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~
1 needs of recognition. This essay surveys recent work in vision at M.I.T .

from a perspective in which the representational problems assume a primary
• importance. An overall framework is suggested for Visual information

processing, in which the analysis proceeds through three representations;
(1) the primal sketch, which makes explicit the intensity changes and local
two-dimensiani geometry of an image, (2) the 2½—D sketch, which is a
viewer—centered representation of the depth, orientation and discontinuities
of the visible surfaces, and (3) the 3-D model representation , which
allows an object—centered description of the three—dimentional stucture
and organization of a viewed shape. Recent resultd~concerning processes
for constructing and maintaitdng these representations ~~~e summarized and
discussed .~~ 
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SUMMARY: Vision Is the construction of efficient symbolic descrIptions from Images of the
world. An Important aspect of vision Is the choice of representations for the different kinds of
Information In a visual scone. In the early stages of the analysis of an Image, the representations
used depend more on what It is possible to compute from an image than on what Is ultimately
desirable, but later representations an be more sensitive to the specific needs of recognition. This
essay surveys recent work In vision at MIT. from a perspective In which the representational
problems assume a primary Importance. An overall framewo~k is suggested for visual Information
processing, In which the analysis proceeds through three representations; (I) the primal sketch,
which makes explicit the Intensity changes and local two-dimensional geometry of an Image, (2) the
2)~ -D sketch , which is a v iewer -centered representation of the depth , orientation and
discontinulties of the visible surfaces, and (3) the S-D model representation, which allows an object-
centered description of the three-dimensional structure and organization of a viewed shape.
Recent results concerning processes for constructing and maintaining these representations are
summarized and discussed.

This report descr ibes research done at the Artificial Intelligence Laboratory of the Mass ~Ich(Iwt ts
Inst itute of Technolo gy. Support for the laborat ory ’s art ificial Intelligence research Is prov ided in
part by the Advanced Research Projects Agency of the Department of Defense under Office of

— Naval Researc h contract N000l4-75-C-0643. -
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D. Mart 4 RepresentIng visual Information

0: Introdvotl on

0.1: UnderstandIng lnf tnusatlon proce ssing tasks
Vision is an Information processing task, and like any other, It needs understanding

at two levels. The first, which I call the computational theory of an information processing task, Is
concerned with what is being computed and why; and the second leveL that at which particu lar
algorithms are designed, with how the computatIon Is to be carried out (Mart & Pogglo 1977*). For
example, the theory of the Fourier transform Is a level I theory , and is expressed independently of
ways of obtaining It (algorithms like the Fast Fourier Transform~ or the parallel algorithms of
coherent optics) that lie at level 2. Chomsky calls level I theories competence theories, and level 2
theories performance theories. The theory of a ~omputadon must precede the design of algorithms
for carrying It out, because one cannot seriously contemplate designing an algorithm or a program
until one knows precisely what It Is meant to be doing.

I believe this point is worth emphasizing, because It Is Important to be clear about
the level at which one Is pursuing one’s studies. For example, there has recently been much Interest
In so-called cooperative algorithms (Mart & Pogglo 1976) or relaxation labelling (Rosenfeld .
Hummel & Zucker 1978). The attraction of this technique is that It allows one to write plausible
constraints directly Into an algorithm, but one must remember that such techniques amount to no
more than a style of programming. and they lie at the second of the two levels. They have
nothing to do with the theory of vision , whose business It Is to derive the constraint s and
characterize the solutions that are consistent with them. 

-

0.2: Understanding z*slon
If one accepts In broad terms this statement of what it means to understand an

Information processing task, one can go on to ask about the particular theories that one needs to
understand vision. Vision can be thought of as a process, that produces from Images of the
external world a description that Is useful to the viewer and not cluttered by irrelevant
Information. These descriptions, In turn, are built or assembled from many different but fixed
representations, each capturing some aspect of the visual scene. In this article, I shall try to present
a summary of our work on vision at M.I.T. seen from a perspective In which the representational
problems assume a primary importance. I shall Include summaries of our present ideas as well a’
of completed work.

The Important point about a representation is that It makes certain information
explicit (cf the principle of explicit naming, Mart 1976). For example, at some point In the analysis
of an Image, the Intensity change present there need to be made explicit, so does the geometry -
of the image and of the viewed shape — and so do other psrsmessrs like color, motion, position
and binocular disparity. To understand vision thus requires that we first have some Idea of which

~ 

~ — ~~~~~~~~~~~~~~~~~~~~~~~ ~~~ -— 
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D. Mart 5 RepresentIng visual information

representations to use, and then we can proceed to analyze the computational problems that arise In
obtaining and manipulating each representation. Clearly the choice of representation is crucial in
any given Instance, for an Inappropriate choice can lead to unwieldy and inefficient computations.
Fortunately, the human visual system offers a good example of an efficient vision processor , and

therefore provides important clues to the representations that are most appropriate and likely to
yield successful solut ions.

This point of view places the nature of the representations at the center of attention ,
but It is Important to remember that the limitations on the processes that create and use these
representations are an important factor In determining their structure , because one of the
constraints on vision Is that the description ultimately produced be derivab le from Images. In
general, the structure of a representation Is determined at the lower levels mostly by what it Is
posstble to compute,whereas later on they can affardtobelnfhsenced by what lt is deslrable to
compute for the purpos es of recognition.

1: larly prooming prob l.su

1.0: TA. primal s*.tch
There are two important kinds of Information contained in an Intensity array, the

Intensity chang e present there, and the local geometry of the image. The primal sketch (Mart
1976) Is a primitive representation that allows this Information to be made explicit Following the
clues available from neurophyslology (Hubel & Wlesel 1962), Intensity changes are represented by
blobs and by oriented elements that specify a position, a contrast, a spatial extent associated with
the Intensity change, a weak characterIzation of the type of intensity change involved , and a

• specification of points at which Intensity changes cease (so-called termination points ). The
representation of local geometry makes explicit two-dimensional geometrical relations between
signif icant Items In an Image. These Include parallel relationships between nearby edges, and the
relative positions and orientations of significant places In the Image. These significant places are
marked by place-tokens”,and they are deflned ln a varlety of ways,by blobs or local patches of
different Intensity, by small lines, and by the ends of lines or bars. The local geometrical relations
between place tokens are represented by Inserting virtual lines that join nearby place-tokens, thus
making explicit the existence of a relation between the two tokens, their relative orientation, and
the distance between them (Mart 1976 figure I2a).
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- 1 D. Mart S Representing visual Information

I. The pilinal sketch make explicit Information held hi an Intensity array (lx). There are two
- kinds, one concerns the changes hi intensity, and this is iapuiintsd by oriented edge, line and bar
- elements, au&ie’,d with which Is a measure of due contrast and spatial extent of the Intensity

change. The other kind of Information Is the local two-dImensIonal gewnetry of significant places
In the Image. Suds places are marked by “plecstek.ns. which can be defined In a variety of
ways, and the geometeic relations bdw~~ ili um are iup.e.snsed by inserting virtual lines” betwei i - 

nearby tokens (Mart 1976 figures 7 and Is). 
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2. 2* and 2c are random-dot Interference patterns of the kind described by Glass (1969). 2b and 2d
exhibit the results of runn ing the algor ithm described In the text and figure 3. The neighborhood
radius was such that roughly 8 neighbors were Included . (Stevens $977 fIgure 5).
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D. Mart 9 Representing visua l Informa tion

LI : Random-dot Intirf .unc. p aturns
The Idea of place-tokens and of this way of representing geometrical relations arose

from considering the computational problems that are posed by early visual processlng. and one of
the questions we have been asking Is, can one find any psychophysical evidence that the human
visual system makes use of a similar representation? We have recently ok-: dned two results related
to this point Stevens (1977) has examined the perception of random-dot Interference patterns
(figure 2), constructed by superimposing two copies of a random dot pattern where one copy has
undergone some composition of expansion, translation, or rotation transformations (Glass 1969). He
found that a simple algorithm suffices to account quantitatively for human performance on these
patterns. The algorIthm consists of three steps

(I) Each dot def ines a place-token. For example some dots can be replaced by small lines 0’
larger blobs without disrupting the subjective impression of flow.

