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Degeneracy in Special Purpose Primal Algorithms
Used in Obtaining Least Absolute Value Estimators

ABSTRACT

Efficient algorithms have been developed recently which utilize the

specialized structure of the linear programming formulation for the problem

of least absolute value estimation. These algorithms generally proceed in

the direction of steepest descent along an edge of a convex polyhedral sur-

face. However, we will show that the extreme point path of steepest descent

may not be taken when degeneracy occurs. We will also present a criterion

that determines the basic edge for steepest descent.
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1. Introduction

Least absolute value, or L1 norm, estimates have long been considered
as an acceptable alternative to least squares estimates. Fourier (See Darboux)
appears to have been the first to examine the problem of obtaining such
estimates. Later, Edgeworth (1887, 1888, 1923) also investigated the
problem. The French mathematician de la Vallee Poussin (1911) proposed
a solution procedure. In addition, algorithms were presented by Rhodes (1930)
and by Singleton (1940). The labor involved in computing the least absolute
value (LAV) estimators made the technique unpopular, and for a period of
time most results were restricted to the cases of either one or two parameters.
It was not until the work of Charnes, Cooper, and Ferguson (1955) that a
practical procedure for obtaining LAV estimators was given. They demonstrated
that the problem of minimizing the sum of absolute deviations could be reduced
to an equivalent linear programming (LP) formulation.

With this development available to researchers, there has been a steadily
increasing interest in LAV estimators and their properties in recent years.
One of the main directions of this research was to find efficient, specialized
algorithms which would solve the linear programming formulation. Of particular
interest are the algorithms of Davies (1967) and Barrodale and Roberts (1973).
These closely related algorithms use the special structure of the problem
to perform "multiple pivots" before actually performing an iteration of the
simplex algorithm. In this paper, we shall point out that these multiple
pivoting techniques will not always give the extreme point path of
steepest descent when degeneracy occurs. The possibiiity of cycling of
bases is not a problem since it can be resolved by the perturbation technique

of Charnes (1952).




2. Linear Programming Formulation

Mathematically, the least absolute value problem is that of finding
estimates of the parameters Bi’ i=1, 2, ..., mwhich solves the following

problem.

=

Minimize S =
3%

LYJ- -lesl ‘ijsz" e -ijsml (1)

where (ya, le,.sz, P xjm). J=1,2, ..., n represents the observed values
during n repetitions of an experiment.

The linear programming equivalent of (1) is the following.

n
Minimize £ (P, + N.) (2)
j’l J j
g" SubJect tO leal + ijsz + e s +ij8m +Pj 'Nj - yj; J > 1’ 29 CHLILE | n
ke 28
where Pj and Nj are the positive and negative deviations of the j-th obser-

vation, repectively.

Using matrix notation, we can now write the constraints of LP(2) as
follows:
X8 +IP - IN=Y
P, N>0

T
where PT = (Py, *++, P), N\ = (Np,==, M), YT = (y1,""", y.), X s an n by

m matrix with n > m, and sT

= (B0 *+» B).




3. Multiple Pivoting Techniques of the Special Purpose Algorithms

Our first objective in this section is to present a geometrical inter-
pretation of the L1 estimation problem. With this explanation, th: steps
used in the algorithms will be more evident. Geometrically, S = L ly1 - Xiel
represents a convex ployhedral surface in Euclidean (m + 1) spaceIQ%th co-
ordinates (By, By, ***» By» S) where X; = (X1, X425 ***» X;,). The algorithm
considers basic solutions formed by m hyperplanes X;8 = y;, ii=0, 2, =5 m.
If 8* is a solution to such a system, then (8*, S(8*)) is an extreme point
(vertex) on the polyhedral surface. An edge on the polyhedral surface is
determined by the intersection of (m -~ 1) of the hyperplanes X;B = Yi-
During any iteration, the special purpose algorithms, use m such hyperplanes
so that the associated X; will form a basis for E™. The intersection of these
m hyperplanes determine the current basic solution, and the m edges formed
by the possible combinations of these m - 1 hyperplanes are called the basic
edges. The algorithms search along the basic edges to determine if a decrease
in the sum of the absolute values of the residuals is possible. If a decrease
is possible, then~an jteration of the algorithm will move along the chosen
edge in the prescribed direction by pivoting through the sequence of extreme
points on this special path until a decrease no longer occurs. The procedure
is repeated until the lowest vertex is reached in the case of a unique solution.

