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SUMMARY

A mathematical description is given of a computer model, called the Optimal A0
Model, designed to maximize equipment operational availability subject to a budget

constraint for spares procurement. Levels are calculated for all items in the

equipment parts breakdown and all activities in a multi-echelon supply/repair system.

A solution procedure is given based upon the Lagrange multiplier approach with an
embedded dynamic programming technique. A description is also given of the

Material Flow model designed to calculate parameters of the Optimal A0 Model.

This effort was sponsored by the Ship Support Improvement Project , Naval Sea
Systems Command (PMS-306) under contracts N00 173-77-C-0184 and N00024-78-C-

70Z0.
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I. INTRODUCTION

In this report, a mathematical description is given of a model which determines

inventory levels that maximize equipment availability within budget constraints. The

model calculates levels for all items in the top-down breakdown of an equipment and

at all levels in a multi-echelon support system. This model represents a continuation

of research in a particular area of inventory theory which has become important with

respect to operational use in the military services. To provide context, the

background of this research and application is summarized in this section.

A. Previous Research

The class of inventory models being considered is characteriz ed as stationary and

based upon Markov processes and elements of renewal or queuing theory. For such

models, a fixed ordering policy of a simp le for m (usually an (s,S)-type policy) is chosen

for which the inventory level over time becomes a particular stochastic process. The

principal problem is to find a stationary distr ibution of the process which, if it exists,

will be a function of the policy used and of the demand distribution, but not of any

costs that might be involved. However , an objective function can be imposed upon the

process in expressions which may include expected cost per time unit. Values for the

parameters that characterize the policy (considered as decision variables) can then be

found by standard solution techniqu es which satis fy the objective function.

Using this approach , Rosenman and Hockstra (10) investigated the inventory control

problem for a repairable item in a two-level supply/repair system. In this study, it was

assumed that items can be repaired locally (area facilities) or centrally (NICP -

National Inventory Control Point) according to given rates, and that losses to the

system are negligible. It was further assumed that external demands are Poisson

distributed; that lower level facilities use continuous review, one-for-one (S-l ,S)

orderin g policies; and that replenishment times and repair cycles are given constants.
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Under these assumptions, a cost-free model was developed with the objective of

distributing a given system stock among the various activities in order to minimize

total expected customer waiting time.

In the model , stationary distributions for numbers of items in the NICP repair cycle

and net (serviceable) stock at the NICP were developed, from which an expression for

average delay in satisf ying demands from lower activities was derived. Similarly,

distributions for repair cycle and stock on-hand at the area facilities were given, from

which the average number of back orders were obtained and summed over all areas to

find the average customer wait time. Using these results, a marginal value method

was used to distribute system stock in order to minimize total customer waiting time.

Sherbrooke (12) also used the stationary process approach to analyze the multi-item

problem involving inventories of recoverable (repairable) items in a system of parallel

activities (bases) supported by a higher—level activity (depot). The model assumes (S-

1,S) continuous review policies at lower activities; since all stock are assumed to be

conserved (always repairable), there is no system reordering (procurement) after

initial stocl~s are established. The primary objective of the model is to establish stock

levels (values for S) at each activity (including the depot) which minimize the sum of

expected back orders on all recoverable items at the lower installations for a given
budgetary constraint. Each recoverable item may be repaired at base and/or depot

level according to a specified ratio. Economies of scale are not considered, and

lateral resupply (redistribution) is assumed not to occur . Repair and shipping times

are assumed to be random (implicitly in the assumed form of the demand distribution

and utilizing Palm’s theorem). Under these assumptions and objective function , a

five-step procedur e was given for finding optimal solutions.

First , using an expression f or e,pected number of base back orders, the average delay

per demand against the depot is found for each item as a function of depot stock.

Second, for each level of depot stock and each base, expected base back orders are

calculated as a function of the base stock. Third, for each level of depot stock, an

allocation to the bases is made which minimizes the total expected back orders. This

1-2 
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is done by a marginal analysis method. Fourth, the minimum expected system back

orders are found as a function of total system stock (bases + depot). Finally, the multi-

item aspect is considered by the use of a marginal value method to allocate a given

investment across items. Each additional increment of investment is assigned to that

item for which the largest reduction in expected system back orders will occur.