(2) Virtual lines are inserted between nearby place-tokens. and the neighborhood in which the
vIrtual lines are Inserted depends In a predictable way on the density of the dots.

(3) The orientations of the vIrtual lines attached to all the points In each neighborhood are
hlstogrammed, and locally parallel organIzation Is found by searching for a peak in this histogram.
The bucket width that best matches human performance is about 10 degrees.

The details of these steps are set out In fIgure 3. The interesting features of the
algorithm are (a) It Is not Iterative. Stevens could find no evidence that human performance rests
on a cooperative algor ithm, although this type of problem Is Ideal for that approach . (b) The
algorithm is purely local No global-co-local or top-down Interactions are necessary to explain
human performance. (c) What the algorithm finds is locally parallel organization. In this case, the
organization lies in the virtual lines constructed between nearby dots, but locall y parallel
organization among the real edges and lines in an Image also forms an Important part of the
st ructure of an Image (Marr 1976).

1.2: Texture discrimination
The second study Is one by Schati ($977) on texture vision discriminatIon. Marc

(ISIS) suggest ed that such discriminations could be carried out by first-order discriminations actin g

on the description In the primal sketch (pSOl). Man supposed that certain grouping processes were
needed before the discrIm inations are made In order to account for the full range of human
texture discrimination, but In a careful examination of the problem. Schatz found that many of
the examples he constru cted could be explained by assuming that the discriminations are made
only on real edges or on virtua l lines Inserted between neighboring place-tokens. If this were
generally true , it would stand in elegant relation to Juless’s (1975) con jecture , that a necessary
condition for the dlscr lminablllty Of two textures is that their dipole statistics differ. This
condition Is known not to be sufficient, a stale of affairs that one an view as Implying that we

- ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ — -- -~~———-- -
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S. The algorithm for computing locally parallel structure has three fundamental steps. Place tokens
that are defIned in the Image are the Input to the algorithm, which Is applied In parallel to eec)’
one. Since, In the case of the Moire dot pattem~ each dot contibutes a pb~ce token, the first step Is
to construct a vIrtual line from that dot to eaci~ neighboring dot (within some neighbo rhood
centered on the dot). A virtual line represents the position, separation, and orientation between a
pair of neighboring dots. To favor relatively nearer nelghbor~ relatively short virtual lines are

- emphasized. The second step Is to histogram the orientations of the virtual lines that were
constructed for each of the neighbors. For example, the neighbor D would contribute orientations
AD, DF, DC, and DH to the histogram. The final step (after smoothing the hIstogram) Is to
determine the orientation at which the histogram peaks, and to select that virtual line (AR) closest
to that orientation as the solution. (Stevens *917 fIgure 4).
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D. Mart IS Representing visual Information

have access to only a proper subset of all dipole statistics. ft Is possible that this proper subset
consists only of real edges and of the virtual lines that join nearby place-tokens.

1.3: Discrtsiinauon aklit,
If one accepts that texture discrimination relies upon f irst-order discriminations of

this type, It is natural to ask how sensitive are the particular discrimination functions that we can
bring to bear on an Image. RIley (1977) has found eviden ce that the available functions are
extremely coarse. For example, figure 4 consists of a background in which the line segments have
a random orient ation , surrounding a square containing lines of only three orientations.
Surprisingly, the square cannot be discerned without scrutiny. One interpretation of this and
related findings Is, that dIscriminations on orientations other than horizontal and vertical are made
on the output of 5 channels, each nearly binary, and with an angular width of about 35 degrees —

in other words, only very little information I. avai lable about the distribution of orIentations in an
Image. It appears that our discrimination ability Is as poor or poorer for the other stimulus
dimensions, for example Intensity distrIbution (Riley 1977). -

1.4: LIght sourc. effects
In another stud y concerned with what can be extracted from an Image, Uliman

(1976*) enquired about the possIble physical basis for the subjective quality of fluorescence, which
is normall y assoc iated w it h the presence of a light source. He noted that at a light source

-
: boundary, the ratio of Intens ity to IntensIty gradient changes sharply, whereas this is not true at

- 

- 
reflectance boundaries urless the surface orientation changes sharply. He showed that, In the
mini -world of Mondrian s, the discr iminant to which this leads predicts human performance
satisfactorily.

K. Forbus (In preparation) has extended this work to the detection of surface luster.
Since glossiness Is due to the specular component of a surface reflectivity function, one can treat
the detection of gloss as essentially the detection of light sources that appear reflected In a surface
(see Beck 1974), and this depends ultimately on the abili ty to detect light sources. Forbus divided
the problem Into three categories ; (a) In which the specu larlty Is too small to allow gradien t
measurement s, (b) In wh ich both IntensIty and gradient measurements are available , but the
specu larity is local (as it Is for a curved surface or a point source), and (c) in which the surface Is
planar and the source Is extended. He derived diagnostic criteria for each case.

15: Rqt.nSf tCIN a ducrlmtnant
Whenever a region Is defined in an Image by a predicate , for example by a

difference In texture or brightness, one faces the problem of delimiting the region accurately.
There are two approaches to designing algorithms for this problem; one is to use the predicate 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ --- -
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directly, deciding whether a given location lies within or without the region by testing some
function of the predicate there. The second approach Is to differentiate the predicate, defining the
region by its boundaries rather than by properties of Its Interior.

The difficulties with the problem arise because one Is usually Ignorant beforehand
of the scale at which significant predicate signals may be gathered. For example, suppose one
wished to find the boundary between two regions that are distinguished by different densities of
dots. Dot density has to be measured by selecting a neighborhood size and counting the number of
dots that lie within It. If the neighborhood size Is too large, one may not be able to resolve the
regions. If It is so small as to contain zero, one or two dots, natural fluctuations may obscure any
changes in density.

One solution to this problem is to make the measurements simultaneously at several
neighborhood sizes, lookin g for agreement between the results obtained In those neighborhood
sizes that lie )ist above the size at which random fluctuations appear. This technIque can be
applied to region findin g or to boundary finding, arid an example of the results is given In figu re
5. The dot density here Is not known a priorL

This issue is of considerable techlcal Interest, but It Is Important not to lose sight of
the underlying computational problem, which is what kind of boundary Is to be found , and why?
The techniques of O’tallaghan (1974) for example are designed to find boundaries In dot patterns
so accurately that their positions are determined up to the decision about which dots It passes

- 
- through. The justification for this type of study Is that humans can assign boundaries this

accurately, but the difficulty lies In formulating a reasonab le definit ion of what the boundary Is.
This problem Is a deep one, touching the heart of the question of what early vision

is for. I shalt return to it later in this essay, but it is perhaps worth remarking here that there
seems to be a clear need for being able to do early visual processing roughly and fast as well as
more slowly and accurately, which means having ways of handling rough descriptions of regions -
ways of characterizing their approxhnate extent and shape - befor. characterizing their precise
boundaries. Figure B contains one example of a region whose rough extent Is clear, but whose
exact boundary Is not.

The motivation for wanting this Is that rough descriptions are very useful during
the early stages of buIldIng a shape description for rewgnltlon (Marr & Nlshihara 1977). For
example a man often appears as a roughly vertical rectangle In an Image, and this Information Is
useful because It eliminates many other shapes from consideration quite early. Campbell (1977) has
suggested that the extraction of rough descriptions from an image may depend on the ability to
examine Its lower spatial frequencies. Even If this Is one of the available mechanisms It Is unlike ly
to be the only one, because sparse line drawings can rais, the same problems while having almost
no power in theIr low frequencies. ft may be that some notion of rough grouping applied to low
resolution placetokens set up by pieces of u~nLonr in the Image provides a useful approach to this
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5. Finding a boundary from dot (or place-token) density changes. Once a rough assignment
of boundary points has been made (5a), local line-f itting (5b) and grouping (Sc & d)
techniques can recover a rough specification of the boundary quite easily.
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6. An example of a region whose rough boundary is clear, but whose exact boundary Is not.
(Drawing by K. Prendergas t , 1917).
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7. Ar, Image (7a), the spatIal components of Its primal sketch (7b), and a reconstruction of
the image from the prim al sketch (ic) Th is sho ws that the our current primal sk etch
programs lose little of the Information In an Image.
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problem.

