choice of

either allowing GIRS to create a single page (letting the

number of continuants g row as needed to handle graph overflow ),

or taking an active role in designing the replacement (or new)

graph . This could be done by designing a STRATEGY routine .

STRATEGY would be called by INSERT and might contain the

following instruc tions : “If the data block (source node) is an

EQUIP block , place the triple on page two; if the pointer

(link ) is a WEIGHT pointer , place the triple on page three ,

continuant one ; if the data block is DECK, crea te a back

pointer to it from its value ; otherwise , place the triple on
I

the current or most recently accessed page.”

When the pointer—removal procedure is complete , all of

the pointers will have been removed from the COMRADE data

base and placed into the GIRS buffer. More relationships can

be added at this point with calls to PTREXEC, the pointer

executive routine which is discussed in the next section. The

data blocks and block type definitions would then be compresse d

and the cross file reference table would be updated , if

necessary, resulting in a converted data base.

DEVELOPMENT OF NEW PROGRAMS INVOLVING POINTER S

The COMRADE/GIRS applications prog rammer would have a num-

ber of options for setting up a program with pointer operations:
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(1) He could continue to call on the CDMS subroutines di—

rectly as at present, although this would be inefficient,

since the CDMS routines must determine whether or not to call

the GIRS routines.

(2) He could use GIRL, as imbedded in FORTRAN , which

would save both programme r and computer t ime , and would also

allow for a better conceptualization of the data base

structure even though the use of GIRL would require a pre—

processing step* already described in the sec tion

“Adding a Data—Definition/Data Manipulation Language to

COMRADE .”

(3) He could use PTREXEC , a pointer execu tive routine

which would have a calling sequence similar to the present

CDMS routines. Use of PTREXEC would avoid the ineffic-

iencies mentioned in the first two method s but would not

present a one—to—one trace of the pointer operation to the

code.

PTREX EC would also translate Hollerith block names into

their respective random numbers to be used by GIRS. The first

input parame ter to PTREXEC would be the opera tions code , an

integer which would define the pointer operation . Table 5

contains a partial list of possible pointer operations.

* The GIRL preprocessor accepts a GIRL program as input and
creates a new all FORTRAN applications prog ram .
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TABLE 5 - PTREXEC OPERATION CODES
I

Operation
Opera tion Number

Insert a new triple at the end of a
list* 1

Insert a new triple in front of the rith
value in a list 2

Delete array (multivalue list) 3

Delete triple 4

Retrieve (first) value 5

Retrieve ~th value from the top of
the list 6

Retrieve ~ th value from the bottom of
the list 7

p

Replace DATA value 8

* Note that- if no list exis ts a new triple
is created

The other input parameters would be the block name for the

source node (IBN), the pointer name for the link (lEN), and the

value (DATA) as the sink node. ICODE is presently used for

both input and output and would continue as such . For example ,

as an input parameter to the -CDMS routine CHANGE , ICODE is used

for arrays; under a COMRADE/GIRS system it would be used for

multivalue lists. As an output parameter , it is an error code

and its function would not change.
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IMPLEMENTATION

Under COMRADE , pointers are treated as just another type of

data , along with alphanumeric , integer , real , and text. Since

under COMRADE/GIRS there would no longer be any pointer data

wi thin the data block , CDMS references to pointers would no

longer be relevant and could be removed at the leisure of the

COMRADE managers.

CDMS routines which deal specifically with pointers would

have to be modified , replaced , or eliminated . The following

areas of COMRADE would be involved:

In the QUERY program. To handle a parsed .OF. clause,

subroutine PNTRCE (Overlay (3,0)) would be replaced by a sub-

routine (PTRCHSE) which would take the output of Subrout ine

PARSEP and trea t the first word in the parsed list as a source

node and the following words in the list as links and translate

this list into one call per link or pointer to the GIRS re-

trieval subroutine FIND. PTRCHSE would then generate an array

of hits or potential hits to be ANDed with the output list of

a .WHERE . clause , thus reducing disk I/O. (The conditional

elemen ts involved in a query composed of both .WHERE . and .OF.

clauses would then have to be inverted.) As a result , the

number of hi ts per query would become available.

Overlay (3 ,1), which handles the data file swi tching to ac-

commodate cross—file pointer chasing , would no longer be needed .

In the CDMS Subroutine Libra~y. Under COMRADE , the cross

file reference numbers are local to a particular file within a
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COMRADE data base. This feature would be modified so that

there would be a single Cross File Reference Table (CFRT),

since pointers would no longer be oriented to particular data

files. Each file in the data base would have a unique number

associated with it. Therefore, this number must be packed into

every sink node in the pointer graph . Data bases composed of

only one file would not be affected . The following subroutines

migh t be affected :

PTR. PTR is a routine in the Bulk Data Loader which

sets the pointer word in main memory. It

would no longer be needed .

INPFN. INPFN is a r e t r i eva l  r o u t i n e  which r e t u r n s  the

permanent file name from the Cross File Refer—

ence Table. The input  to this rou t ine  is a

cross—file pointer value which has been packed

into the block name . The function of this

rou tine would not change; however , the routine

would not be needed until the search was

comple te , at which t ime it would be called once

per query and would return a list of permanent

file names when handed a list of hits.

To prevent ex is t ing  applications programs from being affec ted

by the addition of GIRS, CDMS rout ines would have to be mod ified

to recognize requests involving pointer information . A pointer

operation may be assumed if a search of the proper Block Type

Definition results in failure. The CDMS routine would then have

to call the proper GIRS routine directly.
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Cer ta in  sof tware  would have to be added to COMRADE.

(1) The GIRS subroutines would have to be added to

COMRADE’ s subroutine library.

(2) Two new permanent files would have to be created ;

one , the In te rac t ive  Pointer  Manipu la t ion  Package , to handle

pointer manipula t ion  at the terminal , and the other , a Bulk

Pointer Data Program to handle batch jobs involving bulk data

descr ip t ion input .  The In te rac t ive  Pointer  Manipulation

• Package would allow for updating , inserting , deleting , and

retrieving data block relationships at the terminal . It would

consist of two parts. One part , the program PTREXEC , would be

a pointer executive routine with both long and short tutorials.

This program would convert  t u t o ri a l  responses d i r e c t l y  into

calls to the GIRS subroutines. A similar program is already in

existence . The other part would be a collection of subroutines

created to parse and handle such typical graph manipulation

operat ions or requests as:

Delete all references to Data Block (Node) x

Delete Node x and i ts descendan ts

Delete Node x and reconnect its ancestor to all of its

descendants

• Add Node S to List y

Ret r ieve  all of the descendants to Node x

(Of course , some of these operat ions would require that the

graph be adequately constructed with back pointers and also that

the pointer  ( l i n k )  name s be avai lable , in a stack , perhaps . )
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;~;~ The Bulk Pointer Data Program for use primarily in bulk

pointer operations for batch input would process whatever DDL,

such as GIRL , were used. A GIRL language preprocessor has al—

ready been made available , which allows FORTRAN statements

(such as calls to routines in the CDMS subroutine library)

to be interspersed with GIRL statements thus making possible

the performance of efficient operations of the form:

Delete data block x at the end of the pointer search .

The proposed method of conver ting a COMRADE da ta base to

a COMRADE/ GIRS data base bes t serves the interests of both

the applications programme r and the DBA . As more needs are

defined , the implementation may be extended .
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SUMMARY
- -i_ I

The advantages of removing the logical structure

(pointers) from the data blocks and collecting them into a

single area are several :

Most of the disk I/O presently needed for accessing and

modifying data block relationships can be eliminated——and

thus response time for a COMRADE retrieval reduced——since

a large collection of pointers can be brought into main

memory at one time.

Partitioning of pointer sets can be flexible (at the cost

of keeping a cer tain amount of space always “available”),

so that a programmer need no longer be cons trained by

the predetermined data block forma ts known as Block

Type Definitions.

The data base structure can be conveniently operated on

by a pointer manipulation scheme , since pointer s are

concentrated in a single area.

Using such a pointer manipulation scheme enables the

introduction of a powerful data—definition/data manip-

ulation language such as GIRL (Graph Information

Retrieval Language) into the system , with the following

benefits:

(i) Programming and debugging time can be reduced by vir-

tue of the one—to—one correspondence between the DDL/

DML code and the pointer relationships represented .
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(ii) Imprecise queries can be handled , albeit at the

expense of memory and disk space.

(iii) The data base administrator is provided with such

fea tures as (a) automatic addition of back pointers,

and (b) automa tic connection of the parents and off-

spring of a data block to be removed .

The logical structure need not be created at the same

time that the data base is created .

. The recognition and repor ting out of large file

structures becomes feasible.

Only f i na l ly qu a l i f y ing “hi t” blocks are brought into

main memory when both a pointer search and a conditional

test are involved.

An effective scheme for manipulating pointers , known as

GIRS (Graph Information Retrieval System), has already been

developed in—house. This system , written in FORTRAN and

readily por table , allows a user—defined “STRATEGY .” Al though

a price must be pa id for the gain in speed , flexibil ity, and

convenience it provides , the amount of ex tra memory and d isk

space involved is generally in d irect propor tion to the degree

of convenience and flexibility to be gained .

GIRS offers a new tool for the data base administrator.

The DBA will, of course , be responsible for (1) determining

certain GIRS parameters to optimize performance , and (2)

determining how best to partition the relationship graph .

Fortunately, existing appl ications programs need not be con—
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vetted , since the pertinent COMRADE routines can be modified

to call the GIRS routines.

In conclusion, the speed , flexibility , traceability (in

the case of GIRL), and the manageability of the proposed

• 
COMRADE/GIRS system are the most compelling arguments for

the implementation of such a system . The advantages must

be weighed against the additional space requiremen ts and the
- 

extra costs involved .

I

- 
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APPEN DIX A

THE “PRESIDENTS” DATA BASE - -

1

The “Presidents ” Data Base8 has been designed by

Stanley E. Willner of DTNSRDC for tutorial purposes.1 It con-

tains political and personal information on the U.S. presidents

and is structured as illustrated in Figure 19.