This model (METRIC - Multi-Echelon Technique for Repairable Item Control) was

selected by the Air Force for application in the Advanced Logistics System. A

modification of the model (MOD-METRIC) was developed by Muckstadt (6) to consider

an equipment (aircraft engine) broken down into a number of subordinate modules.

Unlike METRIC, which considered the repairable items to be technically unrelated,

the MOD-METRIC model considers relationships between stockages of the equipment

as spares and stockages of its subordinate parts. The model is designed to determine

levels for both the equipment and modules at bases and depot such th at expected base

shortages are minimized for a total system investment in spares. A Lagrange

multip lier solution technique was used to find the optimal levels. The MOD-METRIC

model was used by the Air Force to provision the F-15 weapon system.

The relationships of parts in an equipment was also considered in a model (IOL

Optimization Model) developed by General Dynamics (3) and implemented at the

Aviation Supply Office for determining shipboard stocks of spares for Navy aircraft.

The model considers three indenture levels of the parts breakdown but is confined to

one supply echelon (in contrast with the two-echelon representation in METRIC and

MOD-METRIC). With assumptions similiar to the other models, the IOL Optimization

Model determines stock levels of items at the several indenture levels such that

expected back orders are minimized within an overall spares budget constraint. A

Lagrange multi plier solution method is used in which stock levels and associated costs

are calculated for a grid of multi plier values.

A m odification of the METRIC model was developed by the Logistics Management

Institute (5) for use in optimally allocating repair dollars and facilities. The model
(referred to as METRIC-LMI) contains an inser t to METRIC which computes the

expected bac k order reduction for each additional uni t of stock for each recoverable

1—3 
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component. Recently the model has been extended to consider hierarchical levels-of-
indenture in a manner similiar to that of MOD-METRIC (13). This extension includes a

procedure to reduce the computation time required. In the procedure, depot stock at a
given indenture is treated as if it were base stock at the next lower indenture, thereby
reducing the dimensionality of the computation. Proof of the validity of this approach
is given. The procedure is essentially the same as an earlier one developed
independently by Fitzgerald (14).

Muckstadt recently has extended the MOD-METRIC model to include more than two

supply echelons while retaining the multi-indenturing feature. A three-echelon
system is considered in a model for Air Force application (7). In a model developed for

application to Navy aircraft engine management (8), four echelons were considered
which correspond to organizations with different levels of maintenance capability.

Both of these extensions retain the other features of MOD-METRIC and use the same

basic solution technique.

The designation of multiple types of repair in a multi-item , multi-location system was

considered in a model cLeveloped by Porteus and Lansdowne (9). In this model ,
different repair response times were assumed available with associated costs for

support equipment and manning. Like METRIC , the items subject to stockage were
assumed independent and not related in terms of a parts breakdown structure. The
model minimizes expected shortages within a budget constraint which covers both the

procurement of spares and the procurement of equipment and manning levels for the

repair facilities. As in previous models, a Lagrangian solution procedure is used.
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B. The A Inventory Problem

In previous approaches to the inventory problem, analytic models have been

formulated which determine stock levels that satisfy some supply-oriented objective

such as minimizing expected inventory costs, minimizing expected stockouts,

maximizing fill rate, etc. From an operator ’s point of view , however, the main

concern is to keep the equipment in operational use as much of the time as possible.

Thus, he is interested in supply policies that minimize the time the equipment is not

operational because of lack o ’ .3p ar e parts. Referring to the “classical” expression for

equipmen t availability,

A = MTBF/(MTBF + MTTR + MSRT)

where A = fraction of t ime the equipment is operational

MTBF mean time between failures

MTTR = mean time to repai r

MSRT mean supply response time,

the operator ’s general objective is to determine stock levels for all repair parts in the

equipment such that the mean supply response time is minimized subject to given

- ; - constraints. It is assumed that the MTBF and MTTR terms are independent of the

stockage policy and given as constants.

C. The Optimal A0 Model

In thi s paper , a model is formulated to satisf y directly the minimum MSRT (maximum

A0
) goal . This model is a direct descendant of the models summarized above. In

particular , the structure of the model is similar to that of MOD-METRIC in that it

considers multi-indentured equipments and a multi-echelon support system. It

differs, however , in the for m of the objective function and in the solution procedure.