We shall now show how this procedure is implemented in the simplex algorithm.
The standard procedure of the simplex algorithm is to choose, first, the vector
to enter the basis by picking the most negative marginal (reduced) cost. Then,
the vector to leave the basis is determined by the minimum ratio test. The
pivoting of the basis vectors then follows. However, the special purpose

algorithms do not immediately perform the pivot. These algorithms add twice




the amount of the component of the current tableau associated with the
minimum ratio to the reduced cost. If this new reduced cost is positive,
then the pivot operation is performed. If the new reduced cost is negative,
then the next smallest minimum ratio is considered. Twice the element of
the tableau associated with this minimum ratio is then added to the reduced
1 cost. The procedure continues until the reduced cost becomes nonnegative.
{ At that time, the standard pivot procedure is implemented on this last
element from the sequence of minimum ratios. At each of these "pivots", a
P; and N; are interchanged in the basis until the last pivot is performed.
In order to formalize this mathematically, we shall consider LP(2).
It follows directly from the LP theory that an optimal basis must contain
all m columns of the matrix X and also n - m columns from the matrices I

and -I associated with the 2n variables, Pj and N We should note that

jo
rank deficiencies are easily treated within the LP framework by the techniques
developed for LP theory in Charnes and Cooper (1961). Thus, it is necessary

to consider only basis matrices of the form (after row interchanges)

where E is a matrix with +1 or -1 on the diagonal and zeroes off the diagonal.

The inverse of B is




The reduced cost for the (n - m) nonbasic Ni(Pi) with corresponding Pi(Ni)
in the basis is +2. For the case where both N, and Pl, m of each, are
nonbasic, the reduced cost of P is 1+ szR eJxeB(k)’la"d for N , it is
1- JEIR eijxB( )’ where X B( )1s the k-th column of Xz~ IR is the index
set of Xj s forming XR, and eJ is the value of the diagonal element of E
associated with xj. The optimality conditions are then -1 S'jEIR e. X X (k)
k=1, 2 .cco N

If the optimality conditions are not satisfied, then it is determined
that either N, or Pi is to enter the basis, and the variable to leave the

basis is determined by the minimum ratio test. It is given as follows:

Y5 - XY (5)

jB B
5 ues XJ B(k) >0, j e IR

ue ) XB(k)

where YB is the vector of the dependent variables corresponding to XB’ and

{ -1 if P; enters the basis

1if Ni enters the basis.
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In order to illuminate the steps of the multiple pivots, let t be the value
of the index IR which yields the minimum ratio. Then the vector to be removed
from the basis will be either Nt or Pt' Suppose that it is N and that P

i is. + I E

is chosen to enter the basis. If 1 e eJXjXB(k)+2e XtXB(k) > 0, then

the pivotin ocedure is performed. If 1+ ¢ e.X.X +2 e, X x 0,

then Pt will replace Nt in the basis, and the reduced cost must be updated.
We now return to the minimum ratio test and find the ratio which is next
to the smallest in the index set IR. The procedure is continued until the

reduced cost becomes nonnegative, and then an iteration is carried out.