LOGICAL DATA
STRUCTURE

4 PRES 4

STATEPTR

I

ELECTJ ON

ADMIN —

CONGRESS

ELECTION CONGRESS ADMIN STATES

— PRESPTR . PR ESPTR

STATEPTR

Figure 19 — Structure of “Presidents ” Data Base
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- , The “Presidents” Data Base is composed of block types . 
-

(data block formats) PRES, ELECTION, CONGRESS, ADMIN, and

I STATES, as illustrated by Figures 20 through 24, respec—

I tively. There are 35 data blocks of the type PRES , one for

each president; 45 data blocks of the type ELECTION, one for

= 1 each presidential election up to 1964; 53 data blocks of the

-
- 

- type ADMIN; 90 of the type CONGRESS; and 50 of the type STATES.

-

~~~~ 

Altogether there are 281 data blocks , two subdirectories ,

and 291 pointers in the entire data base. The average data

block length is 23.55 words.

82



- — 
- — - - - —-,5-——

~
---- •-”- 

~~~~~~~~~~~~~~~~~~~~ 
-
~=

--_~. .-.~~~~: 
~~~~~~~~~~~~~~~ T~— - - ~~~ 

— 
~~~~~~~~~~~~~ ~~~~~~~~~~

HISPAGEISBESTQUALITY~~~~~~~~ ’~
— J~O~M QOiFY FURNISHED 

TO DD~Q ~~~~~~~~~

BLOCK TYPE- PRE S

SUB—BLOCK 1- PERSONAL

ELEMENT 1— SURNAME ALPHA INVERTED
ELEMENT 2— FIRSY NA M ALPHA
ELEMENT 3— INITIAL ALPH A
ELEMENT 4— M ONT M B ALPHA
ELEMENT 5— OAY8 INTEGER
ELEMENT 6— TEA RO INTE GER INV ERTED
ELEMENT 7— STATEB ALPHA INVERTED
ELEMEN T 8— STATE P IR POINTER
ELEMENT 9— IEIGHT ALPHA

-
‘ ELEMENT 10— PARTY ALPHA INVERTED

ELEMENT ii— COLLEGE ALPHA
ELEMENT 12— ANCESTRY ALPHA INVERTED
ELEMENT 13— ~EL IGION A LPHA INVERTED
ELEMENT 14- OCCuR ALPHA ARRAY
ELEMENT 15— MONTH O ALPHA
ELEMENT 16— DA~ O INTEGER
ELEM EN T 17— YEA RD INTEGER

:4 ELEMENT 16— CAUSE ALPHA

REPEATING GROUP 1- NA ME
ELEMENT I
ELEMENT 2
ELEMENT 3

REPEATING GRDJP 2— BIRTH
ELEMENT 4
ELEMENT 5
ELEMENT 6
ELEMENT 7

I
PEPEA TIN G G R3JP 3— DEATH

ELEM ENT 15
ELEMENT 16
ELEMENT 17
ELEMENT 18

SUB—BLOCK 2— FAMILY

ELEMENT 1— FAtHER ALPHA
ELEMENT 2— MOTHER ALPHA
ELEMENT 3— WIFE A LPHA
ELEMENT 4— MOPI TMM ALP HA
ELEMENT 5— OA~ M IN T E G E R

14-’ ELEMENT 6— VE A RM INTEGER

L ELEMENT 7— CHILDREN INTEGER

REPEA TING GPOJP j— MA RRIAGE
ELEMENT 3
ELEMENT 4
ELEMENT 5
ELEMENT 6
ELEMENT 7

SUB—BLOCK 3— HXSTORY

ELEMENT 1— ELECT ION POINTER AR RAY
ELEMENT 2— A OM IN POINTER ARRAY
ELEMENT 3— CONGRESS POINTER ARRAY

Figure 20 — Block Type PRES
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TEl S PAGE IS B~~T Qt~A1dtTY P & ~TICABL1

• 1BL~M C~FY FURNISHED TO DD~. _.-

BLOCK TYPE—EL ECT ION

SUB-BLOCK 1— SUB1

ELEMENT 1— YEAR INTEGER INVERTED
ELEMEN t 2— NINNER ALPHA INVERTED
ELEM ENT 3— PRESPTR POINTER

- -
~ ELEMENT 4- NPART Y ALPHA INV ERTED

ELEMENT 5— VOTES INTEGER
ELEMENT 6— OPPNANE ALP HA
ELEMENT 7— OPPPARTY ALPHA
ELEMENT B— OPPVOTES INTEGER

REPEATING GROUP 1— OPPONENT
ELEMENT 6
ELEMENT 7
ELEMENT S

Figure 21 — Block Type ELECTION

BLOCK TYPE—STATES

SUB—BLOCK I- SUBI

ELEMENT 1— STATE ALPHA INVERTED
— ELEMENT 2— YEA R A INTEGER INVERTED

ELEMEN T 3— CAPITAL ALPHA
ELEMENT 4— AREA INTEGER INVERTED
ELEMENT 5— A REAR A N K IN TEGER INVERTED
ELEMENT o— POP IJL INTEGER INVERTED
ELEMENT 7— POPRANK INTEGER INVERTED
ELEMENT 5— ELECVOTE INTEGER
ELEMENT — ITY ALPHA INVERTED
ELEMENT 10— ~ITYPOP IN TEGER INVERTED

REPEATING GRO JP 1— CITIES
ELEMENT 9
ELEMENT 11

Figure 22 — Block Type STATES
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S T O D~~~~~~~~~~~

BLOCK TY IE— AUMI N

SUB—BLOC ( 1— SUBI-~1I ELEMENT I— MONTH! ALP HA
ELEMENT 2— D A Y ! INTEGER
ELEMENT 3— YEARI INTEGER INVERTED
ELEMENT 4— VPF IRN A M ALPHA
ELEMENT 5— V P SURNA M ALP HA INVERTED

• 1 ELEMENT 6— PRESPTR POINTER
ELEMENT 7— SECSTA TE ALPHA
ELEMENT 8— SECWAR ALPHA
ELEMENT ~~

— SECTRES ALPHA
ELEMENT AG— ATTYGEN ALP HA
ELEMENT 11— NEWSTA T E ALPHA INVERTED

- • 
-

~ ELEMENT 12— STATEP Y R POINTER

REPEATING GROU P A— INAU G
ELEMENT I

~ELEMENT 2
ELEMENT 3

REPEATING GROUP 2— VI CEPRES
ELEMENT Ii

ELEMENT 5

REPEATING GROUP 3 CABINE T
ELEMENT 7
ELEMENT 8
ELEMENT 9 —

- ELEMENT 10

REPEATING GRO JP 4— STATES
ELEMENT 11
ELEMENT 12

Figure 23 — Block Type ADMIN

BLOCK TYPE— CON GRESS

SUB—BLOCK 1- SUB1

ELEMENT 1- NUMBER IN TEGER INVERTED
ELEMENT 2— SPART Y ALPHA
ELEMENT 3— SENATORS INTEGER
ELEMENT 4- N PARTY ALPHA
ELEMENT 5— REPS INTEGER

REPEATING GROUP 1— SENATE
ELEMENT 2
ELEMENT 3

REPEATING GROUP 2— MOUSE j
ELEMENT N
ELEMENT 5

F i gu r e  24 — Block Type CONGRE SS
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APPENDIX B

SEARCH PROCEDURE WRITTEN IN GIRL/FORTRAN FOR INDIRECT,
• MEMORY-RELATED QUERIES

The following procedure taken from the report by Berkowitz5

indicates code typical of search procedures.

$
B of A giv.n that A is of typ. C. If (C O) RETURN

C “* LISTA HOLDS DOWN LINKS OF C

2 LISTA(HOLDS C ‘TENPI REFER TOP)

JTENP O

3 3—0

G 4 T~~P + D(A4N/6 .‘J—3+1’/6~.B/’NEXT 5/7

C 5 LISTA(HOLDS NEXT • REFER ‘JT~~P’//4)

C 6 LISTA (+E0LDS. JT~~~ -JT~~~+1’ /15/’T~ (P3)

C *** CO)~~ILE STRING OF LINKS FROM C DOWN TO B

- - 
C 7 LISTA STRING(B,T~ 1P)

G 8 LISTA(4 EFNK.JT~~~ ‘JT~ 4P—TOP// 9 ~+HOIDS .JT~~~B” T~~~ ,STRING

TE~~//8)

c *** GENERATE LISTB~TREE OF NODES EASED ON LINK STRIW

9 .1—0

- 
- C A NODE

o 10 LISTA+STRINC. ‘J—J—l ’ ‘TEMP—B//13

K-O

0 11 NODE+TENP.’K K+1’/ 1Z’ N~~T

O LISFB(STRING NEXT,REPER ‘J’//ll)

C 12 LISTB(+STRING/16(.1’NODE.—.l ,l-REFER(.l’J,— .l//lO)))

C ~~~~* OUTPUT NODES LINI~ D BY B

13 J 3—O
C 14 NODF4B. ’JJ.JJ+1’/12’OUT

PRINT (OUT)

GO TO 14

15 PRflIT(’FAIL’)

16 RETURN

TEIS PAGE IS BES T QUALITY P~& LCABIt~

~~tFI F1JRZUSHED 
TO DD~Q _ .—
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APPEN DIX C

TWO SUBRO UTINE S, AS CODED IN FORTRAN FOR CDMS AND GIRS,
AND AS CODED IN GIRL

Two subrout ines , DELEQ and DLEQPT, have been selected

from the DTNSRDC Ship Design File to illustrate the coding

differences for COMRADE and for COMRADE/GIRS. DELEQ is used

to delete a par ticular data b loc k and all of its descendan ts

from the Sh ip Design File. DLEQPT is used to disconnect any

pointers point ing to the deleted b locks and to reconnec t them

to the parent of the deleted block.

DELEQ opera tes on a s imple “preor der ” traversal technique

for both CDMS and GIRL versions , wher eas DLEQPT uses a much

mor e involved algorithm whic~’i will not be considered here.

The sequence of even ts for the G I R L  version of DLEQPT is

similar to that used in the CDMS version.

The GIRS version of both rou t ines has been produced by

the GIRL preprocessor. Handwritten GIRS code would be a bit

more efficient and would also take less space in main memory.

Table 6 compares the number of statemen ts needed to accom plish

the task under CDMS and under GIRL .

_____ _
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TABLE 6 - RATIO OF GIRL STATEMENTS TO COMRADE STATEMENTS

Number of Statements Needed
Subroutine COMRADE GIRL Ratio of GIRL

Name Statements to
COMRADE Statements

DELEQ 107 42 .3925...

DLEQPT 160 71 .44375

Total 267 113 .4232...

One final comment: After becoming familiar with the two

routines , the author was able to write the GIRL code for DELEQ

in approximately half a day , a-nd that for DLEQPT in approxi-

mately one and a half days.

