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I SUMMARY

A mathematical description is given of a computer model, called the Optimal Ao -
Model, designed to maximize equipment operational availability subject to a budget
constraint for spares procurement. Levels are calculated for all items in the i
equipment parts breakdown and all activities in a multi-echelon supply/repair system.
A solution procedure is given based upon the Lagrange multiplier approach with an
; embedded dynamic programming technique. A description is also given of the I

Material Flow model designed to calculate parameters of the Optimal Ao Model.

This effort was sponsored by the Ship Support Improvement Project, Naval Sea 1
Systems Command (PMS-306) under contracts N00173-77-C~0184 and N00024-78-C-~

7020.
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L INTRODUCTION

In this report, a mathematical description is given of a model which determines
inventory levels that maximize equipment availability within budget constraints. The
model calculates levels for all items in the top-down breakdown of an equipment and
at all levels in a multi-echelon support system. This model represents a continuation
of research in a particular area of inventory theory which has become important with
respect to operational use in the military services. To provide context, the

background of this research and application is summarized in this section.

A. Previous Research

The class of inventory models being considered is characterized as stationary and
based upon Markov processes and elements of renewal or queuing theory. For such
models, a fixed ordering policy of a simple form (usually an (s,S)-type policy) is chosen
for which the inventory level over time becomes a particular stochastic process. The
principal problem is to find a stationary distribution of the process which, if it exists,
will be a function of the policy used and of the demand distribution, but not of any
costs that might be involved. However, an objective function can be imposed upon the
process in expressions which may include expected cost per time unit. Values for the
parameters that characterize the policy (considered as decision variables) can then be

found by standard solution techniques which satisfy the objective function.

Using this approach, Rosenman and Hockstra (10) investigated the inventory control
problem for a repairable item in a two-level supply/repair system. In this study, it was
assumed that items can be repaired locally (area facilities) or centrally (NICP -
National Inventory Control Point) according to given rates, and that losses to the
system are negligible. It was further assumed that external demands are Poisson
distributed; that lower level facilities use continuous review, one-for-one (S-1,S)

ordering policies; and that replenishment times and repair cycles are given constants.




!

Under these assumptions, a cost-free model was developed with the objective of
distributing a given system stock among the various activities in order to minimize

total expected customer waiting time.

In the model, stationary distributions for numbers of items in the NICP repair cycle
and net (serviceable) stock at the NICP were developed, from which an expression for
average delay in satisfying demands from lower activities was derived. Similarly,
distributions for repair cycle and stock on-hand at the area facilities were given, from
which the average number of back orders were obtained and summed over all areas to
find the average customer wait time. Using these results, a marginal value method

was used to distribute system stock in order to minimize total customer waiting time.

Sherbrooke (12) also used the stationary process approach to analyze the multi-item
problem involving inventories of recoverable (repairable) items in a system of parallel
activities (bases) supported by a higher-level activity (depot). The model assumes (S-
1,S) continuous review policies at lower activities; since all stock are assumed to be
conserved (always repairable), there is no system reordering (procurement) after
initial stocks are established. The primary objective of the model is to establish stock
levels (values for S) at each activity (including the depot) which minimize the sum of
expected back orders on all recoverable items at the lower installations for a given
budgetary constraint. Each recoverable item may be repaired at base and/or depot
level according to a specified ratio. Economies of scale are not considered, and
lateral resupply (redistribution) is assumed not to occur. Repair and shipping times
are assumed to be random (implicitly in the assumed form of the demand distribution
and utilizing Palm's theorem). Under these assumptions and objective function, a

five-step procedure was given for finding optimal solutions.

First, using an expression for expected number of base back orders, the average delay
per demand against the depot is found for each item as a function of depot stock.
Second, for each level of depot stock and each base, expected base back orders are
calculated as a function of the base stock. Third, for each level of depot stock, an

allocation to the bases is made which minimizes the total expected back orders. This
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is done by a marginal analysis method. Fourth, the minimum expected system back
orders are found as a function of total system stock (bases + depot). Finally, the multi-
item aspect is considered by the use of a marginal value method to allocate a given
investment across items. Each additional increment of investment is assigned to that

item for which the largest reduction in expected system back orders will occur.

