R AT ST T

>~ FOR FURTMER.TRAN " 27 17

RS S OO Sl s i A A 5 s N R S S A T
e e e SV RS R e L S B e R i A S R L SR S N Ay

]

{/

| IS1/TM-77-6
’ October 1977

ARPA ORDER NO. 2223

b}

DOCYMENT BEST QUALTTY PRACTICIINRG' #
o e M?;mmmm’m‘ i

Vo & AT
g?m Wt T VEER OF PAGES WHICH DO w2

REPACDUCE LEGIBLIYe b

PRIM System: |

® U1050 User Guide
® User Reference Manual

e il

ADAO055043

Lovis Gallenson
’ Alvin Cooperband ..
' Joel Goldberg <D D C

\‘_

9 M
DG FILE copy

a3

INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way/ Marina del Rey/ California 90291
UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511
SR, 2

it
]
— W—

/A

F——_J

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
READ INSTR S
REPORT DOCUMENTATION PAGE . g, S
2. GOVT ACCESSION NOJ 3. R!CIPI(NT'! CA*ALOG NUMBER

TITLE (and Subtitle

PRIM Systemt) U1050 User Guide and
User Reference Manual o

AYTouts [Gall = A.
nson
Alvin c:op:rb:n% (] AHGs—n-o-,wsy‘/ F

JoelJGoldberg

s PE OF REPORT & PERIOD COVERED
k 72 Technical manual>/ l

6. PERFORMING ORG. REPORT NUMBER

9. GANIZATION NAME AND ADDRESS . PROGRAM CL‘I‘!NT P JECY, TA ig
information Sciences Institute Al:;; 6:::: #2223
L676 Admiralty Way
Marina del Rey, CA 90291 Program Code 3030 & 3PI0 _—
11. CONTROLLING OFFICE NAME AND ADDRESS 1 N
Defense Advanced Research Projects Agency ,’m
1400 Wilson Blvd. oo e

Arlington, VA 22209
T4 "MONITORING AGENCY NAME & ADORESS(i{ different trolling Office) | 18. SECURITY CLASS. (of thia report)
&

Unclassified

L SEECRSTICATIonT6ownonaome—1
a. DGCE.MS‘.‘FICATION DOWNGRADING
SCHEDULE

T Y TR
16. DISTRIBUTION STATEMENT (of thiz Report)

r This document approved for public release and sale; distribution
> unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if y and id: fy by block ber)
debugging tool, emulated 1/0, emulation-based programming tools,

emul ators, microprogramming

|

20. \ABSTRACT (Continue on reverse side if necessary and identify by block number)
This IS a two-part manual for users of the PRIM-based U1050 emulator
The manual demonstrates as well as describes the capabilities of PRIN,
running and debugging of object code, and the emulated computer syst:n

7
J
/

[. - /
FORM : g
DD ,7ax 73 1473 Ecivion oF 1 NOV €8 13 OBsOLETE UNCLASSIFIED
$/N 0102-014- 6601 -
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Froveome

1SI/TM-77-6
October 1977

ARPA ORDER NO. 2223

PRIM System:

m U1050 User Guide
8 ®m User Reference Manual

Lovis Gallenson
Alvin Cooperband
Joel Goldberg

INFORMATION SCIENCES INSTITUTE

e 4676 Admiralty Way[Marina del Rey[California 90291
! UNIVERSITY OF SOUTHERN CALIFORNIA (213) 822-1511

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. DAHCIS 72 C 0308, ARPA ORDER
NO. 2223, PROGRAM CODE NO. 3D30 AND 3P10.

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF ARPA, THE U.S. GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM.

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED.

e o o

iii

CONTENTS

U1060 User Guide
Introduction 1

Enter and debug a small program 3

Load a card deck for execution 7

Find which instructions modify a location 11

Find which instruction sets a location to a value 11
Determine how many times a code sequence is entered 11
Count references prior to a designated condition 12
Trace a loop only once 12

Determine which instructions were NOT executed 13 ‘
Determine when data change over a code sequence 13
Search a buffer for a given value 13

Appendix A: U1050 features 15

Appendix B: U1050 configuration parameters 18

{_AEESSION for e
! wus Walte Secths 3

' Do Reft Sectim 707

e

CONTENTS iv

User Reference Manual

introduction 1
General input conventions 1

PRIM Exec 3

PRIM Debugger 14
Arguments 14
Values 14
Expressions 14
Expression ranges 15
Lists of expressions or ranges 15
Spaces 15
Syntactic units 1S
Literals 16
Symbols 16
Punctuation 16
Error detection and editing 17 J
Commands 17
Debugger control 17
Execution control 20
Display -22
Storage 24
Target Execution State 25
Target I/O 25
/O error messages 26

D S W S T bt PP AL o NS0 Y A SN & B S 7R o

L PRIM SYSTEM: U1050 USER GUIDE

INTRODUCTION

| The PRIM system supports U1050 program development and testing by providing an
emulated U1050 tool embedded in an interactive time-sharing environment. This emulated
U1050 provides powerful debugging eids not found on an actus! U1050 computer system.

A

This guide consists of two sections, serving distinct purposes. This first section is
an extended introduction to the PRIM U1050 tool and its capabilities; it is addressed to the
Ul1050 user with no prior exposure to PRIM. it consists of an overview of the tool,
followed by a detailed discussion of a number of common or representative programming

\ - problems with solutions illustrated by means of transcripts of actual sessions with the
k1 PRIM U1050 emulation tool. The second section is an appendix to a separate document,
The PRIM System: User Reference Manual; that manual and the appendix together
constitute the complete reference document for the PRIM U1050 tool. (The PRIM system
supports a family of emulstion tools; the User Reference Manual covers the capabilities of
the PRIM system as they apply to all the tools in general.)

T e T T

P SR N

PRIM is available through both the NSW (National Software Works) and the USC-ISIC
TENEX system, which is a server system on the ARPANET. The user of PRIM is assumed to
have access to one or the other system and some rudimentary familisrity with its use.
Once PRIM has been entered, its behavior is identical in the two environments.

e
s

The PRIM U1050 tool consists of the emulated U1050 plus two separate command
interpreters, known as the exec and the debugger. At any time, PRIM is either running
the U1050 emulator or processing user commands to the exec or debugger; the transition
between these states is at the control of the user.

Exec commands are concerned primarily with the manipulation of U1050
environments and configurations. The elements of exec commands are keywords, file
names, and (decimal) numbers. Keywords include such items as command names, device
names, options, and parameters. They need not be entered in their entirety; any
unambiguous leading substring of the desired word suffices for recognition. (When a
keyword is terminated with an escaps character, the word is completed by the exec.) File
names refer to files in the user’s file space (in either NSW or TENEX), and follow the

: appropriste file name syntax. Each file specification requires the name, as appropriate, of
p sither an existing file (to be read or modified) or a new file (to be created and written).

1 Debugger commands are concerned with the detailed control of the emulated U1050.

: ' The debugger includes the functions available on the front panel of the U1050 as a small
subset of its capabilities. Each debugger command word consists of a single character; the
arguments to debugger commands are symbolic expressions involving the elements of the
U1050 (e.g., memory locations, index registers, CC, or tetrads), user-defined names (e.g., ,
program labels or debugger formats), or corstants. |

£ Within PRIM, certsin ASCH characters have been assigned special functions when
input by the user. These functions, which are described completely in the User Reference
Manual, concern command editing and PRIM (command and U1050) control. The command

A N PIACS S e+ P

IR

U1050 User Guide Pege 2

editing functions are backspace (either the ASCHl backspace or cntl-A characters), backup
(cnel-W7), delete (del or rubeut), retype (cmti-R), and question (question-merk); the
control functions are status (cmtl-S) and abort (emtl-X). Backspace backs up over one
character within the current field of a command; it is acknowledged by a backsiash (\)
followed by the erased character. Backup backs up over the current command field; it is
acknowledged by a backsiash (\) followed by the first character of the erased field.
Delete backs out of the current subcommand entirely (or out of the current command if not
in a subcommandk it is acknowiedged by "XXX", followed by a new prompt. Retype
re-displays the current command or subcommand line. Question, when entered at the
beginning of a field, generates a summary of the input currently expected, followed by a
retype of the line.

Status causes PRIM to respond with the current status of the emulated U1050.
Abort causes eny operation in prograss to be terminated cleanly and returns control to
the top level of PRIM (to either the exec or debugger, depending on which one last had
control). The abort function is used both to abort a command that is partially entered or
in process and to stop the running U1050.

With this background we can now illustrate how PRIM can be used. Two examples
will be explored in detail; these sxamples will show how to:

1. Key in a small program, run it to discover a bug, fix the bug, trace it to observe its
operation, and save the results. ;

2. Load a program into memory from a card deck, interrupt and save the session, and
continue it later from the same point.

Several further examples will be presented with considerably less detail to illustrate @
number of ways in which the interactive PRIM debugger can be used. These examples will
show how to:

1. Find which instructions are modifying a location and which ones are setting it to a
designated value.

L

Determine how many times a code sequence is executed and how many times a data
location is refersnced prior to a known condition occurring.

Trace & loop only once.
Find which instructions in a program were mot executed.

o »

Test if a data location has changed over a code sequence.
6. Search a buffer for a given value.
in general, these examples will consist of transcripts taken from PRIM gessions. The

transcripts typically will be embedded within a paragraph of text that guides the reader
through the example and explains or amplifies selected features of it.

Cr

B VA I P TS T 1 N S BT P 1Y 0 L S T e e A | T

ENTER AND DEBUG A SMALL PROGRAM

To start, let us follow a complete step-by-step sequence of interactions in running
PRIM, keying in a sample program, running and debugging it, and saving the pstched result.
in this and all the remaining examples of this guide, user inputs are in bold italics with
serifs, whereas PRIM responses are in a light sans-serif font. Input control characters are

represented as superscripts.

The session will start at the TENEX exec level (the prompt character is “@"), where
the U1050 emulator will be called in from the PRIM directory (the PRIM prompt character is
*>"). A similar step would be taken to run the PRIM U1050 tool under NSW. Then the
PRIM debugger will be called in (the prompt character is "s") so that a small program can
be keyed in. The debugger includes an assembler that cen recognize U1050
assembly-language instructions and generate the binary equivalent. :

e<PRIMesc; be i))esces5y, 80V, 6
U10S8 ¢ 4/82/77)

>Descgpuc
#Mode Instruction €3¢ gsType 0100005¢
01000: 00 = FT 0164,44\

01085 08 = PDO 013600+6,7\
01012 88 = SC 013606,033\
01017 00 = PD 013477,4\

01024: 88 « XF 021,,,3\

81031: 80 « XF 040,02000,,5\
01036: 08 = XF ,02000,3\

01843: 88 = JC $+10,43\

01050: 08 = J $-10\

01055: 880 = FT 0161,44\
01062: 00 = XF 022,,3\

01067: 88 = XF 040,02000,3\
01074: 88 =« XF ,02000,,3\

01101 06 « JC $+10,43\

01108: 88 = J $-10\

01113: 08 = JD $+5\

01120: 80 = J 01067¢r

#Co (to) 0l000Cr

-=> Unimplemented Instruction at 00: 88 #

The program was keyed in by typing location 01000 (in instruction mode) and specifying
replacement (ending the command with an escape character rather that a carriage-return).
The first instruction of the test program was entered as the replacement value, terminated
by a back-slash ("\") to force a display of the next available location so that it, too, could
be replaced. The last new instruction was terminated by a carriage-return, which
completed the replacement sequence. (At that point, the user might have reentered the
type-with-replacement command s0 as to inspect the program, instruction by instruction,
snd correct any input errors.) The user executed the program by telling the debugger to
stert at (go to) location 01000. This command transferred control from the PRIM debugger
to the emulstor, which executed the program until it encountered a condition that caused it
to stop execution -- in this case, an illegal instruction at location 0.

To determine how the program got to location O, the user will request a history
display of the last 32 jumps and find that the last jump occurred from location 01036, an

U1050 User Guide Page 4

XF instruction. Since this instruction is not a program jump, the transfer of control must
have been caused by an interrupt, so the state of the interrupt-inhibit flops (IR1, IR2, and
IR3) will be examined, showing that a class-3 interrupt occurred, presumably because the
one-second one-shot triggered by the instruction at location 01024 hed fired. Because
the channel-3 interrupt vector at location 0435 was never set, such an interrupt would
vector to location 0. This will be corrected by entering an interrupt-return instruction at
location 0430 and the vector to it at location 0438. After checking the change, the
“CLEAR button™ will be “pressed” (using the set command) and the program will be
reexecuted.

