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Degeneracy in Special Purpose Primal Al gorithms

Used In Obtaining Least Absolute Value EstimatorsS ABSTRACT

Efficient algori thms have been developed recently which utilize the

specialized structure of the linear progranining formulation for the problem

of least absolute value estimation. These algorithms generally proceed in

the di rection of steepest descent along an edge of a convex polyhedral sur-

face. However, we will show that the extreme point path of steepest descent

may not be taken when degeneracy occurs. We will also present a cri terion

that determines the basic edge for steepest descent.
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1. Introduction

Least absolute val ue, or L~ norm, estima tes have long been considered

as an acceptable al ternative to least squares estimates. Fourier (See Darboux)

appears to have been the fi rst to exami ne the problem of obtaining such

estimates. Later, Edgeworth (1887, 1888, 1923) also investi gated the

problem. The French mathematician de la Vallee Poussin (1911) proposed

a solution procedure. In addition , algorithms were presented by Rhodes (1930)

and by Singleton (1940). The l abor invol ved in computing the least absolute

value (LAV) estimators made the technique unpopular , and for a period of

time most results were restricted to the cases of either one or two parameters.

It was not until the work of Charnes , Cooper , and Ferguson (1955) that a

practical procedure for obtaining LAV estimators was given. They demonstrated

that the problem of minimizing the sum of absolute deviations could be reduced

to an equivalent linear programing (LP) formulation .

W i th this development available to researchers , there has been a steadily

increasing interest in LAV estimato rs and their properties in recent years .

One of the main directions of this research was to find efficient, specialized

algori thms which woul d solve the linear programing formulation. Of parti cular

interest are the algori thms of Davies ( 1967) and Barrodale and Roberts (1973).

These closely related algori thms use the special structure of the problem

to perform “mul tiple pivots ” before actually performi ng an iteration of the

simplex algori thm. In this paper, we shal l point out that these mul tiple

pivoting techniques will not always give the extreme point path of

steepest descent when degeneracy occurs. The possibility of cycling of

bases Is not a problem since It can be resolved by the perturbation technique

of Charnes ( 1952).

LA _•.~
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2. LInear Programing Formulation

• Mathematically, the least absolute value problem is that of finding

estimates of the parameters B 1 , a 1, 2, ..., m which solves the following

problem.

Minimi ze S E I Y ~ ~Xj 1B1 -x~2B2- ... -X~~B,~I (1)

where (Yy X
j1~ X~2~ •. .,  xjm)

~ 
j  ~ 1, 2, ..., n represents the observed values

during n repetitions of an experiment.

The linear programi ng equivalent of (1) Is the following.

n 4
Minimi ze E (P. + N4) (2)

fri •~

subject to Xj1B
1 

+ xj2 B2 
+ ... +Xj ,fl8 ~~ -

~~~~~ 
= yj ; j = 1, 2, ... , n

P~~~N~~> O

where P~ and are the positive and negati ve deviations of the j -th obser-

vat ion, repectively.

Using matrix notation , we can now write the constraints of LP(2) as

follows:

X~ + IP — IN V

P,N > O

where ~T 
= (P1, •. .

, Pa), NT 
- (N1,” , Ne), yT 

= (y1,” , ~~ X Is an n by

m matrix with n > m, and = (8i~ 
• , Bm)•

~~~~~~~~ ~~~~~~~~~~~~~ 

_
~
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3. Multiple Pivoting Techniques of the Special Purpose Al gori thms

Our first objecti ve in this section is to present a geometrical Inter-

pretation of the estimation problem. Wi th this explanation , the steps
n

used in the algori thms will be more evi dent. Geometrically, S = E ~y1 - X181
i=1

represents a convex ployhedral s urface in Euclidean (m + 1) space wi th co-

ordinates 
~~i’ ~2’ ~~~ 

8m’ 5) where X.~ = (x11, x12, ~~~~~~~~~ 
X im)• The algori thm

considers basic solutions formed by m hyperplanes X~3 = y1, I = 1, 2, ~~~~~~~~ m.

If 3* Is a solution to such a system, then (8*, 5(~*)) is an extreme point

(vertex) on the polyhedral surface. An edge on the polyhedral surface Is

determined by the intersection of (m - 1) of the hyperpl anes X18 = y,.