CDMS, GIRL , and GIRS code follows:

90 
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GE I’S BEST QUALITY 
p LCTL~A~~~

FL FURNlS~~~ ~~

AS CODED IN FORTRAN FOR CDMS

SUBR UUT INE DELEQ 71./74 OPTzS NOLNOz’l TRAC E FYN 4.5+R406

A SUBROUT INE DELEQ(EQIN)
C
C—THIS ROUTINE D~ LA T~.S AN LO BLOCK(EQ IN) AND ALL S009LOCKS FRGN THE
C.~t4IP OLSIGA FILL, A NO O~ LETLS ALL POINTERS TO THOSE BLOCKS.

5 C
GO NM CN IUN ITS/LFN, ICONW
GIMEN SIO M P(2),IPV (2),’STACK (IOO),OATA IIOO ) ,IP (iOO)
DATA P/2p 4AR,2H5Wl ,NPTRSI2I ,IPVII,2’/

~.—INITIA L IZE VAR iANCES
10 ZSUN~~~ 0

ISBN • 4HPTRS
PNCT I = BLNOTO NE
S(VSIX 167676 767t16 767676 765
ISTAC K a 9

15 PEG = 2HEQ
C—S LT EQCUR TO EQIN

£QCUR = EQIN
C—PLACE ECCUR ON STA CK

10 ~ SIACK = 151*6K * I
20 STA CK ( ISTAC K ) • LOCUR

ISUM = 0
C—FETCH THE PUINTEIC S FROM £Q~UR TO EA CH OF T HE POSSIBLE P BLOCKS, SEE
C—W Hi CH IS EQUAL IC NOTONE , AND SET THE PROPEM IP(ISTAGK ) TO THE SUN OF
C—T HE PROP~R IPYCS.

25 IRGR 0
00 30 I l ,NPTRS
EN = P i l l
LENGT H - I
CALL CGMRLDRI 5LFLT CM ,1ERR ,EQCUR ,ISBN ,0,IRGR ,EN ,EOUT ,LENGTH)

El IF( IERR.NE.0) ~ AU. ER* (SHFETCH ,IERR)
C—~EI IP SUNNI NG COUNTEK ISUM

IF(EOUT .EQ .PNOTI) XS UU—ISUN.IPV(I )
30 CONTINUE

C—OUT OF LOOP—SET ZPIX STACK )
35 IPCIST *CK) ISUM

C—DOES ECCUK HAVE AN Y SUB— tOE S? FETCH THE DUNN POINTERS OF ECCUR
NO IRGR 0

LENGTH 100
GALL CONRL og( 5LFETCH,IERR,EQ CUR ,ISBN ,5HOPTRS,I&Gk,2NEQ ,OA TA ,I.ENGTH

40 Il
00 45 JK= 1,LENGTH
IF (OATA(JK ) .NE .SEVSIX) GO TO 46

45 CON1IN~~IF(IERR.NL. 0) CALl. ERR(5lf~ TCH ,1ERRb
45 C—ALL SLVLN SIXES iND ICATE NO SUB-EQS

GO 10 50
C—E QGUR DOES HAV E SU8EQCS . SET ECCUR TO FIRST SUB-tO, THE GO BACK A MO
C—PLACE AT ON STACK AND SET IP
46 EQ4.UR DA TA (JK )

50 60 10 10
C—EQGUR COtS NOT NAVE SUB— EQ (S. HON MANY BLOCKS ARE IN STACK.

50 AFLISTICK .EQ.1I GO TO 110
C—SET IPOIF

IPOIF = IPIISTACK— 1) —IP (ISTM.K)
55 C—FO LLOWING LOOP DELETES ALL BAC K POINTERS TO EOCUR

DO 8$ 1 1,NPTRS
C—SET ISUB

IS UB 2 IN PTRS— II
IFIIPOIF .LT .ISLBI GO 10 80

6$ C—I PCIF IS GE ISUB. FIRST SET PIR
PTR a P(NPTRS—I.1)

C—FET CW VALUE OF PTA OF EQCV R ANO PLACE IT IN PICUR
LRGR a
LENGTH I

65 CALL CCMRLQR (SLF ETGN, It RR,EQCU R ,ISBN ,0, IRGR,PTR ,PTCUR ,LENGTH)
IF(IENR.NE.I) ~AL L £R$(5H FETC H ,IERRI
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r
C—NOW MUST DELETE LOCUR FICH THE EQ FIRS OF FTCUR. F IRST NUST FINO
C—WHICH OCCUIREISCE OF LOIPICUR IS EQUAL TO £OCUI. FETCH ALL EQ
C-OCCURRENCES

TI IRGR.0
LENGTH a :100
IF(PTR.NE.ZHEW) GO TO 53
(ORG a $HZT(NPTRG
IOPTR a THITENPIR

73 GO TO SI
55 (ORG * 4.HEORG

IOPTR 2HEQ
A CALL CCDIRLDk(5~~~ TCH,IERR,PTCUR,ISIN,EQ ,IRG~~,IOPT1,OATA ,LENGT *

IF(IER R.N~ .0ê GAU. ERR (SHFLTCH ,IE RR)
II C—LOOP TO S~E WHICH GCCUR.~ENCE IS ECCUR AND THEN DELETE IT.

DO 60 Kat,LEWGTH
IFCEQ4..UR.NE.DATA(K) ) GO TO 60

L—EQCUR IS THE KTH OCCURRENCE IN E QIPIC U ~ . DELETE IT.
CALL GCNRLOR(6LDEL~ TE,1ERR,PTCUR,ISIN,EQ*G,K, 0)

65 IF(IERR.ME.l) GALL ERR(6NDELETE,IERRI
GO TO 10

60 CONTINUE
C-RESET IPDIF— cOtazNUE L OOF IAG ZN MAJOR LOOP

70 IPDI a IPO LF—I SUB
90 10 CONTINU E

G—OELETE ILOCk EQCUR FROM THE SHIP DESIGN FILE
GALL C CNRLOR ( 6L0E&ETI, TEAR ,EOC UR)

C—THiS ROUTINE WILt. BUILD SAGE POINTERS FRON THAT OTHER SLOCK TO EACH
IF(IERR.NE.I) GALL c.RR~6HOELETB,IERR)

93 C—SET EQLST TO EQGUR
EQLST LOCUR

C—SET LOCUR T O NEXT StOCK ON STA CK
ISTA(.K a ZSTAC K—1
EDGUR * STACK ( ISTALK)

ISO TACO — S
LENGTH a 100
CALL CCMRLOE(SLFETCN,IERR,EQCUR,ISSN ,5HOPTIS,IRGR,2HEO,DATA,LENG1H

11
C— DELETE E~4&ST FROM EO/EOGURIOOW N POINTER) FIRST FETCH AU. DOWN

105 C—POINTERS Erd~ QCUR
IF(IERR.NE. 0) GAU. tRR (SHFETCN,IEM)

C—DO LOOP TO FIND EOLST ANu DELETE IT.
00 90 Kzi,LENGTH
IF(ECLST.NE.OATA(K) ) GO TO 90

III C—DELETE IT *3 IS KTH OCCURRENCE
GALE. C ONRLOR(6LOEI.ETE,IEAR,EQC UA,ISSN,SHDPTRS,K,S$
IF(IERA.NE.0) GALL E*&I6HDELETE,ZERR)
GO TO ISO

90 CONT1NU~
115 C—START PROCESS AGA IN WITH NEW EUCUR

Ill GO TO ~0
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7~ OM OO~PY YUB2USH~D TO DD~

C—ONLY I BLOCK LEFT ON STACK. FIRST SET LOPAR TO THE PARENT OF LOIN
- %  110 IROK a j

LENO TH ~ 1
120 GALL CONRLORI5LFETCH, IERR,EQIM,ISBN,5H~~ TRS,IRGR,2HPR ,EQPAR ,LEIGTH

U
IFiIERA.Nc .01 CALL ER&(5HFETCN,R~~ l

C-FIND OUT IF LQPAk IS IND&EO AN EQ BLOCK. GET FIRST 2 CHARACTERS
C—OF EQPAR WITH ROVE AND TEST ON IT.

125 ARRAYI a ION

~ALL CONRLD.U4LNOVE,ARRAYI i,EQpAR,1.2.IERR)
IF(ItRR,N~ .Ob GALl. ~.RR(4HlI OVE ,1ERR)

C—CHECK FIRST 2 CHARACTERS AGAINST EQ
IFCARRAYI.NE.PEQ) GO TO 140

131 C—EOPAR IS AN LO BLOCK. LOOP TO OLLETE BACK POINTERS TO IT.
00 120 Kz1,NP T RS

C—SET PIR TO P1K) TO GET TYPE OF PCINTER.
PTR a P1K)

C—PLACE VALUE OF PTR OF LOCUR IN VARIABLE PTCUR
135 XRGR a $

LEN GTH I
CALL CONRLOR 15LFETCH,IERR.EQCUR.ISBN,0,XRGR,~~~R,PTCUR,LENGT~~
IFIIIRR.NE.O) C ALL ERR (SHFETCH,IERR)

C— CA LL OLEQP T TO OEL t.TE TO AND FRON FTRS AND N A I N T A IN HIERAR C NV OF PIR S
140 ~ALL OLEQPTIEQCUR,PTR)

C—ENO OF LOOP
120 CONTINI~L-DELE TE EGG UR FROW LO(S OF E O P A I .  FIRST FETCH ALL LOCS OF LOPAR

I K G R a O
145 LENGTH * 100

CALL LONRLOKI5LFETCH.IERR,EQPAR ,ISBN,5HOPTAS,IRGR.2HEQ,OATA,LENGTH
11
IF (l~ RR.NE. Oh CAU. ~ RR15IWETCH,IERR)

C—O O LOOP TO FINO EGGUR AND GELETE IT.
150 00 130 K 1,LLNuTH

IF(LUCUR.NE.OATA(K)) ~.iO TO ITS
C—~QCUR IS KTH OCCURRENCE — DELETE II

GALL CCNRLOR (BLOEL.ETE,IERR,EQPAR,ISBN,SHDPTRS,K,01
IF (I IRR .N E .0)  CALL ERR(6H0(LET(,IERRI

155 GO TO 11.0
130 COtiTINUt

C—DELETE EQGUR FROM ~I4IP OESIGN FILE
140 GALL CCMRLUR (61~OELEI8,IERR,EOCURh

LF(IERR.NE.0) CALL LRR(SIIOELETOPIERR)
16I C—FINISH~O—RtTUKNRET URN

EN C

STATiSTICS
PROGRAM l ENGTH 1411.8 150
~~ LAeELED CONRON LENGT H 28 2
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SUBROUTINE OLEOPT 11.174 OPT.I ROUNDu ’l TRACE FTN 4,5•*4I6