#Jump-history €7
81050--81836(31 times) 01036--00 #Type IR):IRSCT
IRl: 08 IR2: 08 IRS: 81 #Moede Inatruction €3¢ 2sTpe 043008C
0430: 0104300 - J o7
#Type 0435:0208C 3435: 89 = ©F

0436: 88 = 4,030cr
#Type M435CT

N43S: 04300000 #Set S.CLEARcr
#Co (t0) 01000¢"
==> Halt display at 81113: JO 01120
-=> U1050 halted at 01120, Used 0:03.0
#Type DAY CLOCKC®

DAY.CLOCK: 030303838305 #

Note on the second line how the interrupt-inhibit flops were specified as a range of
locations, from IR1 through IR3, and on the fifth line how locations 0435-0437 were
specified as a range-start and an increment. Note on the seventh line also how the
five-byte sequence of addresses from 0435-0441 was specitied as the 30-bit-wide cell
M435. This time when the program was run it stopped where expected. The
contents of the day-time clock were examined and found to have been stepped twice since
being set to zero.

The program now appears to cycle, but to verify that successive interrupts are
being handed properly, the debugger will be instructed to break execution on every
interrupt and the program will be continued.

#Bresx (at) INTCF

#Co (to) ©F

~=> Nelt display at 81113: JO 81128

~=> U1058 halted at 01120, Used 0:04.0

#Tywe DAY CLOCKC*

ORY.CLOCK: 838383038306 #
instead of breaking, however, the program halted again at the JD instruction with tho clock
having advanced once more, without an interrupt having occurred.

The program will be cycled one more time and found still not to generate an
interrupt. The interrupt-inhibit flops will be examined, showing that class-3 interrupts are
inhibited. Realizing that the interrupt-return instruction in location 0430 should have
reset RS, the user will modify it to clear the inhibit flop. Then the System Clear
“pushbutton” will be set and the program restarted.

U1080 User Guide Page 5

#Ce (to) ©
--> Halt display at 01113: JO 81120
«=> V1088 halted at 81120, Used 0205.0
#Mpe DAY CLOCKE"
OAY.CLOCK: 030303038307 #T\we IRI:IRSO"
IR 08 IR2: 00 IRS: 01 #Mode Instruction €3¢ 22T 043008
0430 W 38 = JC 803107
#Set S.CLEARe*
#Co (te) 01000¢"
--> Class 83 Interrupt #Type DAY.CLOCKEr
ORY.CLOCK: 030383830304 #T\pe IRYC"
IRS: 81
--> Single-atep 8t 0430: JC 01043,831 gor
IR3: 80 #Co (re) ©F
-=> Clags 03 Interrupt #Co (te) O
==» Halt display at 81113: JO 01120
==> UL0S0 halted at 01120, Used 8:07.0
#Tywe DAY .CLOCKC”
DAY.CLOCK: 030383038305 #Co (te) ©7
--> Class 83 Interrupt #

This time (on line 10) the interrupt occurred. After examining the clock and IRS3, the
program was single-stepped (by entering line-feed as a debugger command) and IR3 was
reexamined to verify that it had been clesred. Note on line 13 that by entering celen as a
debugger command the last location displayed by the user was redisplayed; type-outs
produced by breakpoints do not change what is considred to be the last location displayed.
Continuing the program showed that it was interrupting correctly.

The program now asppears to work correctly. To demonstrate this, the user will
next trace the execution of the program to follow the interrupts as they occur. This will
be done by clearing all existing breakpoints and then setting an execute-break on every
instruction within the program and at the interrupt-return instruction; to avoid tracing
through the two idle loops (instructions st locations 01036-01054 and 01074-01112), the
execute bresks set for them will be deleted. In order to produce a trace, a simple
bresk-time “debugger program” will be entered for each breakpoint that is set; by
terminating the break command with an escape rather than a cerriage-return, a
bresk-subcommend mode will be entered (an extra prompt character indicstes this)
wherein debugger commands can be supplied that are to be executed automatically at the
time the bresk condition is detected by the emulator. This break-time program, in effect,
will state: “print the contents of the cell pointed to by OLDCC as an instruction and
continue” (breaks occur afier the CPU cycle in which the condition is detected, so CC has
slready been advanced).

#Dobrosk (irem) #3C g1 (lcontirm)&F

#Bresk (at) 01000:01120, 0430€5¢ (atter doing) Xecute #8¢

#8Mode Instruction 98¢ 204Type 0L DCCET

#0Ce (te) ©7

0cr

<Progrem nunber I8 (1)> 2Debresk (trem) 01036:01054, 01074:01113¢"
e

Note on the second line that the execute-break locations were entered as a list (the range
01000-01120 and the location 0430) end that entering an "empty” subcommend (cerriege-
return by iteslf) on the fifth line terminated the bresk-subcommend mode and the break

rp s " o
S

U1050 User Guide Page 6

command. Every new break-time program is sssigned a unique sequence number ¢ that
it can be designated easily; this number was reported on the sixth line after the command
had been accepted. Note aiso on the sixth line that a list of two renges was used to
remove breaskpoints from both idle loops with the same command. And note on the third
line that the operator "@" was used to get the value contained in OLDCC (the value of CC
before it was advanced); as "@" is the normai TIP intercept character, users accessing PRIM
via a TIP should redefine the intercept character.

A display of existing breakpoints will be requested to verify that they had been
specified correctly. After a system clear, the program will be reexecuted. (it should be
noted that “pushing” a console "button™ only sets a function bit for the emulator; the
implementation of the function does not occur until the emutator is run next.) This time,
however, because of the break program, each instruction executed (except those within
the idie loops) will be displayed after its execution.

#Bresx tav) ©F

8430 <X> 01008-01035 <X> 01055-01878 <> 81113-01128 <X> #Set SCLEARer
#Co (to) 01000¢r

01000: FT 8164,054

0100S: PDO $13606,07

01812: SC 013606,0833

S1017: PD 013477,04

81824: XF §21,00,80,83

81031: XF 040,082008,00,03

0438: JC 01043,031

0105S: FT 0161,054

01062: XF §22,00,08,03

01067: XF 848,82008,00,8

-=> 0430: JC 81074,831

-=> 8111%: JO 81128

==> Halt display at 81113: JO 81128
-=> U1058 halted at 81120, Used 8:18.8
#Go (to) ©F

> 01120: J 01067

-=> 010687: XF 048,082000,00,03

-=> 0430: JC 01074,031

-=> 01113: JO 81120

=-=> Halt display at 31113: JO 01120
~=> UL0S8 halted at 81120, Used 0:11.0
#Co (t0) ©F

-3 81128: J 81067

-=> 01067: XF 040,02000,00,03

-=> 0430: JC 01874,031

-=> 01113: JO 81120

-=» Halt display at 81113: JO 01120
-=> Y1080 hailted at 81120, Used 8:12.0
’

Continuing the program twice from the JO instruction demonstrated that the interrupts
occurred as expected.

To complete the first example, the program will be saved by returning from
PRM debugger to the PRIM exec, where & save of the ULOB0 memory into the
CLOCK.TEST will be requested.

XXEEEEERE.

the
tile

——y

\a
B e,

! U060 User Guide Pege 7

#on

y #Return (to EXEC) ©F
; >SASCVE P One of the folloning:
ALL
! CONF IGURAT 10N
NENORY ,
sYneoLs |
>SAVE M®SCENORY (on 1ile) CLOCK.TEST; lor :
»Qescyry
Quitting UL8S8 (Contirm) ©F
e
Note on the second line that the quesation-mark elicited the available options within the
save command. When the save command finished, PRIM was terminated, returning control
again to the TENEX exec (note the prompt character "@" on the last line).

e

e e M b

LOAD A CARD DECK FOR EXECUTION

The second detailed example will go through the process of loading a program from
a binary card deck. When the U1050 emulator is called in, a standard hardware
| configuration is supplied. This configuration consists of a U1050 processor with a line
1 printer, card reader, card punch, mass storage unit (disk), file loader (tape), operator’s
console, and the day-time clock installed. The user’s (controlling) terminal is automatically
connected to the operator’s console. In order to use any other peripheral device,
however, it must be connected to an input source and/or output destination -- either to
the user’s terminal or to a TENEX file (or pair of files). The process of connecting the
U1050 device to the TENEX system is called "mounting." Either a TENEX file or the user's
terminal is "mounted” on the U050 device. The day-time clock has arbitrarily been
assigned to unit number 16 on channel 3; although it appears in the peripherals display, it
is not a mountable device. In the following example, a basic U1050 configuration will get
TENEX files mounted; then a card deck will be loaded into memory. The resuiting system
will be stopped, saved, and continued at a later time.

e<PRIMescybe iy jescege, 8pv) & OF
V1050 ¢ 4/02/77)

» POSCERIPHERALS

Chan Unit RNounted Uevice

(] (] No PRINTER

1 No RERDER

! 2 @ No PUNCH

1 S 0 Yes LS-COMM-UNIT

! |) 16 No CLOCK
s No DISK
¥y 8 No TAPE
»>FOsCILESTATUS (for device) ©F]
Record File Name Device 1
0 User Tty LS-CONM-UNTT

E 4 »

4 The contiguration displayed with the peripherale command showed that only LS-comm-unit
, zero (operator’s console) was mounted. The status of mounted TENEX files was displayed
| with the Filestatus command; it showed that the user’s terminal was mounted on the

R 8 LS-comm-unit. \

U080 User Guide Page 8

in this example the user wishes to load the program deck identified as 148-71 and
run . To allow printout from that program, a file will have to be mounted on the line
printer. To load 148-71, a file containing the binary deck will have to be mounted on the
card reader. And to run 148-71 successfully, a tile representing the disk (as set up by a
previous program) will also have to be mounted.

> OS00UNT (R, 1,0,0L,0U,T,?) P One of the fallouing:
APPEND

INPUTY

NEM

oLo

ouTPUY

THIS-TERNINAL
>HOUNT (R, 1,N,0L,00,7, 7 OUTIUT (10 1110) SCRATCH.PRT; 31
(on daviee) P One of the felleuing:

PRINTER

RERDER

PUNCH

CONN-UNIT

oIsK

TRPE

cLock
>HOUNY (R, I,N,0L,0U,T,?) OUTPUT (te ¢ite) SCRATCN.PRT; 31
(ton device) PReCINTER OF
»

The mount command, as with all PRIM exec commands, ls largely self-guiding. Whenever
the PRIM exec expects input from the user, the input of a question-mark will elicit either a
list of options or a description of whet form of input is expected. In general, a mount
command designates what kind of tile, the file name, and the U1050 device involved. Note
that the question-marks entered to the mount command elicited the available options --
the types of file (when entered on line 1 prior to the first argument) and the device names
(when entered on line 9 prior to the next argument). An output file, SCRATCHPRT, was
mounted on the printer; it is assumed by PRIM to be an ASCI! file.

A binary input file, 148-71.CRD, will be mounted on the card reader; if a transiated
card deck is expected, either an ASCH or a column-binary file may be used, but it an
untransiated deck is expected, only a column-binary file may be used. In this case, the
deck for 148-71 already has been loaded onto a TENEX file in column binery (i.e, each
column of the card is represented by 12 bits in the file, with the top row being the
most-significant bit and the bottom row the least significant bity each column unit is @
12-bit byte. A binary input/output file, DISK, will be mounted for the disk; the emulator
sssumes this file to be binary with a 6-bit byte,

Ul050 User Guide Page 9

>MOSCOUNT (R, 1,N,0L,00,T,?) JOICNPUT (from tile) 148-71.CRD; 195¢ (on device)

ResCEpDER O

»>P BINARY or RSCII

»>BesCinary

»»Cr

>MOCOUNT (R, 1,N,0L,0U,T," OL®D (in & out 1ile) DISK; 19%¢ (on davice)
Descygy cr E
>FOCILESTATUS (for device) ©

Record File Name Device

. SCRATCH.PRT; 31 PRINTER

(] 148-73.CR0; ¢ RERDER

(] User Tty LS-COMM-UNL Y

(] 168.08K; 1 018K

>

Because the card reader's file can be either ASCH or binary, a subcommand mode was
entered for the mount command where file characteristics could be supplied. Since byte
size for a binary card reader (or card punch) file is assumed to be 12 bits, the user was
not asked to specify it. And since a disk file is assummed to be binary with a 6-bit byte,
the user also was not asked to specify it. The filestatus command showed that the
printer, reader, operator’s console, and disk had been mo:nted. Note that as no specific
device was designated, the status of files was displayed for all mcunted devices.

Since the user wants to stop the CPU after the deck has been loaded, a breakpoint
will be set at the first instruction of the program in order to stop the emulator so that the
session can be saved for future execution starting at a point after the load has occurred.
In order to load the card deck, the PRIM debugger must be used to “press” the console
switches. After pressing the “Load-card" button (i.e, using the debugger to set the
indicator named C.LOAD), the “Start® button will be pressed (with the go-to command.)