14: Lsgh x.ss
Ever since Ernst Mach notIced the bands named after him, there has been

conside rable interest in the problem of computing perceived brightness. Of especial Interest Is the
recent work of Land & McCann (3971) on the retinex theory (see also Horn 3974), whIch is
concerned with the quantity they call lightness ; and that of Colas-Baudela lre (1973) on the
compu tation of perceived brightness. Lightness Is an approximatIon to reflectance that is obtaIned
by filterin g out slow Intensity changes , the underlying idea being that these are usually due to the
Illuminant, not to changes In reflectance. The problem with this Idea Is of course that some slow
chan ges In Intensity are perceptually Important (see Horn 1977 for an analysis of shape from
shadIng). The lInear f ilter model of Colas-Baudelaire performs well on images In which there are
no sharp changes in Intensity, but the author found It dIfficu lt to ex tend his model to the more
general case. The recent fIndIn g of Glkhr lst (1977), that perceived depth Influences perceived
brIghmess, suggests that some aspects of the problem occur quIte late — In our terms, at the level of
the 24-D sketch (see below).

Our own work on the brightness problem is probably not relevant to the perception
of brightness , but It Is interesting as a demonstration that the primal sketch loses very little
information. Woodham & Man (unpublished program ) have written a program that inverts the

- - - primal sketch , so that Its output is an Intensity array. The basic Idea Ii to scan outwards from
edges, assIgning a constant brIghtness to poInts along the scan lines, and arresting the scan when It
encounters another edgs. FIgure 7 exhibits the results of runnIng this program , showing the
original Image (7a), the primal sketch (7b), and the reconstructed intensity array (ic)

2: Proom-orl .nt.d th .or le.

2.0: IntroductIon
I said earlier that , especially at the earlier stages of visual InformatIon processing,

the representatIons and processes are determined more by what It Is possible to compute from an
Image than by what Is desirable. Examples are the problems associated with structure from
motion , stereupsls, tex ture gradients, and shading.

2.1: Structur.f toiii motion
GIven a sequence of views of objects in motion, the human visual system Is capable

at interpreting the changing views In terms of the shapes of the viewed objects , and their motion
in three-dimensional space. Even If each successive v iew is unrecoanlzable, the human observer

- — - - -~~~~~ — .-.~~~~ — -- — -- -~~~~ —-~~~~~~~~~~~~~~~ —-—-~~~ ~~~~~~~~~~~~~~~~~~~~
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easily perceives these views in terms of moving object s (Wallach & O’Donnell 1953). To answer the
question of how a succession of Images yields an interpretation In terms of three-dimensional
structure In motion , Ullman (1977) dIvided the problem Into two parts : (I) findi ng a correspondence
between elements in successIve views and (2) determining the three-dimensional stru ctures and
their motion from the way corresponding elements move between views.

An Important preliminary question about the correspondence problem concerns the
level at which It takes place Is It primarily a low-level relation, established between small and
simple parts of the scenes and largely Independent of higher-level knowl edge and three-
dimensional interpretation? Or do hIgher level influences, like the Interpretation of the whole of a
shape from one frame~ play an important part In determining the corresp ondence?

Ullman has assembled a considerable amount of evidence that the fonner view is
correct. For example, figure 8 shows two successive frames, one denoted with full lines and the
other with dotted lines. If the whole pattern were being analyzed from one frame, the shape of the
wheel extracted , and used to match the elements in the next frame, the observer presented with
these frames in rapid successIon should perceive them as a whole wheel rotating. Notice however
that the Inner and outer parts of the wheel have their closest neighbors in one dIrectIon , whereas
the center parts have theirs In the other because of this, If the matching were done early and
locally, the observer should see the center part rotating one way, and the Inner and outer rings

- 

- 
rotating the other (as shown wIth arrows in figure 8). When appropriately timed, this Is In fact
what happens.

Another line of evidence Is the following . The most Important factor In finding a
correspondence between elements is the distance the element moves from one view to the nex t. But
Ii this distance an objective two-dimensIo nal measurement or an interpreted movement In three-
dimensional space? There is some confusion In the literature about this point , since many studies
have assumed that correspondence strength Is linked to the unoothneu of apparent motion (Kolers
1972), and this Is apparently more closely related to three- than to two-dimensIonal distances.
Ullman (1977) has however shown that this assumption is false, and that It is the two -dimensional
distance alone that determInes the corres pondenc e

The second part of rhe problem is to determine the three-dimensional structure once
the correspondence between successive vIews has been established . Unless this problem Is
constrained In some way, It cannot be solved, so one has to search for reasonable assumptions on
which to base the design of one’s algorithms. (This state of affairs is a common one In the theory
of visual processes, as we shall see when we dIscuss the problems of stereopsls, and shape from
contour ). UNman suggested basing the Interpretation on the fo llow ing assumptions; (1) any two-
dimensional transformation that has a unique interpretation as a rigid body moving In space
should be Interpreted as such an object In motion , and (2) that the Imaging process Is locally an
orthogonal projection. He thin showed that under orthogonal projection, three-dimens ional shape 
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8. EvIdence that the correspondence problem for apparent motion Invo lves matching
operations that act at a low-level. Frame I is shown with fu ll lines and frame 2 wIth dotted
lines. Instead of seeing a single wheel rotating, when appropriately timed the wheel splits,
th. outer and Inner rings rotating on. way, and the center rotating ~h. other, as Indicated

— by th. arrows. This suggests that matching II carried out on elimintal line s.gm.nt~ and Is
governed primarily by proximity. (Adapted from UHm.n I9~~ 
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and motion may be recovered from as little as three views each showing the Image of the same
five points, no four of whkh are coplanar. This resuk leads to algorithms capable of recoverIng
shape and motion from scenes contaIning arbitrary objects in motion.- The final question Is
whether the algorithms that humans employ to recover shape and motion rely on these same two
assumptions and this question is currently under investigation. The Important point here is that
for more human-like algorithms the number of views can be traded off against the accuracy of
the computation, decreasing the emphasis on the particular number “three”.

2.2: Ston e j .sts
Ever since Julesz (1971) made the first random-dot stereugram, It has been clear that

at least to a first approximation stereo vision can be regarded as a modular component of the
human visual system. Mars (1974) and Marr & Pogglo ($978) forinulatul the computational theory
of the stereo matching problem In the following way:
(Ri) Uniqueness. Each Item from each Image may be assigned at most one disparity value . This
condItion rests on the premise that the items to be matched correspond to physical marks on a
surface, and so can be In only one place at a time.
(R2) Continuity. Disparity varies smoothly almost everywhere. This condition is a consequence of
the cohesiveness of matter, and it states that only a relatively small fraction of the area of an
image Is composed of boundaries.

By representing these constraints geometrically, Marr & Pogglo (1976) embodIed
them In a cooperative algorithm. In figure 9, Lx and Rx represent the positions of descrIptIve
elements from the left and right vIews, and the horizontal and vertical lines indicate the range of
disparity values that can be assigned to left-eye and right-eye elements. The uniqueness condition
thin corresponds to the assertion that only one disparity value may be “on” along each horizontal
or vertical line. The continuity condition states that we seek solutions that tend to spread along the
dotted diagonals, which are lines of constant disparity, and between adjacent diagonals. Figure 9b
shows how this geometry appears at each intersectIon point Figure 9c gives the corresponding
local geometry when the Images are two-dimensIonal rather than one. and R2 for the case of a
one-dimensional Image, and it also represents the structure of a network for implementing the
algorithm described by equation I Solid lines represent “Inhibitory” Interactions, and dotted lines
represent “excitatory” ones. 9b gives the local structure at each node of the network ~~~~. This
algorithm may be extended to two-dimensional Images, In which case each node In the
corresponding network has the local structure shown In 9c~ Such a network was used to solve the
stereugrams exhIbited In figures 10 and IL (Marr & Pogglo 1978 figure 2).