During any Iteration, the special purpose algori thms, use m such hyperplanes

so that the assoc iated Xj will form a basis for Em. The intersection of these

in hyperplanes determine the current basic solution, and the m edges formed

by the possible combinations of these m - 1 hyperplanes are called the basic

edges . The algori thms search along the basic edges to determine if a decrease
• in the sum of the absolute values of the residuals is possible. If a decrease

is possible, then an iteration of the algori thm wil l move along the chosen

edge in the prescribed direction by pivoting through the sequence of extreme

points on this special path until a decrease no longer occurs . The procedure

is repeated until the lowes t vertex is reached in the case of a unique solution .

We shal l now show how this procedure is implemented in the simplex algori thm.

The standard procedure of the simp lex algori thm is to choose, first, the vector

to enter the basis by picking the most negative marginal (reduced) cost. Then,

the vector to leave the basis is determined by the minimum ratio test. The

pivoti ng of the basis vectors then follows . However , the special purpose

algori thms do not ininediately perform the pivot. These algori thms add twice

~ 

- • 
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the amount of the component of the current tableau associated wi th the

minimum ratio to the reduced cost. If this new reduced cost is pos itive,

then the pivot operation is performed. If the new reduced cost is negative,

then the next smallest minimum ratio Is considered. Twice the element of

the tableau associated wi th this minimum ratio is then added to the reduced

cost. The procedure continues unti l the reduced cost becomes nonnegati ve.

At that time, the standard pivot procedure is implemented on this last

element from the sequence of minimum ratios. At each of these “pivots” , a

P1 and N1 are interchanged in the basis unti l the last pivot is performed.

In order to formalize this mathematical ly, we shall consider LP(2).

It follows di rectly from the LP theory that an optimal basis must contain

all m col umns of the matri x X and also n - m columns from the matrices I

and -I associated with the 2n vari ables , P,~ and N3 . We should note that

rank deficiencies are easily treated within the LP framework by the techniques

developed for LP theory in Charnes and Cooper ( 1961). Thus , it is necessary

to consider only basis matri ces of the form (afte r row interchanges )

whe re E is a matrix wi th +1 or -1 on the diagonal and zeroes off the diagonal .

The inverse of B is

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ • - •
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The reduced cost for the (n - m) nonbasic N1 (P1) with corresponding P1 (N1)

in the basis is +2. For the case where both N1 and P1, m of each, are

nonbasic, the reduced cost of P.~ is 1 + E 
~~~~~~~~ 

and for N., it is
—1 j tIR ~~ 1

1 - 
j
E
IR 

ejXjXB(k)~ 
where ç~~)

is the k—th column of . IR Is the index

set of Xj ’S forming XR~ 
and e~ is the value of the diagonal element of E

associated wi th X.. The optimality conditions are then -1 < z e.X .X ’k~ 5. 1,
j dR

k = 1, 2, ... , n.

If the optimality conditions are not satisfied, then it is determined

that either N1 or is to enter the basis, and the variable to leave the

basis is determined by the minimum ratio test. It is given as follows :

Yj 
- X~X~’V8 1 

(5)

; Pe~XJX8~1(~ > O~ i £ JR

~
Ie

~
Xj XB(k)

where V8 Is the vector of the dependent vari ables corresponding to X B, and

( -1 if P1 enters the basis
p a

( 1 if N1 enters the basis.

______ • - • .  —

a 
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• In order to Illuminate the steps of the multiple pivots, let t be the value

of the index JR which yiel ds the minimum ratio. Then the vector to be removed
• 

. from the basis will be either Nt or 
~~~~~ 

Suppose that it is Nt and that

is chosen to enter the basis. If 1 + 
j~ IR 

e
~
XjXB~k)

+2etXtX~~k) 
> 0, then

the pivoting procedure is performed. If 1 + 
jcIR 

e
J
X . XB(k) +2 etXtX~~k) <

then Pt will replace Nt in the basis, and the reduced cost must be updated.

We now return to the minimum ratio test and find the ratio which Is next

to the smallest In the index set lR. The procedure is continued unti l the

reduced cost becomes nonnegative, and then an iteration Is carried out.