I SUBROUTINE OLEQPT (EQIN,PTRA
C
C—GIVEN AN ~O BLOCKILOIN) ANO A POINTER TYPE(PTR) TO ANOTHER BLOCK,
C-THiS ROUTINEs

5 C— 1 GELETE~ THE POINTER TO THE OTHER BLOCK
C— 2— DELETES THE SACK POINTCR FRO THE OTHER BL OCK TO THE EQ

- 
- C— BLOCK

C— 3— LPDATES POINTERS FROM AND SACK POINTERS TO HIGHER EQ
C— BLOCKS A~ NECESSARY TO NA~NTAIN THE HIERARCHiCAL SEQUENCE

II C— OF (NOTONECS, REAL POINTERS, AND C LINBC(S.
C

COMNONIUNITSILFN,ICONW
-‘  UIISE NSION OA T A ( I S S ) , D A T ( I O D ) ,ARRA Y (2 )
-
. - C—INITIALIZE VARIABLES• 15 PLO a ISHE Q

ISBN a 4HPTRS
PLIBBO a BNLIN8O
FNOT 1 a BI.NOTCNE
IF(PTR.NE.2HSWb GO TO S

20 EQAG a •HITENPTRG
ELEN a THITENP TR
GO TO 1

3 LqRG a 4HEQRG
ELEN a 2HEQ

25 1. CONTINUE
ICODE a 5
IERR * I

C—FETCH THE PTR OF LOIN ANO PLACE ITS VALUE IN PTRINC
IRGR O

3$ LENGTH3I
CALL CCISRLOR (SLFETCH,IERR,EQIN,ISBN,0,IRGR,PTR,PTRIN,LENGTH$
IF(IERN.HE.0) CALl. ERR~5HFETCH .,IEHR)

• C—SET PTCUR AND LOCUR TO LOIN
- ANRATI a PTR

35 CALL CGNRLOR(4LMOVE, ARRAY I,3,FLINBO,i,5,IEMR)
IF (Il.Rk.NE.O) CALL ERR(1.HMOVE,IERR-)

C—IS PTRIN A 1.11580 BLOCK
INACH • IGAN (PTRIN,1,ARRAYI,I,11
IF(INAU4.NE.0) GO TO 5

40 G—PTRIN IS A LIMBO BLOCK. BEFORE RETURNING DELETE £OCUR AS AN EQ/PTR
C—OF PTRIN. FIRST, FETCH ALl. EQIPTRS OF PTRIN

LENGTH a
IR~~ a 0
CALl. COMRLOR(SLFETCH,IERR,PTRZ4,ISBN,LORG ,IRGR,ELEN ,OATA .LENGTWP
IF(IEIR.NE.O) CALL ERR(SHFETCH,IERR)
00 2 iaI,LENGTH
IFVEQ ZN.NE.DATAII) ) GO TO 2

C-DELETE EQC UR FRON EOIPTRIN
GALL CC$RLOR$64.OELETE,IERR,PTRIN, ISSN,EQRG,I,S)

55 IF(IERR.NE.0) CALl. ERR(6IIOELETE,IERRS
GO TO 160

2 CONTiNUE
GO TO ISO

• G-~ E T PIGUR AND EQC UR
55 5 PTCUR a PTRIN

LOCUR a LOIN
C—DELETE PTRIPOINTER OF EQGUR TO PTCUR
10 IRGR * 0

GALL CCNRLOR (6LOELETE,IERR,EQCUR, ISBN,0,IRGR,PTR)
6$ IFIIEMR.NE.0) CALL ERRI6HOEL(TE,IERR)

C—SET EOLST TO £Q~UR£QLST EQCUR
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C—GET lIEN LOCUIT BY FETCHiNG PpRENT OF CURRENT EOCUR AND PLACING ITS
C—VALUE IN EOCUR

• 65 LRGR * i
• LENCTH a 1

GALl. ~DMkLQk(5LFETCH,IERR,EOCUR,ISBl5,5H5PTRS,lRGR,2HPR,ESHOT,LENGTiN)
• • IFlitlui.NL.0I GALA . ERR (5HFETCH ,IERR)

75 LOCUR = ESHOT
• C—WHAT IS T HE BLOCKTVP€ OF EQC UR

ARRAYL tO H
GALL CCHRLQR(4LNOVE,ARRAYI,1,EOCUR,I,2,IER*I
IF(IERIi.NE.O) GALL ERR(4 HNOVE, IERR)

75 C—EQCUR IS NCT AN EQ BLOCK TYPE—DONE—RETURN
IF (ARRAYI.NE.PEOA GO TO ISO

C-EQCUR IS AN EQ BLOCK TYPE. SET PTLST TO PTCUR
PYLSI a PTCUR

C—SET A t~EW PTCUII BY PLACING IN IT TIlE VALUE OF PTR OF EUCUR
50 LENGTH • I

LIG* a 0
GALL CcNNLOAI5LFETGH,IERR,EOCUR,ISON ,0,IRGR,PTR ,PTCUR,LENGTH)
IF(IERR.HE.0) CALL ERRI5HFETCII ,IERR)
IFIPICUR.NE.PTRINI GO TO 30

$5 C-THE VALU E OF PICUR IS PTRIII . GET THE MJHBER OF OCWN POINT~~RS(EO(S) OF
C—BLOC K EQCU~.IRGK * 0

LENGTH • 100
CALL CCNRLOR (SLFETCH,IERR,EQCUR ,ISBN ,5HOPTRS, IRGR ,2HEO,DATA,LENGTH

90 11
IE (IERR.Nt. 01 LALL eRRI5HFETCH,IERRJ

C—LENGT H IS I, SO GO BACK ,kT EOGUR,ETC., AND GET NUT ONE.
IF(LENGTH.EQ.t) GO TO 10

C—LENGTH CT I, OONE~~ REIURNr 95 1FII.ENGTH.GT.1) GO TO 100
C—LE NGTH IS LT i——ERROR-—STOP

WK1TE (ICUNW ,200
20 FORNAT (IH ,3OHERROR—EQ(S OF EOCUR MUST EXIT I

• GALL CONRLDRI4LFLFN,IERR,LFN)
- 

•
• 10$ IFIItRR.NE.0l CALL LRR I4HFLFN, IERR)

STOP
C—THE VALUE CF PTKIN IS $OTCNE. SET lOG TO ZERO

30 100 0
C—iS PTLST lOOM. TO NOTONE

• 105 IF (PTLSI.EQ.PNOT1) GO TO 80
C—PTI.ST iS NOT NOTONE. DELETE E~~..ST FROM EQ PTRS OF PTLST. FIRST MUST
C—FETCH AU. EUCS FROM PTLST

LENGTH = 100
X R G R a O

110 CALL CCNRA.Ok(5LFETCH,IERR,PTLST ,ISBN,EQRG,IRGR,ELEM,DA T A ,LENGTH)
IF(kRR.NE.31 60 TO 60

(.—PTLAT COLS NOT HAVE ANY EQ POINTERS OR £05.51 IS NOT AMONG THOSE THAT
C—ARE THERE. ERROR——ABORT
40 WRITE (ICGNW ,501

115 50 FORMAT (IH ,3SHEOI.ST WAS NOT THERE TO DELETE—ABORT
CALl. CCNR&ONA4LFLFN, IERR,LFN)
IF(IERR.NE.0) GALA. ERRI4HFLFN,IERRS
STOP

C—NOW TRY TO DELETE EQLST
125 65 IFIIEKR.NE.O) CALL £RR (5HFLTCH ,IERR)

00 70 IaI,LEIIGTH
IFIEQLST.NE.OATA (I)) GO TO 10
CALL CONRLORIBLOELETl.,IERR,PTLST,ISBN,EORG,I,0)
IF(IERR.NE. 0) CALL ERR(6HOELETE,IERRI

125 60 TO IS
10 CONTINUE
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C—E Ql.ST NOT AMONG EQ (S OF LOCUR. NEED TO KNOW HOW HANS THERE ARE Q.ENI
$0 LEN a 100

IRGR aO
130 CALL CCHRLURl5LF~TCN,IERR,EQCUR,IS~N,5HOPTkS,IR6R,2HEQ,0ATA ,LEN)

IF(IERR.NE.O) CALL ERRISHF ETCH,IERR)
• IF (LEN.NE.1) GO TO 120

C-U.N IS ONE. NUST DELETE EQLST FRCII LOCS OF PTCUR
IkGR O

135 LENGTH • 100
CALL CCM RLONI5LFETCH,IERR,PTGUR,ISSN,EORG,IRGR ,ELEN,OATA,LENGTH)

• IF(IERR.NE.30 GO TO ISO
• C—PTCUR GOES NOT HAVE ANY EQ POINTERS OR EQLST IS NOT AMONG THOSE

C—EO(S THAT CO l.XIST. ERROR—ABORT
145 90 GO 10 40

C—NOW TRY TO DELETE EQLST
150 IFIIERN .NE .0)  CALL EkR(5NFETCH,IERR)

UO 110 I~~i, LEN GT H
IF(EOLST.NE.OATA (II) GO TO 115

145 CALL CCNRLOR (6LOELETE,IERR,PTCUR,IS$N,EQRG,I,0)
LFIIERR.NE.0) CALL ERR(6)OELETE,IERR$
GO TO 170

110 CONTINUE
C-LQLST NOT AMONG LOCS OF PTCUR——ABORZ

150 GO TO 90
C— U.N IS GFEAT&R THAN ONE NON HAVE LOO P TO SEE ABOUT TIE PTR OF EACH

• C—SO kG OF EOCUR
120 00 140 I ai ,LE N

C—SEE IF THE ITH SUOEO IS EQLST. IF IT IS CGNTItSJE
155 IFft,ATA(I).E0.EQLSTI GO TO 11.5

C—CHECK ON 100
IF(IDU.NE.O) GO 10 130

G—IOC IS ZERC. SET IT TO ONE AND SET SAME TO PTR OF DATASI)
loc a l

16$ LENGTH • 1
• ON • O A T A ( I )

• IRGR O
GALL COMRLDR(5LFLTCH ,IERR,BN,ISBN,0,IRGR,PTR,SANE,LENGTHI
IFIIERR.HE.0) CALl,. ERR (SHFETCH ,IERR)

ji 165 GO TO 11.0
C—IUC WAS NOT ZERO. SET PIRSUB TO PUt OF DATA (I)