This model (METRIC - Multi-Echelon Technique for Repairable Item Control) was
selected by the Air Force for application in the Advanced Logistics System. A
modification of the model (MOD-METRIC) was developed by Muckstadt (6) to consider
an equipment (aircraft engine) broken down into a number of subordinate modules.
Unlike METRIC, which considered the repairable items to be technically unrelated,
the MOD-METRIC model considers relationships between stockages of the equipment
as spares and stockages of its subordinate parts. The model is designed to determine
levels for both the equipment and modules at bases and depot such that expected base
shortages are minimized for a total system investment in spares. A Lagrange
multiplier solution technique was used to find the optimal levels. The MOD-METRIC

model was used by the Air Force to provision the F-15 weapon system.

The relationships of parts in an equipment was also considered in a model (IOL
Optimization Model) developed by General Dynamics (3) and implemented at the
Aviation Supply Office for determining shipboard stocks of spares for Navy aircraft.
The model considers three indenture levels of the parts breakdown but is confined to
one supply echelon (in contrast with the two-echelon representation in METRIC and
MOD-METRIC). With assumptions similiar to the other models, the IOL Optimization
Model determines stock levels of items at the several indenture levels such that
expected back orders are minimized within an overall spares budget constraint. A
Lagrange multiplier solution method is used in which stock levels and associated costs

are calculated for a grid of multiplier values.

A modification of the METRIC model was developed by the Logistics Management
Institute (5) for use in optimally allocating repair dollars and facilities. The model
(referred to as METRIC-LMI) contains an insert to METRIC which computes the

expected back order reduction for each additional unit of stock for each recoverable




component. Recently the model has been extended to consider hierarchical levels-of-
indenture in a manner similiar to that of MOD-METRIC (13). This extension includes a
procedure to reduce the computation time required. In the procedure, depot stock at a
given indenture is treated as if it were base stock at the next lower indenture, thereby
reducing the dimensionality of the computation. Proof of the validity of this approach
is given. The procedure is essentially the same as an earlier one developed

independently by Fitzgerald (14).

Muckstadt recently has extended the MOD-METRIC model to include more than two
supply echelons while retaining the multi-indenturing feature. A three-echelon
system is considered in a model for Air Force application (7). In a model developed for
application to Navy aircraft engine management (8), four echelons were considered
which correspond to organizations with different levels of maintenance capability.
Both of these extensions retain the other features of MOD-METRIC and use the same

basic solution technique.

The designation of multiple types of repair in a multi-item, multi-location system was
considered in a model developed by Porteus and Lansdowne (9). In this model,
different repair response times were assumed available with associated costs for
support equipment and manning. Like METRIC, the items subject to stockage were
assumed independent and not related in terms of a parts breakdown structure. The
model minimizes expected shortages within a budget constraint which covers both the
procurement of spares and the procurement of equipment and manning levels for the

repair facilities. As in previous models, a Lagrangian solution procedure is used.
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B. The Ao Inventory Problem

In previous approaches to the inventory problem, analytic models have been
formulated which determine stock levels that satisfy some supply-oriented objective
such as minimizing expected inventory costs, minimizing expected stockouts,
maximizing fill rate, etc. From an operator's point of view, however, the main
concern is to keep the equipment in operational use as much of the time as possible.
Thus, he is interested in supply policies that minimize the time the equipment is not
operational because of lack of spare parts. Referring to the "classical" expression for

equipment availability,

Ao = MTBF/(MTBF + MTTR + MSRT)
where A0 = fraction of time the equipment is operational
MTBF = mean time between failures
MTTR = mean time to repair
MSRT = mean supply response time,

the operator's general objective is to determine stock levels for all repair parts in the
equipment such that the mean supply response time is minimized subject to given
constraints. It is assumed that the MTBF and MTTR terms are independent of the

stockage policy and given as constants.

