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DEVELOPMENT OF A UNIFIED FIELD THEORY BASED ON FINSLER GEOMETRY

by Horvath , 1. I. and Moor , A., Debrecen , Institute for Theore-
tical Physics of the University

from ZEITSC}IRIFT FUER PHYSIK , Vol. 131: 544—570(1952).
(received 16 November 1951)

AB STRA CT

After we have mad. a differentiation between the field theories

in the narrower and broader sense in the introduction and had

discussed Einstein ’s postulations with respect to unified field

theories , we formulated the fundamentals of the Finsler geometry,

which we have made the basis of the developed theory, in para-

graph 1. Paragraph 2 contains an overview of the universal

lines of charged points , respectively of the extremals of the

geometry. In paragraph 3, we have then transformed the mathe-

matical apparatus of the theory of relativity to linear elemen-

tary spaces. Finally, in paragraph 4, the field equations were

derived from a variation princip le.

The theoretic field investigations which , since the inspiring

Faraday idea , have provided one of the most significant and use-

ful forms of visualization of modern physics , have reached a

significant development period in the last two decades. In or-

der to make it possible to clearly formulate the character of

the problems , which led to the difficulties in the field theory,

it appears to be eminently useful to us to make a differentia —

tion which is generally not customary.

The field theory, as it appeared most consistently, first in

the Faraday—Maxwell theory of electromagnetism and later in the

~~ -g1l4
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relativistic Minkowaky electrodynamics , respectively in the

Lorentz electron theory, addressed itsief to the solution of

the problem to replace the elemtary laws for the forces acting

momentarily at a distance by variables of state , which continu-

ously vary in place and time , in order to make it possible to

take into consideration the continuous action and the finite

propagation of the physical effects. In order to solve this

main problem and to obtain simple generally valid lows , dif-

ferential equations had to be found , which were satisfied by

the variables of state. In this respect , the field has only

an abstract significance , without it being possible that any

explanation , which is clear from the geometrical viewpoint ,

could be provided for it. The new field theories , in their

classical (non—quantified) form , which play a role in the phy-

sics of atom nuclei and elementary particles , have developed

through the immediate generalization of these theories , only

their field equations have anbther form corresponding to the

exchange effects , which are preassumed in various ways and

their field potentials have another transformation character.

The universal continuum , in which the physical phenomena ,

which are characterized by the field , take place is the four—

dimensional flat space—time manifold , which has a pseudo—Eucl—

dian metric , in which the field potentials , respectively the

field intensities are illustrated by four—vectors , respective-

ly tensors. Finally, we - should note that the field magnitudes ,

from the group—theoretical viewpoint , are covariant with res-

pect to the Lorentz transformation . In the following, we now

want to designate these field theories as “field theories in

the broader sense”.

In contrast , we designate as “field theories in the narrower

sense” those field theories which , in accordance with the ori-

ginal Riemann postulate , determine the physical effects of the

guide field directly by the geometrical structure of the space.

A well—known examp le of a field theory of this type is provided

by the general theory of relativity of Einstein.
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Since the time of Einstein ’s discovery, the field theory in the

narrower sense has set itself the objective of illustrating all

physical effects , of which the field theories in the broader

sense have alread y been solved , by the geometrical structure

of the world , in which the natural phenomena occur . These in-

vestigations , which are customarily included in the area of

“the unified field theory ” , have even today not been concluded

in a satisfactory manner. The difficulties , which , in the case

of gravitation and electromagnetism , have been of considerable

interest for more than 30 years , can be explained by the fact

that there is no field theory in the narrower sense , which sa-

tisfies the requirements , for electrod ynamics. The investiga-

tions , which addressed themselves to this problem , which thus

have posed themselves the question if it might not be possible

to understand the electromagnetic field , as well as the gravi-

tational field as a change of the geometric structure of the

universal continuum , have yielded the result that the four—

dimensional Riemann space , which is the basis of the general

theory of relativity, has no place at all for such an interpre—

tation. If the curvature of space is used for the gravitational
PA

field , the Riemaan geometry has no geometrical object , which

would be suitable for the illustration of the electromagnetic

effect by an electromagnetic guide field. In order to make it

possible to solve the fundamental problem of the unified field

theory, it is therefore necessary to perceive the universal

continuum as a manifold of a more general structure than the

Riemann space.

The common fundamental concept of all unified field theories

is that the guide field of gravitation is illustrated by the

conventional four—dimensional Riemann geometry and that the

deviation from this space is established by the electromagne-

tic field. If , without seeking a complete coverage , we briefly

indicate the course of development in accordance with the well—

known pioneer work of H. Weyl, the generally known unified field

theories can be essentiall y classified in three categories.

The first category summarizes those theories , which have 

- - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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developed through any affinity generalization of the four—

dimensional Riemann space. The second category characterizes

those investigations , of wh ich the geometric basis is the four—

dimensional projective geometry. Finally, the five—dimensional

theories belong into the third category .

Without now going into all of these interesting theories in

grea ter de tail , we will make a shor t re por t abo ut the ch all enges
wh ich were raised by Einstein with regard to the unified theo—

ries (1).

Af ter we have indicated the transformation group, wh ich is , in

mos t cas es , a gro up of the four—dimensional (respectively five—

di m ens ional ) , non—singular , continuous , affine (respectively

projective) coordinate transformations , in con t ras t to wh ich
the physical quantities , which describe geometric objects , res—

pec tively  na tu ral  laws , must be invariant , we mus t construct

the un if ied f i e l d  th e o r y  in such a manner that it would be co—

variant in this group; in addition , the following two conditions

mus t be f u l f il l ed :

a) The theory should be covariant in a unified manner.

This means that the physical quantities , wh ich c o r r e s p ond
to the gravitaional. field , respectively the electromagne-

tic field , cannot be transformed independently f r o m  each
other in the transformations of the mentioned group.

b) The Lagrange function of the variation problem , from

wh ich the field equations should be derived , may not de—

composed into invariant components.

No t all theor ies can comple tely sa ti s f y  the se two condi tions,
which ar e the natural generalizations of those which led to a

un ified relativistic theory of electromagnetism in the uniforma—

liza tion of the electrical and the magnetic field. A difficult

pr oblem arises especially in the fulfillment of the first

cond ition.
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In the following , we will develop a un ified field theory, of
which the geometric basis is the Finsler space —— a metric

generaliza tion of the four—dimensional Riemann space —— , and

which  l a r g e l y  fulfills the above conditions. As we will see

shortly, this theory has the advantage that it has greater ca-

pab ili ty of g e n e r a l i z a tion , on the one hand , by the me thods ,

which have already shown themsleves useful in the Riemann geo-

me try , to enab le  the cons ide r a tion of add ition al f ields (meson
fields); on the other hand , we bel ieve tha t i t is capab l e of
adapting more extensively to the original Einstein postulates.