--
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4. Criteria for Exploiting Degeneracy

Degeneracy will occur if there are more than m residuals that are zero

during an iteration. We shal l assume that there are (m+p) residual s that are

zero. Geometrical ly , this will occur-when there are (ni+p) edges through a

vertex on the surface of the convex polytope in E~~
1. However, i f we consider

E
m, then B is the point of intersection of (m+p) hyperpl anes X18 = y~. Hence

the 2(1n4-p) vari ables , N1 and P1, associated with these equations will all be

zero, and thus there w ill be p basic vari ables which are zero. Theoretically,

these p basic variables will not be zero , but they will have a “small” value

given by the c-polynomial when the perturbation technique of Charnes (1952)

is applied. The perturbation will eliminate the possibility of cycling of

bases, and it will not be necessary to explicitly determine the value of c.

However, these algori thms do not always proceed along the edge of steepest

descent when degeneracy occurs. We use the term, edge of steepest descent,

to refer to the segment of an edge which is adjacent to a vertex that will give

the greatest rate of decrease in the objective functi on when moving to an adja-

cent vertex. We should note that using the multiple pivoting technique on the

edge of steepest descent may not give the specialized extreme point path that

will provide the greatest decrease in the objecti ve function. There may be

another extreme point path that will provide a greater decrease, but this

cannot be determined unless iterations of the algori thm are compared.

We shall develop our results on the assumption that it is possible to

obtain a decrease in the val ue of the objective function along one of the

basic edges. However, it is important to note that a decrease may not be

possible along any of the m basic edges. Therefore, it is possible that

several degenerate pivots must be performed in order to obtain a basis which

~

- - ••—

~

-

~
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has an edge along which it is possible to obtain a decrease. This situation -

may cause the algori thm to cycle If a perturbati on technique is not utilized.

We shall now illustrate the method to -~tain the edge of steepest descent

from the basic edges. Using matrix notation, we can represent the constraints

of the linear programing formulation as follows:

(: :R 
= (:i

After multiplying by X~~, we obtain the fol lowing equations:

B + X~’P8 
- 

c’NB =

_ EXRc’PB + EPR + EX RX
~
’NB _ENR = E(yR - X~X~~y~).

If the solution is not degenerate, then these equations will simplify as below:

• —1B X B ~‘B

E(PR — NR) = E(yR - X RXB YB)

where ei ther P1 > 0 or N1 > 0 and Pj N1 = 0 for all 1 c IR. If degeneracy

occurs during an iteration, then both P1 and N~ = 0 for some i c JR. The

sum of the absolute values

n
S = 

~~~~~~~ 
~
y1 - X~1B1 

- XjmBm I = eE(y~ — • X RB)

= eE (y~ - X RX
~~ ~~
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We shall now assume that degeneracy is present during an iteration.

We may note that p8 = NB = 0 during the iteration because they are nonbasic. -
For simplicity, we shall assume that P8(1) is to enter the bci1s . If we

sl ightly increase 
~B(i)’ 

then we can use this to determine the condition for

a decrease in the sum of absolute values . We take P~(6) = (0, ..., 0, s, 0, ... , 0)

where 6 > 0 and 6 is the ith component of P~. Our equations will now take the

form:

B = X~’y8 - X
~
’PB(s5 ) = X

B
’YB -

E(P R - N
R

) = E(Y R - XRXB YB) + EX RXB’PB(6 )

= E(y~ - X~X~~y~) + EX RXBt 1)ss

*Let ID be the index set of the degenerate vari ables and IR = ZR - ID. We

can now rewri te the above in a parti tioned vector notation as:

/ E~ ~~ 
- N

R)\  ~~~~~ ~~~~R 
- X RX

~
’yB + XRXB~I )  

6)

E(P
R

- N
R

) =  1=
~~~ 

~~~~~ 

- N
R

) / ~ 
X RX

~~i )

The new sum of the absolute values is

S( s ) = 6 + 
j c IR 

e~ (~ 1 
- Xj X

~
’Y B) + 

j~ IR* J J B ( i )  6 + 

10
IX j X~~~) 6 1

= S + 6 ( 1 + 
j~ IR* 

eJ XJ X ~) ) + ~Z10
I X~X~~1) 6I

Thus to have the condi tion that S( o) < S , we must have

1 + 
j

E
rR*

XJ X
~~I )  + 

j~ IO 
lX ~X~~1) I < (I)

- —-.~• • • -‘--=5-— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ —--- -- •——~~
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Similarly , If NB( i )  we re to be chosen to be increased, the criterion woul d

be 

1 - 
j~ IR~~~~~~

) + 
jcID’

~~~~~~ 
< 0 .  (II)

By using this new criterion for basis entry, the minimum ratio -rule is

thus modified to the smallest positi ve ratio to determine the vector to leave

the basis. The procedure for performing the multiple pi vots will remain the

same. There will no longer be any degenerate pivots, and the objective function

will strictly decrease at each iteration. However, examples can be constructed

where use of this cri terion alone will indicate that a basic edge wi th a negati ve

rate of change does not exist , yet the corresponding extreme point is not optimal.