C. The Optimal Ao Model

In this paper, a model is formulated to satisfy directly the minimum MSRT (maximum
AO) goal. This model is a direct descendant of the models summarized above. In
particular, the structure of the model is similar to that of MOD-METRIC in that it
considers multi-indentured equipments and a multi-echelon support system. It

differs, however, in the form of the objective function and in the solution procedure.

In subsequent discussion, this model is referred to as the "Optimal Ao Model."




D. Preliminary Theorems

In the formulation and solution of the Optimal Ao Model, several theorems developed
from previous research are used. These theorems are stated (without proofs) for

convenient reference.

1. Palm's Theorem (Generalized)

The original form of Palm's theorem, as applied to inventory policies of
the (S-1,S) type, states that if demand is Poisson, then the number of units
in resupply in the steady state is also Poisson for any distribution of
resupply time. The Poisson state probabilities depend on the mean of the

resupply distribution, but not on the resupply distribution itself.

This theorem was extended by Feeney and Sherbrooke (2) to include

compound Poisson demands. Their theorem is given as follows:

! Let s be the spare stock for an item where demands are compound

Poisson with customer arrival rate A\ and the resupply time is an

arbitrary distribution ¥(t) with mean T. Assume that when a

customer is accepted, a resupply time'is drawn from ¥(t) that is

s applicable to all demands placed by that customer. In the backorder

case, the steady-state probabilities of x units in resupply are given
by the compound Poisson with rate AT; i.e,

h(x) = p(x; \T) 0<x< =
In the lost sales case, under the assumption that a customer is
accepted only when the stock on hand, s-x, equals or exceeds the

number of demands made by the customer, the steady-state
probabilities for the number of units in resupply are

4 h(x) = p(x; AT) /ZS plw; A\T) 0<x<s
w=0

2. Convexity Properties of the Backorder Function

The expected number of back orders for a stock level of s and a mean

resupply time of T is given by the well-known function,

1-6
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B(s,T) = 2 (x-s) p (x; AT)
Although convexity properties of this function have been previously given
or assumed, a precise statement is given by Porteus and Lansdowne in (9)

as follows:

B(s,T) is (a) for fixed T, strictly decreasing and discretely convex in
s, and (b) for fixed s, continuously differentiable, strictly increasing,
and strictly convex in T.

Generalized Lagrange Multiplier Method

In an important paper by Everett (1), the Lagrange multiplier method is
extended to problems of maximizing an arbitrary real valued objective
function over any set whatever, subject to bounds of any other finite
collection of real valued functions defined on the same set. This result is
of particular use in inventory theory where the functions involved are not

differentiable because stockages of items are confined to integer values.

In Everett's generalization, the problem is stated as follows:

Let us suppose that there is a set S (completely arbitrary) that is
interpreted as the set of possible strategies or actions. Defined on
this strategy set is a real valued function H, called a payoff function.
H(x) is interpreted as the payoff (or utility) which accrues from
employing tke strategy x € S. In addition, there are n real valued
functions C* (k = 1, ..., n) defined on S which are called Resource
functions. The interpretation of these functionsis that employment
of the strategy x € S will require the expenditure of an amount C " (x)
of the kth resource. The problem to be solved is the maximization of

the payoff subject to given constraints ¢ (k = 1, ..., n) on each
resource; i.e., to find max H(x), x€ S, subject to C" (x) < ¢ for all
k.

The main theorem given by Everett concerning the use of Lagrange

multipliers for this problem is as follows:

T




Let X (k = 1, ..., n) be nonnegative real numbers.

Assume x* ¢ S maximizes the function H(x) —Z§_1 )\ka(x)
over all x € S. ¥

Then x* maximizes H(x) over all those x € S such that
cNx) < C® (x#) for all k.

This theorem says, for any choice of nonnegative )\k (k = 1, «esy n), if an

unconstrained maximum of the new (Lagrangian) function,

H(x) - Z§=l k)

can be found (where x*, say, is a strategy that produces the maximum),
then this solution is a solution to that constrained maximization problem
whose constraints are, in fact, the amount of each resource expended in
achieving the unconstrained solution. Thus if x* produces the
unconstrained maximum and required resources c* (x*), then x* itself
produces the greatest payoff which can be achieved without using more of

any resources than x* does.