Paragraph 1. GEOMETRICAL FUNDAMENTAL S

1.1. The Fundamen tal Formula of the General Line Element

~~ aces

The general ization of the Riemann space starts (2) with an n—

d imensional point space R~~, with reference to the coordinates

x~ (i — l,2,...,n). The expansion can be attained in such a

mann er tha t all  th r o u g h  or ien ted d irec tions (n l ,2,...,n)
are added to each point. For the c~~, of cour se , only their re-

lationship is of importance. The space , wh ich is thus expanded ,

of wh ich the f u n d a m e n tal elemen t is d ete rmined  by (x , ~) (FN :
In the following , the l ine elemen ts (x 1

, *
i) ( i l ,2,...,n)

a re  u n d e r s tood as (x , ~c ) ,  can be cons idered as a (2n—l)—

dim ensional line element space R*.
n

In th is space , those functional systems A~ 1 
ki of the line

elements (x, ic) are designated as tensors , wh ich , with a coordi—

na t e t r a n s f o r m a ti on
-: 

~~~~~~~~~ IN).

i i ’
= XI

(

are transform ed as follows :

I -.~ — 1
( , ( , C . ,

-1 -
~~ 

... $ .•. .i r, .

( , ( t (
~~



When ~~~~ 
i ;  signifies a contravariant tensor of the first order ,

thus a contravariant vector , the transition from the line ele—

ment (x, ~
) to the adjacent line element (x + dx , x + d*) is

given by
~~~~~~ ~~~~ - (

~~:?i~ /
~
‘:?dx ’ (1.1)

where the coefficien ts Ck~ l 
and r’ k~l de termine the affinity re-

lationship of the space (FM: It is known that the C
k,l 

are ten-

sors , and for the transformation law of the , see 0. Varga

(1)). The opera tor D is designated the invariable derivation .
Formula (1.1) prov ides the invariant differential of the Vector

The quantities Ck i and r .~ 1 de termine the essential character-

izing objects of the space: which are of importance for a field

theory . While a point space can be characterized by the Riemann

curva ture tensor , the R* , jus t introduced , for the characteri—

sat ion of the space has , in addition to the curvature tensor

‘ h r  ~~
‘
~~~~ ‘ ~ ‘ k p p

Oh ,. -= - -  — G, — 
- •

~ 
G, —

1 1 CX (I._2~
~~~ r. ’ r . P  r. ’ . r ’ ~1 1 . I I p. ,

also the two tensors
( ,‘ • . t.~*

,
_ . 

~ ~1••~’ . — !• . h :  .

which are called the torsion tensors of the R~~. The quantities

introduced in equations (1.2) and (1.3) can be expressed by

C
k~ l, resp ectivelyr*k~ l in the f o l l o w ing m a n n e r :

II
’ 1~.

.~. ~ “ ‘ tI .4b~— ‘ I, .  l 1, ,
tt.4c

i• ’: i• . ~ 
( p

-—I (, ‘p . 
.

Depending on the geometrical conditions , which  sa ti s f y the
quan tities C

k~~
, , and r* , ~~~

,, , R* has various geome tric struc—
,~~~ 

c~, L~~p~~ U

tures. Among these spaces are also those which are the direct

general ization of the R~ covered by E. Schroed inger (3).

THIS PACT IS B~~T QtT~tt~? P A A~~~
FROM c~~ I ~~~~~~~~ 

- ~~~~~~~ 

- ,-- ---- .--——- . -. --—-_-~~~---~~~~ _ -~ _____
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In view of the fact that , in R*, the rk
i
l 

with the C
k~ l 

to g e t h e r
n ,

are the functions which determine the affinity relationship ,
still other C~~~1, respec tivel y occur in the symmetry con-

di tions of 
~k ~~ 

wh ich perm it a grea ter mul t ip l ic i ty of the
possibilities in the structure of the space.

I~ the following , we will inves tiga te onl y those fields in
greater d— tail , of wh ich the quantities and C

k~ l 
of the

corresponding R* can be der ived from a metric fundamental tensor.

1.2. Fundamen tal Tensors of the Metric R*

It is known that the metric spaces under the R~ are the so—called

Finsler spaces (3). The square of the element of arc is speci-

f i e d  by

2 . ~ 1.~’ 
(1.5)

where the metric fundamental tensor g~~~(x~*) is generated from

a fundamen tal f u n c tion ~~~~~ in the form (FM : In the following,

we will consistently use the designation introduced in equation
IN

(l.4b). For examp le: F, ,•~~~ , J ’_ - )
-- — 

g,, —
~ 

1 (~~
2) 

~~,
, 

- (1.6)

The func tion C(,t,~ ) should be homogeneous in the first dimen-

sion in the X
1
, but 

~~ ~ 
homogeneo us in the zero dimension

because of (1.6). Because of the Euler relationshi p

~
, ~~~ (1.7)

The fundamen tal quantities of the space are:

• a) The unit vector f, which possesses the same direction
as its line element , of which the contravariant , respec—

tively covar iant components are

i• ?J %~~I, — , . I>i~ -~. 1. ~ (1.S~

b) The torsion tensor

(1 9)where

;~ 
. H ~ D IQDD~ ~~~~~~~~~~~~~~~~~



-8-

- ~~~~~~ ~~~~ ~ ~~~~~~~~~~~~~~ ~1.1O)

c) The functions , which d etermine the extremals of the

space , are:

b. ~‘ . 
. .(1.11)

(;, —_ 
~~~~~~~~~ (f .12)

The quantities G~~, wh ich are introduced in equation (l.4a), are ,

in the me tr ic case ,

- . (1.13)

as can be eas ily demonstrated (5).

d) In addition to the C
k
’
m , 

the transformation parameters

are the
, ,:~. (1.14)

II a —
~~~

I’ -— L $~, ., . . - - ~ 
. r 

•~~
‘
,., ( 1 . 15 )

I - —~ 
. 

— .~~~ 
.- - ,,• - .  • ‘I

In addition to the transformation parameters , it is also
customary to use the quantities

j~~ / ‘  r (1.16)

which are symmetrical in the indexes k and m , a s r e su l ts

from (1.15).

e) Amo ng the curvature tensors of the Finsler space , es-

pecially the Riemann curvature tensor Rk~~rs has an im-
portance for us. R

k~ 
ag rees  wit h the tensor  

~ 
g iven in

equa tion (1.2) formally, only  tha t , ins tead of G
k

of th e a f f ine

space , there is G~ given in (1.11) and (1.12) and , ins tead of

~~~~~~ the tensor  ~~~~~~~~ , where

D p de1~~~ p ,h —
~~~~~~~ ~~~~~~~ ‘ (1.1,)

Add itional torsion tensors of the space are

, .l~ k .4,
~~. 

.4 ,h . A ,,k (1.18)
and

P~~~I l  ~
_ I :~~ ~~~~~~ — .4, r ,~4h’ki’ (1.19) 

-~~~~~~ - ---~~ - , -.— - -.- - --- .—~---- 
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~ k 

see (1.24).

f) As is customary in the general theory of relativity,

we also def ine , in the Fin s l e r  space , the tensor:

=

from which the invar1~~&Lt

R = gPkR ,k

is derived.

0. Varga (6) has introduced the tensor

r ’  ‘~~~f i $ p
-~~k ’ ’  ~

1h , s  ~~* .p Qs - ,s

as the principal curvature tensor of the affine continuous mul-

tiplicity in general affine continuous line element spaces.