»>Descegug

#Bresk (at) 010009%¢ (atter doing) Xacute &

#Set C.LOADer

#Co (te) ©F

-=> Break after executing 01800: JR 03566,00 #Debreak (from) ®8C 41|
(cont irm)OF

’

The breakpoint was removed (with the debreak command) prior to saving the state of the
emulation 8o that it could not interfere with any future use of the saved session. Note on
the last line that the default of removing all breaks required the escape character and a
confirmation; this is to prevent inadvertent removal of breakpoints.

An arbitrery smount of processing could occur at this point, with the session being
interrupted st any convenient point to be saved and restored at a later time. In order to
save the session, control first must return to the PRIM exec.

e o

R

U1050 User Guide Page 10

#Return (to EXEC) ©F

>SACICVE P One of the folloning:

aLL

CONF JGURATJON

HENORY

SYNBOLS

>SAVE AeSCLL (on tile) 148-71.LOADED; l°o*

>Qescyry

Quitting U10S8 (Confirm) €F

e :
The save command permits the user to save just the UL050 system configuration, just the
U1050 memory, just user symbol tables, or all of these along with whatever additional
information is required to exectly reestablish the then-current situation at a later time. (it
should be noted, however, that the contents of files are not saved, so that if a read/write
file on some device is changed subsequently, then when a save-all is restored the state of
the total system cannot be exactly recreated.) Aithough a save-memory would be
adequate at this point for most purposes, a save-all was performed onto the file
148-71.LOADED so that existing I/O conditions would be reestablished on subsequent
restores. A save-all takes more time to save and restore than does a save-memory and
also results in a much larger file, s0 save-all should be used only where it is necessary to
capture the internal state of the CPU and peripherals. The save-all command can be
especially useful when a program error requires a great deal of processing to occur
before it appears. By saving the session shortly before the error occurs, the error
condition can be recreated quickly and easily. Quitting the PRIM exec returned control to
the TENEX exec.

At some arbitrary later time the user can again run the Ul1050 emulator and
continue a saved session where he left off at the time it was saved. This will be shown
using the restore command, completing the second example.

e<PRIMesc be i j08ces5s, 50V, 6 O

U1ese ¢ 4/02/71 :

>RESCSCTORE (from SAVE tile) 148-71.LOADED; l°r

restoring ALL from TUESDAY, FEBRUARY 22, 1977 09:57116-PST
»>FeSCILESTATUS (for device) RCSCERDER

Record Type Byte/last File Name Oevice
86 8inl2 5280/5280 148-71.CRD; 1 RERDER
»>Descepu

#Type OLDCC:CCor

OLDCC: 01000 CC: 83578 ¢#

After the restore of the save-all from file 148-71.LOADED, the filestatus display showed
that the card deck had already been read in. Note on the fifth line that when the
filestatus display was requested for a specific device (in this case, the reader) additional
information was supplied, such as the file type (binary with 12-bit bytes), and the current
and last byte position of the file; the activity status also appears when a device is active.
After the PRIM debugger was called in, OLDCC and CC were displayed, showing that the
last instruction had executed out of location 01000 and the next one was to be executed
out of location 03570. At this point the session can be continued as if it had never been
interrupted.

The remaining examples will be much briefer than those presented above. Instead
of complete sequences of interaction with an actual program, just those commands that are

U1050 User Guide Page 11

necessary to solve particular problems will be shown. In a few cases intervening
interactions have been edited out of the transcript to emphasize the essential commands.
in general, results will not be shown.

FIND WHICH INSTRUCTIONS MODIFY A LOCATION |

A typical debugging problem is to find what instructions are changing a location
(e.g., some module is clobbering a parameter). This can be solved very easily with a
simple break-time debugger "program”. If the contents of locstion 012345 are being
changed (snd should not be), the following breakpoint command will identify the culprit.

#Break (at) 012345€35C (atter doing) Write 8
#8Mode Instruction ©8¢ #2¢Type @OLDCCOr
20Type 012345¢7
#0Go (t0) ©7
secr

<Program nusber is (1)> #

After every write reference to location 012345, program execution will be interrupted and
control will be passed to the debugger, which will execute the break-time commands to
display the instruction that just executed and to display location 012345. In this example
the program would continue automatically after each break. If only the first breakpoint
subcommand had been entered (eliminating the type-out of 012345 and the go commands
on the third and fourth lines), then after displaying the last instruction executed, the
debugger would display location 012345 (with its new contents) and pass control to the
user.

o
\

FIND WHICH INSTRUCTION SETS A LOCATION TO A VALUE

A related, and perhaps even more common, problem is to find what instruction is
‘sotting an improper value into some location. This can be accomplished with a variant of
the break-time debugger "program” presented above.

#Breax (at) 012345€8¢ (agter doing) Write €8C
arls @012345 <> 067€8¢ <then> #24Co (t0) €7
#0Mode Instruction 8¢ 944Type GOLDCCE"
”er

<Program nusber is (2)> #

The important things to note about this example are the use of a conditional debugger
command (if) and the "contents-of" operator (®). The first breakpoint subcommand states,
in essence, "if the contents of location 012345 are not equal to the value 067 then
continue execution; " the second subcommand states, "otherwise display the last instruction
executed end bresk." The symbol-pair “<>" represents “not equal to" (literally, "less or
greater”). When the program breaks, the offending instruction will have been discovered.

DETERMINE HOW MANY TIMES A CODE SEQUENCE IS ENTERED

Occasionally the efficiency of a program system is degraded by unnecessary and
unexpectod calls on subroutines that do initialization or other operations whose repitition
do not cause errors but do affect performance. The PRIM debugger can be used to count
the number of times a code sequence is entered. In the following example the code
sequence is assumed to start at location 01234, and location 076000 (which is assumed to
be unused) is used as a counter.

JOR=SE

e A e S e

Caiddis

U1050 User Guide Page 12

#Crear 076000¢r

#Bresk (at) 0123495C (atter doing) Xecute 98¢
#4Set 076000°5¢ . ©076000+ 10"

#4Type 026000¢"

#0Go (to) ©F

ancr

<Program number (s (31> #

Every time location 01234 is entered, the count will be incremented and displayed. If only
s final count is desired, rather than a running count of each execution, the following
command could be used:

#Crear 076000¢*

#Break (at) 01234°5C (atter doing) Xecute €€
#0Set 0760002%¢ . 076000+1°"

#0Co (t0) CF

aecr

<Progrem number is [)> #

#Typs 076000¢r
COUNT REFERENCES PRIOR TO A DESIGNATED CONDITION

The efficiency of a process can sometimes be evalusted by the number of times a
data location is referenced prior to the occurrence of a given condition of interest. A
variant of the previous example can be used where the automatic continuation is
conditional on the designated condition not yet having occurred.

#Crear 076000¢"

#Break (at) 012345°5¢ (atter doing) Read Write €8¢
#1Set 07600005¢ « ©076000+1¢

it ©5432 < 005¢ cthan> #40Go (to) ©F

”er

<Program nuwber Is (8)> #

#Type 076000¢
When the condition that location 05432 contains a zero occurs, the program execution will
bresk and the counter can be examined.

TRACE A LOOP ONLY ONCE

With the PRIM debugger, a program trace is accomplished by setting an execute
break on all instructions of interest and supplying a break-time debugger program that
displays the most recent instruction to execute (see the detailed example on entering and
debugging & small progrem). To trace the loop only once, the automatic continuation is
made conditional on CC not being equal to the starting location of the trace.

#Bresx (at) 01334:0234508¢ (atter doing) Xecute @8C
#0Mode Instruction €3¢ g8#Type GOLDCCor

2l 8CC © 012349%¢ ctnen> 200Go (to) ©F

e’

<Program nusber Is (6> #

To trace the loop n times, the continue could be made conditional on & counter that is
incremented whenever the starting location is reentered. If a continuous trace is desired,
the break can be entered for the event STEP and the go-to command can be
unconditional; a TX abort intervention would be required to stop such a trace.

R R et o

AR s iy — L R EE—————

O -

U1050 User Guide Page 13
L.
DETERMINE WHICH INSTRUCTIONS WERE NOT EXECUTED
An unusual use of the PRIM debugger is to determine what instructions were never
executed while running some progrem. This can be accomplished quite easily by setting
breakpoints throughout the area of interest and then having esch execute-bresk remove
its own breakpoint.
#Debresk (from) ®5C g11 [contirm)OF
#Bresk (at) 01234:0567005¢ (atter doing) Xecute €8
#¢Debresk (trom) GOLDCC:0LDCC+4cr }
#4Co (t0) O 4
aer
<Program number Is (7)> #Breax (at) 0567598C tatter doing) Xeoute O
#Co (t0) 01234c7
==> Bresk after executing 05676: J 010000 #Bresx (at) ©F
03456-04857 <X>17] €5678 <X> #
At the end of the program, a display of the breskpoint data base shows those locations
that were never executed. Note that when an execute breskpoint is specified over @ ;
range of locations it is detected only for the location containing the opcode portion of the
1 instruction, so on each execution it is necessary to remove the breskpoints for all five
] instruction locations. Note also on the sixth line that even though all existing breakpoints
had been deleted by the command on the first line, the new bresk-time program program
was assigned the next higher sequence number (in fact, break-time programs are never
deleted, so that they may be reused at a later time without having to reenter them).
DETERMINE WHEN DATA CHANGE OVER A CODE SEQUENCE }
It is occasionally necessary to determine whether a code sequence has changed the
value in some location. This can be done by setting a breakpoint at the beginning of the
sequence, where the break-time commands copy the data value into an unused location,
and setting another breakpoint at the end of the sequence, where the break-time
E commands compare the copied value with the current value. In the following example, the
g code sequence starts at 012345 and ends at 023456, the critical location is at 05432, and
4 076000 (assumed to be unused here) is used for temporary storage.
#Breax (at) 012345¢8C (atter doing) Xecute €8¢
#2Set 07600005¢ . @OS432CT
: #2Go (t0) O
E 3 mer
<Progrem number is (8)> #Bresk (at) 02345693¢ (atter doing) Xecute 8
: ‘ ol @05432=007600095¢ <then> #80Co (1) ;
aocr F
o :
<Program mumber is (9> #]
E Each time the value in 05432 changes over the designate code sequence, program
7 h execution will break.
¥

SEARCH A BUFFER FOR A GIVEN VALUE

The final example will show how to search a buffer (or any arbitrary set of
locations) for the occurrence (or nonoccurrence) of a designated value. In this example,
all values other than 3 in the left half of a word are to be found. :

-

niants

—— ’ - Mr‘ wmmd

U1050 User Guide Page 14

#Locate NON 05095¢ tuith mask) 07008¢ (in) 013500:43¢"
[]

The general form of the locate command requires a comparison value, a mask, and a set of
addresses to examine. The comparison value and mask can each be any arbitrary
oxpression. The set of addresses can be a list of discrete locations or address ranges.
By entering NON before the comparison value, its nonoccurrence is required. The
comparison value defaults to "NON 0" and the mask defaults to "NOT 0" (i.e., all 1 bits).
The test is performed by comparing the contents of each designated location with the
aligned comparison value only for those bits where the aligned mask bit is @ one. If all
such bits compare, then a match has occurred; if any such bit difters, then a failure has
occurred. The location in question is then displayed or not according to whether a match
or non-match was specified. The locate command is analogous to the type command in
that if it is terminated by an escape a replacement value can be entered for each displayed
location. The same rules for the replacement value apply for locate-with-replacement as
for type-with-replacement.

U1050 User Guide

Memory Addresses:
8
Mnr
Tn
IRn

Pushbuttons:
S.CLEAR
T.LOAD
C.LOAD
GOM
Go.cc
OP.REQ

Control Counters:
oLbCcC
cCc

indicators:
INDn
KNO
KH
KEQ
KUQ
KLO
AZ
AN

Page 15

AFPENDIX A: Ul050 FEATURES

Address of last cell displayed in the form “address: contents".
Five-byte ceil starting at address n, where n is assumed octal.
Tetrad », where n is octal or decimal.

index-register n.

System-clear pushbutton.
Load-from-tape pushbutton.
Load-from-card-reader pushbutton.
Next-instruction-from-M pushbutton.
Next-instruction-from-CC pushbutton.
Operator-request pushbutton.

Register containing address of last instruction executed.
Register containing address of next instruction to be executed.

Testable-indicator », where n is octal with no leading zero.
IND40.

IND41.

IND42.

IND43.

IND4A.

IND4S.

IND46.

IND47.

INDS0.

INDS3.

IND54.

INDSS.

IND56.

IND57.

IND61.

IND62.

IND63.

IND64.

IND6S.

IND66.

IND67.

IND71.

IND72.