An important corollary to the above theorem is given by Everett as

follows:

Let {All( }, {)\; }, (k = 1, 2, ..., n) be two sets of )\k's that
produce solutions x’i‘ and xi respectively. Furthermore, assume that
resource expenditures of these two solutions differ in only the jth

resource,
) = e fork £ j,
and that C) (x¥) > ) (x%). Then
X E {H(x;)—n(xg)}/ {cj ) - (x;)} > M
This theorem states that, given two optimum solutions produced by
Lagrange multipliers for which only one resource expenditure differs, the

ratio of change in optimum payoff to the change in that resource

expenditure is bounded between the two multipliers that correspond to the

changed resource.




IL. MODEL FORMULATION

4.

5.

In this section, the structure of the Optimal Ao Model is formulated and the objective

function is stated. First, however, basic assumptions of the model are listed.

A. Assumptions

The following features and limitations are assumed to apply in the structure of the

Optimal Ao Model:

Included parts are organized in terms of an equipment with a top-down
breakdown that can be represented as an arborescent network similar to
the example given in Figure 2-1. Any part may be totally consumable,

totally repairable, or any mix thereof.

Stocking/maintenance facilities are organized in a hierarchical structure
according to supply/maintenance flows which can be represented as an
arborescent network as illustrated by the example given in Figure 2-2.

Each facility has a colocated maintenance and supply capability. The

facility at the top of the structure (usually considered as a manufacturer)

is assumed to have an infinite supply of all items. Indenture levels in the
support hierarchy are referenced as "echelons" according to usual supply

terminology.

External demands upon supply are stationary and compound Poisson

distributed.

All stockage locations use a continuous review, (S-1,S) ordering policy.

Mean times to repair are defined to include all equipment down times

that are not supply related and are given as constants.

2-1
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The assumed organization of parts in the form of an arborescent network does not
preclude the same item appearing in several places within the hierarchy. The model
permits a common stock level to be applicable to all appearances and hence to

contribute towards reducing mean supply response times in all appearances.

The assumption concerning organization of stocking facilities precludes lateral
resupply at a given level of the hierarchy (e.g., ship-to-ship resupply). If, for a given
facility in the network, the stocks are physically distributed in several places, it is
assumed that the resupply time for direct customers (activities at the next lower
indenture level) is independent of such a distribution. Items repaired at any location
are assumed (implicity by the arborescence assumption) to be returned to colocated

stocks for reissue.

The ordering policy assumption precludes consideration of economies of scale for
resupply. In particular, economic order quantities for procurement of consumable
items are not allowed. All ordering is on a one-for-one basis (i.e., each time a unit is
lost from inventory through discard or being sent to a higher repair facility, a

replacement unit is ordered from the next higher supply facility).

In defining the structure of the Optimal AO Model, a subset of the facilities in the
support system is referred to as "user" locations. A user location is a facility that
possesses and operates the equipment as well as providing possible
supply/maintenance support. Normally (but not necessarily), only activities at the

bottom of the support echelon structure are considered as being user locations.

B. Model Structure

The optimal Ao model is defined recursively by considering an arbitrary item in the
equipment parts hierarchy and an arbitrary facility in the support system hierarchy.

The structure of the model is given by the following definitions and equations:

1. Let i be an arbitrary item in equipment e (which may be e itself).
Let u = 0 represent an arbitrary facility in the support system
and u = 1, 2, ..., U represent facilities at the next lower indenture (i.e.,

those facilities that submit items for repair directly to or obtain resupply

from facility 0).
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M. = D.
iu iu
where M.
iu
D.
iu
Tiu
by = 1/,
where g
iu
iu
p(x; )‘iuTiu)
iu
T. =
iu
where 3y
iu
L.
iu
iu
iu
]
iu
]
T 0
'
L L
= 0

u

+ T,

mu

mean time to return a failed unit of item i at
location u to a serviceable condition

expected delay per demand upon inventory for
item i at location u

mean time to repair item i at user location u

0 if location u does not operate the equipment

u 1

2:x>sm""siu)1> (X Tl =00 0 5 1)