In the f o l l o w ing , we will see immediately that the principal

curvature tensor
‘ R~, — 4 h . p  ~~~ 

(1.201

can also be used in the Finsler space in the formation of the

curva tu r e sca la r , ins tead of the R iem ann cu rva ture  ten sor R
*.rs

Because of the skew—symmetry of 
~~~~~~ 

in the indexes r and s

s.~,--~-4 . A. *, 0.
thus because of (1.20), the i n v a r ian t

- .  (1.21

which we will designate in the following as the principal cur-

vature invariant of the space , is identical with R.

In the formation of R , the reduced principal curvature tensor

H can also be u sed ins tead of th e te n s o r  R , ther efore
k,rs k ,rs

we wan t to des ign at e
r d,f c
~~,k H , .h , .  (1.22)

or in exp l ic it f o r m

= (T~~,.
’k)~~ — (r ’,~ , — 

~~~~~~~~~~ G ~~ - 1
~ (1 13)

— I’., ~ 1’*,’, — r.,’. I* k J
as E i n s t e i n — R i c c i  c u r v a t u r e  t e n s o r  of o u r  s p a ce  ( F M : It sho u ld

~ 

..~~~~~~~~~~ ---—~~~ .-- _____
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be no ted tha t R
ik 

is symmetrical in its indexes i and k only

in the Riem ann geo met ry ( see Car tan , l.c. equation XXIII.))

g) We now also have to still give the covariant deriva-

tion of the tensors. For example , let Ti
k
h 

be a m ixed
tensor  of the th ird ord er , then

1’ ~~~ = (7~~~)~i — (T~M ),~ G —  re:, 7.,
~ -

~~ 
j’n
~~ J _ J s.’, T.~ . (1.24)

In the general metric line element spaces , th e r e  a l so
e x i s t s  t h e  w e l l — k n o w n  i d e n t i t y :

I g 1k r~ O. (1.25)

Paragraph 2. ON THE UNIVERSAL LINES OF THE GIVEN GENERAL

FIELD THEORY

2. 1. G e o d e t i c  L i n e s

If a charged mass point is in any condition of motion in the

four—dimensional space—time continuum , wh ich , in our case , is

a F insler  sp ace , its path can be designated as a universal line

in the customary manner. However , we now consider the space

as a four—dimensional metric point multiplicity, of which the

m e t r i c  f u n d a m e n t a l  t e n s o r  is h o w e v e r  n o t  o n l y  a f u n c t i o n

of the lo cus , but also of the direction (7). The equations of

the universal lines can be given in the form

.1. ’ . 
~~
‘ (2.1)

When the arc length is selected as the parameter (t~~s) ,  then

- j~ .“ — I

“The ac tual motion of a body comes about by the competition of

two i n f l uenc es , the guide field , which transmits the universal

direc tion of the body from moment to moment , and the force ,

which  d e f l e c ts the body  from this natural motion ” (8). In th e

general theory of relativity, it is customary to determine the

gravi tational forces , which determine the motion of the body, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ —~---—..-.—-. . .. -.
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by the structure of the guide field. If only gravitational

f o r c e s ac t on a mass po in t , its path is a geodetic line of the

spac e , which is a RiemanA space in this case.

We now also want to take into consideration the effect of the

elec tromagnetic field by the influence of the structure of the

spac e. When , in addition to the gravitational forces , o n l y

elec tromagnetic forces act on the charged mass point , its path ,

in the guide field , will be an extremal of the Finsler space.

The metric field is the potential of the guide field , wh ich ,

in the p reva iling case , is the combination of the electromag-

netic and the gravitational field. The structural deviation

of this space from the Riemann geometry, thus the space torsion ,

will be determined by the electromagnetic potentials.

The extremals of the Finsley space , which , in our case , are thus

the universal lines of a mass point carrying out inertial

motion , are derived by the variation of the integral

I ~!
‘L~~. Jxl

The arc length on a universal line (2.1) between the parameter

values t
1 

and t
2 

is given by the f o r m ula

~ ./
•
‘-• 

~ ,~~, 
(2.2~

For p h y s i c a l  r e a s o n s , it  is a p p r o p r i a t e , i n s t e a d  of t h e  a r c

l e n g t h  s , to i n t r o d u c e  t h e  p r o p e r  t i m e  ~ by t h e  e q u a t i o n

1~

H which is identical to the arc length if , as we will always

assume in the following , the propagation velocity of light is

selected as the unit.

For the extremals
i: ‘~

and the differential equations of the extremals are:
1~i ~RACIlCAB~~

~~~~~ 
. 

~~~~

~‘1~OM COPY ~~~~~~~~~~~~~~~~~
‘-~ - - -~ ~~~~ 

.

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2 . 2 .  The  M e t r i c  F u n d a m e n t a l  Form _and t h e  N u l l  S p h e r e

As in t h —  g e n e r a l  t h e o r y  of r e l a t i v i t y ,  we a l so  h a v e  q u i t e

a n a l o g o u s  d i f f e r e n c e s  b e t w e e n  t h e  e g o m e t r y  of t h e  p o s i t i v e  de-

finite and the indefinite arc elements of the Finsler space (9).

For the geodetic lines emanating from a point P0
(x~~) ,  the fol-

low ing cond iti ons can ex is t :

I) (2.4a)

~ i (2.4c)

The  d i r e c t i o n s  ~ ~~
. , w h i c h  satisf y equations (2.4a),

(2.4b), respec tively (2.4c), are called time—like , space—like ,

respectivel y null directions. In the limiting case , whe n
th ere  is no elec trom agne tic and gravitational field , our sp ace

is transformed into a pseudoeuclidic space with the arc element

J~~.1 j ~~ 2 2 - j j 
~~

The pe r mi ss ible po in t t r a n s f o r m a tion s of the Fin s l e r  spac e are
constrained by this characterization of the space—time world

(10). The permissible coordinate transformations shou],d trans-

form the space—like , respectively time—like directions always

i n t o  t h e  s a m e .

In o r d e r  to  m a k e  i t  p o s s i b l e  to  t r a n s f o r m  t h e  a r c  e l e m e n t  ( 1 .5)

i n t o  t h e  a r c  e l e m e n t  of t h e  pseudoeuc lidic space , th e following

r e l a t i o n s h i p s  m u s t  be f u l f i l l e d  ( 11):

~~~L .  - 

- 

~~~~~~~~~~

. 

-
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The entirety of the geodetic null lines , wh ich thus  sa t isf y

(2.4c), lie on a man t le of a s p h e r e , which is designated as

null sphere. For the lines of the null sphere , th e arc length

(2.2) canno t be selected as parameter.

Obv iously, eq uations (2.3) are unusable for the null lines ,

which are charac terized by (2.4c), b eca use of the d is a p p e a r a nce
of the parameter (FN: see equations (2.2), (1.7) and (2.4c)).

In ord er to be able to also define the geodetic lines on the

null  sphe re , we will use their well—known other definition , in

acco rdance  wi th wh ich th e geode tic l in e is a curve , wh ich al-
ways retains its direction. This means analytically, beca use

of Ck~,i
h (2.4)

tha t (F M : V arga , O.:(T))
I..- .

P ~dj ’~ i’ .t ’ ,. , dx h 4x
~ i5 ~ 1 - d.s ~ El ds .~ 

= (2.5

It can easily be verified that equations (2.5) are identical to

(2.3) (FM : see equations (2.4), (1.11), (1.14) and (1.15). In

accordance with Pauli (FM : see Pauli: l.c.), we define the

geode tic null line as follows: A geodetic null line is a

curve for which a curve parameter t exists in such a manner

that the differential equations

d~~ dx
J k . l (X .  ) di di (2.6a)

are fulfilled and

(2.6b)
2 (x .x) = 0

If there is no electromagnetic field , our conditions (2.6) and

(2.4c) are transformed into those of Pauli , wh ich are g ive n in
the Rieinann geometry. 