It can be shown (Marr, Poggio & Palm 1977) that , If a network is created with the
positive and negative connections shown in figure ~, states of such a network that satisfy the
constraint s on the computation are stab le, and that given suitable Inputs, the network will converge

hii_~~ ~~~~ -~ - - -‘ 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ R2 for the case ofaone-
dImensional Image, and it also represents the structure of a network for implementing the
algorithm ducr~.d by equation I Solid lines rqniesnt “Inhibitory” Interactions, and dotted lines
rqsseunt “exrl .iory” ones. lb iv. the local steucture at each node of the network 

~~~~. This
algorithm may be extended to two-dimensional Images, In which case each node In the
corresponding netwuu -L has the lend ~1zhd..~ sko,~~ In k. Such a netw~ k was used to solve the
atou~~~.ms ~~hIbItod In figures 10 and H. (Kerr & Pogglo ~~ figure 2).
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$0. This and the following figure show the resuks of applying the algorithm defIned by equation
(1)to tworandom-dotstereograms. The inidalstateofthenetworkC is deflned by the Input
such that a node tale the valuellfftoccurs at the intersectlon ofal ln the kft and rlght eyes
(see figure * and It has value 0 otherwise. Th. network iterates on this InItial state, and the
parameters used here, as suggested by the combinatorial analysis, were 0- S.0, i - 2.0 and M • 5,
where 0 Ii the threshold and M Is the diameter of the “exdtatory” neighborhood Illustrated In
figure k The stereograms themselves are labelled LEFT and RIGHT, the Initial state of the
network as 0, and the state after n Iterations Is marked as such. To understand how the figures
represent states of the network, Imagine looking at it from above. The different dIsparity layers in
the network lIe In parallel planes spread out horizontally, so that the viewer Is lookIng down
through them. In each plane, some nodes are on and some are off. Each of the seven layers in
the network has been assigned a different gray level, so that a node that is switched on In the top
layer (correspondlng toadlsparity of4plxek)contrlbutes a dark polnt to the lmage,and one that
Is switched on in the lowest layer (disparity - -3) contrIbutes a lighter point Initially (iteration 0)
the network is disorganized, but in the final state, stable order has been achieved (iteratIon 14). and
the Inverted wedding-cake structure has been found. The density of this skreogram is 50t (Marr
& Pogglo l9l6flgure*

I 
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II. The algorithm of equation I. with parameter values given In the legend to figure 10, ii capable
of soIvln~ random-dot stereograms with densities f rom 502 down to less than 101 For this and
smaller densities , the algorithm converges Increasingly slowly. If a simp le homeostatlc mechanism
Is allowed to control the threshold 0 as a function of the average activity (number of on” cells) at

each iteration, the algorithm can solve stereograms whose density is very low. In this examp le, the
density is 51 and the cent ral square has a disparity of .2 relati ve to the background. The
algorithm “fills in” those areas where no dots are present. but It takes several more Iterations to
arrive near the solution than In cases where the density is 501. When we look at a sparse
stcieogram, we perceive the shapes in It as cleaner than those found by the algorithm. This seems
to be due to subject ive contours that arise between dots that lie on shape boundarIes. (Man and
Poggio 1976 figure 4).
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I

to these stable states for a wide variety of the control parameters. Thus one can think of the
network as defining an algorithm that operates on many Input elements to produce a global
organIzation via local but highly Interactive const raints. Formally, the algorithm reads:

(n—i ) in) -‘ ( ) (o)
Cxyd u{ • Cxy d E 

• ~~ C~ y’d ÷ C~yd~ 
( 1 )

x y d e S ( x y d )  x y d O(zyd )

where u(s) — 0 If z c ~, and u(s) — I otherwis e; S and 0 are the circular and thick line
neighborhoods of the cell C in figure 9c. This is an example of a “cooperatIve” algorithm
(Man & Poggio 1977a), and it exhibits typical non-linear cooperative phenomena like hysteresis,
filling -in, and disorder -order transitions. Figures 10 and II Illust rate two applica tions of the
algorithm to random-dot stereograms.

There are a number of findings that cast doubt on the relevance of this algorithm
to the quest ion of how human stereo vision works. The most important of these findings are (a)
the apparently crucial role played by eye-movements in human stereo vision (see especially
Richard s 1917), (b) our abili ty to tolerate up to 151 expansIon of one Image (Julesz 1971 fIgure
2.8.8) Cc) our abili ty to tolerate the severe defocussing of one Image (Julesz 1971 figure S.lO.3); Cd)
evidence that stereo detectors are organized Into “three pools” (convergent, zero disparity, and
divergent ) and that this organization is Important for stereo vision (Richards 1971); and Ce) our
abili ty to perceive depth In rlvairous stereograms (Mayhew & Frlsby 1976). These dlfflcu lt là led
Man & Pogglo (197Th) to formulate a second stereo algorithm , designed specifically as a model for

- - human stereopsis.
Our first stereo theor y was inspired by Jutesz’s belief that stereoscopic fusion is a

cooperative process — a belief based primarily on the observation that it exhibits hysteresis. The
main problem with the cooperative algorithm Is that It apparently works too well In some ways (It
performs better that humans do when eye-movements are eliminated ), and not well enough In
others (humans see depth In rivalrous stereograms). Our abili ty to fuse two images when one is
blurred, the rivalrous stereogram results of Mayhew & Frlsby (1976), and the recent results of Julesz
& Miller (1975) on the existence of independent spatial-frequency-tuned channels in binocu lar
fusion , suggest that several copies of the image, obtained by successively coarser filterIng, are used
during fusion, perhaps helping one another In a way similar to that in which local regions help
each other In our cooperative algorithm.

The second idea was a notion that originated with Marr & Nlshihara (1977) and
about which I shall have more to say later, which is that one of the things early visual processing
does is to construct a “depth map” of the surfaces round a viewer. In this map, each direction
away from the viewer is associated with a distance (or some function of distance) and a surface
orientation. We have christened the resulting datastructure the 24-D sk.tcA.

The important point here is that the 24-D sketch is In some sense a memory. This

L ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~ —~~~~~~~~~~~~ -~~~~~~~~~~~
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provided the key Idea Suppose that the hysteresis Juless observed is not due to a cooperative
process at all, but Is In fact the result of using a memory buffer in which to store the depth map of

- 
- 

the image as It Is discovered . Then, the fusion process Itself need not be cooperative, and In fact it
would not even be necessary for the whole Image ever to be fused everywhere prov ided that a
depth map of the vIewed surface were built and maintained In this Intermediate memory . This
Idea leads to the fol lowing theory. (I) Each image Ii convolved with bar-shaped masks of various
sizes, and matching takes place between peak mask values for disparities up to about twice the
panel-width of the mask (see Pelton, Richards & Smith 1972); for pairs of masks of the same size
and polarity. (2) WIde masks can control vergence movements, thus causing small masks to come
Into correspondence. (3) When a correspondence is achieved, It Is held and written down
somewhere (e.g. In the 24-D sketch). (4) There is a backwards relation between the memory and
the masks, perhaps simply through the control of eye-movements, that allows one to fuse any pIece
of a surface easIly once Its depth map has been established In the memory.

This theory leads to many esperimental predictions, which are currently beIng
tested.

3: Inter nt dlftt. proo...ing probleawa

3.0 Introduction
We have discussed the types of information that need to be represented early In the

processing of visual information, and we have examined the computational structu re of some of
- the processes that can derive and maintain this information. We tur n now to the question of what
all this Information Is to be used for.

31 D~17ZcuIt1es with the Idea qf Image segmentation
The curren t approach to machine vision assumes that the next step In visual

processing consists of a process called segmentation, whose purpose is to divIde the Image into
regions that are meaningful either in terms of physical objects or for the purpose at hand. Despite
considerable efforts over a long period , the theor y and practise of segmentation remain primitIve,
and once again I believe that the main reason lies in the failure to formulate precisely the goals of
this stage of the processing. What for example is an object? Isahead one? Is it stlll one if it Is
attached to a body? What about a man on horseback?

These questions point to some of the difficulties one has when trying to formulate
what should be recovered as a region from early visual processing. Furthermore, however one
chooses so answer them, it Is usually still impossible to recover the desired regions using only local
grouping techniques acting on a representation like the primal sketch. Most Images are too 
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complex, and even the simplest images cannot often be segmented entirely at that level (e.g. Marr
l97SflgureI*

Si~uiiithi ng additional Is clearly needed, and one approach to the dilemna has been