In subsequent discussion, this model is referred to as the “Optimal A0 Model. ”

1—5
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D. Preliminary Theorems

In the formulation and solution of the Optimal A0 Model, several theorems developed
from previous research are used. These theorems are stated (without proofs) for
convenient reference.

1. Palm ’s Theorem (Generalized)

The original form of Palm ’s theorem , as applied to inventory policies of
the (S-1,S) type, states that if demand is Poisson, then the number of units
in resupply in the steady state is also Poisson for any distribution of
resupply time. The Poisson state probabilities depend on the mean of the
resupply distribution , but not on the resupply distribution itself.

Th is theo rem was extended by Feeney and Sherbrooke (2) to include
compound Poisson demands. Their theorem is given as follows:

Let s be th e spare s t oc k f or an it em where demands are co mpo und
Poisson with customer arrival rate X and the resupply t ime is an
arbitrary distribution ~‘(t) with mean T. Assume that when a
customer is acc epted, a resupply time ’ is drawn from ~i’(t) that is
applicable to all demands placed by that customer. In the backorder
case , the ste ady-state probabilities of x units in resupply are given
by the compound Poisson with rate XT; i.e,

h(x) = p(x; XT) 0 � x <

In the lost sales case, under the assumption that a customer is
accepted only when the stock on hand, s-x , equals or exceeds the
number of demands made by the customer , the st eady-state
probabilities for the number of units in resupply are

h(x) = p(x; XT) /~~~~~~p(w; XT) O �x < s

2. Convexity Properties of the Backorder Function

The expected number of back orders for a stock level of s and a mean
resupply time of T is given by the well-known function ,

1-6



B(s,T) = (x—s) p (x; XT)

Although convexity properties of this function have been previously given
or assumed, a precise statement is given by Porteus and Lansdowne in (9)

as follows:

B(s,T) is (a) for fixed T, strictly decreasing and discretely convex in
s, and (b) for fixed s, continuously differnntiable , strictly increasing,
and strictly convex in T.

3. Generalized Lagrange Multiplier Method

In an important paper by Everett (1), the Lagrange multiplier me thod is

extended to problems of maximizing an arbitrary real valued objective

function over any set whatever , subj ect to bo unds of any other finite

collection of real valued functions defined on the same set. This result is

of particular use in inventory theory where the functions involved are not

differentiable because stockages of items are confined to integer values.

In Everet t ’s generalization, the proble m is st ated as follows :

Let us suppose that there is a set S (completely arbitrary) that is
- - - in terpreted as the set of possible strategies or actions. Defined on

this strategy set is a real valued function H, called a payoff function.
H(x) is interpreted as the payoff (or utility) which accrues from
employing t~ e strategy x c S. In addition, there are n real valued
functions C (k = 1, ... , n) defined on S which are called Resource
functions. The interpretation of these functions is that employn~ent
of the strategy x c S will require the expenditure of an am ount C (x)
of the kth resource. The problem to be solve.j~l is the maximization of
the payoff subject to given constraints c (k = ~~ , .. ., n) ~ n each
resource; i.e., to find max H(x) , x c  S, subject to C (x) � c for all
k.

The main theorem given by Everett concerning the use of Lagrange
multipliers for this problem is as follows:

1—7
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Let (k = 1, ..., n) be nonnegative real numbers.
n k kAssume x* C S maximizes the function H(x) 

~~ k— 1 X C (x)
over a l i x e S .  —

Then x* maximizes H(x) over all those x c S such that

Ck(x) � ck (x*) for all k.

This theorem says, for any choice of nonnegative xk (k = 1, ..., n), if an
unconstrained maximum of the new (Lagrangian) function,

‘c-’n k kH(x) - 2~dk= 1 ~ C (x)

can be found (where x’s’, say, is a strategy that produces the maximum),

then this solution is a solution to that constrained m aximization problem
whose constraints are, in fact , the amount of each resource expended in
achieving the unconstrained solution. Thus if x* produces the
unconstrained maximum and required resources (x*), then x~ itself
produces the greatest payoff which can be achieved without using more of
any resources than x* does.