4. Criteria for Exploiting Degeneracy

Degeneracy will occur if there are more than m residuals that are zero
during an iteration. We shall assume that there are (m+p) residuals that are
zero. Geometrically, this will occur.when there are (m+p) edges through a
vertex on the surface of the convex polytope in Em+1. However, if we consider
Em, then B* is the point of intersection of (m+p) hyperplanes XiB = y;. Hence
the 2(m+p) variables, Ni and Pi’ associated with these equations will all be
zero, and thus there will be p basic variables which are zero. Theoretically,
these p basic variables will not be zero, but they will have a "small" value
given by the e-polynomial when the perturbation technique of Charnes (1952)
is applied. The perturbation will eliminate the possibility of cycling of
bases, and it will not be necessary to explicitly determine the value of e.

However, these algorithms do not always proceed along the edge of steepest
descent when degeneracy occurs. We use the term, edge of steepest descent,
to refer to the segment of an edge which is adjacent to a vertex that will give
the greatest rate of decrease in the objective function when moving to an adja-
cent vertex. We should note that using the multiple pivoting technique on the
edge of steepest descent may not give the specialized extreme point path that
will provide the greatest decrease in the objective function. There may be
another extreme point path that will provide a greater decrease, but this
cannot be determined unless iterations of the algorithm are compared.

We shall develop our results on the assumption that it is possible to
obtain a decrease in the value of the objective function along one of the

basic edges. However, it is important to note that a decrease may not be
possible along any of the m basic edges. Therefore, it is possible that

several degenerate pivots must be performed in order to obtain a basis which




has an edge along which it is possible to obtain a decrease. This situation-:

may cause the algorithm to cycle if a perturbation technique is not utilized.
We shall now illustrate the method to ~bHtain the edge of steepest descent

from the basic edges. Using matrix notation, we can represent the constraints

of the linear programming formulation as follows:

8
Xg ks 0 -Ig 0\[p,
B
P =
YR
Xe 0 Iy 0 ~Ip|f Ng
e

After multiplying by Xgl, we obtain the following equations:

R
B+ X3P = Xg'Ng = Xg7 vp

=1 -1 4 -1
—EXRXB PB + EPp + EXRXB Ng -ENR = E(yR - XRXB yB).

If the solution is not degenerate, then these equations will simplify as below:

-yl
B=X ¥

i -1
E(Pp = Np) = Elyg - XpXg'vp)

where either P1 >0o0rN; >0 and Py N; = 0 for all i e IR. If degeneracy

occurs during an iteration, then both Pi and Ni'= 0 for some i ¢ IR. The

sum of the absolute values
e g Nl Y, - )

= eE(yp - XRXBI yg)
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We shall now assume that degeneracy is present during an iteration.
We may note that PB = NB = 6 during the iteration because they are nonbasic.
For simplicity, we shall assume that PB(i) is to enter the basis. If we
slightly increase PB(i)’ then we can use this to determine the condition for
a decrease in the sum of absolute values. We take P;(G) ® {8, vers Bs 8,0, ... 9
where 6 > 0 and § is the ith component of Pg. Our equations will now take the
form:

-1
8 JB

1 =1

- - -1 = a -
B =X X P(8) = X'y Xg(4)8

_ -1 -1
E(Pg - Np) = E(yp - XXz'yg) + EXpky Py(s)

. =3 =3

*
Let ID be the index set of the degenerate variables and IR = IR - ID. We

can now rewrite the above in a partitioned vector notation as:

| -1

E(Pp - Np) = .

=1
E P, wly | RE Mlare: 8
R R

The new sum of the absolute values is

-1 -1
- t .y, « X X
S(s8) = 6 + e.(y XJXB Yg) + T eJXJXB(i) s +

[ XX
jeIr 971 jelR J

-1
sy O
5 10380 ¢

=S+ 6(1+

jelR

-1 -1
e.X. 5 $ X 5
* JXB(1)) jeIDl XJXB(i)Gl

Thus to have the condition that S(&8) < S, we must have

-1 -]
L+ I X. X G . .