130 ..ENGTH a
ON a OATA ( I)
IRG*aO

170 CALL GCNRLORI5LFETCH,IERR,IN,ISBN,5,IRGR,PTR,PIRSUB,LENGTHO
IFIItRR.NE.0) CALL ERR(SHFETGH,IERR)

C—IF PTNSUB is NOT EQUAL TO SAME , DONE——RETURN
IF(PTRSUB.NE.SAME) GO TO 150

C—END CF LOOP
175 11.0 CONTINUE

C—IF SANG IS NOTONE, DONE—-RETURN
IFISANE.E Q.PNOTI) GO TO 180

• 96

- ~~~~~~ •-~~~~~~ •~~~~ -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- -~~ •
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C—SAME IS NOT MOTOW E. RUST DELETE EQ OF SANE POINTERS FROM AU. fO ES
• C—UNDER PARENT (EQCURI. FIRST, HAVE ALL EQ(S OF EOCUR FIQI ABOVE ZN

110 C—AR RAY DATA. NEXT, MUST FETCH ALL EQ PTRS OF SAME.
LENGTH • 100
IaS*—O
CALL COMRI.OR(SLFETCH.I(RI,SANE,ISBN,EQRG, IRGR,ELEM,OAT,LENGTH)
IFIIERR.Ni. 3) GO TO 130

155 C—SAllE HAS NO EQ PTRS, SO HAS NO SUIEQ PT*S
GO TO 175

C—NOW GO THROUGH PROCESS OF DELETING Ff054 SAlE AU. EQ PTRS NNIGN ARE
C—SUILQ(i OF EOCUR

155 00 lBS KaI,LEN
• 190 00 160 Jal,LENGTH

IF(OATA(K).NE.UAT(J)) GO TO 165
CALL CONm.OMBLOELETE,IEU,SANE,IsasI,EaG,J,u
IF IIERR.NE.0) GALL ERR (6HOELETE,IEKR )

160 CONTINUE
195 C—ADO EGGUR AS AN EQ POINTER OF SAME

171 IF(PTR.NE.2NSW) GO TO 175
ARRAV(I) * 7NITENPTR
GO 10 378

175 ARRAYII) • 2HEQ
200 178 AR&AY (20 a EQCUR

IRGR a 0
GALL CCMRLORI1.LA000, IERRA,SANE,ISON,EQRG,IRGR,ARRAV,ZI
IF(IEIIRA.Nt.0) CALL ERRI4HA000,IERRA$

C-SET PD OF EQCUR TO SAME
205 CALL GGNRLON (6LCHANGE,IGOOE,EQCIR,IS8N.PTR,SANE)

IF(ICOOE.NE.0) CALL ERR (6HCHANGE,ICODE)
C—SET EQLST TO EQCUR

£QLST a ECCUR
C—SET VALUE OF EQCUR TO THE PARE NT NAME OF THE PRESENT EQCUR

210 LENGTH a 1
ARGR a I
CALL CONRLOR (5LFETCH, IERR, EQCUR,ISBN,5NSPTRS, IRGR,2NPR,ESHOT,LENGT

1HI
IF(IERR.NE.0) CALL E*RI5IfEICH,IERR)

215 EQCUR a ESHOT
C—FIND IF OLGCK TYPE OF LOCUR IS EQ CR NOT

ARRATI a ION
CALL CCMRLORLILNOVE,ARRAYI,1,EOCUR,1,2,IERR)
IF(I~RR.NE.I) GALL ERRC4MMOV€,IERR)

22$ C—LQCUR IS NCT AN EQ BLOCK-DONE——RETURN
IF(ARRAYI.NE.PEQS GO TO 185

G—EQCUR IS AN EQ BLOCK. SET PTCUR TO PTR OF EQCUR
LENGTH • 1
IRGR a 5

225 CALl. COMRLOR(5LPETCH,XERR,EQCUR,ISON,0,IRGR,PTR,P’TGUR,LENGTN)
IF ( IERR.NE .O)  CALl. ERRISHFETCN, IERR)

C—GO TO WHENt GETTING TH~ SUSEOCS OF EOGUR AND RESUME PROCESS FROM
C—THERE.

60 T0 10
231 C—END OF ROUTINE

180 RETURN
END

STATISTICS
PROGRAM LENGTH 17058 965
CII LASELE S) COMMON LENGT H ZB 2
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$ SUBROUTINE D ELE Q I E Q IN )
C
C—THIS ROUTINE DELETES AN EQ BLOCKIEQIN) AND ALL S(SBBL0CKS FROM THE
C—SNIP OESIGN FILE. AND DELETES ALL POINTERS TO THOSE BLOCKS.
C

INTEGER EQ IN , H OLNAM ,P EQ, PT R,A RRA Y 1,EQCUR ,PT CUR.P ,E QPA R, PA RENT,
• STACK

COMMON /NAHE/ LVNA ME
COMMON /NOOES/ PNOTI.EQ,AR,Sw,ITENPTR.pR
DIMENSION P(2),STACK (iSO)

G DEFINE PNOT1.EQ,AR , SW,ITEIcTR.PR
DATA NPTRS/ 2/

G EX ECUTE
C—INITIALIZE VARIABLES

P51) a AR
P( 2)a SW
PEQ~ 2LEQ
ISTACK •

C—SET EQCUR TO LOIN
EQCUR • LOIN

C—PLACE EQCUR ON STACK
10 ISTACK a IS TACK • 1

STACK (ISTACK) a EOCUR
C PERFORM PREORDER TRAVERSAL TO TERMINAL NODES
C-FETCH THE POINTERS FROM EQCUR TO EACH OF THE POSSIBLE P BLOCKS. SEE
C—WHICH IS EQUAL TO NOTONE. AND SET THE PROPER IPIISTACK) TO THE SUM OF
C—THE PROPER IPV’S.
C—DOES EQCUR HAVE ANY SUB—EQ’SY FETCH THE DOWN POINTERS OF EQCUR
G 40 EQCUR4EQ/50 EQCUR/I0
C—EQCUR DOES NOT HAVE SUB—EQ’S. NOW NANY BLOCKS ARE IN STACK.
50 IF(ISTACK.EQ.i) GO TO 110

C—FOLLOWING LOOP DELETES ALL BACK POINTERS TO £QCUR
00 80 Ial,NPTRS
PTRaP(I)

C—FETCH VALUE OF PTR OF EQCUR AND PLACE IT IN PICUR
G EQCUR,PTR/99 PTCUR

I OPTR:EQ
IF(PTR.EQ.SW) IDPTRaITEMPTR

C—NOW MUST DELE TE EQCUR FROM THE EQ PTRS OF PTCUR. FIRST MUST FIND
C—WHICH OCCURRE NCE OF EQIPTCUR IS EQUAL TO LOCUR. FETCH ALL EQ
C—OCCURRENCES
C—LOOP TO SEE WHICH OCCURRENCE IS EQCUR AND THEN DELETE IT.
C—EQCUR IS THE KIN OCCURRENCE IN EQ~PTCUR. DELETE IT.

Ka 0
G 60 PTCUR’IOPTR/991. KaI(.1 aEQCUR/61.— .K)
80 CONTINUE

C DELETE TERMINAL BLOCK LQCUIT FROM SHIP DESIGN FILE
G EQCUR+L VNAME’HOLNAM

CALL COHRLDRI6LDELETB,IERR,NOLNAN I
IFIIERR.NE.0I CALL ERRI6NOELETB.IERR)

C—SET EQCUR TO NEXT BLOCK ON STAC K
ISTACK a ISTACK—I
EQCUR • STACK (ISTACK)

C—DELETE EQLST FROM EQ~EQCUR (DOWN POINTER) FIRST FETCH ALL DOW N
C—POINTERS E G/EC CUR
G EQCUR.EQ— .I

GO TO 1.0
C—ONLY I BLOCK LEFT ON STACK. FIRST SET EQPAR TO THE PARENT OF LOIN
C IS PARENT AN EQ BLOCK
G 110 EGIN•PR199 •PARENT+LVNAME EQPAR

ARRAYLa LQPAR.ANO.7?770100000000000000B
IFIARRAYI.NE.PEQ) GO TO 11,0

~~~~~~~ IS AN EQ BLOCK. LOOP TO DELETE BACK POINTERS TO IT.
C DELETE POINTER FROM PARENT TO EQIN

laS
G 130 PARENT.EQ(. 1a1.l /99 aEQCUR/130.— .I)
G 11.0 EQCUR.LVN A ME’HOLNAN

CALL COMRLDR(6LOELETB,IERR,NOLNAN)
C—FIN SHED—RE TURN

RETURN
C DESIRED POINTER NOT FOUND — ERROR

99 CALL ERR(5NFETCH,IERR)
S COMPLETE

98

_ _ _ _ _ _ _ _ _ _
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$ SUBR OUTINE DLEQPT (EQIN.PTR)
• C

C—GIVE N AN EQ SLOC KI E QIN ) AND A POINTER VY PE PTRI TO ANOTNER BLOCK,
C—THIS ROU TINE s

I— DELETES THE POINTER TO THE OTHER SLOCK
C— 2— DELETES THE BACK POINTER FROM THE OTHER BLOCK TO THE EQ• C BLOCK

• - • C 3— UPDATES POINTERS FROM ANO BACK POINTERS TO HIGHER EQ
BLOCKS AS NECESSARY TO MAINTAIN THE HIERARCHICAL SEQUENCE

C- OF (NOTONE’S. REAL POINTERS. AND C LIMBO’S.
C

INTEGER LQIN.NOLNAM.PEQ,PTR .ARRAY1,EQCUR,PTCUR,AR,O*TA,EQ,PNOT1,
• PTRNAM,SAME,TENPNAN ,ARRAY ,BN.ELEM,EQLST,PLIMBO.PR.PTLST.PTRIN,
• PTRSUS.Sw
COMMON INANE! LVNAME
COMMONIUNITSILFN. ICONW
COMMON INODES/ PNOTI,EQ,AR,SW,ITENPTR,PR

C
G EXECUTE
C—INITIALIZE VARIABLES

PEQa2LEQ
PLINBO a 6KLINBO
ELEMaLO
IF IPTR.E Q .SW) ELEM aI~ EMPTR

C—FETCH THE PTR OF LOIN AND PLACE ITS VALUE IN PTRIN
G EQIN6PTR/99 ‘PTRIN+LVNAME’PTRNAN
C—IS PTRIN A LIMBO BLOCK

TEMPNAMaSHIFT IPTRNAN ,12)
IFITEMP NAM .NE.PLIMOOI GO TO S

C—PTRIN IS A LIMBO BLOCK. BEFORE RETURNING DELETE EQCUR AS AN EQIPTR
C—OF PTRIN. FIRST, FETCH ALL EQ~PTRS OF PTRIN
C—OELETE LOCUR FROM EQ/PTRZN

