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DEVELOPMENT OF A UNIFIED FIELD THEORY BASED ON FINSLER GEOMETRY

by Horvath, J. 1. and Moor, A., Debrecen, Institute for Theore-
tical Physics of the University

from ZEITSCHRIFT FUER PHYSIK, Vol. 131: 544-570(1952).
(received 16 November 1951)

ABSTRACT

After we have made a differentiation between the field theories
in the narrower and broader sense in the introduction and had
discussed Einstein's postulations with respect to unified field
theories, we formulated the fundamentals of the Finsler geometry,
which we have made the basis of the developed theory, in para-
graph 1. Paragraph 2 contains an overview of the universal

lines of charged points, respectively of the extremals of the
geometry. In paragraph 3, we have then transformed the mathe-
matical apparatus of the theory of relativity to linear elemen-
tary spaces. Finally, in paragraph 4, the field equations were

derived from a variation principle.

The theoretic field investigations which, since the inspiring
Faraday idea, have provided one of the most significant and use-
ful forms of visualization of modern physics, have reached a
significant development period in the last two decades. 1In or-
der to make it possible to clearly formulate the character of
the problems, which led to the difficulties in the field theory,
it appears to be eminently useful to us to make a differentia-

tion which is generally not customary.

The field theory, as it appeared most consistently, first in

the Faraday-Maxwell theory of electromagnetism and later in the
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relativistic Minkowsky electrodynamics, respectively in the

Lorentz electron theory, addressed itslef to the solution of
the problem to replace the elemtary laws for the forces acting
momentarily at a distance by variables of state, which continu-
ously vary in place and time, in order to make it possible to
take into consideration the continuous action and the finite
propagation of the physical effects. In order to solve this
main problem and to obtain simple generally valid lows, dif-
ferential equations had to be found, which were satisfied by
the variables of state, In this respect, the field has only
an abstract significance, without it being possible that any
explanation, which is clear from the geometrical viewpoint,
could be provided for it., The new field theories, in their
classical (non-quantified) form, which play a role in the phy-
sics of atom nuclei and elementary particles, have developed
through the immediate generalization of these theories, only
their field equations have another form corresponding to the
exchange effects, which are preassumed in various ways and
their field potentials have another transformation character.
The universal continuum, in which the physical phenomena,
which are characterized by the field, take place is the four-
dimensional flat space-time manifold, which has a pseudo-Eucl-
dian metric, in which the field potentials, respectively the
field intensities are illustrated by four-vectors, respective-
ly tensors., Finally, we 'should note that the field magnitudes,
from the group-theoretical viewpoint, are covariant with res-
pect to the Lorentz transformation. In the following, we now
want to designate these field theories as '"field theories in

the broader sense".

In contrast, we designate as '"field theories in the narrower
sense" those field theories which, in accordance with the ori-
ginal Riemann postulate, determine the physical effects of the
guide field directly by the geometrical structure of the space.
A well-known example of a field theory of this type is provided
by the general theory of relativity of Einstein.
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Since the time of Einstein's discovery, the field theory in the

narrower sense has set itself the objective of illustrating all
physical effects, of which the field theories in the broader
sense have already been solved, by the geometrical structure

of the world, in which the natural phenomena occur, These in-
vestigations, which are customarily included in the area of
"the unified field theory", have even today not been concluded
in a satisfactory manner, The difficulties, which, in the case
of gravitation and electromagnetism, have been of considerable
interest for more than 30 years, can be explained by the fact
that there is no field theory in the narrower sense, which sa-
tisfies the requirements, for electrodynamics. The investiga-
tions, which addressed themselves to this problem, which thus
have posed themselves the question if it might not be possible
to understand the electromagnetic field, as well as the gravi-
tational field as a change of the geometric structure of the
universal continuum, have yielded the result that the four-
dimensional Riemann space, which is the basis of the general
theory of relativity, has no place at all for such an interpre-
tation. If the curvature of space is used for the gravitational
field, the Riemann geometry has no geometrical object, which
would be suitable for the illustration of the electromagnetic
effect by an electromagnetic guide field. 1In order to make it
possible to solve the fundamental problem of the unified field
theory, it is therefore décessary to perceive the universal
continuum as a manifold of a more general structure than the

Riemann space.

The common fundamental concept of all unified field theories

is that the guide field of gravitation is illustrated by the
conventional four-dimensional Riemann geometry and that the
deviation from this space is established by the electromagne-
tic field, If, without seeking a complete coverage, we briefly
indicate the course of development in accordance with the well-
known pioneer work of H. Weyl, the generally known unified field
theories can be essentially classified in three categories.