An important corollary to the above theorem is given by Everett as
follows:

Let {x~ }, {x~ }, (k = 1, 2, ..., n) be two sets of ~k, that
produce solutions x~ and x~ respectively. Furthermore, assume that

resource expenditures of these two solutions differ in only the jth
resource,

ck (xt) = Ck(x~) for k ~ j,
and that C3 (xt) > C3 (x~). Then

• � {i~ x~~ — H(x~) } / (xt) — ~~ (x~ )} � xi~

This theorem states that , given two optimum solutions produced by

Lagrange multipliers for which only one resource expenditure differs, the
ratio of change in optimum payoff to the change in that resource

expenditure is bounded between the two multipliers that correspond to the

changed resource.

1—8
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U. MODEL FORMULATION

In this section, the structure of the Optimal A0 Model is formulated and the objective

function is stated. First , however, basic assumptions of the model are listed.

A. Assumptions

The following features and limitations are assumed to apply in the structure of the

Optimal A0 Model:

1. Included parts are organized in terms of an equipment with a top-down

breakdown that can be represented as an arborescent network similar to

the example given in Figure 2-1. Any part may be to tally consum able,

totally repairable, or any mix thereof.

2. Stocking/maintenance facilities are organized in a hierarchical structure

according to supply/maintenance flows which can be represented as an

cZJ arborescent network as illustrated by the example given in Figure 2-2.

Each facility has a colocated maintenance and supply capability. The

facility at the top of the structure (usually considered as a manufacturer)

is assumed to have an infinite supply of all items. Indenture levels in the

support hierarchy are referenced as “echelons” according to usual supply

terminology.

3. External demands upon supply are stationary and compoun d Poisson

distributed.

4. All stockage locations use a continuous review , (S-l ,S) ordering policy.

5. Mean times to repair are defined to include all equipment down times

that are not supply related and are given as constants.

2-1
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The assumed organization of parts in the form of an arborescent network does not

preclude the same item appearing in several places within the hierarchy. The model

permits a common stock level to be applicable to all appearances and hence to

contribute towards reducing mean supply response times in all appearances.

The assumption concerning organization of stocking facilities precludes lateral

resupply at a given level of the hierarchy (e.g., ship-to-ship resupply). If , for a given

facility in the network, the stocks are physically distributed in several places, it is

assumed that the resupply time for direct customers (activities at the next lower

indenture level) is independent of such a distribution. Items repaired at any location

are assumed (implicity by the arborescence assumption) to be returned to colocated

stocks for reissue.

The ordering policy assumption precludes consideration of economies of scale for

resupply. In particular, economic order quantities for procurement of consumable

items are not allowed. All ordering is on a one-for-one basis (i.e., each time a unit is

lost from inventory through discard or being sent to a higher repair facility, a

replacement unit is ordered from the next higher supply f acility).

In defining the structure of the Optimal A Model , a subset of the facilities in the

support system is referred to as “user ” locations. A user location is a facility that

possesses and operates the equipment as well as providing possible

supply/maintenance support. Normally (but not necessarily), only activities at the

bottom of the support echelon structure are considered as being user locations.

B. Model Structure

The optimal A model is defined recursively by considering an arbitrary item in the

equipment parts hierarchy and an arbitrary facility in the support system hierarchy.

The structure of the model is given by the following definitions and equations:

1. Let i be an arbitrary item in equipment e (which may be e itself) .

Let u = 0 represent an arbitrary facility in the support system

and u 1, 2, ..., U represent facilities at the next lower indenture (i.e.,

those facilities that submit items for repair directly to or obtain resupply

from facility 0).