I~ 0
G 2 PTRXN,ELEMI9S (. IaI+1 a EQEN F2s— .1)

RETURN
C—SET PTCUR ANO EQCUR
S PTCUR • PTRIN

EQCUR a LOIN
• C—DELETE PTRIPOINTER OF EQCUR TO PTCUR

C—SET EQLST TO EQCUR
C—GET NEW EQCUR BY FETCHING PARENT OF CURRE NT EOCUR AND PLACING ITS
C—VALUE IN LOGUR

• G 15 EQCUR’EQLST 4—PTR,.PR’EQCUR.LVNAME’HOLNAN)

• C—WHAT IS THE 8LOCKTYPE OF EQCUR
ARRAY 1aHOLNAM .AND. ?7?70000000000000000B

C—EQCUR IS NOT AN EQ BLOCK TYPE-DONE-RETURN
IF(ARRAY1.NE.PEQ) RETURN

C—EQCUR IS AN EQ BLOCK TYPE. SET PTLST TO PTCUR
PTLST a PTCUR

C—SET A NEW PTCUR BY PLACING IN IT THE VALUE OF DTR C EOCUR
G EQCUR.PTR/99 ‘PTCURaPTRINI30
C—THE VALUE OF PTCUR IS PTRIN. GET THE NUMBER OF DOWN POINTERS (EQ’S) OF
C—BLOCK EQCUR.
C—LENGTN IS 1, SO GO BACK ,SET EQCUR,ETC.. AND GET NEXT ONE.
C-LENGTH GT 1, DONE——RETURN
C—LENGTH IS LI I—-ERROR—-STOP
S EQCUR+EQIS$ .2110/RETURN

9$ WRITE (ICONN,ZS)
20 FORMAT S1N .SSHERROR—EQ’S OF LQCUR MUST EXIT

CALL COHRLDRI4LFLFN. IER*,LFN)
IF(IERR.NE.II CALL ERRS4HFLFN.IERR)
S TOP

I*~~~~.I*ALUE OF PTRIN IS NOTONE. SET 100 TO ZERO
30 I DO a S

C—IS PTLST EQUAL TO NOTONE
IFCPTLST.EQ.PNOTI) GO TO $0

C—PTLST IS NOT NOTONE . DELETE EQLST FROM EQ PTRS OF PTLST. FIRST MUST
C—FETCH ALL EQ(S FROM PTLST
C—NOW TRY TO DELETE EQLST

‘as
S 70 PTLST.ELEM/1.S l. IaI+I aEBLS T/75,— .I)

GO 10 80

99
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C,PTLAT OOES NOT HAVE ANY EQ POINTERS OR LOLSI IS NOT AMONG THOSE THAT
C—ARE THERE. ERROR——ABORT
4$ WRITE CICONW.50)
55 FORNATSIH .3SHEQLST WAS NOT THERE TO DELETE—ABORT

CALL COMRLDR(4LFLFN.IERR.IJNI
IFS IERR.SIE.$) CALL ERRS4NFLFN.IERR)

• STOP
C—EQLST NOT AMONG EQ’S OF EQC UR . NEED TO KNOW NOW MANY THERE ARECLEN )
G $5 EQCUR•EQ/99 .2/85/125
C—LEN IS ONE. MUST DELETE EOLST FROM EQ’S OF PTCUR
C— IF PTCUR DOES NOT NAVE ANY EQ POINTERS OR EQLST IS NOT AMONG THOSE

• C—EQ’S THAT DO EXIST. ERROR—ABORT
SB lag
S 115 PTCUR•ELEM/4S(.1a1•1 /40 ~~~~~~~~~~~~~~~~

GO TO 17$
C—LEN IS GREATER THAN ONE NOW HAVE LOOP TO SEE ABOUT THE PTR OF EACH

• C—SUBE Q OF EQCUR
C—SEE IF THE ITH SUBEQ IS EQLST. IF IT IS CONTINUE

120 1*0
5 121 EQCUR+EQ/99 • IaI~ l/ 11.S aEQLST’BN//j21
C—CHECK ON 100

• IFUDO.NE .I) GO TO 130
C—IOU IS ZERO. SET IT TO ONE AND SET SANE TO PTR OF OATAII)

100 a I
S BN+PTR’ SANE

GO TO 11.0
C—IOU WAS NOT ZERO. SET PTRSUB TO PTR OF OATA(I)

• C—IF PTRSUS IS NOT EQUAL TO SANE, DONE——RETURN
5 130 $N,PTR/99’PTRSUBSSANE/RETUR$l121
C—IF SANE IS NOTONE, DONE——RETURN
145 IF(SAME.EQ.PNOTI) RETURN

C—SANE IS NOT NOTONE. MUST DELETE EQ OF SAME POINTERS FROM AU. EQES
C—UNDER PARENTCEOCUR ). FIRST, HAVE ALL EQC$ OF EQCUR FROM ABOVE IN
C—ARRA Y DATA. NEXT, MUST FETCH AL). EQ PTRS OF SANE.

1*5
S 155 EQCUR+EQ/99 • IaI+1 #160 ‘DATA
C—NOW GO THROUGH PROCESS OF DELETING FROM SAME ALL EQ PTRS MUlCH ARE
C—SUSEQ’S OF EQCUR
165 JaO

6 155 SAME+ELEM/17I(. JaJ+1 /IS0*OATA/150,— .J)
GO TO 155

C—ADO EQCUR AS AN EQ POiNTER OF SAME
170 IF(PTR.NE.SN) GD TO 175

ARRAY—I TEMPTR
GO TO IFS

175 ARRAYaEQ
5 170 SAME ARRA Y EQCUR
C—SET P1k OF EQCUR TO SAME
S EQCUR PTR — .1 SAME
C—SET EQLST TO EQCUR

EQLST * EQCUR
C—SET VALUE OF LOCUR TO THE PARENT NAME OF THE PRESENT EQOUR
S EQCuR.PR/99’ EQCUR.L VNAME ‘HOLNAM
C—EQCUR IS NOT AN EQ SLOCK— OONE—RETURN

ARRAY1zNO LNAM.ANO. 7?7701101100101100018
IFIARRAYI.NE.PEQI RETURN

a~~~~SSRS IS AN E
Q BLOCK. SET PT~UR TO PTR OF EQCUR

G EQCUR,PTR/99’PTCUR
C—GO TO WHERE GETTING THE SUBEQ’S OF EQCUR AND RESUME PROCESS FROM
C—T HE RE .

SO TO II
C DESIRED POINTER NOT FOUND - ERROR
99 CALL ERR (SNFETCH.IERR)

S COMPLETE
6’ COMPLETE
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SUBROUTINE OELEQ 71.174 OPTaI ROUNO~~ I TRACE FTN 4. •1.11.

SUBROUTINE DELE Q *EQ IN)
• COWNON /LVARGS/ LVFUNC,LVVARG,LVVPOS.LVVTY P,LVVAL ,

•LVVNVL,LVSKIP,LVVTR ,LVVINC,LVVALSSIIS,LVTYP!(ISS
C

• C—THIS ROUTINE DELETES AN EQ SLOCKSEQIN) AND ALL SUBSLOCRS FROM THE
• C—SHIP DESIGN FILE, AND DELETES ALL POINTERS TO THOSE BLOCKS.

C
INTEGER EQIN.HOL NA M.PEQ,PTR,ARRAYI.EQCUI, PTCUR.P,EMPAR.PARENT.

• STACK
COMNON /NANE ! LVNAME

• COISION /NOOES/ PNOTI,EQ,AR .SW. ITEMPTR.PR
• OIIENSION P(2),STACX(III)

INTEGER
• •PNOT1,EQ.AR,SN.ITENPTR,PR

DATA NPTRS!ZI
CALL L~~ RN(PWOT1 I

• CALL LVGRN(~ Q 0
• CALL LVSRNCAR

CALL LVSRN)SN
• CALL LVSRN$ITENPTI

CALL LUBRNIPR )
GO TO 25501

2555$ CONTINUE
C—INITIALIZE VARIABLES

PS 1) aAR
PS 2)
PEOMZLEQ
ISTACK a S

C-SET EQCUR TO EQIN
EQCUR * ERIN

C-PLACE ESCUR ON STA CK
IS ISTACK * ISTACK • 1

STA CK( ISTAC KI * EQCUR

C PERFORM PREOROER TRAVE RSAL TO TERMINAL NODES
C—FETCH THE POINTERS FROM ESCUR TO EACH OP THE POSSIBLE P BLOCKS. SEE
C—WH ICH IS ESIAL TO NOTONE, AND SET THE PROPER IPSISTACK) TO THE SUN OF
C—TNE PROPER IPV’S.
C—DOES EQCUR HAVE ANT SUB—ES’S? FETCH TNt DOWN POINTERS OP EQCUR
4$ CONTINUE
C41 EQCUR•EQFSO ‘ESCUIIII

LWVAL•ESCU*
LVVAIG L VV AL
LVFUNG.EQ
CALL LVFIND
IFILVVTR .EQ. —II GO TO SI
EQCURaLVVAL
IFILVVTR .NE. —1) 60 TO 10

C—ESCUR DOES NOT HAVE SUB—EQ’S. NOW MANY BL OCKS ARE IN STACK.
55 IFIISTACK.EQ.I) GO TO 115

C—FOLLOWING LOOP DELETES ALL BACK POINTERS TO EQCUR
00 10 I 1,NPTRS
PT R.P(I)

C—FETCH VALUE OF PTR OF ESCUR AND PLACE IT IN PTCUR
C EQCUR.PTRISS ‘PTCUR

LVVA La EQCUR
LV VARGaL V V AL
LVFUNCaPTR
CALL L*INO
IFII. VVTR .EQ. — tO 60 70 ~~PTcURaLV VA).
IOPT R E Q
IFIPTR.EQ.SN) IOPTRaITEMPTR
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C—NOW MUST DELETE EQCUR FROM THE EQ PTRS OP PTCU*. FIRST MUST FIND
C—WHICH OCCU~~ENCE OF EQIPTCUR IS EQUAL TO EQCUR. FETCH ALL EQ

65 C—OCCURRENCES
• C—LOOP TO SEE WHICH OCCURRENCE IS EQCUR AND THEN DELETE IT.

C—EQCUR IS TIC KTH OCCURRENCE IN EQ/PTCUR. OCLETE IT.
Nal

SS CONTINUE
75 CS. PTCUR.IDPTR/99(. kSK.1 *EQC5JR,$5,— .K)

LVVALaPTCU R
• LVVA RGZLVV AI.