10

Similarly, if N (1) were to be chosen to be increased, the criterion would

B
be

1 -

=] -1
X < 0. I
B Bt < (1n

By using this new criterion for basis entry, the minimum ratio rule is
thus modified to the smallest positive ratio to determine the vector to leave
the basis. The procedure for performing the multiple pivots will remain the
same. There will no longer be any degenerate pivots, and the objective function
will strictly decrease at each iteration. However, examples can be constructed
where use of this criterion alone will indicate that a basic edge with a negative
rate of change does not exist, yet the corresponding extreme point is not optimal.

Thus the standard LP criterion should be used to verify optimality.




)
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5. Examples

In the first example, we shall illustrate the difficulty caused by
degeneracy when using the standard simplex criteria for choosing the vector
to enter the basis. We shall then present the sequence of tableaus when
the new criteria for selection is applied. The multiple pivots will be
denoted by asteriks. The simplex fdrmat will consider LP(2) written in equiva-
lent maximfzation form, and it will follow a combination of the notation of
Davies, and Barrodale and Roberts. For brevity, the revised simplex tableaus
will be used. The problem is to find the LAV estimators for the model

¥= By 82X from the following data:

y 0 2 -3 -1 0 1 3 -1 2 0 4

The initial basis matrix XB will consist of the sixth and eleventh observations,
and degeneracy will occur in this initial tableau. The rule which we used to
determine the assignment of Ni or Pi as the degenerate basic variable in this
initial tableau was to use the sign of the Y5 from the data, i. e., since ¥ * -3,
we assigned N3 as the degenerate basic variable, but for Yg = 0, we arbitrarily
assigned P5. Some algorithms use the assignment of a Pi for each degenerate

value that occurs. This rule can also lead to computational problems. The
sequences of pivots are quite easy to follow when a graph of the parameter (81, 82)

space is used. Finally, the optimal tableaus also indicate that alternate optimal

solutions are available.

|
|
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TABLEAU 1
BASIS RESIDUAL Ng Py
P 5 3 2
P 5 7/3 43
N, 0 <73 -4/3
*%
Py 1 2 1
P 0 4/3%  1/3
., 1 213 U3
Ng 3 23 113
Ng 1 T
Nqo 4 0 1
B, 1 173 113
20 -5 -4

TABLEAU II
BASIS RESIDUAL B, P
Py 21/6 9/6  3/6
P, 23/6 776  1/6
N, 7/6 -7/6  -1/6
Ng 36  -3/6  3/6
Ng 4/6 -4/6  2/6
8, 4/6 -4/6  2/6
Py 4/6 2/6 -4/6
Ng 20/6  -2/6  4/6
Ng 7/6 -1/6  5/6""
Ny 24/6 0 1
B, 5/6 1/6  1/6

18 5/6 5/6 -13/6

B . )
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TABLEAU 111 TABLEAU 1V - OPTIMAL
BASIS RESIDUAL N, P BASIS RESIDUAL Pg  Pg
Py 14/5 8/5  3/5 Py 2 ap by
P, 18/5 6/5  1/5 , 3 -3 2 |
Ny 7/5 -6/5 -1/5 Ny 2 95y !
P 1/5 2/5% -3/5 Ny 1/2 5/2  -3/2
Ng 1/5 -3/5  2/5 Ng 1/2 32 -1/2
By 1/5 35 2/5 8y 1/2 32 -1/2
P 8/5 /5 -4/5 P, 3/2 -1/2 -1/2
Ng 12/5 -1/5  4/5 Ng 5/2 V2 12
P11 7/5 -1/5  -6/5 P11 3/2 V2 -3/2
N0 13/5 /5  6/5 N1o 5/2 -2 3/2
B, 3/5 -1/5  1/5 B, 1/2 -1/2  1/2

16 1/5 =2/ 35 16 1 0
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If we return to Tableau I and apply our new criteria (I) and (II) to
find the "nondegenerate" rate of change (of decrease) in the objective function,
we shall now obtain an opportunity cost of -7/3 for Ng and -10/3 for Pp3.
Upon observing Tableau II, we find that the objective function value is
20 - 7/3 - 1/2 = 18 5/6, N4 has increased from 0 to |-7/3 - 1/2] = 7/6, and
Ng increased from 0 to |-4/3 - 1/2| = 4/6. These would have the same values
(and the rest of the tableau) if only the nondegenerate pivot had been per-
formed. However, since P11 has the most negative reduced cost, then its
associated edge gives the greatest rate of decrease among the basic vectors.
The (nondegenerate) multiple pivots are given in Tableau IA. The following

tableau will be optimal and identical to Tableau IV.