- ~-~~ -—-——-~~-= .. ...~.
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2.3. The Osc ulatory Riemann Space

We now wan t to draw a tt entio n to a conce pt , wh ich is impor tan t

in the f o l l o w in g ,  and which has the relationship that it is im-

possible to “t r a n s f o r m away ” the en ti re elec tro m agne ti c and
gravitational field of a charged mass point in the entire uni-

ve r sa l  con tinuum all a t once b y cons tan t tr a n s f o r m a ti o ns , but ,
in suf f i c ien tly small  env iro nmen ts of a un ive rsal point of the

space—time continuum , we can a l w a y s  sp ec if y  a sys tem , in wh ich
the guide field disappears. It is well—known how this can be

accomplished in the case of the Riemann space. We still want

to refer to the fact that a similar relaLionship also exists

be tween the Riemann and the Finsler geometry.

A so—called oscula tory Riemann space with the following perper—

ties can be associated with any continuously differentiable

ser ies of line elem en ts

(2.7a)

-
~~ (2.7b~

a) Let the metric fundamental tensor 
~ ik

(x) of the oscu—

latory space be identical to that of the Finsler space.

b) The g e o d e t ic lines of  th e two spac es shou ld  osc u la te

each other.

c) Le t the invar ian t d if f e r en tial of a vec tor ~~~~~ ~
)

be identical in both spaces.

For the purpose of the construction of the osculatory Riemann

sp ace , we expand the field of the line elements (2.7) beyond

the curve (2.7a), wh ich can be ca r r ied ou t in t he f o l l o w i n g
manner: Through each element (x, *) of the series (2.7), we
lay an ex t re mal of th e F in s l e r  space , wh ich then f o r m , as an
entirety, a single parametric system . We embed these in a

system of extremals , wh ich covers a certain point area B

smoo thly. It is now possible to clearly associate a direction,

- - — -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~ .—.---..-— -- . — - . - --- - - --  — _
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namely the direction of the tangent vector of the extremal
- 

,. ( .~:) (2.8)

wi th each po int x~ of B. We a lso  wa nt to ass ume tha t the line
elements are so selected that they agree with the derivations

of t h e  e x t r e m a l s  in a c c o r d a n c e  w i t h  t h e  a r c  l e n g t h :

r(  t - t
~~g .  (2.9)

By ins er t ing r~ in ~~~~~ t )  , we obtain a tensor

“ 10

wh ich we select as the metric fundamental tensor of the

osculatory Riemann space.

I t  can be e a s i l y  p r o v e n  t h a t , w i t h  t h i s  c o n s t r u c t i o n, t h e  oscu-

la tory  R iem ann space  has the c h a r a c ter isti cs spec if ie d in a ) ,
b), respect ively c) (12).

We wish to still note two additional properties of the oscu-

la to ry s p a c e :

d) The covariant derivations of the tensors are identical

along (2.7) in both spaces.

e) The Riemann curvature tensor of the osculating space

agrees , along (2.7) with the principal curvature tensor

of the Finsler space.

In order to prove d) and e), we still should note that the vec-

tors of the field (2.8 ) ,  of which the points of engagement are

on (2.7a), are par allel in the osculating space; thus

— I (2.11 a)

where  the /~,‘ 
signify the Christoffel symbols of the

A more ex tensive calculation shows that (2.lla) can be brought

i n t o  t h e  f o r m

• (2.ttb )

(FN - Var  a 0 . — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~g , . . 
— 

. 
~~~~~ L u l ~~~~ ZO ~~c. - —

_ _ _
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If we now calculate the covariant derivation of a vector ~
in the osculatory Riemann space along (2.7):

(‘1’)
I:~

E$ = x, r ( x) ) ..~* ± I A . s~ 
. —. —

I t  is now seen i m m e d i a t e l y  t h a t , b e c a u s e  of ( 2 . 1 0 )

-
~~ {g

~ ,i~ ± 
— g~s1p1} ±

~~k P ,.I •—r- j- - I I )  
-— 

2 (r~ 
~
•(~ ) — 

2 ~
::-

~. 
- (

~ 13)
= 

~~ 
{g~~~ -

~
— gP2 I k ) — g I l P ~) 

-• ~~~~ — C,,,,G~ ± Chl , G~
_ r .

and ~ ‘(x , r ( X ) Y h) = — E1V1 G’~ (2.14)

By inser ting (2.13) and (2.14) in ( 2 . 1 2 ) ,

I
n
’ ~I - F- ~i

~~~~~~ ~~.

a long  ( 2 . 7 ) ,  Q E D .

In o r d e r  to  a l so  p r o v e  e) , we n o t e  t h a t  t h e  Riemann curvature

t e n s o r  is

hi I f h 1~~~~ 
/~ ;~ 

-
~~~ 

I~ k ~~~~1— ~~~~ ,!~~k

In a c c o r d a n c e  w i t h  ( 2 . 9 ) ,  (2 .11)  and ( 2 . 1 3) ,

R,’~, H,~k :. 
- . (2 .lc)

QED .

We now want to add the final comment that the geodetic null

lines of the two spaces also osculate each cther , wh ich f o l l o w s
d i r e c tly from identity (2.13) and from the equations of the

geode tic null lines (2.8) of the two geomertries.

2.4. The Fundamental Postulate of the Specified Theory

Following thes e general preparations , we want to heuristicall y

summarize the fundamental postulate of our investigations as

follows. - 

—-------- - ~~~~~~~~~~~~ J_ .-_
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If a charged mass po int is under the influence of a guide field

in any state of motion , its path in the four—dimensional space—

t ime ’ continuum is given by its universal line. If , in accord—

ance w ith the g e n e r a l  f ield th eory  in the n a r r o w e r  sense , we

wan t to express the guide field by the geometrical structure

of the space , and the guide field is a pure gravitational field ,

a suitable Riemann space can always be aonstructed in such a

manner that the specified universal line of the mass point would

be a geode tic line of the geometry. If , howev er , in addition

to the gravitational field , an electromagnetic field is also

presen t , the Riemann space will not suffice to express the phy-

sical properties of the space. However , it is possible to use ,

in this case , a more  gene ra l  geome t ry —— namely  the Fin s l e r
geome try — — , which is suitable for the description of this

comb ined gu ide field.

If the universal line of the charged mass point is specified

in t h e Riem an n space , the n we can selec t, from the multip lici—

ties of the possible Finsler spaces , those  o f wh ich one of the
geod etic lines agrees with the specified universal line. In

this manner , the charged mass point carries out an inertial

mo tion in these spaces.

Paragraph 3. INFINITESIMAL COORDINATE TRANSFORMATIONS AND

VARIATION THEOREMS IN THE FINSLER SPACE

Af ter we have seen how the guide field is related with the

• me tric of the universal continuum , we must investigate the ques-

tion how the metric is influenced by the masses and by the

cha rges , wh ich produce the guide field. It must of course pri-

marily be expected of the equations , wh ich sp ecif y the re-
la tio n s h i p  be tween the gu id e f ield and the str uc tu r e of the
space , that they should be generally covariant. However , in

order to obtain a clear definition of these field equations ,

we wan t to derive these from a variation principle , wh ich is
customary in the field theories . In order to realize this

p r o g r a m , some m a t h e m a tical prepara tions , such as the concept

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—
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of t h e  m e a s u r e  of c a p a c i t y ,  the a n a l y s i s  of the tensor dens ities ,

fur thermore , infinitesimal transformations , var ia t ion me thods
and va r ious  iden tit ies app l ied in the t h e o r y  sha l l  be d i s c u s s e d

in this paragraph.

3.1. The Concept of the Measure of_Capacity in the Fins er Space

Beca u se , in a c c o r d a n c e w it h the Car tan th e o r y ,  the Finsler geo—

me try can be considered as a line element multiplicity , the

measure of capacity of a partial area of the space has no im-

portance in the usual sense. This is related to the fact that

the measure of capacity in the usual sense is a concept which

is def in~..d for po int multiplicities. In the Finsler space , an

integrable area —— consisting of po ints —— has a measure of ca—

paci ty onl y with respect to a defined directional field (13).

I t is th e r e f o r e  a d i r e c tional  f ie ld d e f i n e d  by th e equ a t ion s
(3.1)

in this manner , the me asu re  o f capac ity of an a rea  V can be

d e f ined , with reference to (3.1), by the integral

/ 1_ ~ (x .r x ~ dx (3.2)

where dx is the abbreviation of

dx  = dx 1 dx ’dx 3 dx 4
and

g~~ det g~ (x ..’)  -

Beca use of the tr an s f o r m a ti on f o r mula  of -1~~g, (3.2) is an in-
var iant , which characterizes the measure of the area V. (FN :

In o r d e r  to make it p o s s i b l e  to def ine the meas u r e of capac it y
in a generally affine cohesive line element space , a function

q with the transformation character of ~~~ must be constructed.

(see Varga , 0.: ( i ) ) )

3.2 Tensor Densi ties and Their_Ana l ysis

If the integral (3.1)

f 9 ~~~d x

is a tensor of the second order along (3.1), then , w ith