to invoke specialized know ledge about the nature of the scenes being viewed to aid segmentation
of the Image Into region s that correspond roughly to the objects expected In the scene.
Tenenbaum & Barrow (1979), for example, applied knowledge about several different types of
scene to the segmentation of images of landscapes, an office, a room, and a compressor . Freuder
(1974) used a similar approach to identify a hammer in a sample scene. If this approach were
correct, it would mean that a central problem for vision Is arranging for the right pIece of
specialized knowledge to be made available at the approprIate time during segmentation. Freuder’s
work, for example, was almost entirely devoted to the design of a heterarchical control system that
made this possible . More recently, the constra int relaxation technique of Rosenfeld, Hummel &
Zucker (1976) has attracted considerable attention for just this reason, that It appears to offer a
technique whereby constraints drawn from disparate sources may be applied to the segmentation
problem whilst incurring only minimal penalties in contro L It Is however difficult to analyze such
algorithms rigorously even In very clearly defined situations (see e.g. Marr. Pogglo & Palm 1977),
and In the naturally more diffuse circumstances that surround the segmentation problem, It may

~ 
often be impossible.

3.2: Rsf onPsulatlng the proitlsm -

The basic problem seems to be how to formulate precisely the nex t stage of visual
processing . Given a representation like the prImal sketch , and the many possible boundary-
definin g processes that are naturally associated with It, which boundaries should one attend to and
why? The segmentation approach fal ls because objects and desirable regions are not visually
primi tive constructions, and hence cannot be recovered reliably from the primal sketch or similar
representation without additional specialized knowledge. If we are to succeed, we must discover
precisely what Information It is that needs to be made explicit at this stage, what , If any, additional
knowledge It is appropriate to apply , and we must design a representation that matches these
requIrements.

In order to search for clues to a suitable representation, let us return to the physics
of the situation. The primal sketch represents Intensity changes and the local two dimenslonal
geometry of an Image. The principle factors that determine these are (1) the Illuminant (2) surface
reflectance, (3) the shape of the visible surface, and (4) the vantage point. The first two factors
raise the difficult problems of color and brightness, and I shall not discuss them further. The
third and fourth factors are Independent of the first two (whether two shapes are the same does
not depend upon their colors or on the lighting), and so may be treated separately.

I shall argue that, since most early visual processes extract Information about the
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visible surface, It Is these surfaces, their shape and disposition relative to the viewer , that need to

be made explict at this point in the processing. Furthermore, because surfaces exist In three-
dimensional space~ this Imposes constraints on them that are general, and not confined to particular
objects It Is these constraints that constitute the a priori knowledge that It Is appropriate to brIng
to bear next.

One example of the exploitation of fairly general constraints was the work of Waltz
(1973), who formulated the constraints that apply to Images of polyhedra. The representation on
which that work was based was line drawi ngs, but these are not suitable for our needs here,
because part of the task we wish to carry out is the discovery of physica l edges that are only
weakly present or even absent In the primal sketch. The approach of Mackworth (1973) was closer
to what we want, since It Involved a primiti ve way of representing surfaces.

3.3: General classiftcatlon of shape repres.ntanons
Part of our task in formulating the problem of intermediate vision Is therefore the

examinatIon of ways or representing and reasoning about surfaces. We therefore start our enquiry
by discussing the general nature of shape representation s. What kinds are there, and how may one
decide among them? Although it is diff icult to formulate a completely general classif ication of
shape representations , Marr & Nishihara (i97~) attempted to set out the basic design choices that
have to be made when a representation is formu lated. They conc luded that there are three
characteristics of a shape representation that are largely responsible for determining the
Information that It makes explIcit . The first is the type of coordinat, system It uses, whether It Is
defined relative to the viewer or to the object being viewed; the second characteristic concerns the
nature of the shape primulws used by the representation , that is, the elements whose positions the
coordinate system is used to define. Are they two- or three-dimensional, In what sizes do they
come, and how detailed are they? And the third Is concerned w ft h the organization a
representation imposes on the Information in a description, for example Is the description modular
or does it have little Internal structure? We have two sources of Information that can help us to
formulate the importan t Issues In Intermediate visual information processing, firstly the -

computational problems that arise, and secondly, psychophysics.

3.4: Some obs.rvailons from ps,choph,sla
Vision provides several sources of information about shape The most direct are

stereo and motion, but texture gradients in a single Image are nearly as effective, and the theatrical
techniques of facial make up rely on the sensItiv ity of perceIved shape to shading. It often
happens that some parts of a scene are open to inspection by some of these techniques, and other
parts by others. Yet different as the techniques are, they have two Important characteristics In
common. They rely on Inform ation from the Image rather than on a ~rlorI knowledge about the 
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shapes - of the viewed objects; and the Information they specify concerns the depth or surface
orientation at arbitrary points in an Image, rather than the depth or orientation associated with
particular objects.

If one views a stereo pair of a complex surface, like a crump led newspaper or the
leaves” cube of Ittelson (1960), one can easily state the surface orientation of any pIece of the
surface, and whether one pIeCe is nearer to or further from the viewer than Its neighb ors.
Nevertheless one’s memory for the shape of the surface is poor, despite the vividness of Its surface
orientation during percept ion. Furthermore, if the surface contains elements nearly parallel to the
line of sight, their apparent surface orientation when viewed monocularly can differ f rom the
apparent surface orientation when viewed binocularly.

From these observations, one can perhaps draw some simple inferences.
(a) There is at least one Internal representation of the depth, or surface orientation, or both,

associated with each surface point In a scene.
(b) Because surface orientation can be associated with unfamiliar shapes. its representation

probab ly precedes the decomposition of the scene Into objects. (This point Is particularly relevant
to our discussion of Intermediate visual Information processing.)

(c) Because the apparent orIentation of a surface element can change, depending on whether It is
viewed binocularly or monocularly, the representation of surface orientation is probably driven

• :~ aknost entirely by perceptual processes, and is Influenced only slight ly by specific knowledge of
what the surface orientation actually Is. Our abIlIty to “perceive” the surface much better than we
an “IflIffiO ur iSS” It may also be connected with this point
In addition . It seems likely that the different sources of Informat ion can Influence the sam.
representation of surface orientation.

33: The compwauonal problem
In order to make the most efficient use of these different m d  often complementary

sources of information, they need to be combined In some way. The computational questIon Is,
how best to do this? The natural answer is to seek some representation of the visual scene that
makes explicit just the Information these processes can deliver.

Fortunately, the phys ical Interpretation of the representation we seek Is clear All
these processes deliver Information about the depth or surface orientation associated with surfaces
In an Image, and these are well-defined physical quantities. We therefore seek a way of making
this Information explicit, of maintaining It in a consistent state, and perhaps also of incorpo rating
into the representation any physical constraints that hold for the vakies that depth and sur face
orientation take over the kinds of surface that oour In the real world. Table I lists the type of
Information that she different early processes can extract from Images. The Interest ing point here
Is that although processes like stereo and motion are hi prInciple capable of delivering depth
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Table 1

The form in which various early visual processes de•
liver information about the changes in a scene.

r depth
= small, local changes in depth

& = large changes in depth
= local surface or ientation

- • 
Information source Natura l parameter

Stereo Disparity, hence espe -
cially Sr and &

Motion r, hence 6r, ~r
• Shading

Text ure gradients
Perspective cues
Occlusion &
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Information dIrectly, they are in practise more likely to deliver Information about local changes In
depth , for examp le by measurIng local changes In dispar ity. Texture gradients and shading
provide more direct Informat ion about surface orientation. In addition , occlusion and brightness