I/O-indicator-bits for channel n.
Class-1-interrupt-inhibit flop.
Class-2-interrupt-inhibit fiop.
Class-3-interrupt-inhibit tiop.

et ot Wi, Lo,

U1050 User Guide Page 16
1
il Miscellaneous: ' j;
i DAY.CLOCK Day-time-clock (6 bytes). : 1
Operators:
XOR Exclusive-OR binary operator.
OR Inclusive-OR binary operator.
AND Logical-AND binary operator.
NOT Logical-NOT unary operator.
< Not-equai-to binary relationshiop.
<= Less-than-or-equal-to binary relationship.
>m Greater-than-or-equal-to binary relationship.
< Less-than binary relationship.
> Greater-than binary relationship.
- Equal-to binary relationship. F
+ Plus binary operator or Increment unary operator.
- Minus binary operator or Negation unary operator.
MOD Modulus (integer remainder on division) binary operator.
* Multiplied-by binary operator. k
J e Divided-by binary operator.]
ABS Absolute unary operator (NB. U1050 arithmetic is unsigned).
(Left-bracketer.
) Right-bracketer.
® Contents-of unary operator.
Constants:
Octal Digits 0-7, mandatory leading zero ' 4
Decimal Digits 0-9, no leading zero j
XS3 Prime-text-prime (XS3 characters converted to binary and truncated) i
String Quote-delimiter-text-delimiter (as in multi-word string “/text/) :
Break Events:
(000 Break-on-every-anomaly debug-switch.
PUT Break-on-every-store debug-switch.
JUMPS Break-on-every-jump debug-switch.
DROP Break-on-every-conditional-jump-that-fails debug-switch.
STEP Break-on-every-instruction-execution debug-switch
10 Break-on-every-|/O-activity debug-switch.
INT Break-on-every-interrupt debug-switch.
TICK Break-on-every-clock-tick debug-switch.
Optional Anomaly Conditions (requested by ODD event):
Card Punch Feed-read
Card Reader 72-column Select
Device Not Ready
Disk Anomaly (bad function bits)
EOF Encountered in Communications input
1/O Overlap
1/O Overload
1/0 to Low Memory
Memory Exceeded '
Nonexistent Controller

e ol

U1050 User Guide

Printer 132-column Select
Tape Anomaly (bad function bits)
Too Many Product Bytes

Automatic Event Stops:
Halt-display Instruction
Hung on Class-1 Interrupt

Hung on Divide

internal (emulator) I/O Synchronization Error

Program Halt

One-shot Error (no room for installation)
Unimplemented instruction

Available Devices:
Printer:

Reader
Punch

Disk
Tape

LS-comm.

Clock

Memory

XS3 transiated to ASCIl

Speed parameter, defaults to 922 lines/ min.

12-bit binary, or ASCIl translated to IBM026 column-binary
Speed parameter, defaults to 600 cards/min.

12-bit binary, or IBMO26 column-binary transiated to ASCH
Speed parameter, defaults to 300 cards/min.

Binary

Binary (or physical mag tape unit)

Speed parameter, defaults to 3 min./2400-foot-rewind
USAF6 translated to/trom ASCH

Speed parameter, defaults to 10 char./sec.

ASCIl (with bits 7 and 8 inverted) transiated to/from ASCl
Speed parameter, defaults to 240 char./sec.

XS3

Rate parameter, defaults to 1 tick/sec.

Size parameter, defaults to eight 4192-word modules
Cycle-time parameter, defaults to 4500 nanoseconds

Page 17

4
— |

b N M Bt . 01

: sl ol

U1050 User Guide Page 18

Printer

Reader

LS-comm

Disk

Tape

APPENDIX B: U1050 CONFIGURATION PARAMETERS

User settable speed parameter, defaults to 4500 nanosecond (nsec)
cycle-time; can be set with a precision of 50 nsec. User settable size
parameter, defaults to eight 4192-hyte modules.

Instruction timing is based on Univac Manusl UP-3912 (Revision 1), Section 3,
page 73. Timing is implemented as follows: (1) instruction fetches occur at
memory speed; (2) indexing takes three additional memory cycles; (3) memory
reads/writes by an instruction occur at memory speed; (4) sny remaining time
is divided by 4.5 microseconds (usec) to convert it to a corresponding number
of memory cycles (and cause it to speed up or slow down proportional to
memory speed).

User settable parameter at installation time, defaults to 922 lines per minute.
User settable parameter at installation time, defaults to 600 cards per minute.
User settable parameter at installation time, defaults to 300 cards per minute.

User settable parameter at installation time, defaults to 10 characters per
second. Remote echo delay of one half a character time is provided. Up to
16 comm units (LS or HS in any mix) can be installed.

User settable parameter at instaliation time, defaults to 240 characters per
second. Remote acknowledgments occur after three character times. Up to
16 comm units (LS or HS in any mix) can be installed.

Characteristics cannot be changed parametrically. Maximum disk address is
01453777. Disk timing is based on the following model: (1) one cylinder
contains 64 sectors for 16 heads; (2) sectors of 168 bytes are interiaced on
the disk in two cycles such that successively addressed sectors are separated
by one sector from the other interlace cycle; (3) sector O on a cylinder starts
just past the index point, and sector 32 arrives 6.267 m.iliseconds (msec) iater;
(4) one disk revolution takes 25 msec; (5) head positioning takes 10 msec for
the first cylinder crossed and 111 usec for each successive cylinder;
(6) transfer rate is 4 usec per byte. All timing is computed to a precision of
50 nsec.

User-settable parameter at installation time, defaults to 3 minutes to rewind a
2400-foot reel. Other timing characteristics cannot be changed
parametrically. Tape timing is based on the following model: (1) all tape
records are one of two sizes, either 256 bytes or 3072 bytes; (2) reads or
writes from load point take an extra 85 msec; (3) start-up of a read or write
takes 10 msec if the last order completed more than 41 usec ago; (4) large
block reads or writes take 129.396 msec, small blocks take 10.783 msec;
(5) deceleration from a read or write takes 5 msec; (6) large block
backspacing takes 144.496 msec, small blocks take 25.833 msec, but only the
size of the last block read or written is remembered for timing purposes.

e e g ol St)

PRIM SYSTEM: USER REFERENCE MANUAL

INTRODUCTION

This documcnt is the common reference manual for all users of the PRIM system,
both those using one of the existing emulation toois and those writing new emulalors. {or
the former, this manual is supplemented by the appropriate tool-specific puide (e.n., PRIM
System: U1050 User Guide); for the emulator writer, the supplement is PRIM System: 100l
Nuilder Manual

The PRIM systom is always in one of three states, known a< the cxeq, the debupner,
and the target execution states. 1he transition belween states is controlled by the uscr.
Goth of the first two slates are PRIM command processors that take commands from the
user and execute them. The exec, whose command prompt characier is ™% is used
principally for seiling up a target environment; the debugper, whose command prompt is
“s", is used for the detailed examination and control of thc executing tarpet
machine. Target execution includes the emulation of not only the CPU, but also clocks and
assorted peripheral 10 devices. The three sections following the introduction describe
cach of the states in turn,

The PRIM exec and dcbugger commands are illusirated with exampics taken from
aclual scssion transcripls. In all the examples, user input is itelivized 1o distinguish it
from PRIM output. Input control characters appesr as their abbrevialions superscripled
("‘» ose),

'GENERAL INPUT CONVENTIONS

User input to PRIM, both exec and debugger, is penerally trec-format and
casc-independent. Leading spaces and tabs are ignored, and lower case is treated as its
upper case equivalent (excep! in quoled strings, where casc is polentially sipnificant).
Uscr input to the target machine during target execution state is in the tormat required by
the target system.

; Certain characters have becn assigned editing and inlcrvention functions when input

by the user. The editing characters apply only to the PRIM excc and debugger, while the
intlervention characlers apply to the target execution state as wecll. The specific
characters assigned to most of the funclions may be altered (via thc exec Change
command) to suil one's needs. The editing functions arc valid at any time during PRIM
command input; commands are not executed until after the final character has been
accepled.

Hack-apace (cntl-H) erases a character from the current word or term of input. The
back-space is echocd as a backslash (\) followed by the erased character. When
there are no erasable characters, a bell (entl-G) is echoed instead.

Alrernate back-space (initially cnll-A) performs a funclion idcntical to back-apace; it is
provided as a convenience.

PRIM System: U-.er Relerence Manual Page 2

Backup (initially cnll-W) erases the current word or term of input. It is echoed as
backslash (\) followed by the first character of the erased word.

Retype (initially cnll-R) retypes the current input line; it is useful after a confusing
amount of ediling has occurred.

Delete (initially DEL or RUBOUT) aborts the current input command or subcommand, ‘
] allowing the uscr to re-enter it. It is echoed as " XXX". 3

Question (?), when entered at the beginning of a command ficld, elicits a description of
the expected input, followed by a retype of the line. When the expected input is a
selection from a list (or menu), the entire list is shown.

The intervention characters are valid at any time, including command input, command
interpretation, and target execution.

Ahort (initially cnti-X) inlerrupts the current activity and relurns control to the
command level of either exec or debugger. When used to cancel an exec or debugger
command, conlrol rcturns to the top level of the same state; abort is the only means of
canceling a command when the user is in subcommand mode. When used to interrupt
target execution, control returns to the state from which execution was initiated; abort
is the only mcans of stopping a looping target machine.

Status (initially cnti-S) produces a one-line summary of target machine status, including
program countcr, emulated elapsed time, and active 10 devices. The command is valid
at any time, but useful primarily in execution state.

The following characlter is active only during target execution.

Control-shifs (initially cntl-1) permits the user to enter (during execution) a control
code thal cannol be onlered directly because it is intercepted by cither PRIM or the
opcrating system; the PRIM characters inolved are status, ahort, and control-shifu itself.
The next ASCIl character following the control-shift (olther than the digits O thru 9) has
ils two Icading bils cleared, thus converting it to an ASCIl control code (/A or a to
emtl-, elc.). Coniral-shift followed by a digit results in an input that is outside
the normal target characler sel and is used for particular target-machine-dependent
functions. 1hc control-shift character itsclf is not echoed, an! not passed to the
target machinc. If execution terminates before that next characler is input to the
targel device, the control-shift is canceled; it is not retained for the next resumption of
execution.

e e i o

o 1

SRR st

PRIM System: User Reference Manual Page 3

PRIM EXEC

The PRIM exec is the initial state of a PRIM session. Excc commands are concerned
primarily with building target configurations, saving PRIM scssion resulls, restoring
previously saved sessions, and accessing or cresting files (within the file space of the host
oporaling system).

The exec prompt character is ">", indicating that PRIM is in exec state and that the
eoxec is awailing &8 new command; it is elways shown on a new line. Individual input ficlds
consist of keywords (a word selected from a menu), decimal numbers, and file names.
txoc commands are composed of fixed sequences of ficlds, cach terminated by a delimiter
charactor; a final confirmation consisting of a return is oflen required.

Keywords are selected by any unambiguous leading substring. Oflen, a sinple
character suffices; three characters are always sufficicnt. Numbcers are specified in their
cntircty. File names are specitied according to the convenlions of the operaling system.
All commands that will use a file for output require the name of a new file (except the
Mount-Append and Mount-Old commands, which modify oxisting files); all other file
commands require the name of an existing file. In TENIX, an existing file name - and a
new file that is a new version of an existing file name -- is recognized (and completed) in
response (0 an inputl escape.

The normal delimiters that terminate command ficlds arc retnen, escape, and space,
Lseape and apace funclion idenlically except that the former gencrates feedback to the
uscr while the lalter penerates none; the feedback produced by eseape includes both field
completion and next-field prompling (which is given in parenthesss). Return is used to
complele a command immedialely, bypassing any remaining ficlds and confirmation; it
further input is required, the return is trcated as an ascape. (In the examples that follow,
escape lermination is used to show the prompls.)

Keywords that involve either dovices or paramclers are machine-dependenty the
scleclions shown in the examples are meant to be illusirative rather than definitive.
Device specification is further complicated whon two (or more) of the same peneric device
ore installed. Therefore, for dovice names, two further delimiters are ulilized, at ("&") and
colon (""). A fully qualificd device name consisls of ponerie-name © channel-number :
unit-number; the numbers are required only to the cxtent necessary lo specily o
particular dovice. When a device name is terminated by one of the standard terminators,
and when further disambiguation is required, the exec prompls explicitly repardless of the
lerminator.,

Tho remainder of this scction consists of the descriptions of the exec commands in
alphabelical order. Each command description begins with a transcript showing one or
more cxamples of the command and its various options. 1hose commands that require a
sccond keyword show that list via an input question. Tho excc commands arc:

PRIM System: User Reference Manual Page A4
Exec

>P One of the follouing:

CANCEL

CHANGE

CLOSE

COINANDS

Dk BUG 1

FILESTATUS 2

GO0

INSTALL.

HOUNT ;
NEWS i
PERTPHERALS
It 1
REASSIGN |
RUSTORE
RENIND
SAVE
SET
Stiow
SYNROLS
TINE
TRANSCRIPT
UNINSTALL
UNHOUNT

>

Moo

Comment.
»>; this line is @ commont®

>

Any linc beain}vma with a semicolon is treated as a comment. Commenls are recorded in
the transcript if one is open (see Transcript command).