Thus the standard LP criterion should be used to verify optimality.

____________________________ 
_________
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• 5. Examples

In the fi rst example, we shal l illustrate the -di fficulty caused by

degeneracy when using the standard simplex criteria for choosing the vector

to enter -the basis. We shall then present the sequence of tableaus when

the new criteria for selection is applied. The mu ltiple pivots wil l be

denoted by asteriks. The simplex format will consider LP(2) written In equiva-

lent maximization form, and it will follow a combination of the notation of

Davies , and Barrodale and Roberts . For brevi ty, the revised simpl ex tableaus

will be used. The problem is to find the LAV estimators for the model

y = B1 + 82X from the following data:

x -5 -3 -3 -2 0 1 2 2 3 4 4

y 0 2 —3 -1 0 1 3 -1 2 0 4

The initial basis matrix XB will consist of the sixth and eleventh observations,

and degeneracy will occur in this initial tableau. The rule which we used -to

determine the assignment of N
~ 

or P
1 as the degenerate basic variable in this

ini tial tab leau was to use the sign of the y1 from the data, i. e., since y3 = -3 ,

we assigned N3 as the degenerate basic variable , but for y5 = 0, we arbitrari ly

assigned P5. Some algori thms use the assignment of a P~ for each degenerate

va lue that occurs . This rule can also lead to computational problems. The

sequences of pi vots are quite easy to follow when a graph of the parameter (B 1, B2)

space is used. Finally, the optimal tableaus also indi cate that alternate optimal

solutions are avai l able.

L •~~~~~~~~~~~~ - -~ _ _ _ _ _  • • • • .
~ • • . • •-•• • • - • - • ••- • • • - •
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TABLEAU I TABLEAU II

BASIS RESIDUAL N6 P11 BASIS RESIDUAL P4 P11

P1 5 3 2 P1 21/6 9/6 3/6

P2 5 7/3 4/3 P2 23/6 7/6 1/6

• N3 0 -7/3 -4/ 3 N3 7/6 -7/6 -1/6

P4 1 2** 1 N6 3/6 -3/6 3/6*

• P5 0 4/3* 1/ 3 N5 4/6 -4/6 2/6

-4/3 -1/3 4/6 -4/6 2/6

P7 1 2/3 1/3 P7 4/6 2/6 -4/6
- N

8 
3 -2/3 1/3 N8 20/6 -2/6 4/6

-
- N

9 
1 -1/3 2/3  N

9 
7/6 - 1/6 5/6**

N10 4 0 1 N10 24/6 0 1
- - B2 1 1/3 1/3 B2 5/6 1/6 1/6

20 -5 -4 18 5/6 5/6 -13/6

p*
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TABLEAU III TABLEAU IV - OPTIMPIL

BASIS RESIDUAL N4 P9 BASIS RESIDUAL P6 P9

P1 14/5 8/5 3/5 P1 2 -4 3

P2 18/5 6/5 1/5 P2 3 -3 2

N3 7/5 -6/5 -1/5 N3 2 3 -2

P6 1/5 2/5* 3/5 N4 1/2 5/2 -3/2

N5 1/5 -3/5 2/5 N5 1/2 3/2 -1/2

B1 1/5 3/5 2/5 B1 1/2 3/2 -1/2

P7 8/5 1/5 -4/ 5 P7 3/2 — 1/2 — 1/2

N8 12/5 -1/5 4/5 N8 5/2 1/2 1/2

P11 7/5 —1/5 -6/5 P11 3/2 1/2 —3/2

N10 13/5 1/5 6/5 N10 5/2 -1/2 3/2

B2 3/5 -1/5 1/ 5 B2 1/2 -1/2 1/2

16 1/5 —2/5 J/5 16 1 0 

~~• - • - ~~~~~~



T -~ -

14

If we return to Tableau I and apply our new cri teria (I) and (II) to

find the “nondegenerate” rate of change (of decrease) in the objecti ve functi on,

we shall now obtain an opportunity cost of -7/3 for N6 and -10/3 for P11.