and size clues can deliver informat Ion about discontinulties in depth. (It is for example amazing .
how clear an Impression of depth can be obtained from a monocular image containing bright or
dim rectangles of different sizes against a dark background). The main function of the
representation we seek Is therefore not only to make explicit Information about depth, local surface
orientation, and discont lnultles In these quantities , but also to create and maintain a global
representat ion of depth that is consistent with the local ases that these sources prov ide. We call
such a representation the 24-D sketch, and the next section describes a particular candidate for It.

3.6:A posslbl.f*iPsfor the 24.D sketch
The example I give for the 24-D sketch Is a viewer-centered representation, which

uses surface primitives of one (small) size. It Includes a representation of contours of surface
discontinuity, and It has enough Internal computational structure to maintain its descriptions of
depth, surface orientation and surface discontinuity In a consistent state. The representation Itself
has no additional internal structure.

Depth may be represented by a scabs quantity r, the distance from the viewer of a
point on a surface. Surface dlscontlnuitles may be represented by oriented line elements. Surface
orientation may be represented by a unit vector (x,, z) In three-dimensional space. Following
those who have used gradient space (Huf?man 1971, Horn 1977) we can rewrite this as (p~ q. IA
which can be represented as a vector (p. q) in twodimenslonal space. In other words, surface
orientation may be represented by covering an Image with needles. The length of each needle
deflnes the dlp of the surface at that polnt,so that zero length corresponds to a surface that is
perpendicular to the vector from the viewer to that point, and the length Increases as the surface
tilts away from the viewer. The orientation of the needle defines the direction of the surface’s dIp.
Figure 12 illustrates this representation.

In principl e, the relation baween depth and surface orientation is straightforward —

one is simply the Integral of the other, taken over regions bounded by surface discontlnulties. It is
therefore possible to devise a representation with Intrinsic computational facilities that can
maintain the two var iables, of depth and surface orientation, In a consistent state. But note that , In
any such scheme, surface discontlnuutes acquIre a special status (as curves across which Integration
stops ). Furthermore1 If the representation Is an active one, maintaining consistency through largely
local operations, curves that mark surface dlscontlnuitles (ag contours that arise from occludi ng
contours In the image) muss be ‘fIlled In’ completely, so that at no point along an object boundary
can the Integration leak across it. It Is Inicreatlng that subj ective contours have this property, and
that they are closely related to subjective changes In brightness (Cf section 1.8) that are often 
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associated with changes in perceIved depth. If the human visual processor contains a
representation that resembles the 24-D sketch , It would therefo re be interest ing to ask whether
subjective contours occur within It. (See Uflman (1976) for an analysis of the shape of curved
subjective contours ).

In summary, my argument Is that the 24-D sketch is useful because It makes
explicit information about the Image In a form that is closely matched to what early visua l
processes can deliver. We can formulate the goals of intermediate visual processing as being
primarily the construction of this representation , discovering for example what are the surface
orIentations in a scene,. which of th. contours in the primal sketch corr espond to surface
dlscontinuities and should therefore be represented In the 24-D sketch, and which contours are
missing in the primal sketch and need to be Inserted Into the 24-D sketch In order to bring It into
a state that is consistent with the structure of three-dimensional space This formulation avoids the
difficulties- associated with the terms ‘region ’ and ‘object’~ and allows one to ask precise questions
about the computational structure of the 24-D sketch and of processes to create and maintain It.
We are currently much occupied with these problems.

4: Lat.r proo.UI ng probl.ma

4.0: m i  reduction 
-

The 24-D sketch Is a poor representation for the purposes of recognitIon because It
Is unstable (In the sense of Mart & Nishihar a 1977), it depends on the vantage point, and It falls to
make explicit pieces of a shape (like an arm) that are larger that the primitive size Except for the
simp lest of purposes, it Is an Inadequate vehicle for a visual system to convey information about
shape to other processes, and so I turn now to representations that are more suita ble for recognition
tasks.

If one were to design a shape representation to suit the problems of recognition1 one
would naturally base It on an object-centered coordinate system. In addition , one would have to
include shape primitives of many differ ent sizes, so as to be able to make expli cit shape 

-

characterlstic* that can range from a wart to an elephant Mart k Nishlhara (1977) discuss these
questions In detail, and I shall not repeat their observations here The deepest Issues are those
raised by having to define an object-based coordinate system. Since they are central to the
problem of defining representations for use in later processing of visual information, I shall spend
the remainder of the essay dIscussIng this iopic~

_ _ _ _ _ _ _ _ _ _ _  
_ _  _
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4.1: Nature of an object-centered coordinate system
Mart & NishIhara (1977) poInted out that there are two types of object-centered

coordinate system that one might attempt to define precisely. One refers all locations on an object
to a single coordinat e frame that embraces the entire object, and the other distributes the
coordinate system, making it local to each articulated component or Individual shape character1stlc~Mart & Nishih ara concluded that the second of these schemes Is the more desirab le, and they gave
as an example the representation illustrated In figure 13. But with a representation of this kind , the
most difficult questions begin after Its Internal structu re has been defined. How can one define
canonically the coordinate scheme for an arbitrary shape1 and even more dIffIcult , how can such a
thing be found from an image before a descriptIon of the viewed shape has been computed? Some
kind of answers to these questions must be found if the represen tation Is to be used for
recognition.

4.2: Shap : having natural coordinate s,st.ms
If the coordinate system used for a given shape Is to be canonical, its def inItIon

must take advantage of any salie nt geometrical character istics that the shape possesses. For
example, if a shape has natural axes, distinguished by length or by symmetry, then they should be
used: The coordinate system for a sausage should take advantage of its major axis, and for a face,

• of Its axis of symmetry.
Highly symmetrical objects , like a sphere, square, or circular disc, will InevItab ly lead

to ambiguities In the choice of coord inate systems. For a shape as regular as a sphere this poses no
great problem, because its description In all reasonable systems is the same. One can even allow
other factors , like the dIrection of motion or of spin, to Influence the choice of coordinate frame.
For other shapes, the existence of more than one possible choice probably means that one has to
represent the object in several ways. This is acceptable provided that the number of ways is small.
For example, there are four possible axes on which one might wish to base the coordinate system
for representing a door, the midilnes along its length, its width , Its thIckness , and to represent how 

-

the door opens, the axis of its hinges. For a typewriter , there are two choices at the top level; an
axis parallel to its width , because that is usuall y its largest dimension , and the axis about which a
typewriter Is roughly symmetrical.

In general, If an axis can be distinguished In a shape, It can be used as the basis for
a local coordinate system. One approach to the problem of defining object-centered coordinate
systems Is therefore to examine the class of shapes having an axis as an Integral part of their
structure. One such Is the class of gvn.rallzed cones. (A generalized cone Is the surface swept out
by moving a cross section of constant shape but smoothl y varying size along an axis, as In figure
14). Blnford (1971) drew attention to this class of surfaces, suggesting that It might provide a
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13. ThIs diagram Illustrates the organizati on of shap e information in a 3-D model
description. Each box corres ponds to a 3D model; with Its model axis on the left side of
the box and the arrangement of Its component axes are shown on the right side. In

— addition some component axes have 3D models associated with them and this Is Indicated
by the way the boxes overla p. The relative arrangement of each model’s component axes ,
however , Is shown Improperly since it should be In an object-centred system rather than the
viewer-centred projection u*ed here. This example shows a coarse overall description of a
human shape along with an elaboration of one of Its components (the arm). The Important
character istics of this type of organization are: (I) each 3 D model is a self- contained unit
of shape Informat ion and has a limited comp lexity, (ii) informat ion appears in shape
co ntexts appropriate for recogn ition (the dispositIon of a finger Is most stable when
specified relative to the hand thii cOntains It), and (iii) the representation can be used