~~~~~~ -
~~~~~~~~~~~~

-- -- -- - . ,- - -
~~~~~~~~~~ ~~~~ - - - -- -- -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

:_ ~~~~~~~~ ~~~~~~~~~~~~~~~~ - ---— - ~~~~
.,
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WEYL 3~~~ek iS ca l l ed  a t e n s o r  d e n s i t y  of t h e  second order. This is

d e v e l o p e d  by m u l t i p l y i n g  a c o n v e n t i o n a l  t e n s o r  w i t h  ¶T~~ . The
tensor densities of teh zero order , which  wi l l  p lay  an o u t s t a n d -

ing ro le  in the f o l l ow ing ,  are the scalar densities.

The algebra of the tensor densities also does not introduce

any thing new in the Finsler space , al tho ugh th e r e  are  ce r t a in
d i f f er enc es in thei r  a n a l y s is , be cause th e componen ts of the
tensors and tensor densities are now a function of the line

elemen t (x , ~) .

In order to be able to define the divergence of a tensor den-

si ty ,  we will start , in accordance with Well (15), with a sta-

tic vector field
(3.3)

,
~
‘ (x , x)

w h i c h  t h u s  satisfies the c o n d i t i o n

r~ 
~~ — ,,~~~ 

G’~ — 1 ,~ ,~
‘ 0 (3.4)

by definition. If ~~~~~. is a m i x e d  t e n s o r  d e n s i t y  ( F N :  ~~,*
sha l l  be s y m m e t r i c a l  in I and k ) ,  t h e n

5
1 

~~~
will be a v e c t o r  d e n s i t y ,  of w h i c h  t h e  d i v e r g e n c e  can  be de-

f i n e d  as f o l l o ws:
(3.5)

In accordance with (3.4), (3.5) can explicitly be brought into

the f o r m
I 

-= — ~~~ ~~. 
si -.  

~l, - i , , ,  (3.6)

(FM : Th i s  f o r m u l a  a lso a p p l i e s  in t h e  a f f i n e  c o h e s i v e  l ine

e l e m e n t  s p a c e ) .

For  spec i a l  a p p l i c a t i o n s, i t  a p p e a r s  a p p r o p r i a t e  to  r e s t a t e

our  f o r m u l a  ( 3 . 6 )  in a c e r t a i n  m a n n e r .

T h r o u g h  a simple  c a l cu l a tion ,’- the result is

i.• ’, 
~,
‘ 

~ 
- • ; : : ~: 

-
~t~~

’

and
I . ~~~~~~~~~~~ • - 

~~~~~ I —a - — ,• ... ( 1,, .1 . (,~ .1. - (3 .,)

Af ter transvection of equation (3.4) with *
k
, the i d e n ti t y  

---.
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-,  .~~

- 
., 

— ,
• (,~~ %

— •

can be wri tten because of (FN : See also (l.4a) , 1.13), and

(l.4c) and observe the symmetry of in the indexes i and j)

.~~

In acc ordance with (3.7), (3.8) and (1.10), in view of the homo-

geneity of the second order of G ’

I h • , • . - ., -•
‘~ I, ~~~ 

— 
_ • .1 - • ‘, - — -  , ~. ~~ - 

- - ~~ I
’,, 

- 
~.I1 

- s~ • . (3.9)

T h r o u g h  a n a l o g o u s  c a l c u l a t i o n s, t h e  r e s u l t  is t h a t , f o r  a
-
~

defined with the aid of a covariant static vector field
- C , ~~~ ~~

the divergence can be defined in the following manner:

— 

~‘‘ 
— r . _ . - - - . 

(3.10)
or

— . — ‘
.• 

— -- I -
~ 

- 

- 
- ~ 

~~~~~ 
~~ - • . 3 . 1$)

-
~~

I_ _
I ’ • — • -

In the R iem ann geom et r y ,  our formulas (3.9), (3.10) and

-i (3.11) are transformed into the well—known expressions of the

diverg ence (FN: See Pauli , l.c., formulas (149) and (150)),

but it wi l l  be m o r e  u s e f u l  f o r  t he  a p p l i c a t i o n s  to c o n s i d e r

those static vector fields , wh ich are a f u n c ti on of th e locu s

o n l y ,  in o r d e r  to m ake the d i v e rg e n c e of th e cons idered  tens or
dens ity independent of the vector field (or ~~~ For th is
pur pos e , we ose a ~~atic vector field

(3.12)

of w h i c h  the ana l ytical definition in accordance with (3.4)
is given by 

- ~
, 1s  ‘

1I~~ ~~~~~~~

For the construction of such a vector field (3.12), that pro-

cess  ca n be used , f o r  example , wh ich lead s to the f o r m a ti on
of the osculatory Riemart n space (FN: Varga , 0.: (3)).

W ith the aid of the static vector field (3.12), the f o r m ulas
of the divergence are given , instead of (3.6), r e s p e c tivel y

- - -- -~- -- - --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ———-- 5 -  - - - - - --
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(3.7) and (3.10) , respec tively (3.11), by

~ iua ~~~~~~~~~~~~~~~~~~~~~~~~~ (3.13)
with (FN : See Pauli: l.c., p 609)

~ ~~~ 1 ,g  — C ,h, G, ~~hi (3.14
respec t ive ly  wit h 

- 

- S

- •k  ~~ _)(r I  (3.1,)
‘
~ tu ’~t ~t . h~ -— ’  i l - - .

and formula (3.13) can also be written (FM: See equation (3.9))

with (3.12) in the important form

or I l k  = 1~t , *  - -  .‘~ ~~~~~~~~ ì~ ~~ 
- -  

~~~~~~~~~~~~~ . (3.16)

IC - -  .t11 g , ,  ~ — , (3.1,

We can add the sam e p h y s ical sign if ica nce to the con cep t which
was just given concerning the divergence of the tensor densi-

ties as Weyl did in the case of the general theory of relati-

vity (16).