2-3
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2. M. = D. - f T .
V 

lu iu lu 
V

where M. = mean time to return a failed unit of item i at
V location u to a serviceable condition

D1~ 
= expected delay per demand upon inventory for

item i at location u

= mean time to repair item i at user location u

= 0 if location u does not operate the equipment

3. D1 = ‘~
‘
~ iu ~~x> S.~~~ 

- S )  p (x; 
~~~~~~ 

(u = 0, 1, .. . , U)

where S. = stock level of item I at location uiu
= expected number of demands upon inventory for

item i at location u

p(x; 
~~~~~~ 

= probability of x units of stock reduction for item i
at loca t ion u

T1~ 
= mean resupply time (time to replace an inventory

loss) for item i at location u

V 

4. T. = 

~iu~1u + L1~
) + (1 - y. )  (R~ + R . )

V where 
~
Y i u = probability that a demand for item i upon

inventory at location u results in a loss (discard or
sent elsewhere for repair) which must be replaced
through resupply

L. = average resupply lead time assuming stock
availability at the resupply source

= additional resupply lead time due to expected
V shortages at the resupply source

R1~ 
= average repair cycle assuming availability of

spares for items within i at the next lower
indenture level

R1~ 
= additional repair cycle due to expected shortages

of spares for items within i at the next lower
indenture level

5. L. = D10 (u = 1, 2, ... , U)

L10 = D
~ ~ 

where V is the resupply source for location 0

= 0 if location 0 has no resupply (i.e., location 0 is at
the top of the support hierarchy)

2-4
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6. R. = • X . M . . • X . where j identifies itemsiu : ju iu 3 E 1 311 • .within i at the next lower
indenture level

0 if i has no subordinate parts

7. A = 1 — X Meu eu eu
where Aeu = fraction of time equipment e is available for use at

location u (defined only for locations u which operate
the equipment)

In equation 2, the factor T. represents the marginal mean time to repair item i

through replacement from stock or repair of failed subordinate parts at the next lower

indenture. Included are all non-supply related functions such as fault isolate, remove
and replace, and system checkout. These factors are assumed to be given as
constants.

In equation 3, the summation term gives the expected number of back orders for a
stock level of S

~~
• (See Hadley and Whitin (4), section 4-13 for development of this

expression.) This can be shown to be equivalent to the expected length of time the

stock is in a back order status (Hadley and Whitin , section 1—i 1). Dividing by the
expected number of demands per time unit gives the expected delay in satisf ying a
demand. The time unit here may be days, months or any other unit that is consistent
with units by which delays (resupply time, repair cycle) are measured. Values for X
are calculated by the model defined in Section IV.

In equation 4, the factors are calculated by the model defined in Section IV. The

factors L. and R. are given constants. The first term (involving resupply lead times)

represents losses from stock due to scrap or units sent to higher level repair facilities.

The second term represents losses due to amounts cycling through local repair.
Although mean values of resupply and repair times are used, these times may in fact
be stochastic as long as the conditions of Palm ’s theorem (generalized) are satisfied.
Also, use is made of the fact that the “sum ” of compound Poisson distributions is also

compound Poisson. (See (ii) ,  p. 6-7).

Equation 5 establishes the connection between supply echelons. It states that the

additional delay in obtaining resupply is equal to the expected delay per demand upon

stocks at the resupply source.

2-5
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Equation 6 establishes the connection between indenture levels of the parts hierarchy.

It states that the additional delay in repairing an assembly is equal to the weighted

average of expected delays per demand upon stocks at the next lower indenture level.

Equation 7 gives the operational availability of the equipment in terms of factors

defined by previous equations. With proper interpretation of terms , this definition of V

• A0 can easily be translated into that given in Section I.

The above definition of the Optimal A Model is recursive on “item ” within the parts

hierarchy and “location ” within the support system hierarchy . If stock levels are given

for all items at all locations, a recursive procedure using the equations may be applied

to determine corresponding operational availabilities of the equipment at all user

locations. The recursion starts with items at the bottom of the parts hierarchy and

locations at the top of the support system hierarchy. For such items and locations,

additional resupply and repair times (equations 5 and 6) are zero and expected delays

can be calculated directly using equations 3 and 4. These delays can then be used in

equations 5 and 6 to calculate additional resupply and repair times for the next higher

assemblies and nex t lower locations. Expected delays for th ese ite ms and loca t ions

can then be determined by equations 3 and 4.

This establishes a recursion up the parts hierarchy and down the support system

hierarchy until the equipment level is reached at the lo west (user) locat ions in the

support system. Equation 7 is then used to determine the expected equipment

availabilities.