f lexIbly (components can be elaborated according to the needs of the moment or the time
available , and a $-D model description of a component is easily added to a descri ptIon of
the whole shape). The major limitation imposed on the representation by this form of
oragan izat lon Is on Its scope, since it will only be useful for shapes for which the
decomposition into 3D models is well defined . (Marr & Nish ihara 1977 figure 3). 
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34. The definItion of a generalized cone. In this article, a generalized cone Is the surface
generated by moving a smooth cross-section p along a straight axis A. The cross-section
may vary smoothly in size (as prescribed by the function A(s)), but its shape remains
constant . The eccentricity of the cone Is the angle 4~ between Its axis , and a plane
containIng a cross-section . (FIgure 5 of Marr 1977).
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I

• lb. These pipeclemner figures Illustrate the point that a shape representation doe, not have to
- - 

reproduce a shapes surface In order to describe It ade,sately for recognition; as we see here,animal shapes can be portrayed quite effectively by the arrangement and relative sizes of a smallnumber of stlckt The simplicity of these descriptions Is due to the wrraspondence between thesticks shown here ‘and natural or canonical axes of the shapes described. To be useful fo rrecognit Ion, a shape repre.entation must be based on character istics that are uniquely defined bythe ships and which can be derived reliably from haag.. of It. (Marr & Nlshihara 1977 figure I).

J
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convenient way of describIn g three-dimensiona l surfaces for the purposes of computer vis ion. I
regard It as an Important class not because the shapes themsel ves are easily decrlbable, but because
the presence of an axis allows one to define a canonical local coordinate system. Fortunately many
objects , especially those whose shape was achieved by growth , are described quite natu rally in terms
of one or more generalized cones. The animal shapes in figure 15 provide some examples — the
individ ual sticks are sim ply axes of generalized cones that approximate the shapes of parts of
these animals. Many artifacts can also be described In this way, like a car (a small box sitting atop
and In the midd le of a longer one), and a building (a box with a vertical axis).

It is important to remember that there exist surfaces that cannot conveniently be
approximated by generalized cones , for example a cake that has been cut at its Intersection with
some arbitrary plane, or the surface formed by a crumpled newspaper. Cases like the cake can be
dealt with by Introduc ing suitable surface primitives that describe the plane of the cut , but the
crumpled news paper poses apparently intractable problems.

4.3: Finding the natural coordinate s,stem f rom an image
Even If a shape possesses a canonical coordinate system, one is still faced with the

problem of finding It from an image. Blum (1973), Agin (1972) and Nevatl a (1974) have addressed
problems that are related to this question. Blum ’s sym-ax is theory is an Interestin g one, because he
specIfies precisely what It is that is computed from a two-dimensional outline. Unfo rtunately, It is

- 
‘ not clear that what this theory computes Is in fact useful for shape recognition (see e.g. figure 16).

• and when applied to a three-dimensional shape, the sym-axis Is in general a two-dimensional sheet,
so it cannot easily be used to define an object-centered coordinate system. Agin’s and Nevatia ’s
work, on the other hand, concerns the analysis of a depth map. This is an important problem, and
It would be interesting to see a careful analysis of the cond itions under which their techni ques will
succeed.

My own Interest in the problem grew from the 3-D represen tation theory of Marr &
Nlshihara (1977), In particular from the question of how to Interpret the outlines of objects as seen
In a two -dimensional Image. The rest of this essay summarizes a recent article by Marr (1977). The
starting point for this work was the observation that when one looks at the silhouettes in Picasso’s
work “Rites of SprIng ” (figure 17), one perceives them In terms of very particular three-dimensional
shapes, some familiar , some less so. This Is quite remarkable, because the silhouettes cou ld In
theory have been generated by an infinite variety of shapes which , from other viewpoints , have no
dlscernab le similarities to the sha pes we perceive. One can perhaps attribute part of the
phenomenon to a familiarity with the depicted shapes; but not all of it, because one can use the
medium of a silhouette to convey a new shape, and because even with considerable effort It Is
difficu lt to imagine the more bizarre three-dimensional surfaces that could have given rise to the
same silhouett es. The paradox is, that the bounding contours In figure 17 apparently tell us more
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16. Blum’s (1973) graufIrs technique for recovering an axis from a silhouette is undesirably
sens it ive to small perturbations In the contour . 6* shows the Blum transform of a
rectangle, and i6b, of a rectangl, with a notch. (Redrawn from Agin 1972).
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• )

- 17. Rltes of sprlng by P. PIcasso We Mvimidlately ka.tprd the silhouettes In terms of particular
- S-D surfaces despit. the p.udty of Information In the image. In order So do this, we must be

bringing additional assumptions and constraints to bear on the analysis of these contours’ shapes.
Man (1917) en,IIr.d about the natore of this a ~risri information.

____________  
.--~~~~~ -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~



S

—



D. Man 46 Representing visual Information

1$. From viewpoint V, the three-dimensional surface Z forms the silhouette Sv in the Image via the
Imaging process s. The boundary of Sy, obtained by the boundary operator a Is denoted by Cy
and we call lt the castour of Z. The ist of polnts onZthatsmsps onto Cywe call the contour
gen rator of cy.and lt Is deuiotsd by ry. The map fmmzto r,Inducsd byals denoted by $.
(Figure2ofMan1977)~
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than they shou ld about the shape of the dark figures. For example, neighboring points on such a
contour could In general arIse from widely separated points on the original surface , but our
perceptual Interpretation usually Ignores this possibi lity.

The first observation to be made here Is that the occluding contours that bound
these silhouettes are contours of surface discontinuity, that is precise ly the contours w ith which the
24-D sketch is concerned. Secondly, because we can interpret them as three-dimensional shapes,
then implicit in the way we interpret them must lie some a priori assumptions that allow us to inter
a shape from an outline. If a surface violates these assump tions , our analysis will be wrong, in the
sense that the shape we assign to the contours will differ from the shape that actually caused them.
An everyday examp le of this phenomenon Is the shado wgra ph, where the appropriate arrangement
of one’s hands can, to the surprise and delight of a child, produce the shado w of an apparently
quite different shape, like a duck or a rabbIt.

What assum ptions Is it reasonable to suppose tha t we make? In order to exp lain
them , I need to define the four structures that appear in figure 18. These are (I) some three
dimensional surface Z; (2) its image or silhouette Sy as seen f rom a viewpoint V; (3) the bounding
contour Cj , ~ 5v~ and (4) the set of points on the surface 2, that project onto the contour Cy.

We shall call this last set the contour generator of Cy, and we shall denote It by Fy.
If one is presented with a contour In an image , without any knowledge of the

surface or perspective that caused It , there is very little information on which one can base one’s
analysis . The only obvious feature available Is the distinction between convex and concave pieces
of contour — that Is, the presence of inflection points. In order that Inflection points be “reliable ”,
one needs to make some assumptions about the way the contour was generated, and I chose the
following restrictions:

RI: The surface 2 is smooth.
R2: Each point on the contour generator rv projects to a different point on Me contour CV.
R3: Nearby p oints on the contour Cj ,  arise from nearb, points on the contour generator F y .
R4: TA. contour generator ry of Cp is planar.

The first restriction Is only a techn ical one. The second and third say that each
point on the contour in the Image comes from one point on the surface (which is an assump tion
that facilitates the analysis but Is not of fundamental importance), and that where the surface looks

continuous In the image, it really Is continuou s in three dimensions. The fourth cond ition , together -
~

with the constraint that the imaging process be an orthogonal projection. Is simply a necessary and
sufficient condition that the difference between convex and concave contour segments reflects
properties of the surface, rather than characteristics of the imaging process.

It turns out that the following theorem Is true, and it is a result that I found very

- • ~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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19. A sketch of a generalized cone showing its silhouette (the circumscribing contour), and
Its fluti ng (the contours spannIng Its length). The radial extremeties of a generalized cone
are Illustrated In iture 20.
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surprising.

Theorem. If RI Is true, and R2 - R4 hold for all distant viewing directions
that lie In some plane, then the viewed surface Is a generalized cone.