stock level of item i at location u

expected number of demands upon inventory for
item i at location u

probability of x units of stock reduction for item i
at location u

mean resupply time (time to replace an inventory
loss) for item i at location u

] ]
Y. (L. +L.)+(1- 7 )(R. +R,)
1u 1nu mu u 1mu 1

probability that a demand for item i upon
inventory at location uresults in a loss (discard or
sent elsewhere for repair) which must be replaced
through resupply

average resupply lead time assuming stock
availability at the resupply source

additional resupply lead time due to expected
shortages at the resupply source

average repair cycle assuming availability of
spares for items within i at the next lower
indenture level
additional repair cycle due to expected shortages
of spares for items within i at the next lower
indenture level
=12 . U)

where V is the resupply source for location 0

if location 0 has no resupply (i.e., location 0 is at
the top of the support hierarchy)

2-4
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6. R, = Z ) )\.uM,u/Z. - A.u where j identifies items
o T ] ) within i at the next lower
indenture level

i

0 if i has no subordinate parts

7. A

1-A M
eu eu eu

where Aeu= fraction of time equipment e is available for use at
location u (defined only for locations u which operate

the equipment)
In equation 2, the factor Tiu represents the marginal mean time to repair item i
through replacement from stock or repair of failed subordinate parts at the next lower
indenture. Included are all non-supply related functions such as fault isolate, remove
and replace, and system checkout. These factors are assumed to be given as

constants.

In equation 3, the summation term gives the expected number of back orders for a
stock level of S, . (See Hadley and Whitin (4), section 4-13 for development of this
expression.) This can be shown to be equivalent to the expected length of time the
stock is in a back order status (Hadley and Whitin, section 1-11). Dividing by the
expected number of demands per time unit gives the expected delay in satisfying a
demand. The time unit here may be days, months or any other unit that is consistent
with units by which delays (resupply time, repair cycle) are measured. Values for )‘iu

are calculated by the model defined in Section IV.

In equation 4, the factors 7iu are calculated by the model defined in Section IV. The
factors Liu and Riu are given constants. The first term (involving resupply lead times)
represents losses from stock due to scrap or units sent to higher level repair facilities.
The second term represents losses due to amounts cycling through local repair.
Although mean values of resupply and repair times are used, these times may in fact
be stochastic as long as the conditions of Palm's theorem (generalized) are satisfied.
Also, use is made of the fact that the "sum" of compound Poisson distributions is also

compound Poisson. (See (11), p. 6-7).

Equation 5 establishes the connection between supply echelons. It states that the

additional delay in obtaining resupply is equal to the expected delay per demand upon

stocks at the resupply source.




Equation 6 establishes the connection between indenture levels of the parts hierarchy.

It states that the additional delay in repairing an assembly is equal to the weighted

average of expected delays per demand upon stocks at the next lower indenture level. i

Equation 7 gives the operational availability of the equipment in terms of factors

defined by previous equations. With proper interpretation of terms, this definition of ¥

A0 can easily be translated into that given in Section I.

The above definition of the Optimal Ao Model is recursive on "item" within the parts
hierarchy and "location" within the support system hierarchy. If stock levels are given
for all items at all locations, a recursive procedure using the equations may be applied
to determine corresponding operational availabilities of the equipment at all user |
locations. The recursion starts with items at the bottom of the parts hierarchy and
locations at the top of the support system hierarchy. For such items and locations,
additional resupply and repair times (equations 5 and 6) are zero and expected delays '
can be calculated directly using equations 3 and 4. These delays can then be used in i

equations 5 and 6 to calculate additional resupply and repair times for the next higher

assemblies and next lower locations. Expected delays for these items and locations

can then be determined by equations 3 and 4.

This establishes a recursion up the parts hierarchy and down the support system
hierarchy until the equipment level is reached at the lowest (user) locations in the

support system. Equation 7 is then used to determine the expected equipment

availabilities.