3.3. Variation Methods

In ’ order to make it possible to formulate our variation prin-

ciples , it is appropriate to use infinitesimal coordinate

transformations. This method , wh ich is carr ied ou t by Pa ul i
(17) in the Riemann geometry, has the advantage that certain

charac teristic differential equations , wh ich ar e f u l f il led  by
the quantities which characterize the geometric structure of

the guide field , can be ob tained directly.

Such an inf initesimal coordinate transformation is also speci-

f ied in the Fin s l e r  space  b y
(3.18)

w h e r e  ~ des ignates an infinitesimal parameter. This transfor-

ma tion can be plainly interpreted as a generalized Galilci

transformation with the velocity vector~~

~ —-—~ - - -~~~~~
- - ---

~~
--~~~--- -.~~- ~~~~~~~~~ —~~~~~--
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We will develop the differences of the overlined and non—

overlined quantities in accordance with powers of E; the term

in ~~~of t h e  first order is designated as the variation of the

p a r t i c u l a r  q u a n t i t y .

Analy tically, this var iation of the tensors can be specified

in two different ways by the following formulas (FM: Pauli

des ignates the variation ~ as S )

= t ’ (~~ ~ - - ,-l~
- i) (3.19a)

r e s p e c t i v e l y  -

ô*A~ ” 1 .~‘ - ~~~~( v , i A ’ 4 t . -i)  (3 .19b)

As in t h e  R i em a n n  s p a c e , t h e r e  is a l so , f o r  t h e  v a r i a t i o n  T~~~

in the Finsler case , for example ,

~);l , :~ -‘- i -~~~~
’

, , . 4 ,  (3~~0)

r e s p e c t i v e l y
— - , “ C

— P .1,~ ~ k 5 1 C C ’

Beca use of the d e p e n d e n c e  of the qu an titi es of k , t h e  v a r i a —

t ion ~~~* has the f ol low ing exp licit form in the Finsler space

d A ’ — -i ’
~~ A , (3 .2’)

respectively

ô A , 1r = t~~ 5 S S t C~~I P  ~ — - l , ~~-~
’ - - .-l - ~ , ,~~

‘
, .v ’~ . (3.23)

The f o r m u las  f o r  the o ther  compo nen t s can b e eas il y cal culated.

In the  var ia t ion calc u la t ion , it is also customary to introduce

the variation

- -  A ~~ , ~~
- - - ; i  k ( - ~ . ~~~ (3.24)

w h i c h , as can be  e a s i l y  v e r i f i e d , is , f o r  e x a m p l e ,
6.1,1 ‘ ~.L-  • - -  

~~~~~~ 
. -

for tensors of the second order.

Be tween the . symbols , which are thus introduced , th e r e  is the
follow ing important relationship

(3.25)

-

~ 

-‘-- -
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For scalars , & w ill be _
~~c •

We now wan t to also give the following formula , wh ich is cal-

cula ted in an elementary manner:

— 0 -— 1 — - ~i C’ (71
r e s p e c t i v e l y  C,~~~~ i I

= ~~g - ~i) g’4 ~~ ~g, L 1k s~g
?
,~ (3.2~)

3.4. The Generalizing Palatini Identity

I t  is we l l  known t h a t  t h e  i d e n t i t y  of P a l a t ia l  p l a y s  an impor-

t a n t  ro le  in th e der iva t io n of the f ield eq ua t ions o f the
general theory of relativity from a variation principle. For

us , also , the generalization of this identity makes a simp li-

fication possible.

In order to make it possible to derive the generalized Palatini

identity, we form the variation of the Einstein—Ricci tensor

( 1 . 2 3) :

(àJ’~~~)~ ~
)! ,.l) , G~ (~~ / * I) J~~~ 

— t61’ *,. *) J ’~~. —

— (61* , ~,) 1 . k  ~ I i ‘,)~ 
(1) 1 *, .~ ) 

~~? 
— (3.27)

(oI ’ ,’ ) 1~~~~, k  ( 
~~~~~~~~~~ ,-~ ‘ 

(1• ’ .~ ) ,

For the transformation law of I~~-~ , t h e r e  is ( F N :  V a r g a , 0.

(1 ) ,  e q u a t i o n  ( 1 . 1 7) )

- 
C I~~ C .. :~

‘., ‘‘ .

(~ % C ~ 
( C  ( t ( *  C -

I ’ . .. is thus n o t  a t e n s o r , b u t  y e t , as can be eas i ly ve r if ied ,

, )J S ,
i wil l  be a m i x e d  tensor of the third order. Therefore ,

e q u a t i o n  ( 3 . 2 7 )  can  be w r i t t e n , in a c c o r d a n c e  w i t h  definition

( 1 . 2 4 )  of th e  c o v a r i a n t  derivation , in the f o r m
I •‘)/ ~~ 

-
- ) / ‘  

- 
- / • ‘ - I

/ ‘ . , 1C I
Equa tion (3.29) is the desired generalization of the identity

of Pala tini (18). 



The two last members in equation (3.29) make the usual appli-

cation of the Palatini identity difficult. Added to this is

the fact that the transformation of the first members , in ac—

cordance with the Gauss theorem , into a surface integral pro-

vides additional interfering terms , which contain derivations

in ~~~~~~~
, because of the special form of the covariant derivation

in the Finsler spaces.

However , when we use the Palatini identity along one line ele-

ment sequence (3.1) with the conditions (2.9) and (2.11), the

Palatini identity is simplified. In equation (3.27), in accord-

anc e with (2.9) and (2.11), there is

— (61 1 ’*) ,) G — (r *, 1*) ;, 6G = _~ 1 ~~1x  r t x D ’.,, =and , in a similar manner ,

(o17*,1,)~*) — (31” ,~,)- ,~ G 
— (($)J’*~~). b (;~ = (à/’,~~)1*,

We therefore have along (3.1), with the mentioned condition ,

instead of (3.29):

= r~(6r ,~1) — 1k l ’~I ,. , ) .  (3.30)

We have thus given the relationship of the Palatini identity

of the Finsler space with that of the osculatory Riemann space.

3.5 Identities 
- -

It is well—known that the Bianchi identities play a si gnificant

role in the general theory of relativity and in the modern

unifIed field theories. They can be used to derive those iden-

tities , which express the conservation laws of mass. In the

Finsler space also , impor t an t f o r mu las can be der ived f r o m  the
g e n e r a l ized Biach i iden titi es , which are the direct generali-

zations of the relativistic conservation laws.

There exist the identities (FN: Cartan , E.: l.c., p. 37):

r, R,,,~ — I~ .- L~ R , , ,~ -
~~ (3.31)

I 
- --~~~~ -- --5 —— -
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where  
.1!, l i 1~~~~ ?* 1  -- . (3.32)

which illustrate the generalized Bianchi identities.