C. Objective Function

The model’s objective function can be stated as follows:

Find values for Sky for all items k c e and all locations v in the support system which

minimize D for all user locations u subject toeu 

~~ 
= B

where
C

k 
= unit cost of item k

B given budget for spares procurement

2-6
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Equations 2 and 7 show that minimizing Deu is equivalent to maximizing Aeu~ 
the

operational availability of equipment e at user location u.

If the equipment e is not subject to stockage, as is often the case, then Seu in equation 
V

3 and 
~
‘eu in equation 

4 are set io zero. In this case,

D = R + R ’eu eu eu

The objective function for this case can be rewritten using equation 6 as follows:

Find Sky (k E e, k ~ e) which minimizes
V 

~~~~~~
. X. D. .

V ~ e iu iu (:at the next lower indenture)

subject to 
~~k,v ckSkV B

I ’
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III. SOLUTION PROCEDURE

The optimal solution to the problem defined above is found by a (doubly) recursive
procedure based upon equations 2 - 7. First , however, a subproblem is defined and a V

solution procedure is given for the subproblem.

Substituting equation 4 in 3, the expected delay per demand can be given by V

= ~~~~~~~~~~~~~ 
V

where the stock level 
~~~~~~ 

additional resupply time ~~~ and additional repai r cycle
R1~ ar e considered as decision variables for an arbit rary item i ~ e and arbitrary
location v in the support system. Suppose that values for 

~~ 
are given for all items i

and locations v. The subproblem is to find a particular item and location such that a
one unit increase in its stock level will yield the largest decrease in Deu per dollar for V
some user location u.

The solution of this subproblem is based upon a recognition that the famil y of 
V

functions ~~~ are hierarchically related (by equations 5 and 6), each is a function of
three decision variables, and functions at the bottom of the hierarchy depend only
upon the stock levels, S.,~,. Therefore a dynamic programming solution procedure can
be applied as follows:

Define , ,
= D(S~~,L1~ ,R1~ ) - D(S1~~+l~L.~~,Ri~~)