C. Objective Function

The model's objective function can be stated as follows:

Find values for Sk\) for all items k € e and all locations v in the support system which

minimize Deu for all user locations u subject to

E c,. S = B

ky k'kv
L where
s ;e unit cost of item k
% B = given budget for spares procurement

2-6
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Equations 2 and 7 show that minimizing Deu is equivalent to maximizing Aeu’ the

operational availability of equipment e at user location u.

If the equipment e is not subject to stockage, as is often the case, then seu in equation

3 and ‘Yeu in equation 4 are set io zero. In this case,

D = R__+R!
eu eu eu

The objective function for this case can be rewritten using equation 6 as follows:

Find Sk\) (k € e, k # e) which minimizes

subject to Zk \)cksk\) =B
?

ice )\iuDiu (i at the next lower indenture)
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. SOLUTION PROCEDURE

The optimal solution to the problem defined above is found by a (doubly) recursive
procedure based upon equations 2 - 7. First, however, a subproblem is defined and a

solution procedure is given for the subproblem.

Substituting equation 4 in 3, the expected delay per demand can be given by

! !
Diw = DS ukqueRyy
where the stock level Si\)’ additional resupply time Li\) and additional repair cycle
Riv are considered as decision variables for an arbitrary item i € e and arbitrary
iocation Vv in the support system. Suppose that values for Si\) are given for all items i
and locations v. The subproblem is to find a particular item and location such that a
one unit increase in its stock level will yield the largest decrease in Deu per dollar for

some user location u.

The solution of this subproblem is based upon a recognition that the family of
functions Di\) are hierarchically related (by equations 5 and 6), each is a function of
three decision variables, and functions at the bottom of the hierarchy depend only
upon the stock levels, Si\) . Therefore a dynamic programming solution procedure can

be applied as follows:

Define ' ' ' '
4sDjy = DLy Ry ) - DIS; +1LL, R, )
' ] ' 1
A = - X
LPiv D(S;ylyyiR;y) = DIS; uLE R, )
= - %
ARDi\: D(Siv’Liv’Riv) D(Siv’Li \J’Riv)
where L’i"v = least value of Li\) obtainable by a unit increase in stock
of some part w € i at the supply source for v
L} 1
Ri"{) = least value of Riv obtainable by a unit increase in stock

of some part r € i at location v




A

1 '
Letting w* represent the part which satisfies L’i"v and r* the part which satisfies Ri\f

find the largest of

@ AgD;, /e B} 4Dy /ey o) ApDy /ey
and let

*
Div

Al 1
D(S;,, +L,L; Ry,
= *
D(Siv’Liv ’Riv)
L] ]
= *
D(Siv’Liv’Riv )

according to which of (a), (b) or (c) is largest, respectively.

With the above definitions and using equations 2, 5 and 6, a recursion across supply

echelons and through the parts hierarchy is given by:

L’i“v = D’i" ( X = supply source for V)

| 1 1 * 1
RY, = Zjei—j )}\)ij ¥ )‘j\)M jv /Z] €i >‘jv
M¥* = D + T,

IV v v

' '
where j identifies parts within i at the next lower indenture, and j = r* or else j

contains r* as a lower level part.

The recursion is initiated for items i at the bottom of the parts hierarchy and the
location v at the top of the support system hierarchy where L; o and R;\’ are both
zero and hence D;‘ o= D(Si\)+1)' Justification that this procedure solves the
subproblem follows from the convexity properties of the functions Di\) as established

in Section I.

The solution to the orginial problem defined in Section I is given by repeated
application of the subproblem. Assume that initial values are given for stock levels
for all items and locations. These may all be zero or some minimum value given by

policy or current assets. The subproblem and solution procedure is then applied to find

the first item and location for which a unit increase in stock will yield the largest
?
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decrease in Deu (or increase in Aeu) for some user location u. The stock level of that
item and location is then increased by one unit and the subproblem solution procedure

again applied. This procedure continues until the budget constraint is first reached

Justification for this solution procedure is based upon Everett's generalization of the
Lagrange multiplier method and upon the convexity properties of the functions Di\) as
given in Section L. It has been previously shown that the marginal value approach used
does not provide optimal solutions in the general case but approximations are obtained

that are sufficiently close to optimality for practical use..
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1v. MATERIAL FLOW MODEL

The Material Flow model is designed to calculate values for demand rates, )\ iv? and
loss probabilities, 71\)’ for all items i and locations v as defined in Section Ill. The
calculations are made based upon failure data, operating factors, location
interrelationships, level of repair codings, and several item parameters given as

constants.