Cancel abandons all outstanding 10 operations for a designated device.

>ea®SCNCEL (10 for device) ta®SCPE-UNIT €
>

This command is inlcnded for use when, after an 10 error halt (described in the section on
targot execution), the user wishes to abandon the device operation rather than mount a
file and retry the operation. The list of outstanding |0 operations, by device, is part of
the Peripherals command output.

PRIM System: User Reference Manual Page 5
Exec

Change reassigns the PRIM control functions.

>¢hCACANGE Cinput code for) P One of the fo!loning:

ARORY

AL T-BACKSPACE

BRCKUP

DLLEVE

RETYPE

S1ATUS

CONTROL-SIIFY

>CHANGE (input code for) ah®4CORT (from tX to) P R Controtl Code,
>CHANGE (input code for) RBORT (irom tX to) TP er

»ehCACANGE (input code for) dPACELETE (from to) AT [not changed)

>
This command allows the user to change the ASCIl control code assigned to any of the
listed PRIM control functions from its current assignment to another (currently unassigned)
control character. The funclion name is the second word of thc command; when it is
terminated with an escape, the current assignment is noled in the noise. The entire set of
ASCH control codes (including delate) is available excepling null, back-space, lina-feed,
return, escape, and unit-separator (TENEX end-of-line) which have fixed functions in
PRIM. For ahort and status the set is limited to entl-A thru emtl-Z.

Close terminates the current transcript file if one is open.

>e{C5COSE (transcript file.) €F
>

A transcript file is opened using the Transcript command; it is automatically closed at the
end of a session.

Commands redirects subsequent input from a file.

>caCSCHIANDS (Irom tile} command.filo®sc €

>

This command causes PRIM o read its subsequent command input from the named file
instead of the user terminal (or current command file). The file input is treated exactly as
terminal inpul except that intervention functions (ahort and status) are valid only from the
terminal. Should a command in the file cause execution to be resumed, input that normally
would come from the user lerminal is taken instead from the file. Input reverts to the
previous source al the end of the file; an ahort terminates all command files and reverts
input to the user terminal. Command files may be nested. Command files are very useful
for common session-inilialization sequences.

Decbug transfers control to the PRIM debugger.

>d "ACERYG

#return (to EXEC) €F

>
The PRIM debugger is described in the next scction; control is returned o the exec via the
debug Return command.

—

0 bl e 2 N A0 A R il

PRIM System: \User Reference Manual Page 6
Exec

Filcstatus returns information about mounted files for all or designated devices.
>JOSCILESTATUS (for device) 08¢ pLL

Record File Nawme Dovice

12 CARD.DECK CARD-READER
12 User Tty PRINTER

82% TERHINAL . INPUT TERNINAL (In)
12345 TERN. OUY TERNINAL (Out)
246 ARCO.EFG TRPE-UNIT: 0

>JCSCILESTAIUS (for device) ¢a®SCRD-READER
Record Tupe Byte/last File Name
12 Rinl2 860/1280 CARD.DECK
>
When the device field is emply (return or escape) all mounted files are listed; otherwise
just the file(s) on the named device are listed. The latter case gives more complete status
than does the former. The output fields are:

Record tells the current position of the device or the number of records which have
been processed. For disks, it is a sector number; for card rcaders and punches, a
card count; for communication lines, the total number of byltes transferred; for mag
tape unils, the position from beginning of tape expressed as files + records.

File Name is the name of the file; the name “"User Tty" is displayed when
THIS-TERMINAL is the file.

Device is the emu!a_ted device on which the file is mounted.

lype describes the type of file, either Ascii or Binxx, where xx is the file byte size.
The type may have been explicitlly specified at mount time, or it may have been
assumed by PRIM.

Byle/Last is, for a mounted disk file, the current byte position in the file and the total
numbcer of bytes in the file.

The marginal notation “[not opened]" indicates that the named file could not be found (this
accurs only to a rcstored file) and that the device must be reassigned to another file (or
to the same file via a new path name). »

Go transfers control to the target execution state.

>AT*C0 (trom 1234) OF

=~ HACHINE running at 5670, Used 0:00.4
-5 NACHINE halted at 6543, Used 0:01.0
>

This command transfers control from the PRIM exec to the emulator or target machine, in
its current state. Control roturns to the exec when the target machine halts or a
breakpoint is encountered (see the debugger Break command) or the user interrupts
execution with an ahort.

in the example, the user followed the command with a status request (the atatus character
itself is not echocd) resulting in the first reply line (MACHINE running at ..); the target
machine is still running. Eventually the target machine halted, producing the second status
line and returning control to the exec as evidenced by the exec prompt.

-r-‘ = "3

SIS R

PRIM System: Usecr Reference Manual Page 7
Exec

Install adds a designated type of device to the machine configuration.

>ICSENSIALL (dovice) P One of the folloming:
CARD-READER

PRINTER

TAPE-CONTROLLER

VERNINAL

>INSTIALL (dnvice) pOSCRINTER (CHANNEL) Josc
»>? SPEED

>>APACPEED (characters per second) ©5€300
O

>ITSCNSTALL (dovice) ¢aTACPE-CONTROLLER (CHANNEL) Jase er
How many TAPE-UNIT's do you want? 207

For the first TAPE-UNIT, (UNIT) 00%c cr

»>CrF

For tho socond TAPE-UNIT, C(UNIT) J°or

O

>

The device type is sclecled from among those implemented. The user is prompted for
cach nccessary item of information, typically including an address for the device in the
target 10 address space and the number of units to install. After the required information
is galhcred, sub-command mode (">>" prompt) is entered to pather optional paramcters;
any optional paramcler ' not supplied takes on its default value. Subcommands are
terminated by an emply command, return only. An installed device is initially unmounted
-~ there is no file associaled wilh the device for purposcs of actual 0.

When the device being installed is a multi-unit controller, the dialopuc procecds through
cach of the individual units to gather their parameters. After the command is completed,
the controlicr is no longer visible; only the individual units are. An ahort aborts the entire
command, not just the current unit. :

Installation is permitled only. before any execution has taken place. lypically, a user or
user group inslalls a standard configuration and then saves it for usc in all subscquent
scssions (sce the Save-Configuration and Restore commands). The optional parameters of
an installed device may be changed at any time using the Set command.

Iy, S

R L SN

s

PRIM Syslem: Usecr Reference Manual ~ Page 8
Exec

Mount associates a file with an installed device.

>mOSCOUNT (A, 1,N,0L,0U,7,?) P One of the follouing:

APPEND

INPUY

NEM

oLn

OUTPUT

THIS-TERNINAL

>HOUNT (A, 1,N,0L,0U0,T,?) $OSCHIS_TERNINAL (on device) pTACRINTER €F

>MOSCOUNT (R, 1,N,0L,0U,7,7) NC4CEU C(in & out file) ARCD.KFG;10%¢ ton device)
ta®ACPE-UNTT €F
>

>m IP5CNPUT (from t11e) card.deck®5C (on device) ca® CRD-RERDER ¢
>>P BINARY or RSCII

>>hOSCINARY (n)th byte size) 207

>»»er

>

Associsting a file with an installed device causes subsequent emulated 10 for that device to
be directed to the file. The second keyword following Mount determines the direction of
data flow and the choice of an old (existing) or new file. A file must be mounted on a
device before any actual 10 can take place.

APPEND mounts an old file for output only, with the subsequent output being appended
to the previous contents of the file.

INPUT mounts an old filc for input only.
NEW mounts a new file for both input und output (the file is initially empty).

OLD mounts an old file for bolh input and output (subsequent outpul overwrites any
existing file dala).

OUN mounts a new file for output only. For a disk or tape device, QU1 is treated as
NEW.

THIS-TERMINAL associates the user terminal -- instead of a named file -- with the
named device. The mounting is for both input and output unlcss a file has already
been mounted for one, in which case the terminal is mounted only for the other. The
terminal is known to be an ASCIl "file". The terminal may be mounted only once for
inpul; it may be mounted for outpul (or on an outpul-only device) any number of
times, but the output is not labeled as to source.

Only some of the forms above are applicable to any given device. For a disk- or tape-like
device, an INPUY, OLD, or NEW filo is expected; an OLD file is one that was NEW in a
previous PRIM session, and is being re-used, while an INPUT file is an old read-only file.
For a bidirectional communication device (a.g., a terminal), two files are required: an INPUT
file and eithcr an OUTPUT or APPEND file. Alternatively, a rcal terminal may be used for
both (or either one). For an input-only device, INPUT and OLD are identical; for an
oulput-only device, OUT and NEW are identical.

000t e e A P S T ST S s P S e

PRIM System: User Reference Manual Page 9
Exec
(For those devices that deal exclusively with character data, the mounted file is always

taken as an ASCIl text file; character translation is performed as part of the 10 process.
(This allows the file to be created and/or processed by any operating system utility that
deals with text files.) For tape and disk devices, the file format is internal to PRIM (and
therefore not requested from the user); the data is recorded direclly. For other devices
the user is asked, via subcommand mode (">>" prompt), whether the mounted file (NOT the
device) is an ASCH text file or a binary file containing @ stream of pure data in bytes of
some fixed size. The default is a binary file of a device-dependent byle size.

Once a file has bcen mounted on a device, all exec commands that refer to the file require
the device name as the specifier; for communication devices, where two files are normally
mounted, thc device name is followed by a direction selector. 1hc file name itself is not
used as the internal identifier.

News reads the PRIM on-linc news file.

>nSCENS

Do you Mant to sce 4-APR-77 Changes In PRIN ?: CSCYES

[Here comns the message regarding changes of 4-APR-77 ...)

Do you want to soe 24-HAR-77 Preliminary Documentation ?t del yxx

>
The date of the most recent ncws message is shown automatically at the start of each
scssion. In response to the command, each messape’s date and subject is shown,
beginning with the most recent message. For each message, the body may be seen (Y ES)
or skipped (N(O), or the command may be terminated (delete or abort).

Peripherals returns information about the installed devices.

>POSCERIPHERAL S

Chan Unit Mounted Device
1 0 Ne ~ PRINTER
2 0 Yer TERNINAL
3 0 Yos TAPE-UNITY
3 1 Yos TAPE-UNIY

active devicest TERHINAL 3

>
This command produces a listing of all the installed devices, together with their 10
addresses and a nolation concerning whether thoy have files mounted. It also lists all
devices which have suspended 10 operations. Ordinarily, suspended operations are limited
to (1) 10 error condilions and (2) input operations where the input tile is a real terminal
and no inpul was available when target execution stopped.

Quit terminates a PRIM session.
>qTicunt
Quitting HACHINE (Confirm) €7
e

Terminating the PRIM session involves closing all open files and returning control to the
process that iniliated the PRIM session. The session cannot be continued.

-

o e

Ll 0 Sl A 1200

|
i
g
:

PRIM Syslom: Uscr Reference Manual Page 10
Exec

Reassign specifies a new file for a mounted device.

>ron®ACSSIGN (device) $aCACPE-UNIT (te (ile) mewmfilatte or
>

This command is used to substitute a new file specification when, after a prior Restore
command, a previously mounted file cannot be found. In particular, a restore done from a
diffecrent directory than the one in force at save time has trouble finding any of the
mounted files. Reassign may only be used for devices/files that are marked “"[not
opened]" in a file-slatus display. The new file is assumed to have the same
characteristics as the old onc and is positioned at the same file position.

Reslore recovers the state information saved in a file.

>ras®ACTORE CHrom SAVE tile) ANCD.CONFIG;0%¢ or
restorod CONFIGURATION from TUESDAY, MWAY 3, 1977 12:35:08. POT
>

The current context is updaled with.the complete or partial cnvironment previously saved
in the designated file by the Save command. For the addressable regions -- machine
memory, registers, etc. - the saved data replaces the current data only for those cells
that were actually saved; cells not saved are not cleared. (Thus, nonovcrlapping memory
images arc merged.) For nonaddressable regions -- symbol, configuration, and breakpoint
-- each one is completely replaced if present in the file. The date and region(s) saved are
shown, followed by a list of any mounted files that cannot be found.

Rewind returns a device’s mounted file(s) to the beginning.
>row®SCIND (dovice) ta®SCPE-UNIT ©F

>ret ter®SCHINAL (B,1,0,7) P One of the following:
BOTH

INPUT

ouPuY

>REW TERMINAL Jesonpuy ©F

>

This command is uscful for relrying a program without unmounting and remounting files.
(Files are always rewound when mounted, except for Append filcs, which cannot be
rewound.) For a terminal-like device that requires separate input and output files, the user
optlionally specifics which file is to be rewound; the default is BOT'H.

Save copies selecled state information into a file.