This means that If, for distant viewpoints whose viewing directions lie
parallel to some plane, a surface’s shape can successfully be Inferred using only the
convexities and concavities of Its bounding contours in an image, then that surface Is a
generalized cone or Is composed of several such cones. The Interesting thing about this
result Is that it Implicates generalized cones. We have already seen that the important thing
about these cones is that an axis forms an Integral part of their structur e. But this is a
feature of their three-dimensional organization, and ought in some sense to be Independent
of the issues raised by vision. What the theorem ~ ys is that there is a natural link between
generalized cones and the Imaging process Itself. The combination of these two must mean,
I think , that generalized cones will play an Intimate role in the development of vision
theory.

4.4: interputlng the image of a single generalized cone
If we take this result at face value, we can now ask an obvious question. Let

us assume that our data consist of contours of surface discontinuity In the image of a
generalized cone, since without this assumption we can deduce nothing. How may such
contours be Interpreted? To specify a generalized cone, we have to specify Its axis A, cross-
section p(s), and axial scaling function Mx) (fIgure 14); how can we discover them from an

The answer to this question is based on the notIon of the skeleton of a
generalized cone. The skeleton Is not a difficult idea, since it Is very like the set of lInes a
cartoonist draws to convey the shape of a curved object. It consists of three classes of
contour: (a) the contours that occur In a generalized cone’s silhouette; (b) the contours that
arise from maxIma and minima in a cone’s axial scaling function (called the cone’s radial
fltYeIPSittI5 ), and (c) contours that arise from maxima and minima In the cone’s cross-
section (its flitting’,. These categories are Illustrated In figure 19.

The reason why th. skeleton is a useful construct for recognition Is that one
can detect Its presence In an image by the many relationships that exist among Its parts.
For example, radial extremIties are all parallel to each other , and the silhouette arid flutin g
have a kind of symmetry about the image of th. cone’s axis. It turns out that one can use
these relationships to w up constraints on a set of contours such that, if those constraints
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21. The two main types of joins between two generalized cones. 21a shows a sideto end
Join, and 21b shows an end-to-end Join. (FIgure 14 of Marr 19Th.
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22. Th Is figure illustrates the types of side-to-end Join that can occur between two short
generalized cones. In the fIrst column , the left-hand cone Is convex; in the center column It
Is concave, and In the thIrd column , It Is convex on one side of the Join, and concave on the
othe r. The other cone is convex in the to p row , and co ncave In the other two.
SegmentatIon depends upon finding the points P and Q, which are defined by theorem 7
of Mart (1977) and illustrated here for each case. (FIgure 1$ of Mart 1977).
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are all satisfied by a unique InterpretatIon of the contours In the Image, one can be
reasonably certaIn that a skeleton has been found , and hence that the contours can be
Interpreted as arising from a generalized cone whose axis is then determined. The practical
Importance of this result Is Illustrated in figure 20, where one can see that the Image of the
“side? is symmetrical about the bucket’s axis, and there is a clear parallel relationshi p
between the Image of the bucket ’s top, the corrugations In its side, and the visible part of Its
base (the bucket’s radial extremities). These relations, of symmetries and parallel ism, are
preserved by an orthogonal projection. Hence provided that the contours are formed along
a viewing direction that Is not too close to the axis of the cone, these relations will still be
present In the Image. If the viewing direction lies so close to the cone’s axis that Its Image
Is substantially foresho rtened, these relationships will no longer be present~ but It Is part of
the overall theory that such views have to be handled differ ently (Marr & Nlsh lhara 1977).

43: Surfaces composed of two or more generalized cones
Real-life objects are often approximately composed of several different

cones, Joined together in varIous ways (see figure 13), and we therefore have to study ways
of decomposIng a multi ple cone Into Its components - for example, a human body into
arms, legs, torso and head. Marr ($977) analyzed the two types of Join shown In figure 21,
giving criteria that define segmentation points on the contour produced by two Joined cones
(theorems 7 and 8). FIgure 22 exhibits the segmentation points P and Q for the case In
which two short cones are joined side-to-end. P. Vatan has written a computer program
that can carry out this segmentation, and an example of Its operation Is Illustrated In figure
23. The legend to the figure describes the particular algorithm used.

44: Some comments on th, limitations of this theor,
The results of this theory are limIted In their scope to a particular class of

views and surfaces , but on the other hand , they use only a limited kind of visual
Information, little more than occluding conto urs that are formed In an Image by rays that
graze a smooth surface. Interestingly, these particu lar contours are unsuitable for use In
stereopsis or structure-from-motion computatio ns, because they are not formed from
marl ings that define precise locations on the viewed surface. Creases and folds on a
surface also gIve rise to contours In an Image, and these have yet to be studied In detaiL
Information about shape from shading, texture, stereo or motion Information has not yet
been considered . By adding these other sources of Information , I hope that a set of
methods can eventually be assembled that together approach a comprehensive treatment of
poss ible Image 

configurations.~
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2~ The occludi ng contours In an Image can be used to locate the Images of the natural axes
of a shape composed of generalIzed cones (Marr 1977). The Initial outline In (a) was
obtained by applying local grouping proteus. to the prime! shetch of the Image of a toy
donkey (Man 1970). ThIs outline was then smoothed and divided into- convex and concave
HCtluflS to get (b). Next, strong segmentation points like the deep concavity drcled In (c),
are Identified and a ~~ of heuristic rules are used to connect them with other points on the
cuntour so got the segmentation shown In (d). The component axes shown In (e) are then
derived from these. The resuklng segments are checked to see that they obey the rules for
Images of generalized cones. The boundaries must for example be symmetric about the
axes, and In the case of side-to-end joIns~ the axis of the cone that is attached by Its end
imist Intersect the segmentatIon points that separate the two cones’ contours. In thIs
example, most of the symmetry relations have degenerated into parallelism. The thin lInes
In (f) Indicate the position of the head, leg, and tall components along the torso axis, and
the snout and ear components along the head axis. (This algorithm is due to P. Vatan).
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TABLE 2

A framework for the derivation of shape info rnation from images.

- Ir1A~E (S)

Descri bes the intensity changes present
in an image , labels distinguished loca-

PRIMAL t ions l ike  tern i na ti on poin ts , and makes
SKETCH(ES) explicit local two-dimensional geometrical

relations .

Represents contours of surface d iscon-
2 l /2—D tinu ity , and depth and orientation of

SKETCU visible s urface elements , in a coordinate

I 

frame that is centered on the viewer . - -

Shape descriptions that include vol umetric
shape primitives of a variety of sizes ,

3-D MODEL whose positions are defined using an object-
REPRESE JITATION centered coordinate system . This repre-

sentation imposes conside rable modular
organization on its descriptions .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.~~~~~~~~~~~~~~~
-
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5: DI..u..1o ~

I have tried to make two maIn poInts In this article. The first Is
methodologIcal, namely that It is Important to be very clear abou t the nature of the
understandIng we seek. The resuks we try to achieve should be precise ones, at the level of

• what I called computational theory, and one shou ld try to choose problems that can
confidently is. att ributed to a real aspect of vis ion, and not (for example) an artifact of the
limItations of one’s current vision program.

The second main point is that the critical Issues for v ision seem to me to
revolve around the nature of the representations used, and the nature of the processes that
create, maIntain and read them. I have suggested an overall framework for visual
information processing that consists of three princ ipal representation s, the primal sketch ,
the 24-D sketch and the 3-D model representation, and It I~ summarized In table 2. As we
study the processes capable of creating, maIntain Ing and readIng these representations, It is
essentIal to make explicit their Inherent limitations together with the assumptions that are
ImplIcIt In theIr desIgn. In addItIon , one should try hard to test experimentally any
conclusions to which these studies lead, because It Is foolish to ignore the clues and tests

- - 
available from the disciplines of experimental psychology, neurophyslology and clinical
neurology, even though It Is often difficuk to us. this info rmation fruItfu lly.
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