TABLEAU IA
! BASIS RESIDUAL N Py 1
k Py 5 3 2
P 5 7/3 4/3
[.
N, 0 -7/3 -4/3 |
*
Py 1 2 1
P 0 4/3 1/3
: By 0 -4/3 -1/3
P, 1 2/3 -1/3
Ng 1 -1/3 2/3**
No 4 0 1
B 1 1/3 1/3

20 - =13 -10/3
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Modifying the original data, we shall illustrate the possibility of
not obtaining a decrease along the basic edges. We require an additional
observation, the twelfth, of x = 1/2, y = 0 for our data. The initial
matrix XB will consist of the tenth and twelfth observations, and degeneracy
will occur in Tableau V. This is not the final tableau as the standard re-
duced costs of the simplex algorithm are not positive. Thus a degenerate
pivot is performed, and using the perturbation technique of Charnes (1952),

we find that P5 and le will be exchanged in X For this particular example,

B’
the replacement of the twelfth observation by either the first or the fifth
observation in XB will give a basic edge along which the objective function
will decrease. It should also be noted that only a single degenerate pivot
will be executed since the addition of twice the component of the tableau
of either of the tied minimum ratios to the reduced cost will make it positive.

At this point, it will be very beneficial to examine our criteria which
gives the actual rate of change of the objective function along the basic
edges. The rates of changes for P10’ P12, and N12 are, respectively 37/7,
1/7, 29/7, and 37/7. Since these values are all positive, then proceeding
in any direction along these basic edges would increase the sum of the absolute
values. To demonstrate this, suppose we select Njg to be increased. The first
minimum ratio is associated with N4. and it is 7/5. XB will consist of the
fourth and twelfth observations when only this pivot is accomplished. The point
will be By = -1/5, B, = 2/5, and the sum of the absolute values will be 17 1/5.
We can determine the change in the objective function by using the information
provided by the algorithm. Thus, we have 17 1/5 = 17 + (1/7) (7/5).

We shall conclude our discussion of this example by stating that optimality
will be reached in another two tableaus after the interchange of P5 and Nyp in XB'
The optimal solution is By = 1/5, B, = 3/5, and the sum of the absolute values is

16 7/10. XB will consist of the fourth and nineth observations.
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Modifying this example, we shall illustrate the possibility of not

obtaining a decrease along the initial basic edges.

observation, the twelfth, of X = 1/2, y = 0 for our data. The initial matrix

We require an additional

Xg will consist of the tenth and twelfth observations, and degeneracy also i

occurs in this tableau (V).

It should be clear that the tableau is not optimal

and that the addition of twice the component of the tableau of either of the tied

minimum ratioes to the reduced cost will make it positive. For this particular

example, the replacement of the twelfth observation by either the first or fifth

observation in XB will give a basic edge along which the objective function

will decrease. The optimal solution is By = 1/5, By = 3/5, and Xg consists of

the fourth and nineth observations.

TABLEAU V
BASIS RESIDUAL P10 le
P1 0 11/7 18/7
P2 2 7/7 14/7
N3 3 -7/7 -14/7
N4 1 -5/7 -12/7 j
i
P5 1/7 8/7
Pe 1 /7 6/7 |
H
P7 3 =3/7 4/7 %
N8 1 3/7 -4/7
P9 2 -5/7 2/7
By 0 -1/7 -8/7
Bo 0 2/7 2/7
17 13/7 -15/7
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6. Degeneracy and Optimality

Although we have taken advantage of the special structure of
the linear programming formulation and its associated geometrical considera-
tions to find a condition that should improve convergence when degeneracy
occurs during an iteration, we must emphasize the fact that our criteria
(1) and (II), in general, cannot be used as sufficient conditions for
optimality. The last example in the preceding section clearly demonstrates
that the positivity of (I) and (II) does not imply optimality. However, if
the objective function has assumed its minimum value, then the criteria (I)
and (II) will be nonnegative, i.e., the conditions are necessary. Supple-
mental conditions will now be developed which are sufficient.