»2aC4CVE P Ono of the following:

L

CONF IGURAT JON

FORNATS

M HORY

SYNHROLS

>SAVE @®ACONF IGURATION (on (11e) aHCD.CONKIG; I

This command saves on the (new) file an image of the region(s) sclected tor saving. The
contents of the filc can later be restored for use in this or anolther session. The second
word of the command sclects one of the save options.

U P RS——

ol s Tl R

o e A R s e 0 TR - P—
s s 4 e 2o - < RO SRS S ——

PRIM System: LUser Reference Manual Page 11
Exec

ALL saves everything -- a complete checkpoint of the tarpet machine and debugging
stale. “"tverything” includes memory, all addressable repisters, installed devices,
mounted files topether with their positions, debug breakpoints and their programs,
debug formals and modes, defined symbols, and the internal state of the emulated
machine.

CONFIGURATION saves all the machine configuration data, including installed devices,
mounted files (if any), machine parameters, and debup formals and modes. This
command is allowed only before any execulion takes place. Uscful for creating a
slandard machine configuration (possibly with some standard files mounted) for use in
subscquent scssions.

FORMATS saves all the formats that have beon defincd (using the debugger Format
command).

MEMORY saves those repions of the machine memory that are not cicar. (At the start
of a PRIM scssion, memory is alrcady cleared.)

SYMBOLS saves all the user-defined symbols, both thosc loaded via the exec Symbols
command and those defined directly via the debugper New-symbols command. The file

that resuits is a SAVE/RESTORE file, not a SYMBOLS file!

Set changes the values of user-settable parameters.

»20C5CT teompty> or dovice) ©F

»>? tna of the (ollouing:

cLocK

% NORY

SPLED

»>e®SCLACK (ticks per second) #5€1e99 €

>>MPSCENORY (BK modules) 4€F
»r

>3075CT (compty> or dovice) pPACRINTER
»>8CSCPEFN (characters per second) [50CF
»0F

>

Following the command word, the user selects the group of paramcters he wishes to alter.
An immediale retnen sclecls the global machine parameters; a device name selects the
paramelers of that parlicular installed device (the parameters of multiple installed
instances of the same device type need not have identical sellings).

Any number of paramelers from the sclected group may be changed. n response to the
subcommand prompt (">>"), the name of a parameler and ils new value are entered; each
change is made immediately and a new subcommand prompt appcars. The command is
terminated by an cmply inpul, return only, or by an ahort (which docs not undo any
parameters previously changed). lhe list of possible paramelers is hiphly machine - and
device-dependent; it typically includcs the size of memory and the speed of each device.

The value of a parameter is either a (decimal) number or a keyword from a
parameler-specific lisl; a question in the value field reveals which is expected. An ercape
scls the parameter to its default value.

PRIM Systom: Uscr Reference Manual Page 12
Exec

Show displays the values of all the parameters in a group.

»shC8C0H (compty> or dovice) €7

CLOCK Is 1000 ticrs per second

NENORY i1s 4 8K modules

SPEED Is 750 nanoseconds per memory cycle

>8hPICOU (comply> or dovice) pPECRINTER

SPEED Is 200 characters per second

>
Following the command word, the user selecls either the global machine paramelers
(return) or thc paramclers of an installed device. The names and current values
of ali the paramelers are displayed.

Symbols reads an ASCH symbol-table file.
>8Y"SCHROLS Cirom tile) SY MBOLS.EXAMPILRose o

>

This command causcs PRIM to build a user-defined symhol table from the data in the
named file, which is a structured ASCIl text file. The file may define values for both global
symbols and program-local symbols thal are organized into proprams. In the PRIM
debupper, the global symbols plus the local symbols of the currentlly open program are
accessible at any lime. Symbol values in the file are octal. The form "name =~ value"
defincs a global symbol; the form "name = value" defincs a local symbol; the form "name:"
cstablishes a program name to which subsequent local symbols are assipned. The file is
free-format in that spaces, tabs, commas, and new-lines may occur anywhere -- except in
the middle of namcs or values. The following is a sample symbols file.

ALPHA- -85

BE1A-=12345

P'Rl: A-2000, B-2132, C = 224)

XY?7:

A-3212 AA=3245, AAA=3261,AAAA=7/77

Symbol files are intcnded to support the moving of symbolic label data from an assembler
or linking loader into PRIM for use in symbolic debugging.

Jime displays lime-of-day and time-used information.

>0ITACRE (is) TUCSOAY, NAY 3, 1977 12:34:33-POV

Usnd 0:14.6 PRIN timo; Usod 0:102.7 WP time,

>
This command displays the date, time of day, the amount of PRIM time uscd and the amount
of ML P-900 time uscd in this PRIM session. (Elapsed target machine time is displayed in
response to status.)

Iranscript transcribes the subsequent PRIM session on a new file.

>IrCSCANSCRIPT (10 f11e) nosnfilathc cr

>
All transactions with the user terminal, including execution-time 10 to TINS-TERMINAL, is
transcribed until cither tho user terminates the session (with a Quit command) or closes
the transcript. Only one transcript may be open at a time. A header line containing the
date and time is placed al the head of the file.

PRIM System: Uscr Reference Manual Pape 13
Exec

Uninstall removes an installed device.

>HUNITACNSIALL (device) P PRINTER or TAPE-UNIT

SUNINSTALL (device) (a®ACPE-UNIT (unit): jPs¢ er

>
This command is the inverse of the Instali command; it removes an installed device from the
configuralion, first unmounling its files if necessary.

Unmount unmounts the file(s) from a device.
>UNMTICOUNT (dovice) pTSCRINTER ©F

> nm ter®SCRINAL (8,1,0,7) P One of the follouing:

BOTH

INcyY

Pyl

>UNN TERNINAL €4 povH €r

>
The unmountced file(s) are closed. For a terminal-like device that requires scparate input
and output files, the user optionally specifies which file is to be unmounted; the default is
BOTH

PRNOR ST . B T T

PRIM System: Uscr Reforence Manual Page 14

PRIM DEBUCGER -

The PRIM debupger is @ lable-driven, target-machine-independent, inleractive
program for debugging & PRIM emulator or » target program running on such an emulator.
It is tailored to @ specitic target machine by tables prepared as part of an emulation tool.
Hasically, it permits a user to set and clear breakpoints and to examine, modify, and
monitor target system locations. Targel syslem assembly language and symbolic names
arc rccognized, and arithmetic is performed according to the conventions of the target
machine. The debupper command prompt character is "¢ cach level of subcommand adds
another "#" (o the prompt.

ARGUMENTS

Most dcbuprer commands take arguments in the form of values, expressions,
cxpression-ranges, lisls of expressions, or lists of expression-ranges as defined below.

Values

A value is an assembly-language instruction, a form, text, or an expression- list,
Aczscmbly language instruclions are parsed by a table-driven assembler/disassembler that
accepls the same synlax as the assembler for the target machine. User symbols will be
recopnized if they have been supplied in user symbol-table files (sce the exec Symbols
command) or have been declared individually (see the debuppner Noew-symbol command).

A form requires at the user previously definc a corresponding format (sce the
debupper Format command). A form is represented by the formal name followed by an
expression-list, as in the following example.

F10,7,3

Text is represented as a double-quote (%), followed by an arbitrary delimiler
characler, followed by a sequence of other (non-delimiter) characters, followed by another
occurrence of the delimiter character, as in the following cxample.

“/This is text./

Expressions

An cxpression is any well-formed scquence of constants and symbols that are
defined for the tarpet machine; the symbols (which are machine-specific) may represent
cither locations or operators whose rules of combination determine what is a well-tormed
cxpression. A location symbol may represent a named hardware clement or a plobally or
locally defined uscr location. An opcrator may either be unary (preceding its operand) or
binary (coming belween its operands in infix notation). The precedence of operators is a
funclion of the targel machine, except that all unary operators are assumed to have the
same precedence value, which is higher (more strongly binding) than that for any binary
operator. If brackels are permitled (o.q., parentheses), their precedence value is higher
than that of unary operalors. For example, A-B and -B+A will evaluale the same, but will
differ from ~(H+A), which will evaluate the same as -B-A. A brackeled subexpression may
tscll attain the full complexity of en expression. The behavier of operators is
machine -specific.

S ;&‘w .I l' \I " . ' A- I“».I..' I -

PRIM System: User Rcference Manual Page 15
Debugger

Expression ranges

An expression-range consists of the triple: exprecssion (lower bound), colon,
cxpression (upper bound). It rcpresents a sequence of locations slarting at the lower
bound and continuing through successive locations to include the upper bound. The upper
bound may not be less than the lower bound. Wherever an cxpression-range is allowed, a
single expression is accepled and treated as if it had becn entered as both the lower and
upper bounds of a range. If the two bounds in a range address diffcrent spaces (see the
discussion of Spaces beclow) within the larget machine, the scquence of locations is
restricted (o that space addressed by the lower bound. Two special forms of expression
ranges are recognized. I the second expression in a range is "-1%, it is treated as being
lhe largest address in the space referenced by the first expression. |f the second
exprossion in a range is of the form "+ expression”, it is trealed as if it were "(lower
hound) ¢+ expression.”

Lists of expressions or ranges

A list of expressions consists of at least one expression, followed, optionally, by any
number of occurrences of a comma followed by an expression. A list of
expression-ranges has the corresponding structure of at least one range, followed,
oplionally, by any number of occurrences of a comma followed by a range. An example of
a list of ranges is

' 0:10, 20, 30:50
Noie that the second elemen! of the list (20) is an example of a range with a defaulted
upper bound.

SPACES

Addressable localions in a target syslem are organized into constructs called spaces.
A space consisls of a sct of addressable locations that is closed under a successor
function and its inverse (a predecessor function). For example, main memory constitutes a
space, lypically slarling at location zero and continuing through an arbitrary number of
locations. 1he successor to the last element of a space is the first element in that space;
and the predecessor of the first element is the last one. In some cases, machine locations
are grouped inlo a space for convenience, even when the concepl of a successor funclion
for clements of that space has no correspondence in the actual target system. Such a
space might consist of lestable indicators. The machine symbols are identified in the
tool- specific user guide.

For purposes of the debugger, every addressable location in a target system is
represenled by a pair: (space, element). When a range is specificd, two such pairs
(a,h)(ed) arc implicd. 1o avoid ambiguitics where a and e differ, the
debugger ignores ¢ and treats such a range as a sequence of locations, all in space a,
slarling with element b and continuing through element d.

SYNTACTIC UNITS

The basic syntactic units the debugger deals with are
1. Lliterals
2. Symbols
3. Puncluation

PRIM System: User Reference Manual Page 16
ebugger

Literals

Lilerals are character constants, numeric constants, or single characlers thal have
soame cncoded mcaning (which may be context-dependent). A characler constant is
supplied to the debugger as a machine-specific character-constant prefix string followed
by a string of data characters of arbitrary length, followed by a machine-specific
character-constant suffix string of the general form:

prefix-string character-data-string suffix-string.

If the first character of the suffix string is to be included in the data string, it must appear
doubled. Characler constants are converted to binary (right justified) and are \runcated
to fit the element in question. As the form of a character constant is machine-spccific, it
is described in the tool-specific user guide.

A numeric constant is supplied to the debugger as a machine-specific (and oplional)
radix-prefix string followed by a string of digit characters followed by 2 machine-specitic
(and optional) radix-suffix string of the general form:

prefix-siring digit-string suffix-siving
The prefix and suffix strings establish the radix within which the digit characters are
cvaluated. The digit characters for any radix.r are the first r characlers of the set
{0,...9A,...,2}.

Coded characlers have independent meaning only within ccrlain contexts: at
appropriale points in the dialogue they designaie a particuiar debugper cgmmand, a mode,
a breakpoint type, etc.

Symbols

There are five types of symbols: machine symbols that are ascipncd o hardware
clemenls in lhe target machine, predefined opcodes for symbolic instructions,
uscr-supplied names of formats, operators for expressions, and user symbols that can be
ausigned to arbitrary memory locations. Machine symbols are given in the tool-specific
uscr guide; other symbols are assumed to be familiar to the user.

Uscr symbols. are either loaded from a file using the exec Symbols command or
individually definced using the debugger new-symbol command. The symbols include both
rlobal symbols and program-local symbols that belong to spccific named programs. The
global symbols are available at all times; the program-local ones only when theirs is the
opcn local symbol table.