- D(S
~~,Lt~ ,R.~~

) V

= 
~~~~~~~~~~~~~ 

- D(Sjy ,L;y ,R~y )

where L~’ = least value of L. obtainable by a unit increase in stockI V IV 
V

of some part w € i at the supply source for V V

R.!
~ 

= least value of obtainable by a unit increase in stock
of some part r c i at location V

3— 1
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Letting ~ * represent the part which satisfies L~’~ and r* the part which satisfies R~~
find the largest of

(a) ~~~~~ /ci (b) ALI). /c * 
(c) 

~R’~iv ~~~~

and let V

= D(S.~ ÷i ,L.~~,R1~ )

= D(SIV ,L
~~ 

,R.~ )

= ~~~~~~~~~~~~~

according to which of (a), (b) or (c) is largest, respectively.

With the above definitions and using equations 2, 5 and 6, a recursion across supply

echelons and through the parts hierarchy is given by:

= D* ( X = supply source for v )

R :IC = j c i~j  ~~~~~~ 
+ X. ’~ M* .’~~/~~~. 6 i A

where j identifies parts within i at the next lower indenture, and j r* or else j 
V

contains r* as a lower level part .

The recursion is initiated for items i at the bottom of the parts hierarchy and the

location V at the top of the support system hierarchy where L1~ and R1~ are both V

zero and hence Dr~ 
= D(S

~~
-$-1). Justification that this procedure solves the

subproblem follows from the convexity properties of the functions as established V
in Section I.

The solution to the orginial problem defined in Section U is given by repeated

application of the subproblem. Assume that initial values are given for stock levels V

for all items and locations. These may all be zero or some minimum value given by

policy or current assets. The subproblem and solution procedure is then applied to find

the first item and location for which a unit increase in stock will yield the largest

3-2
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decrease in D (or increase in A ) for some user location u. The stock level of thateu eu
- - item and location is then increased by one unit and the subproblem solution procedure

again applied. This procedure continues until the budget constrain t is first reached

Justification for this solution procedure is based upon Everett ’s generalization of the
Lagrange multiplier method and upon the convexity properties of the functions D1~ as
given in Section I. It has been previously shown that the marginal value approach used
does not provide optimal solutions in the general case but approximations are obtained
that are sufficiently close to optimality for practical use..
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IV. MATERIA L FLOW MODEL

The Material Flow model is designed to calculate values for demand rates, X~~ , and

loss probabilities, ~~~ for all items i and locations ~ as defined in Section III. The

calculations are made based upon failure data , operating factors, location

interrelationships, level of repair codings, and several item parameters given as

constants.

In the model formulation given below, it is assumed that the support system consists of
three echelons (indenture levels in the support system hierarchy) defined as

organizational (the lowest echelon), intermediate, and depot (the highest echelon).

This formulation can easily be extended to an arbitrary number of echelons.

As a preliminary or setup operation, two f actors, Eeu and ‘ei’ are defined for use in

subsequent equations that determine effective number of failures per month (For V

convenience, the basic time unit is taken as one month throughout the model V

formulation.) These factors are defined for user location u, equipment e, and item i as V

follows:

E = 
~eu~ eu

where Eeu = equipment operating unit-months

~eu = number of units of equipment e at location u

°eu = location operating factor (fraction of calendar time 
V

that location u is operational)

1i~+1ia = 

~~ ‘i~ia (i = 1, 2, ... until 1j f  1 = e)

I .  = a eiaei

where ‘ei = Item operating unit-months over all appearances a of 
V

item i in equipment e

= number of units of assembly i~ (con taining item I as a

subordinate part) In its next highec assembly, L~~

= fraction of time assembly i. operates when its next
3 3

higher assembly i~~1 operates

4-1
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The factor I . for each item in equipment e is calculated recursively by considering
successive next higher assemblies that contain item i. The recursion is initiated by
setting

i i = i V

I.. = 1iia

This formulation recognizes the fact that item i may appear in several different
places (given by index a) in the equipment and that the item ’s population and extent of

V 
operation over time may differ by appearance.

Next , the expected number of units of item i that generate at location v for possible
repair ( a t  y or some higher repair location) is given as follows:

= (730.5 
~~ 

Eev Iei)
~’Bi (y =  u, user location)

= 0, otherwise

V g. R f . / f (i � e)
V I~,) nv iu nu

= 0 ( v ~~~u)

1eu ( y  u)

where f~~ expected number of (real) failures per month of
item i at user location u

730.5 number of hours per month

B1 mean operating hours between failures (MTBF)

V expected number of repairable generations per
month of item i at location V

R~ ~ 
expected number of repairs per month of
assembly n (containing i at the next lower
indenture) at location V ( v  = U or contains user
location u at some lower indenture of the support
hierarchy) V
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Next , let r represent the indenture level of a given location V in the support system,
where VT = 1 identifies the organization level, r = 2 the intermediate level, and r = 3
the depot level. The following factors are assumed to be given as constants for each
item i and level r :

k. = false removal rate

d. ,. = false removal detection rate
V 

air  = 1 + k. (1 - d . )  = expected number of real failures plus
undetected false removals per real
failure

p
1 = fraction of repairs beyond the maintenance capability of the

organizational level ( r  1) which are sent to intermediate
level repair (r =  2) vice depot level repair ( r =  3)

b11 = beyond capability of maintenance (BCM) rate ( r 1,2)

Sf7.  = scrap rate V

The expected number of units are calculated from the above factors and are given in
Table 4-1 according to the indenture level of location v. They are:

(a) ~~ = wilts sent by location V to an intermediate level
‘!~‘ ~ location for repair V

(b) B1
~ = units sent by location v to a depot level location for

repair

(c) S1~ = units scrapped at location v

(d) R1~ = units repaired locally at location v

Finally, values for 
~ 

and are determined using terms given in Table 4~-1

A = B~~ + + Sh, + R

I D
= (B + B 1~ + S1~~) ~‘ x

4-3 
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To calculate values for A~~ and 7~ according to the above formulation, a recursive
procedure is necessary. Since the terms are defined in terms of next higher
assemblies of items i, the procedure starts with the equipment e at the top of the parts
hierarchy where there is no next higher assembly. Also, since terms in Table 4-1
depend upon computations for locations that are lower in the support system
hierarchy, the procedure must start at the lowest (organizational) level locations.

I

4-4
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