Because of the skew symmetry of the tensor Rjjkh 
in the in-

dexes (I , j )  and (k , h ) ,
— - _ ; \ ; 4 ~~~~~

develops fr om (3.31), and , after transvection with gJh g
ik

1 R - —  1 A’ -

or

C ,.
~ 

‘

~
- - ‘,j . (3.33)

M1, as can be determined immediately, d isappears identicall y

in t h e  R i e m an n  s p a c e .  The  r e q u i r e d  g e n e r a l i z a t i o n  is o b t a i n e d

in this manner. We will return elsewhere to the physical con-

tent of this identity.

P a r a g r a p h  4 , D E R I V A T i O N  OF THE F I E L D  E Q U A T I O N S

4.1. Gener al Considerations

In order to make ~.t possible to derive the field equations ,

which are the immediate generalizations of the Einstein gravi-

tation equations , we now want to formulate the variation prin—

ciple in the following manner , with consideration of paragraph

2.3 and paragraph 3.1. If we form along a field of direction

- 

(4.1)
the invariant intngral

I ( -~ I . (4.2)

where R is the principal curvature invariant density , wh ich

is defined by equation (1.21).

In the general theory of relativity, the field equations are

d erived by the disappearance of the variation of (4.2) and ,

in this manner , the field equations for the entire space are

obtained . A different situation obviously prevails in the

Finsler space. The field equations , wh ich could be directly

der ived by the disappearance of ~ I , would  be def ined onl y 

--_ _
- -  -- ~~~~~~~~~ ‘-~~~~~~

‘: 
_ _

-5-- -5 
—~~~~~~ ~~~~~-~~~-— ~~~ — 
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w i t h  r e s p e c t  to  the directional field (4.1).

In o r d e r  to  expand the field equations to the entire space ,

we r e q u i r e  t h a t

a) an a b s o l u t e  parallelism of the line elements will exist

in the space (in t h i s  m a n n e r , e q u a t i o n s  (2 .11)  can be  f u l f i l l e d

along each extremal associated with the line element series),

b) that the tensor relations , which are obtained as field

equations , exist along each line element series (3.1) of the

Finsler space ,

c) that , with respect to each line element series (3.1), the

f i e l d  e q u a t i o n s  of t h e  Finsler space agree with those of the

Riema nn spac e , which osculates along (3.l). *

For the determination of the effect of the electromagnetic

f i e l d  on t h e  g e o m e t r i c a l  s t r u c t u r e  of  t h e  s p a c e , we s t i l l  m u s t

d) s p e c i f y  a t e n s o r  r e l a t i o n , w h i c h  g i v e s  t h e  F i n s l e r  s p a c e

a s p e c i a l  c h a r a c t e r

* I t  can be s h o w n  in a simp le manner that this continuation

is i n d e p e n d e n t  of  t h e  s e l e ct i o n  of t h e  o s c u l a t o r y  F i n s l e r

s p a c e .  On t h i s  c o m m e n t , see 0. V a r g a  ( 3 ) .

4 . 2 .  F i r s t  G r o u p  of F i e l d  Equations

F o l l o w i n g  t h e s e  general preparations , we now form the varia-

tion of the integral (see (2.10)) (4.2):

6! —_ rf R,~~~r~ Jx  -~ (~ ‘‘ i) R , 1 d x .  (4.3)

W I t h  t h e  a id  of  t h e  generalizing Palatini identity, we now
p r o v e  t h a t  t h e  second integral disappears . In a c c o r d a n c e  w i t h

eq uations (3.27), (2.15) and (3.29), in view of  r e q u i r e m e n t  b ) ,

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _
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we now h a v e :

I? ( 4.4)

Fol lowing  t r a n s v e cti o n w it h g ik 
we obtain , because of (1.25),

with the abbreviation

.5 5171 1 ,~. -
— 7 g ‘)i ,~~- — ~~ 01 ,1.

that
.~~~~ ~

- I~ 
T- (4.6)

B e c a u s e , in the osculatory Riemana space , it is wel]. knwon that

- - 
1: 

(4.7)

(y = det y , 1)  , we now hav e

t~~ i) R ,~~~- T:, , (4.8)

in t h i s  m a n n e r , the second integral disappears —— in a c c o r d a n c e
with the Gauss law , when we assume , as is cus to m a r y ,  that the

variation of 8ik and its derivations will be equal to zero at

the boundary of the area of integration.

Th en , in accordance with (3.26),

~ t V U.

Our  f i e l d  e q u a t i o n s  are  t h u s  in t h e  space  o s c u l a t i n g  a l o n g  ( 4 . 1 )
for the vacuum

1 - -  

- k - (4.9)
and , In a c c o r d a n c e  with th e r equ ir emen ts b)  and c ) ,  the field

equa tions will be in the Fin sl e r  spac e

(4.10)

In o r d e r  to also fu l .fill condition a), we must also require

that 
(4.11)

will be in the space (FN : Varga , 0.: (2), paragraph 4).

4.3. The Second Gro up of F i e l d  Equations

In order to make it possible to also fulfill condition d), we
mus t s p e c i f y  those tensor  re la tions , wh ich determine the 

—-——-5—’-- - --- ~~~~ -~~~~~~~~~~ - -5 
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s p e c i a l  c h a r a c t e r  of  t h e  Finsler space. We wan t to characterize

t h i s  c h a r a c t e r i s t i c  of t h e  s p a c e  by t h e  p o t e n t i a l s  of t h e

electromagnetic field. It is obvious that we cannot derive

this relation from a variation princip le , bec ause the electro-

magnetic field influences the dependence of the fundamental

qua tities of the space of the *1, wh ich canno t be es tabl ish ed
through a variation of an invariant space integral (in the

usual sense)

It is fortunate t h a t  we must consider the torsion of the space—— if we w a n t  to  e s t a b l i s h  t h i s  g r o u p  of the field equations

in accordance with our fundamental hypothesis formulated in

2.3 ——; it is therefore necessary only to give a relation for

the torsion tensor A jkh. Because A
ikh 

is now a tensor which

is symmetrical in its indexes I, k, h , we must f o r m  a tensor
of the th ird ord er , which is symmetrical in its indexes , from

the known electromagnetic field tensors , in o r d e r  to be ab le
to identif y this with A ikh . The energy—tension tensor of the

electromagnetic field S
ik 

is a symmetrical tensor , from which

we derive the tensor of the third order

— ~ {r. S — 1~ .S~ . — I~ S~,} (4.12)

wh ich has the desired character of symmetry; this tensor can

thus be identified with A jkh (19).

The elec tromagnetic field-tensors , wh ich were provided by the

known f ie ld th e o r ies , are of course a function of only the

because these series are based on point spaces. We should ,

therefore , first transform these tensors into the Finsler space.

If the guide f ie ld of the e lec t ro m a g n e ti c f ield is a l r e ad y de-

term ined by it s po ten tia ls
‘I), -

then we f o r m  th e r e f r o m  —— as is cus tom ar ily done  —— the te n s o r s
- ‘ C 

- 
- . - - l ‘1’ (4.1 ~

w i t h  (4 .14 )

- - - —-- —-- - -  —
~--

-
~
--- 
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and
- ‘~“ C C  

:. 
.
‘ - !

‘ .1 p, j:’~} (4.1)

where , as V , the covariant differential operator of the Fins—

ler geometry is of course understood (FN : It should be obser-

ved tha t F
ik 

is also a function of because of definition

(1.24) of the covariant derivation).