LVFUNCaIOPTR
• CAL). LVFINO

75 IF ILVVT R .EQ. —I) GO TO 99
LVV IaLVVAL
LV V 2aLVFUNC
).VV 3aLVVA RG
KaK* 1

$5 LVVPQSa K

• CALL LVFNV I LV 15
LVVT Ra—t
IF(LVVAL .EQ. EQCUR

•) LVVTR* t
85 IF(LVVTR • EQ. 11 GO TO SI

LVFUNCaLVV 2
LVVARG*LVV 3
CALL. LVUNO
LVVPOS a K

• 9$ CAL L L~~ NVILV RI
CALL LVOLTI

80 CONTINUE
C OELETE TERMINAL BLOCK £QCUR FROM SHIP DESIGN FILE
C EQCUR.LV NAME’NOLNAN

95 LVVAL*EQCUR
LVVA RGaL VVAL
LVFUN C L VNAM E
CALL LVFINO

F HOLNAN LVV A Lr 155 CALL COHRLDR(SLOELEVB,IERR.NOLNAN)
IF(IERR.NE.SI CALL ERR(SIISELETS.IERR O

C—SE T EQCUR TO NEXT BLOCK ON STACK
ISTACK a ZSTACK— I
ESCUR * STACKIISTAC K)

155 C—DELETE EQLST FROM EQFEQCUR(OON N POINTER) FIRST FETCH ALL DOWN
C—POINTERS EQ/EQCUR
C EQCU R+ EQ— .1

LVVA L* EQCUR
LV VARGZL V V AL

115 LVFUNC*E Q
CALL L~~ INO
CALL LVPNV)LV 3)
CALL LVDLTI
GO TO 1.1

115 C—ONL Y 1 BLOCK LEFT ON STACK. FIRST SET EQPAR TO THE PARENT OF LOIN
C IS PARENT AN EQ BLOCK

115 CONTINUE
CIII EQIN.PR~99 PARENTIILVNANEIEQPAR

LVVAL aEQIN
120 LVVARGaLVVAL

LVFUNCaPR
CALL LWFINO
U(LVVTR .Eq. —I) GO TO 99
PARENTaLVVAL

125 LVVARS LVVAL
LVFUNC LVNAHE
CALl. LYPINO
ESPAR*LVVAL
AR*AY I* EQPA*.ANO. 7?TTIIISII185I1111SSS

135 IFIA RRAYI .NE.PEQO GO TO (41
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C—EQPAR IS AN EQ BLOCK. LOOP TO DELETE BACK POINTERS TO IT.
C DELETE POINTER FROM PARENT TO LOIN

1.0
130 CONTINUE

135 CISO PARENT+EQ(. I*I,1 /99 *EQCUR,13S,—,I~
L V VALa PARE NT

• * LVVARGZ LVVAL
LVFUNC*EQ
CALL LWIND

• • 141 LVV 1*LVVAL
• LVV 2aLVFUNC

LVV 3*LVVA RG
1*1,1
LVVPOSa I

145 CALL LVFNVILV 4)
IFLLVVTR .EQ. — 1) GO TO 99

• LVVA RGaL VVA I.
LV VT R*—1
IF ILVVAL .EQ. EQCUR

150 .5 LVVTRa I
IF(LVVTR •EQ. —1) GO TO 135
LVFUHCaLVV 2
LVVAR G*LVV 3
CALL LVFIND

155 LVVPOSa I
CALL LVFNV (LV 55
CALL LVOLTI

11.0 CONTINUE
CL1.0 EQCUR,LVNA ME’HOLNAM

160 LVVALaEQCUR
LVVARG*LVVAL
LVFUNCaLVMAME
CALL LVFIND
HO LNAH*L V V AL

165 CALL CONRLDRS6LOELETs,IERR.NOLNAN)
C—FINISHED—RETURN

RE TURN
• C DESIRED POINTER NOT FOUND - ERROR

99 CALL ERR (SHFETCH.IERR)
170 RETURN

2500 1 CONTINUE
LV laB
LV 2.0
LV 3a1

175 LV 4*0
LV SaS
GO TO 2500 0
END

STATISTICS
PROGRA M LENGTH 5479 359
CI) LABELED COMMON LENGTH 44B 36
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SUBROUTINE DLEQPT 74/74 OPTaO ROISIO~~, TRACE FTN 4 5+414

SUBROUTINE OLEQPT(EQIN,PTR)
COMMON FLVARGS/ LVFUNC,LVVRRG,LVVPOS. LVVTYP.LVVAL.

•LVV NVL.LVS KIP.LVVTR,LVVINC .LVVALSIIII ,LVTYPE(1II
C

S C—GIVEN AN EQ BLOCIC(EQINS AND A POINTER TVPE(PTR) TO ANOTHER BLOCK.
C—THIS ROUTI NEs
C— 1— DELETES THE POINTER TO THE OTHER BLOCK
C— 2— DELETES THE BACK POINT~ R FROM THE OTHER BLOCK TO TNE EQ
C— BLOCK

15 C— 3— UPDATES POINTERS FROM AND BACK POINTERS TO NIGNER EQ
C— BLOCKS AS NECESSARY TO MAINTAIN THE HIERARCHICAL SEQUENCE
C— OF (NOTONE’S, REAL POINTERS. AND ( LIMBO’S.
C

INTEGER EQIN, NOS.NAN,PEQ,PTR,ARRAVI,EQCUR.PTCUR,AR.OATA.EQ.PNOT1,
15 • PTRNAM,SAME.TEMPNAH ,ARRAY ,BN,ELEM.EQLST,PLINBO,PR.PTLST .PTRIM.

+ PTRSUB,SW
COMM ON ~NAME/ LVNA ME
COMHOM/UNITS/LFN, ICONW
COMMON /NODES/ PNOT1,EQ,AR,SW,XTEMPTR.P*

2$ C
GO TO 2500 1

25155 CONTINUE
C—INITIALIZE VARIABLES

PEQa2LEQ
25 PLIMBO a 6HL!NBO

ELEM*EQ
IF(PTR.EQ.SW) ELEMUITEMPTR

C—FETCH THE PTR OF LOIN AND PLACE ITS VALUE IN PTRIN
C EQIN+PTR/99 ‘PTRIN+LVNAME’PTRNAM

35 LVVAL aEQIN
LVVARG—LVVAL
LVFUNCSPTR
CALL LVFINO
IFILVV TR .EQ. —1) GO TO 99

35 PTRINaLVVAL
LVVARGaLVVAL
LVFUNCaLVNAME
CALL LVFINO
PTRNAN.L V V AL

45 C—IS PTRIN A LIMBO BLOCK
TE MPNAMaSNIFT S PTRNAM, 12)
IFITEMPNAM .NE.PLIMBO) GO TO S

C—PTRIN IS A LIMBO BLOCK. BEFORE RETURNING DELETE EQCUR AS AN EQ!PTR
• C—OF PTRIN. FIRST, FETCH ALL EQFPTRS OF PTRIN

45 C—DELETE EQCUR FROM EVPTRIN
Tao

2 CONTINUE
C2 PTRIN+ELEI&99 5. I I,1 aEQIN/2, — ,I)

LVVALaPERIN
5• LVV ARG *L VVAL

LVFUNC*ELEH
CALL LVFIN D
IFLLVVTR .EQ. —1) GO TO 99
LVV IaLVVAL

55 LVV 2aLVFUN C
LVV 3a LVVARG
1*1+1
LVVPOSa I
CALL LVFNV ( LV 1)

SI LVVTRa.i
IFILVVA). •EQ. EQIN

•) LVVTR I
IFSLVVTR .EQ . —II GO TO I
LVFUNC*LVV 2

65 LVVARG*I.VV 3
CALL l VFIND
LVVPOS I
CALL LVV NV(LV 2)
CALL LVOLTI

75 RETURN
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C—SET PTCUR AND EQCUR• 5 PTCUR a PTRIN
EQCUR a LOIN

• -. C—DELETE PTR/POINTER OF EQCUR TO PTCUR
75 C—SET EQLST TO EQCUR

C—GET NEW EQCUR BY FETCHING PARENT OF CURRENT £QCU* AND PLACING ITS
C—VALUE IN EOCUR
IS CONTINUE

C1O EQCUR’EQLST (—PTR,•PR’EQCUB-LVNAME’HOLNAM)
U LVVALaEQCUR• LVVARG a LVVAL

EQLSTaLVVA L
LVV IaLVVARG

• LVFUNC*PTR
55 CALL LVOLET

LVVAL* LVV I
LVVARGaLVVAL
LVFUNC*PR
CALL LVFIND

9S EQCUR LVVAL
LV VARG*LV V AL
LVFUNCaLVNAME
CALL LVFIND
HOLNAMZL V V AL

95 C—WHAT IS THE BLOCETYPE OF EQCUR
ARRAY IaHOL NAH .ANO .777751ISSSISSSSSSSSS B

C EQCUR IS NOT AN EQ BLOCK TYPE—DONE—RE TURN
IF(ARRAY 1.ME.PEQI RETURN

C—EQCUR IS AN EQ BLOCK TYPE. SET PTLST TO PTCUR
100 PTLST a PTCUR

C SET A NEW PTCUR BY PLACINS IN IT THE VALUE OF PTR OF EQCUR
C EQCUR+PTR/99 ‘PTCURaPTRIW3S

LVVAL *EQCUR
• LVVARGaLVVAL

105 LVFUNCaPTR
CALL LVFINO

• IF(LVVTR .EQ. —II GO TO 99
PTCURaLVVAL
LVVAR GaLVVAL

115 LVVT Ra—1
• . IFft.VVAI. .EO. PTRIN

+5 LVVTR I
IF ILVVTR .EQ. —1) GO TO 3S

• C—THE VALUE OF PTCUR IS PTRIN. GET THE ISJNBER Of DOWN POINTERSIErS) OP
• 115 C—BLOCK EQCUR.• C—LENGTH IS I. SO GO BACK ,SET EQCUR,ETC.. APIS GET NEXT ONE.