Upon observing Tableau II , we find that the object ive function value is

20 - 7/3 . 1/2 = 18 5/6, N3 has increased from 0 to 1-7 /3 . 1/21 = 7/6 , and

N5 increased from 0 to -4/3 - 1/21 = 4/6. These would have the same values

(and the rest of the tableau) if only the nondegenerate pivot had been per-

formed. However , since P11 has the most negati ve reduced cost , then its

associated edge gives the greatest rate of decrease among the basic vectors .

The (nondegenerate) multiple pivots are given in Tableau IA. The following

tableau will be optimal and identical to Tableau IV.

TABLEAU IA

BASIS RESIDUAL N6 P11

P1 5 3 2

P2
N3 0 -7/3 -4/3

P4 1 2 1

P5 0 4/3 1/3

• 81 0 -4/3 -1/3

P7 1 2/3 -1/3

N8 3 -2 /3 1/3

N9 1 -1/3 2/3**
N10 4 0 1

82 1 1/3 1/3

20 • -7/ 3 -10/3
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Modi fying the origi nal data, we shal l illustrate the possibility of -

not obtaining a decrease along the basic edges . We requi re an addit ional

observation, the twelfth, of x = 1/2 , y = 0 for our data . The initial

matri x XB will consist of the tenth and twel fth observati ons , and degeneracy

will occur in Tableau V. This is not the final tableau as the standard re-

duced costs of the simplex algori thm are not positive. Thus a degenerate

pivot is performed, and using the perturbation technique of Charnes ( 1952),

we find that P5 and N12 wil l be exchanged in XB. For this particular example,

the replacement of the twelfth observation by either the fi rs t or the fi fth

observation in XB will give a basic edge along which the objecti ve function

will decrease. It should also be noted that only a singl e degenerate pivot

will be executed since the addition of twice the component of the tableau

of either of the tied minimum ratios to the reduced cost will make it posi tive.

At this point, it will be very beneficial to examine our criteria which

gives the actual rate of change of the objective function along the basic

edges. The rates of changes for P10, P12, and N 12 are, respectively 37/7,

1/7, 29/7, and 37/7. Since these values are all positive , then proceeding

in any di rection along these basic edges would increase the sum of the absolute

values. To demonstrate this, suppose we select N10 to be increased. The first

minimum ratio is associated wi th N4, and it is 7/5. XB will cons ist of the

fourth and twelfth observati ons when only this pivot is accomplished. The point

wil l be 81 = -1/5, 82 
= 2/5, and the sum of the absolute val ues will be 17 1/5.

We can determine the change in the objective function by using the information

provided by the algori thm. Thus , we have 17 1/5 = 17 + (1/7) (7/5).

We shall conclude our discussion of this example by stating that optimality

will be reached In another two tableaus after the interchange of P5 and N12 in XB.
The optimal so lution is = 1/5, 82 = 3/5, and the sum of the absolute values Is

16 7/ 10. X8 will consist of the fourth and nineth observations. 

—-- ~ - ---• ---~~~ -- - —5-- ------ .5- -—-- ___
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Modifying this example, we shall illustrate the possibility of not

obtaining a decrease along the initial basic edges . We requi re an addi tional

observation, the twelfth, of X = 1/2 , y = 0 for our data. The Initial matrix

XB will consist of the tenth and twelfth observations, and degeneracy also

occurs In this tableau (V). It should be clear that the tableau Is not optimal

• and that the addition of twice the component of the tableau of either of the tied

minimum ratloes to the reduced cost will make it positi ve. For this parti cular

example, the replacement of the twelfth observation by ei ther the first or fifth

observation In will give a basic edge along which the objective function

will decrease. The optimal solution is Bi 
= 1/5 , 82 = 3/5, and X8 consists of

the fourth and nineth observations.