In the model formulation given below, it is assumed that the support system consists of
three echelons (indenture levels in the support system hierarchy) defined as
organizational (the lowest echelon), intermediate, and depot (the highest echelon).
This formulation can easily be extended to an arbitrary number of echelons.

As a preliminary or setup operation, two factors, E_ and Iei’ are defined for use in

eu
subsequent equations that determine effective number of failures per month (For
convenience, the basic time unit is taken as one month throughout the model

formulation.) These factors are defined for user location u, equipment e, and item i as

follows:
Eeu . Peu deu
where Eeu = equipment operating unit-months
Pog = number of units of equipment e at location u
ton = location operating factor (fraction of calendar time
that location u is operational)
I ¢ = Po: L. PR iy 3 )
1j+11a lj lj ljla G =1, 2, ... until lj+1 = e)
e -5 z:aleia
ei
where Iei = item operating unit-months over all appearances a of
item i in equipment e
5= number of units of assembly ij (containing item i as a
) subordinate part) in its next highes assembly, ij +1
oj, = fraction of time assembly ij operates when its next
J

higher assembly ij 41 Operates
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The factor Iei for each item in equipment e is calculated recursively by considering

successive next higher assemblies that contain item i. The recursion is initiated by

setting

I.
iia

This formulation recognizes the fact that item i may appear in several different
places (given by index a) in the equipment and that the item's population and extent of

operation over time may differ by appearance.

Next, the expected number of units of item i that generate at location v for possible

repair ( at \ or some higher repair location) is given as follows:

£, = (730.5 %} E,, 1.)/B; (v = u, user location)
= 0, otherwise
-+
"";_ 4 gi\) i Rn\)fiu/fnu @ #e
By ° 0 (v# v
= fq V=W
where by = expected number of (real) failures per month of

item i at user location u

730.5 = number of hours per month
B = mean operating hours between failures (MTBF)
gy = expected number of repairable generations per
month of item i at location v
Rn v expected number of repairs per month of

assembly n (containing i at the next lower
indenture) at location v (Vv = u or contains user
location u at some lower indenture of the support

hierarchy)

e




item i and level 7:

=
"

b. =

17

S.
17

I
(a) i

D
) By,
(€ 5,
(d) Ri\)

Next, let 7 represent the indenture level of a given location V in the support system,
where 7 =1 identifies the organization level, 7 =2 the intermediate level,and r =3

the depot level. The following factors are assumed to be given as constants for each

false removal rate
false removal detection rate

1+k . (1- dir) = expected number of real failures plus
undetected false removals per real

failure

fraction of repairs beyond the maintenance capability of the
organizational level (7 = 1) which are sent to intermediate

level repair (7= 2) vice depot level repair ( 7= 3)
beyond capability of maintenance (BCM) rate ( 7= 1,2)

scrap rate

The expected number of units are calculated from the above factors and are given in

Table 4-1 according to the indenture level of location v. They are:

= units sent by location Vv to an intermediate level

location for repair

= units sent by location v to a depot level location for
repair

= units scrapped at locationv

= units repaired locally at location v

Finally, values for Niv and 'yi\) are determined using terms given in Table 4-1

I D
Biv +Bi\JJ'Si\) g Riv

(BI. +BI.) +S. )/

iv iv iv iv




To calculate values for Aiv and 7i\) according to the above formulation, a recursive
procedure is necessary. Since the terms g;y are defined in terms of next higher
assemblies of items i, the procedure starts with the equipment e at the top of the parts
hierarchy where there is no next higher assembly. Also, since terms in Table 4-1
; depend upon computations for locations that are lower in the support system

hierarchy, the procedure must start at the lowest (organizational) level locations.
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