C—LENGTH ST 1, DONE——RETURN
C—LENGTH IS LT 1——ERROR——STOP

• C EQCUR+EQ/98 .2/ISIRETURN
120 LVVAL*EQCUR

LVVARG a LVVAL
LVFUNC*EO
CALL LVFIND

• IF SLVVTR .EQ. 15 GO TO 9$
125 LVVPOSa 2

CALL LWNV (LV 3)
IFILVVTR .EQ. —1) GO TO .,
I F IL V V T R  .NE .  —1) RETURN

91 NRIT E( ICONW .205
130 20 FORMATIIH .3BHERRDR—EQ’S OF EQCUR MUST EXIT S

CALL CONRLDR(4LFLFN. IER*.LFN)
IF(IERR.NE.0) CALL ERR)4NFLFN,IERRI
STOP
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• C—THE VALUE OF PTRIN IS NOTONE. SIT ZOO TO ZERO
• 13S 35 100 * S

C—IS PTLST EQUAL TO NOTONE
I IF(PTLST.EQ.PNOTI) GO TO IS

C—PTLST IS NOT NOTONE. OELE1E EBLST FROM EQ PTRS OP PTLST. FIRST MUST
C—FETCH ALL EQ(S FROM P1tSY

14$ C—NOW TRY TO DELETE EOLST
lao

70 CONTINUE
Cu PTLST4ELEM/ I. S (. IaI,I aEQLST/?S , — .I)

LVVA LaPT LS T
11.5 LVVAR GaLVVA L

• LVFUNCaELEM
CALL LVFIND
IFILVVTR .EQ. —15 60 TO 45
LVV 1*LVVAL

150 LVV ZaLVFUNC
LVV 3*LV VA RG
1*1,1
LVV POSa I
CALL LV FNV(LV 4)

155 LV VTR*—1
IF(LVVAL .EQ. EQLST

+5 LVVTR I
• IF(LVVTR .EO. —I) GO TO 75

• LVFUNC*LVV 2
160 LVVARGaLVV 3

CALL LVFINO
LVV P OSa I
CALL LVFNV(LV 5)
CA LL LVOLT I

165 GO TO 8O
• .1 C—PTL AT ODES HOT HAVE ANY EQ POI NTERS OR EQLST IS NOT AMONG THOSE THAT

C—ARE THERE. ERROR——ABORT
40 WRZTESICONIS,501
50 FORNATSIM ,35HEQLST WAS NOT THERE TO DELETE—ABORT

170 CALL COMRLDR(4LFLFN,IERR,LFN)
• IF)IERR.NE.0) CALL ERR(4NFLFN,IERR)

• STOP
C—EQLST NOT AMONG EQ’S OF EQCUR. NEED TO KNOW HOW MANY THERE ARE CLENI
8B CONTINUE

175 C$0 EQCUR.Eg/99 .2/85/120
LVVALaEQCUR
LVVARG—LVVAL
LVFUNCaEQ
CALL LVFIND

180 IF(LVV TR .EQ. —1) GO TO 99
L VVPOSa 2
CALL LV FHV) LV 6)
IF(LVVTR .EQ. —1) GO TO •5
IF LVVTR .ME. —1) GO TO 120
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155 C-LEN IS ONE. MUST DELETE EBLST FROM EQ’S OF PTCUR
C— IF PTCUR DOES NOT HAVE ANY EQ POINTERS OR EOLST IS NOT AMONG THOSE
C—EQ’S THAT DO EXIST. ERROR—ABORT
IS las
III CONTINUE

• 195 CIII PTCOR.ELEN/4S(.—I*I,I— /45 *~Q%5T/jj5,—.I)
LVVAL aPTCUR

• LVVAR G aLVVAI .
• LVFUNC*ELLN

CALL LVFINO
195 IF(LVVTR .EQ. —II GO TO 4S

LV V 1~~.VVAL• LVV 2aLVFUNC
• LVV 3*LVVARG

1*1+1
• 200 LVVPOSa I

CALL LVFNV(LV 15
IFILVVTR .Ea. —10 GO TO 40
LVVARG *LVVAL

• LVVTRa~ 1
205 IP)LVVAL .EQ. EQLST

•) LVVTRa 1
IF(LVVTR .EQ. —1) GO TO 115
LVFUN CaLVV 2
LVVAR S*LVV 3

21• CALL LVFIN D
LVVPOSa I
CALL LVFNV (LV SI
CALL LV OL T I
GO TO 175

215 C—LEN IS GREATER THAN ONE NOW NAV E LOOP TO SEE ABOUT THE PTR OF EACH
C-SUBEQ OF EQCUR
C—SEE IF THE ITH SUSEQ IS LOLST. IF IT IS CONTINUE

120 laS
L 121 CONTINUE
F 220 GUi EQCUR+EQ/99 . IaI+1 /145 aEQLST’SNS/tZi

LVVA La EQ CUR
L V VARGaL V V AL
LVFUNCaEQ
CALL LVFIND

225 IF (LVVTR •EQ. —1) GO TO 99
1*1,1
LVVPOSa £
CALL LVFNV (LV 95

• IF(LVVTR •EQ. —1) GO TO 141
23$ LVV A RGaL V VAL

LVVTRa—1
IF (LVVAL •EQ. LOLST

.5 LVV TRaI
BNaLVVAL

235 IF(LVVTR •NE. —1) GO TO 121
C—CHECK ON ZOO

IF(IOO.NE.01 GO TO 135
C—IDO IS ZERO. SET IT TO ONE AND SET SAME TO PTR Of DATACIP

100 a

245 C WN,PTR’SAME
LVVAL *SN
L V VARGZL V V AL
LVFUNCaPTR
CALL LWIND

245 SANE *LVVAL
GO TO 145

— 
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C—lOG WAS NOT ZERO. UT PTRSUB TO PTR OF DATA) !)
C—IF PTRSUB IS NOT EQUAL TO SAME . DONE——RETURN
ill CONTINUE

250 CU$ ON ,PTR/99’PTRSUB*SANE/MfVURN/121
LV V ALa SN
LVVARG aLVVAL
LVFUNCaPTR
GALL LWI NO

255 IF (LVVT* •EQ. —I) GO TO 99
PTRSUISLVVAL
LV V ARGZLVVAL
LV VT Ra—1
IFILVVA L .EQ. SAME

+5 LVVT R~1
IF(LVVTR .EQ. —II RETURN
IF LVVTR .ME. -1) GO TO 121

C—IF SANE IS NOTONE. DONE——RETURN
140 IF ISAHE.EQ.PNOTI) RETURN

255 C—SANE IS NOT NOTOtIE. MUST DELETE EQ OF SANE POINTERS FRON ALL EQ(S
C—ONOER PARENT (E QCUR) . FIRST, HAVE ALL LO(S OF EUCUR FRON ABOVE IN
C—ARRAY DATA. NEXT , MUST FETCH ALL EQ PTIS OP SANE.

lao
155 CONTINUE

275 CISO EQCUR+EQFS9 .IaI+I #161 ‘DATA
LVVALSEQCUR
LVVARGaLVVAL
LVFUNCaEQ
CALL LVFIND

275 IF(LVVTR •EQ. —1) GO TO 99
IaI.I
LVVPOSa I
CALL LVFNV(LV ii)
IF(LVVTR .EQ. —1) GO TO 16$

200 OATA *LVVAL
C—NOW SO THROUGH PROCESS OF DELETING FROM SAME ALL EQ PTRS WNICN ARE
C SUSLQ’S OF EQCUR

155 J 1
155 CONTINUE

2$, CISS SAME+ELEM/I 10 ( J.J.1 /I5IaDATA/I5S.— .J5
LVVALaSAME
LV VARGZL V V AL
LVPUNCaELEM
CALL LVFINO

255 IF LVVTR .EQ. —U GO TO 175
LVV IaLVVAL
LVV ZaLV FUNC
LVV 3aLVVARG
J* J+ I

295 LVVPOSa J
CALL LVFNVILV II)
IF(LVVTR .EQ. — 1) GO 10 150
LV VANG aLVVAL
I VVIR*—l

35$ IF LVVAL .EQ. OATA
44 LVVTRaI

I F( LVVTR .EO. —I) GO TO 155
LVFUNC LVV 2
LVVARG*LVV 3

305 CALL LVF INO
LVVPO$a J
CA LL LWNV (LV It)
CALL IVOLTI
GO TO 155

310 C—ADD ERCUR AS AN EQ POINTER OF SAME
170 IF(PTR .NE .SW) SO TO 175

ARRAYaITE MPTR
GO TO IFS
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175 ARRAYaEQ
313 17$ CONTINUE

C17I SANE A RRAY EQCUR
LVVAL*SANE
LVVAIGaLVVAL
LVFU NC-MRRAY

320 CALL LVPIND
LVVALSSI) aEBOUR
CALL L MMSRT

• C—SE T PTR OP EQCUR TO SANE
C EQCUR PTR —.1 SANE

323 LVVAL*EQCUR
LVVARGaLVVAL

• LVFUNCaPTR
CALL LVFINO

• CALL LVFNV (LV 13)
331 LVVALS (1)*SANE

• CALL LVOSIN
C—SET EQLST TO COWl

EQLST a EQCUR
• 

• C-UT VALUE OF EQCUR TO THE PARENT MANE OF THE PRESENT LOCUR
335 C EOCUR.P*/99’EQCUR+LVNANE ’HOLNA N

LVVAL*EQCUR
LVVARGaLVVAL

• : LVFUNC-PR
CALL LVFIND

34$ IF ILVVTR .EQ. —I) GO TO 99
EQCURaLVVAL
LV VARG~L V V AL
LVFUNC*LVNANE
CALL LWINO

345 NOLNA N *LVVAL
C-EQCUR IS NOT AN EQ BLOCK—OONE— RETURN• *RRAY1*HOLNAM.AND.17771511SS5555555555B

IF(ARRAYI.NE.PEQ) RETURN
C-EQCUR IS AN EQ BLOCK. SET PTCUR TO PTR OF EQCUR

351 C EQCUR.PTR/99’PTCVR
LVVAL aLQCUR
LVVARG*LVVAL
LVFUNC*PTR
CALL L*INO

355 IF(LVVTR .EQ. —lb GO TO 99
PTCURaLVVAL

C—SO TO WHERE SETTING THE SU0EO’S OF EOCUR AND RESUME PROCESS FROM
C—THERE.

GO TO 80
• 355 C DESIRED POINTER NOT FOUND — ERROR

99 CALL ERRISNFETCN,IERR)
RETURN

25051 CONTINUE
LV LaS

365 LV 2a1
LV 3aI
LV 4aI

• LV 5aI
LV

371 LV 7sS
LV 5a5
LV 9a5
LV1Sa$
LV11*5

373 LVIZrS
• LVI3aI

GO TO 25011
END

STATISTICS
PROGRAM LENGTH 11111 513
CM LASELEO COMMON LENGTH 1.65 3$
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