Punctuation

Punctuation marks are characlers with a predetined syntaclic (and usually semantic)
role. The punctuation characlers are the separators (comma and, in format definitions,
space), the terminators (return, escape, and, in rcplacecment operators, back-slash and
up-arrom), and a scmanlics-frce delimiter (space). Kseape is uscd as a terminalor
instead of return to invoke a subcommand or an additional feature of a command (e.q., in
Mode or Breakpoint commands described below).

e o

e <

PRIM System: Usor Reference Manual Pape 17
Debugger

ERROR DETECTION AND EDITING

Debugger commands are exsmined for errors as they are entered, character by
character. As soor rs an error has been defected, a bell (becp) is ochoed and further
input is rejocted, except for the generic editing characlers back-apace, retypa, backup,
delote, or ahort, E

COMMANDS

Debugger commands are ol single characters; thcy can be organized into several
rroups: dcbupger control, execution control, display, and storage. Each is lisled below.
tinless otherwise indicated, the command character is the first character of the command
name.

Debugger Control

Dcebugper Control commands provide for user control over scveral aspeclts of the
behavior of the debugger. They permit the user lo execule commands indircclly or
conditionally, to return from the debugger to the PRIM exec, and to control the debugger’s
representation of data. The Debugger Control commands arc:

e Sl Ll e e e o

llie, Calls a designaled break-time program as if some brecakpoint associaled wilh thal
proprram had just occurred. A program number must be designated that corresponds to an
cxisling break-lime program. Program numbers are shown when the breakpoint data base
is displayed (sce the break command); the program itsclf can be seen using the
program-cdil command.

#l/sa program Pinumhor of an existing break program)

#Uno-program 2¢7 -
it the use command is itsclf in a break-time program, then a go command cxcculed in the
called program causes termination of the calling program as well as of the called program.

If. lests the supplied expression and, if it is true, exccutes the following subcommand. A
true expression is onc whose value is odd; relalional aperators yield a value of one when
true and zero when false. The tested expression must be lerminated by an escape.

#11 Ptoxprossion)

16 308 cthon> #0Type OCF

00: 60 #

2l 208¢ cqhans #071'ype OCF
’

Roturn, Returns conltrol to the PRIM exec; confirmation is required.

#Roturn (to EXEC) OF
>

PRIM System: User Reference Manual Page 18
Debugger

Modo. Interrogates default and current modes and changes modes. A question afler the
command characler M will elicit the default and current mode setting; another qmmm will
list all mode setlings and associated mode-code-cheractors.

#Mode P

Current and (Default) mode settingss
Foodback Verhose (Verbose)
Output Bits Bits)
Rddresses Symbol le (Sywbo| ic)
Lino-format Donse (Dange)
Radix 8 (1 }]

Type ? for more

Niode P

Foodhacks
c Concise
v Vorbose

Outputs
] Rits
F Formatted (format-name)
] Instruction

3 N Numor le

T Text

Addresses:

] Absolute
-] Symbolic
Line-format:

D Dense
E . Expanded

Rodixs ' ~
Rn Radix-base n () < n < 37 decimal)

’

A list of mode scilings is expecled following the Mode command; if none is supplicd, the
default sottings are reestablished. If the list is terminated by a retnrn, the current modes
are changed. If the list is terminaled by an escape, a temporary change is made that
applies only to the following subcommand, as in the following example.

#Mode Instruction 75¢ 247ype 012340F

012341 JUNP 8567

’
Moades are established for feedback (verbose or concise); output (bils, formatied,
inalruclion, numeric, or lext); addresses (absolute or symbolic); oulpul line format (dense
or cxpanded); and output radix (any base from 2 through 36).

The fecdback modes control how debugger commands are reflected to the user:
concise suppresscs all "noise” focdback (such as command complelion); werhose enables
it. The output modes conlirol the general representation of data: hita \rcats a datum as an
unsigned magnitude; formaried (reats it as a pallern of bits parlitioned into contipuous
ficlds according to a designated format (sce Format command) instruction trcals It as a
miachine instruction end disassembles il; mumeric lreals it as a sipncd value, if that is
appropriate for the machinc; and test treals it as a representation of a string of
characters. The address modes control whether numeric-mode values are to be converted
to symbols (if possible): ebseluste suppresses the symbol look-up; symbolic enables it. The
line-format modcs conlrol the donsity of displays: demse suppresses most

PRIM System: User Reference Manual Page 19
Debugger

debugger-generated line-feeds so as to show more information per line, expanded enables
them.

When formatted output is selected, the name of the output format must be specified,
as in:

#Mode Normatted ¥'] €,

Output radix scts the number base for the representation of numeric data (note that
numeric input dala sclf-identity the number base). For example,

#Mode Radix 16 €7
causes current output radix to become hexadecimal.

Format. Pecrmits the user to name and define a format as a list of ficlds, each of which is
a designated number of bits wide. The field widths are supplied as a list of numeric
conslants (separaled by commas or spaces).

#Format K i0%¢ 2 4 6 ger
’

#Made KFormatted F1 03¢ 5T ype 00

00: 00,00,00,00 #
If the format command is terminated without having defined a format, all defined formats
are displayed, as in

#Format €7

Fl12,4,68 ¢

Comment. Following an initial semicolon, ignores all subscquent inpuls up to and including
a linc torminator.

#; THIS IS A COMMENT--IT DOES NOT GKT INTERPRKTED.SY
4

New-symbol. Adds a list of new user symbols to the (possibly empty) global symbol
lable. Each new symbol in the list is supplied as 8 name followed by a space Or an escape
followed by an expression giving its location.

#Noeu-symbols P(((nou-symbol) <ESC> (expression))-|ist)

Mon-symbo s I'ATCHECEE ca15 07000007

#Type PATCH,PATCH-),PATCH « Y07

PATCH: 00 067777: o0 PATCH+0Sr 08 &

Kill-symbol. Removes a list of user symbols from the open local or global symbol table.
#K i1 1-symbols P(list-of-user-symbols)
NV -symhols PATCHET
#Typa 067777:4207
067777 00 070000: 60 07000): 00 #

Open-symbol-tablc. Opens a local (program-specitic) symbol table if one is specified; the
currently open local symbol table, if any, is closed in any case. Afler this command is
executed, the available symbols include the global symbols plus the local symbols of the
specified program; if no program is specified, only the global symbols are available.

#()pon-program- sysbols Nnorm) or not <close the open local symbol table>
lopm-porn-wu

PRIM System: User Reference Manual Page 20
Debugger
Execution Control

t xccution control commands provide for user control over execution of the target
program. They permit the user to continue execution, transfer to a designated location,
scl and clear brecakpoints or edit break-time programs, and single-step the target program.
The execution control commands are

Go. Passes control to the target machine in its current state. If an argument is supplied,
its value is first stored into the program counter. The argument can be an arbitrary
cxpression, so long as it evaluates to a legal memory address.

#Co (t0) ?(oxpression) or empty

#5o0 (to) OlO00GCT

fircaok. Displays or scts breakpoints in the targel machine. The two classes of
breakpoints are known as event breakpoints and reference brecakpoints. There is a fixed
scl of cvent breakpoints defined for any given target machine; each describes a type of
cvent whose occurrence causes the emulator to break if the corresponding event
brcakpoint is scl. The set of event breakpoints always includes (1) cvery
inzlruction-cxecution (single step), (2) every branch of control, and (3) cvery mcmory
writc; other events are defined for each machine as appropriate. Reference breakpoints
cause the emulator to break when a specific type (read, write, andfor execute) of
rcference to a specific location occurs. Reference breakpoints may always be sct on
mcmory locations; other spaces in which reference breakpoints may be set are detailed in
the tool-specific user guide. Any number of reference breakpoinls may be set at any
lime.

The break command followed immediately by a return causcs all cxisting breakpoints
(i.e., thosc in the brecakpoint data basc) to be displayed; if a break-time program is
associaled with a breakpoint, its number is also displaycd. Otherwise, a list of either
cvents or ranges (reference locations) for the setling of breakpoints is supplicd. |If a list
of ranges has been enlered and terminated with an esecape, then a list of read, wrile, or
cxecute reference-break conditions is specified next (as pcrmittcd at those locations); the
defaull is all three types. Whenever a breakpoint is scl for an event or a location, any
carlier breakpoint for that same event or location is supcrscded.

If the list of evenls or break types is terminalcd by an eseape, a< in the sccond
cxample beclow, a break-time “program™ may be supplicd to be execuled by the debupgper
when the break is encountered. The following commands are permilled within such a
brcak program: Clear, Comment, Dcbreak, Evaluate, Go, If, Jump-history, Locate, Mode,
Open, Set, Type, and Use. Replacement within a locate or type command is not permitted
in a break-time program. Any number of commands can be includcd in a break program;
the program is terminated by an emply command (terminator only).

T ———

PRIM System: User Reference Manual Page 21
Debugger

#lreak (at) Plovent-1ist) or ((expression-range)-1ist) or <RETURN>
<? for list of events>

#Mreax (at) 0]23:0456, 071205¢ (after doing) ©F

R MU X> &

#lireax (at) 01000°5¢ (atter doing) Xecute €4C
20 1ype GOF

#1Go (t0) ©F

ower

<Program numher Is (11> #

#Breax tat) TICKEr

' -
#lreak tat) €

0123-0456 <R, N,X> 0712 <R,H,X> 010800 <X>[}) JICK <event> #

During program execution, if an event break is delected, or if a reference break
(read, write, or cxecule) is detected at a location for which the corresponding break type
has becn specified, then execution is terminated before beginning the next target machine
cycle and conltrol passes to the debugger to process the break. If a break-time program
has bcen supplicd for that break event or location, the program’s commands are executed
in order by the debugger until either a go command or the end of the program is
encountered. If scveral breaks occur on the same cycle, the program associated with each
of them is execuled; the order of break-program execution corresponds to the order in
which the breaks are reported by the emulator. If every brcak causes execulion of a Go
command, then the target program is automatically resumed, provided there is no
ambiguity as to where execution is to resume. Otherwise (i.e, if any break had no
program or failed to execute a Go command), @ message describing each of the breaks is
displayed and the normal command level of the debugger is entered.

Debreak. Clears event breakpoints or refere'ﬁce breakpoints at locations in the target
machine. The defaull is to clear all breakpoints. Examples of debreak commands are

#Debreak (trom) 0234:440F

#lreak (at) €

0173-0233 <R,U,X> 0241-84568 <R, U, X> 8712 <R,H,X> 81000 <X>11)
TICK <event> #

#Dobreak (from) ®5¢ a1} (contirm) €7
#raar tat) ©F
’

Program-cdit. Displays a designaled break-time program or permils it to be edited. A
program numbcr must be designated that corresponds to an existing break-time program.
Program numbers are shown when the breakpoint data base is displayed (sce the break
command). If thc command is terminated by @ returm, the entire program is displayed; it
by an ascape, the program is displayed line by line for editing.

i PRIM System: User Reference Marusl Page 22
4 Dcbugger E

i ol esx (at) STRPese

} 27 ype OLDCCE?

i #Go tre)

i e

u Program nusher is 12> Slresx tat) €

0123-0233 R, W, 1> 0241-0456 R, N,0> 0712 A0, 0> 01000 <X>(1)
1ICK <ovent> SIEP <ovent>(2)

| #Program-cdit Pipregren-mmber) (<ESC>-te-0dit or <REVURN>-t0-view)
#Mrogram-adit 207
L Type €OLNCC
it Go (t0)
§ ’

When ediling a linc of a break-lime program, the user can specify that the next (\) or
prior (1) linc be displayed or that a replacement (R) of the current line or an insertion (1)
in front of the current line be made. Editing is terminated by an empty editing
spccification. Replacement or insertion is identical to the specification of a break-time
program within the break command in that a subcommand mode is enlered where
successive break-time commands can be entered until an empty command is supplied; then
cditing continucs with thc next line of the program. An extra (dummy) last line is added
when editing a program so that new commands can be inserled at the end; the dummy line
is discarded when the command is terminated.

#Program-edit 205¢ 3

Tupe €OLDCC 1 2(% <prior>) or (\ <next>) or ((lcnsorts) or (Rceplaces)
(commands))

Type €D NCC 1 Replace

#2Mode Instruction 5¢ 2007 ype SOLDCCEY

aner
Go (to) 17

#'vogram-odit 207
Hode Instruction #48Type @OLDCC
Go (to)

’

hiaiabic

g

Single-step. Transfers control to the target program through the program counter for
cxecution of onc instruction. The single coded character lina-foed effects this command.

Display

The display commands permit the user to search or cxamine the contents of
designated locations (and, in two cases, optionally permit their replacement) or to evaluate
cxpressions. 1he commands are: :

Type. Displays localion and contents of a list of cxpression-ranges, pcrmitting the
conlents of each location to be replaced if the list is terminated by an eseape, as in the
following, example.

#1ypo P((evpression-range)=1ist) optional-<escape>~to-modi iy

fype 0:205¢ g0, 00 « €7

8l: 00 « 207

02: 00 o""

’

The replacement value can actually be a list of expressions, the values of the expression

!

PRIM System: User Reference Manual Page 23
Debugger

in the list going into successive locations starting with the one last displayed. If no new
value is supplied before the terminator, the existing value is not modified.