Conditions (I) and (II) may be viewed as being derived from a
dynamic perturbation of the problem. This perturbation forces for j e ID,
either Nj or Pj into the basis depending on whether the sign of ijé%i) is
positive or negative. Hence, movement along a basic edge will always be
"away from" other nonbasic hyperplanes passing through the point g*. To
some extent this dynamic perturbation is theoretically justifiable because
the perturbation as defined by Charnes (1952) depends only on the constraint
index and this ordering is arbitrary. After a nondegenerate pivot the
perturbation may be redefined without the danger of cycling. The difficulty
with (I) and (II) is that a different perturbation may be enforced at a
single iteration. This means that for each j, with xj a row of xB, we may be
looking at the reduced costs for different problems. If there are p degenera-
cies at an iteration then without varying XB there are Zp different bases of
the form (1) for this extreme point. A general representation of the reduced

costs for these 2" bases is:
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-1

1+ jegR* ejxij(i) U je?D djxij(i) (I11)
-1 -1

jegk* erij(i) - j€§D djxij(i) (1v)

for Pk and Nk’

respectively, where Xk is the i-th row of XB and dj = +]1 or -1.
The current solution is optimal when a set of dj jeID can be found

such that (III) and (IV) are nonnegative for i = 1, 2, ...m. Maximizing the

minimum value of (III) and (IV) over i = 1, 2, ...m.is an integer programming

problem. It would not appear to be computationally beneficial to solve this

prob]em;‘however, certain dj are readily available from the computation of

(1) and (II). These can be conveniently used to verify optimality in certain

instances.

7. Remarks on Computation Results

We modified a multiple pivoting code developed by Armstrong and
Frome (1976) to include our criteria for finding the basic edge of steepest
descent. The algorithm was coded in Fortran, and the criteria were imple-
mented in a straightforward manner. Our objectives were to determine if the
number of pivots and the execution time would be decreased. We chose to com-
pare the results of our coded algorithm with the original code of Armstrong
and Frome. We generated our data from discrete distributions since, theoreti-
cally, degeneracy will not.occur in the case of continuous distributions. In
most of the problems in which there were only a few (4 or less) degenerate
variables at an iteration, our code required slightly less pivots than the

original code, but our execution time exceeded theirs. In most problems




with several (or many) degenerate variables at an iteration, we found our

algorithm showed a significant improvement in the number of iterations so
compared to the other code. However, in terms of execution time, our
algorithm showed only a slight improvement in speed of convergence in

some problems, and in other problems, it was slower in reaching optimality.

8. Observations

The purpose of this paper was to illustrate that degeneracy in
LAV estimation can increase the number of iterations and also solution time
in algorithms which have been shown to be very efficient. In problems
where a large number of observations are taken to estimate a few parameters,
it is very likely that degeneracy will occur. We have been able to develop
an improvement in the multiple pivoting algorithms when degeneracy occurs
which enables the pivots to proceed along the basic edge which gives the
greatest rate of decrease in the objective function. The results of our
computational study verify our hypothesis on decreasing the number of
iterations. The current direction of study involves a more sophisticated
implementation of the criteria into the code. One possible direction in
which an extension of the procedure would be desirable is to have an
efficient method of determining the rate of decrease for all edges at a
point where degeneracy is present. However, to pivot through all possible
bases by the simplex algorithm to find the rates would require c(mtk,m)

pivots, and this would not be advisable.
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