TABLEAU V

1-. BASIS RESIDUAL P N10

P1 0 11/7 18/ 7

P2 2 7/7 14/7

• N3 3 —7/ 7 —14/7
• N4 1 —5/ 7 -12/7

P5 0 1/ 7 8/7

• 
P
6 

1 -1/7 6/7

P7 3 —3/ 7 4/7

N8 1 3/ 7 ~~~~~~~~~

P9 2 —5/ 7 2/7

0 -1/7 —8/ 7

P11 4 -7/7 0

82 0 2/7 2/7

17 13/ 7 —15/7

5-— - ——— —--5- — —-—---— ---- --5------* - - - - --
- -

~~~~~~~~~ 

--- j - --- - - -- - -- “~~~~~~~~~~
5- - 5- .--- - -- - - •--—----
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6. Degeneracy and Optimality

Although we have taken advantage of the special structure of

the linear programing formulation and Its associated geometri cal considera-

tions to find a condition that should improve convergence when degeneracy

occurs during an iteration, we must emphasize the fact that our cri teria

(I) and (II), in general, cannot be used as sufficient conditions for

optimality. The last example in the preceding section clearly demonstrates

that the positivi ty of (I) and (II) does not imply optimality. However , if

the objective function has assumed its minimum value, then the criteri a (I)

and (II) will be nonnegati ve, •i.e., the condi tions are necessary. Supple-

mental condi tions will now be developed whi ch are sufficient.

Conditions (I) and (II) may be viewed as being derived from a

dynamic perturbation of the problem. This perturbation forces for j c ID,

either N~ or P~ into the basis depending on whether the sign of XjX~~j) is

positive or negative. Hence, movement along a basic edge will always be

• “away from” other nonbasic hyperplanes passing through the point 8*. To

some extent this dynamic perturbation is theoretically justi fiable because

the perturbation as defined by Charnes (1952) depends only on the constraint

index and this ordering is arbitrary . After a nondegenerate pivot the

perturbation may be redefi ned without the danger of cycling. The difficulty

wi th (I) and (II) Is that a different perturbation may be enforced at a

single Iteration. This means that for each j , with Xj  a row of (
~
, we may be

looking at the reduced costs for different problems. If there are p degenera-

d e s  at an iteration then without varying X8 there are different bases of

• the form (1) for this extreme point. A general representation of the reduced

costs for these 2m bases is: 
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1 + E e X.X 1. - E d X .X . (III)
jc IR* i 3 B(~ ) j EID ~ j  B(i)

1 — 

jEIR* 
e~X~X8(1) JCID 

dj Xj X~~j )  ( IV )

for 
~k and N k~ 

respecti vely, where Xk is the i-th row of and d~ = +1 or -1.

The current solution is optimal when a set of d~ jc ID can be found

such that (III) and (IV) are nonnegative for I = 1, 2, .. .m. Maximizing the

minimum value of (III) and (IV) over i = 1, 2, ...m. is an Integer programing

problem. It would not appear to be computationally beneficial to solve this

problem; however, certain d~ are readi ly avai lable from the computation of

(I) and (II). These can be conveniently used to veri fy optimality in certain

instances .

7. Remarks on Computation Results

We modi fied a multiple pivoting code developed by Armstrong and

Frome (1976) to include our cri teria for finding the basic edge of steepest

descent. The algorithm was coded In Fortran, and the cri teria were imple-

mented in a straightforward manner. Our objectives were to determine If the

number of pivots and the execution time would be decreased. We chose to com-

pare the resul ts of our coded algori thm wi th the original code of Armstrong

and Frame. We generated our data from discrete distri butions s ince, theoreti-

cally, degeneracy will not occur in the case of continuous distributions. In

most of the problems in which there were only a few (4 or less) degenerate

variables at an Iteration , our code required slightly less pivots than the

original code, but our execution time exceeded theirs. In most problems

~
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wi th several (or many) degenerate variables at an iteration , we found our

algorithm showed a signifi cant improvement In the number of iterations so

compared to the other code. However , in terms of execution time, our

algori thm showed only a slight improvement In speed of convergence in

some problems, and In other problems , it was slower in reaching optimality .

8. Observations

The purpose of this paper was to illustrate that degeneracy in

LAV estimation can increase the number of iterations and also sol ution time

in algorithms which have been shown to be very efficient. In problems

where a large number of observations are taken to estimate a few parameters,

it is very likely that degeneracy will occur. We have been able to develop

an improvement in the multiple pi voting algorithms when degeneracy occurs

which enables the pivots to proceed along the basic edge which gives the

greatest rate of decrease in the objecti ve function. The results of our

computational study veri fy our hypothesis on decreasing the number of

iterations. The -current direction of study invol ves a more sophisticated

implementati on of the cri teria into the code . One possible di rection in

which an extension of the procedure would be desirable is to have an

efficient method of determining the rate of decrease for all edges at a

point where degeneracy is present. However, to pivot through all possible

bases by the simplex algori thm to find the rates would require c(m#k,m)

pivots , and this would not be advisable.
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