#Type 0:20%¢ 00: 01 « 205 @), 92« O5C 92, 03 = 08¢ ¢

In Display-with-rcplacement only, the coded characters hack-slash and up-arrow can
also serve as terminalors and perform special functions: hack-slash causes the next
localion to be displayed for rcplacement and up-arrow causcs the prior location to be
displayed for replacement; both of these terminator characters permit the user to step
beyond the limits of the ranges entered as arguments to the Type command.

#Mype 010°%¢ 010: 00 =« IT 97: 002\ 0l10: 003\ o6llr 00=1
010: 03 « 47 07: 02« 5T 06: 00\ 871 05« \ 010: 04 = \
0111 80 « 6\ 012: 00 & 7€

’

The last location displayed by a type command becomes the "open” location, and the
localion following the last one displayed or replaced becomes the "next™ location (see the
ncxt four commands).

Same. Redisplays the "open" location (scc the Type command). lhe single coded
character ™" cffecls this command. The commands Same, Prior, and Next are all shown in
the following example.

#: 02: 00 41 01102 4\ 02100 4\ 02 00 ¢

Prior. Displays the location at one less than the "open™ location (scc the Type command).
The single coded character up-arrow effects this command. Sec the examples under 1ype,
Same, and Equals.

Next, Displays the "next™ location (See the Type command; the mode in which the open
localion was last displayed determined how far it was advanced lo the "next" locations.)
The single coded character back-slash effects this command. Scc the examples under
Type, Same, and t quals.

Equals. Displays the "open” location (see the Type command) as bits or as a number if
the current output mode is already bits. The single coded character "=" effects this
command. In the following example format F2 has been declared consisting of four
half-word ficlds.

#Mode Formatied F2€r
#: 010: 00,01,02,03 #- 010: 01 4\ Oil: €2,03,04,05 #\ 0i3: 06,07,00,8!
#T 0121 04,05,06,07

Locate. Finds cclls in a list of expression-ranges that contain (or do not contain) a
specified value, cxamining only those bils designated by an optional mask, and displays
their locations and contents, permitling each displayed value to be replaced if the list is
ferminaled by an escape. Thc comparison value and mask arc cxpressions terminated by
an escape; the comparison value defaults to "NON 0" and the mask defaults to all 1's. The
search is performed over a list of ranges, as for the Type command.

#l.ocate P((oxprestion) or NON (oxpression)) <match value defaulis to NON 0>
Nocate NON 072¢ (uyith mask) Ploptional-expression) <mask value>

Mocate NON 0 (uith mask) Cenot zere> (In) Pllexprension-range)-1ist)
optional-<ESC> to-modify

Mocate NON 8 (uith mask) <not zere> (in) 0:020°7

00: 01 0): 92 02: 03 . 071 08 010: 0 0l1: 06 012: 07

ES i 'System: Usor Reference Manual P M FM?' 24
Debugger

W 1 imiportant that he| chimpiribah Vaius, the mesky drd the dala be properiy aligned, For

cxnmplo. bait 1 mi IXa g) s
#l.ocate 0709%¢ (u1th mask) 07009 (i) 0:3j6r
. Slisplays all colls, from Q through 31 whass, secand actal digif from the cw sontsins all 1's.

fxan af _2acus) daola Aand eaoitonut m& miolag bns @1 25 avINg
by

vd '})t le“’ﬂ 'DP‘K‘QPN' ‘ l?\' iﬂ,‘mmw“\? MMQT slops Q“M ..Ch

Mg . 1§ 2900 eqpls

qq‘ R'¥ Q!M"““ mﬂﬂﬁﬂm\rﬂfﬂ?l .:IXP‘;WQNW d :inamaasiagay 101 bayslgaib
#l.ocate; B4 aver-zore> 4} th' maER) OF€IC 14n) OBI0MT. 1 1gny D) .ﬂ'“-' arl bnoyad
.l’} ., '8 "r ; /8 s 10 :6018 fS = 88 <8 ' 08 019 OG0 anu' TN
’ j 5 A .’ { n : / s a { Iy 2 .01
§f = #8 010 <o 18 f gy 29 i i { H t 4

Jump-history. Displays the most recent hrgol—pmgnm]umps in the order lhey occurred.
The number of such]umps to dispiay (hkon modulo ihg default value) may, be supp!oed.

\\»w o) “

wil bns vi &
> £)imp-h t v ¢ " : : :
wil 302)iih:h"‘:z:::ff.?r.?‘. J."“,.T .T'Q “ '?‘\““ qath ano lesi ol gm a.ﬁ«:? agile 200
01000--0200(2 times) @300--8108 #

{abhnsmmod ywaat Ixon

PoPUaluate.’ "&h "3 ioulw of J\lmh oxp’rdssiqip. W h has o efchl oh’ the opon bcahon

" o) 10 1R DRI 0
" o eplacement.” """ , ,A
Manmxa gniwolol ol
#Nou-symbols PATCHMC <q1> 020000°7, ., /v <8 sta In 10 %0
shvatvate PATCHIC . g70000 ¢
(brsmmos aqy Wil A1) noris ol “pnao” adl nsrtd 2oai ano 1 nofgro } taanill o113
Y W a2nlgmaxa 9 e hasmmo irtf 2lralla movin-q IRURETIR N 2 gine ot

Slorage commands chonga the contents of designated locations vnthdut diéblayina
- Awm. and \w\hom changing the "open” Iggohom The slomgp commands are, . ¢

{.2n0tter00 "ix W st woirt ban I

LLlear, ,plegtp mc conlonlq of a lisl ot sxwp,ssqyp—;m lq all 2cro bils. Clemnn an
cvent for which a breakpoint has ‘becn established causcs the eveni lo be deaclivalad; it
may be reactivaled with a Set command. This may be of benefit when a break-lime

;. Rrogram has mcq Qsiodplnd with the event as the brqakppml dalq-bau emry for that

‘"“VQ'?“ d’) inate ol ahid yvbeoay t p inavy ol

ot o w‘ﬁ" ﬂJ‘,‘“F ot nand 260 1 famiotl alamexa gniwollot adi ol DAR M

} w - Herdl
Scl. Scls the contents of a list of expression-ranges to the valye of an c\tpres;ipn or (on
de: lauﬂ? to all onc- tph. i the list is lerminated by, an escape, q,smalc replacement
cxpression Is accepled; it it is terminated by a retuen, the delaqll value of all 1I's is used.
Nw replaccmont expression is truncated to fit into the designated foc alions, if nccessary.
« Folling ncavant tor which s broskacint ol boar cotablper (i o, hch s, i
p ty,.in. the breakpoint d ala_base) causes, the event to be aclivaled for,a si

4\, «
3 fF ‘qf, hal event (with na break program, qs:pcsalcdmucrp W"‘ﬂh thc. event .
Q"VCQN’B 17 216 Aosm brs auley noasain vl \ v balemiminl
)r'f ." r, {"‘*"”””WW!T“‘" O BOWN" af sHustob nulsv pocirqmod I jngnnan 08
qy |l adl 10} 28 cagnst 1o fail 8 1avo bamyolvaq ai daweo
's.. w‘.im‘x«yx B nitlev tatems ({ao saqxn) MOW y {no ' . ‘; " w 1k e
¥} conity wems (nolzaavgua-teaottae)y Olaom dd R VYA erean b
(1 (ApARY (10 3 . ta L Aliw) 8§ WO .
Yibom ot] f
WL (D o] y I8

rm‘

WA

PRIM System: User Reference Manual Page 25

TARGET EXECUTION STATE

Target execution is initiated, or resumed, through explicit commands (excc Go,
debugger Go or Single-step). Execution proceeds until a terminating event occurs, causing
control to return to the appropriate PRIM command level. When exccution terminates, the
cnlire emulated context -- including clocks and outstanding 10 opcrations -- is cleanly
frozen until the next time execution is resumed. Except for explicit modifications to the
conlext made by the user at the command level, the termination and subscquent
resumplion of execution is transparent to the target machine. The terminating cvents are

The target machine halls normally or is interrupted (by the emulator) due to the
occurrence of some anomaly condition. A message to that effect is generated. The
anomalies being monitored are listed in the tool-specitic user guide.

The uscr enters an abort. The abort character is echoed and, after execution is
slopped, a status message is output indicating the poinl of inlerruption.

The emulator detects the occurrence of a break condition cstablished by the uscr via
the debugger breakpoint command. The establishment of breakpoints and the
subscquent intcrruption of cxecution at the time of their occurrence is the primary
program debugging tool in PRIM.

An 10 crror occurs. A message detailing the particular device involved and the nature
of the error is oulput. 10 errors always return control to the exec state; the error
meassages and their meanings are listed at the end of this seclion.

When one of these conditions occurs, it is logged and execution conlinues until the end of
the current cycle of the target emujator. It is therefore possible for multiple conditions to
rcaull in a single stop. When this s the cdso, the aclion and message appropriate to cach
of the conditions is produced.

When a breakpoint is detected, the debug propram, it any, associated with each
breakpoint is executed by the debugger before control rcturns to the command level.
Should some break program terminate without a Go -- or should there be some break with
no brecak program -- a message describing the break is output and the command level is
entered. Otherwise, execution is automatically resumed; the user receives no indication
that a breakpoint occurred unless the break program ilsclf produccd outpul.

TARGET 1/0

The target machine that runs in PRIM consisls of a processor (CPU) in some
parlicular configuration built by the user to resemble the aclual confipuration required by
his proprams. A confipuration is built -- before execution is bepun -- by installing
pcripheral devices and establishing values for various machine oplions (sce the exec install
and Scl commands). Afler an emulated device has been installed, and before 10 operations
can procecd on that device, a (1ENEX) file or assignable device must be associated with
that emulated device (sce the exec Mount command). Subscquent 10 operations addressed
to that device arc then performed on the mounted file.

A mounted file may conlain either direct device data (binary) or ASCH text; in the
laller case, characters are translated between ASCH and the actual device character set as

s il

PRIM System: User Reference Manual Pape 26
Target Exccution

they are processed. (If the device character set does not include lower case, input lower
case lelters are converted to upper case before translation.) When the target device is a
; rccord-oricnted device (e.q., card reader or punch) and the file is ASCH, then each record
i opcration is periormed on a line of the ASCH text file, including truncation and/or blank
padding on input.

The mount option T'HIS-TKRMINAIL associales the user terminal (the one being
used to communicale with PRIM) with a given dcvice. When the terminal has been
mounled on some device, then input from the terminal is switched between PRIM and the
target machine every time execution is resumed and terminated. The intervention
characters, however, retain their intervention meanings. 1o allow the full ASCIl character
sct to bo input to the target device from the terminal, there is a control-shifi escape
character defined during target execution. To help distinguish PRIM output from target
output directed to T'HIS-TERMINAIL, all PRIM-generated outputl is prefixed with the
hcrald "--> " al the beginning of a new line. This applics in parlicular to both slopping
messages and lypeout resulting from break-time debuggcr programs.

1/0 ERROR MESSAGES

Various 1/O errors may occur. When any one occurs, excculion -- including the
crror-gencrating operation -- is suspended, and control returns to the PRIM exec. When
cxocution is next resumed, the suspended operastion is retried unless it has been explicitly
cance'ed by the user using the exec Cancel command.

"File not mounted.”
The indicaled device has no file mounled. M a file is mounted before execution is next
rcsumed, the opcralion will be performed then. (An installed device to which no 10 is
directed nccd nol have a mounied file in order 1o run) The opcralion may instcad be
canceled.

This message is niso produced when an oulput opcraticn occurs on a device which has
been mounted for input only, and vice verss. Again, a sccond file must be mounted on
the appropriate side of the device in order to procccd normally with the propram.

“tile not open.”
The indicated device has an inaccessible file mounted on il. Tiv device must either be
rcassigned or unmountced and then mounted. The silualion is similar to the case
above, except for the possibility of reassigning.

"Improper tape format detected.”
TENEX files which are mounted on target magnelic tape devices are encoded in a
unique internal format that requires such files to be used only for PRIM mapnetic tape
devices. The mounted file is inconsistent with that formal. The device must be
unmounted and replaced with a proper tape file.

"Device nol instalicd.”
A device that is referenced by the program is not instalied. Should the missing dévice
be required, thcre is no way o conlinue this scssion, since device installation is no
longer allowed. Should the reference be a mistake, exccution may be continued down
a different path (the operation will be automatically canceled when execution resumes).

PiIM Syslem: Uecr Reference Manual Page 27
larget Excculion

“ASCN input character not recognized -- ignored.”
The last characler read from the ASCH input file on the designaled device was not
translatablc into the characler set of the device. The characler has been skipped
over; resuming coxecution causes the read operation to continue wilh the next
character in the file. The position of the offending character in the file may be
delermined via the exec Filestatus command, specifying the indicaled device.

Any olher error indicales a bug either in the emulator or in PRIM. Such errors should be
reporled.