The ten sors  F
ik 

and S
ik 

shou ld  sa ti sf y the relations

(4.16a).
and

s~=o (4.16b)

which are the direct generalizations of the corresponding re-

lations of the relativistic Maxwell—Lorentz theories , wh ere
= s1(x) s i g n i f i e s  the vector of the current density. Equa-

tions (4.16) can of course also be considered the generalizing

field equations of the electromagnetic field.

Following these preparations , it is now possible for us to

identify the torsion tensor with (4.12) in order to completely

determine the geometrical structure of the space through the

electromagnetic guide field:
S 

- 

A,~k = —~~{I71S,,, ± 1~,S11+ ~~~~~ 
(4.17)

Equation (4.17), toge ther with (4.14) and (4.16) form the second

gro up of our field equations.

4.4. The Comple te System of the Field Equations for Vacuum

and the~4etric Fundamental Form of the Space

We now wan t to summar ize the f ield  eq ua ti ons d e f i n e d  in th e
previous sec tions:

R,1 — g1 1 R = O . (4.18a)

(4.18b)

Ii1~ = 0 . (4.18c)

(4.18d)

S,’ O. (4.18e)

= — 
~~ .c,(, .5 1 , .S~4 —. I .

~ S~~} . (4.181)

_______________________________ 
_ _ _ _ _ _ _ _ _  - -~~~~~~~- -- - .~~~~~ -- -
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Equations (4 18a) r e s o l v e  i n t o  two  g r o u p s

and
R,, 0 ,

where R
ik 

is the symmetrical and the skew—symmetrical por-

tion of the tensor Rik.

B e c a u s e  of t h e  p r o p e r t i e s  of  s y m m e t r y  of t h e  t e n s o r  A j k h  and

the sk ew sym me t ry  of th e te n s o r  R~~ in t h e  i n d e x e s  r and s ,

field equations (4.18) provide 66 differential equations.

If  we now assume the fundamental form of the Finsley geometry

in the f o r m  ( 2 0 )

£3 (x , 9 = (4.19)
(h,,x X s

where the tensors a. . , respectivel y b , wh ich are symmetri—
ijklm rs

cal in all their indexes , are a function of only x
1
. We must

of c o u r s e  a s s u m e  t h a t  L is not infinite for any direction k~~.

If t he  d e n o m i n a t o r  is t h e  s i x t h  p o w e r  of a l i n e a r  f o r m
sIef

/ =- z I x

and th e nu m era tor has the f o r m
I’ (c, 1

then the fundamental form (4.19) will determine a Riemann geo—

metry with the metric fundamental tensor clk .

In other cases , we want to assume that

b ,, ~

is a positive—definite quadratic form .

The field equations provide differential equations for the corn—

ponen ts of the tenso r s  a ij k lm  and b rs • The tensor a
jikin 

has

56 compon ents and the tensor b rs 10 , the number of equations

(4.18) thu s agress with the unknown .

5—  ~~~~~~~~~~~ 
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4 . 5 .  C o m m e n t s  on the Field Equations

a) Equa tions (4.18) experss in explicit form that the two es-

sential quantities of the geometry are determined by the com-

bined electromagnetic and gravitational field. In this case ,

it is noteworthy that , wh ile R
ik is a function of the gravita-

tional field alone in the Riemart n space , the electromagnetic

field also provides a contribution to Rik in the Finsler space.

This  is shown , on the one hand , by th e occ u r r e n c e  of R ik
(which identically disappears in the Riemann space), at~~, on

the o ther  hand , by the dependence of the generalized Einstein—

Ricc i tenso r s  on the i d ;  wh ich means  tha t the f ield do es no t

resolve into its components in any manner.

b) The charg ed mass points , which move under the influence

of the electromagnetic and gravitational field , carry out an

inertial motion in the Finsler space , as we hav e noted in 2.3.

Thu s, their universal lines are geodetic lines (2.3) of the

space , of which the differential equations , thus the equations

of motion of the mass point , determine , wh ich can b e der iv ed
through the variation of (4.17) in accordance with 2.1.

(FN : We wave the consideration of the effect of the electro—

magnetic characteristic field , wh ich is exc it ed by the mov ing
charged mass point. This consideration is a much more signi—

ficant problem in the derivation of the field equations for

nonemp ty space than for the gravitational fields.)

c) The tensor  Aj
k

k ,  wh ich , in a way, determines the geometri—

cal structure of the space (21), has a concre te physical mean-

ing in our case. This result shows immediately when we trans—

vec t equation (4.l8f) with g
kh 

In accordance with (4.l8e),

the resu l t is
,.
~• = A

1
, = — r; s,k , (4.20)

where A 1 obv iously indicates the Lorentz power density (22).

_______ ____________
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d) If , in express ion (4.19) ‘f the curv e element , the numera—

tor can be divided by the denominator , L is r e d u c e d , as we have
a l r e a d y  shown , to a f o r m

¶3 (x, kI -
~~ ~ 

C,~~ -~~~ r1

which  obv ious ly  de term ines a Riem aun ge omet ry , of wh ich the
metr ic fundamental tensor is precisely c ik (x). Th is h a p p e ns
onl y in t h e  case

.1,11 = 0

i.e. because of (4.17) in the absence of the electromagnetic

f ield . It cannot be determined with certainty whether this

occurs only in the absence of the electromagnetic field. In

accordance with (4.17) it is possible that A ikh  = 0 w i t h o u t

the identical disappearance of S ik . However , in this case ,

also , the Finsler geometry is transformed into the Riemann ,

and the g iven un if ied the ory  com p letely adapts to the Einstein

general theory of relativity. The discussion of this problem

will be of special interest in the case of the matter and

charg e—filled space.

e) F inall y, without going into details , we wan t to note

that , when curr en t dens i ty s
1
(x) exists in the space , equation

- 
- - 

(4.16a) indicates the possible generalization of the field

equations given for vacuum. In order to also take the presence

of matter into consideration , we can start with identity

(3.32), but we want to come back to that another time .

CONCLUS IONS

In conclusion , we wan t to briefl y discuss in how far the de-

veloped theory satisfies the postulates of Einstein , w h i c h
were mentioned in the introduction , and the p r o b l e m s  wh ich
we set as our objectives. It can be immediately de term ined
that field equations (4.18) completely adapt to the first Ein-

stein postulate. It is obvious that the invariant (1.21)

does no t resolve into several invariant components in any

manner. The second pos tulate is also fulfilled and the fact

I 

- . -- - -.  
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— tha t i t was n e c e s s a r y  for us to consider facts which are for-

eign- to the variation princip le in the deve lopmen t o f the
second  g r o u p  of f ield eq ua tions is re la ted , on the one hand ,

with the inner character of the Finsler geometry, wh ich
- - differs from the Riemann space and , on the o ther  hand , with

our postulated requirement that we sought the direct generali—
— zation of the Einstein theory of gravitation. If we had not

t a k e n  t h i s  l a s t  r e q u i r e m e n t  i n t o  c o n s i d e r a t i o n  and  if we had

no t  s o u g h t  to  d e v e l o p  a g e n e r a l i z a t i o n  c o n t a i n i n g  t h e  unchanged

E i n s t e i n  t h e o r y ,  t h e n  it would have been possible for us to

base the variation principle on another invariant , wh ich wo u ld
have summarized the electromagnetic and the gravitational

field still closer. However , we do no t w ish to cov er th is
possibility at this time.

We wish to thank Professor Dr. 0. Varga for the valuable

di scussions.
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