The first category summarizes those theories, which have
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developed through any affinity generalization of the four-
dimensional Riemann space. The second category characterizes
those investigations, of which the geometric basis is the four-
dimensional projective geometry. Finally, the five-dimensional

theories belong into the third category.

Without now going into all of these interesting theories in
greater detail, we will make a short report about the challenges
which were raised by Einstein with regard to the unified theo-
ries (1).

After we have indicated the transformation group, which is, in
most cases, a group of the four-dimensional (respectively five-
dimensional), non-singular, continuous, affine (respectively
projective) coordinate transformations, in contrast to which

the physical quantities, which describe geometric objects, res-
pectively natural laws, must be invariant, we must construct

the unified field theory in such a manner that it would be co-
variant in this group; inm addition, the following two conditions
must be fulfilled:

a) The theory should be covariant in a unified manner.

This means that the physical quantities, which correspond
to the gravitaional field, respectively the electromagne-
tic field, cannot bé"transformed independently from each

other in the transformations of the mentioned group.

b) The Lagrange function of the variation problem, from
which the field equations should be derived, may not de-

composed into invariant components.

Not all theories can completely satisfy these two conditions,
which are the natural generalizations of those which led to a
unified relativistic theory of electromagnetism in the uniforma-
lization of the electrical and the magnetic field. A difficult
problem arises especially in the fulfillment of the first
condition.,
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In the following, we will develop a unified field theory, of

which the geometric basis is the Finsler space -- a metric
generalization of the four-dimensional Riemann space --, and
which largely fulfills the above conditions. As we will see
shortly, this theory has the advantage that it has greater ca-
pability of generalization, on the one hand, by the methods,
which have already shown themsleves useful in the Riemann geo-
metry, to enable the consideration of additional fields (meson
fields); on the other hand, we believe that it is capable of

adapting more extensively to the original Einstein postulates.

Paragraph 1. GEOMETRICAL FUNDAMENTALS

l.1, The Fundamental Formula of the General Line Element

Spaces

The generalization of the Riemann space starts (2) with an n-
dimensional point space Rn’ with reference to the coordinates
xi (i =1,2,...,n0). The expansion can be attained in such a

1 (L % 05200 yth)

are added to each point. For the ii, of course, only their re-

manner that all through oriented directions x

lationship is of importance. The space, which is thus expanded,
of which the fundamental element is determined by (x, x) (FN:

In the following, the line elements (xi, ii) (L = L3256 03500)

are understood as (x, X)), can be considered as a (2n-1)-

dimensional line element space R;.

kl
ii.l.. o * 8 o
elements (x, X) are designated as tensors, which, with a coordi-

In this space, those functional systems A of the line

nate transformation

are transformed as follows:

.
e |

e
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When $'(v.1x; signifies a contravariant tensor of the first order,

thus-a contravariant vector, the transition from the line ele-

ment (x, X) to the adjacent line element (x + dx, x + dx) is

given by

OF =di « CL8dd -~ p 3 ay (1.1)
where the coefficients Ckfl and Pkfl determine the aifinity re-
lationship of the space (FN: It is known that the Ck,l are ten-

sors, and for the transformation law of the /” see 0. Varga

o KoL 2
(1)). The operator D is designated the invariable derivation.
Formula (l.1) provides the invariant differential of the Vector

The quantities Ckfl and Pkfl determine the essential character-
izing objects of the space, which are of importance for a field
theory. While a point space can be characterized by the Riemann
curvature tensor, the R:, just introduced, for the characteri-
gation of the space has, in addition to the curvature tensor

Ql?', = ersy, : ¥ s by érsy, o 'rl".,f‘ PP l

1’ 1 3 I3

(1.2
e l-..f" I‘.p.- % I..l.’- r.’lj = (htp 9.’.01 |

also the two tensors

Cres (DR B L GRS L 1.

which are called the torsion tensors of the R:. The quantities

introduced in equations (1.2) and (1.3) can be expressed by

c . , respectively* 3 in the following manner:

k,1 k,1

_ 1.4
‘ o
‘ U :
o o g TR (1.4b)
(e i Ll £k PR
fF 32
4c
L A "
- = o \
o wil i 5 (,".l,f - ':.’(;t (""d

g+

Depending on the geometrical conditions, which satisfy the

1 i g
k,1° rk,l o s WL

tures. Among these spaces are also those which are the direct

quantities C R; has various geometric struc-

generalization of the Rn covered by E. Schroedinger (3).

1§ BFST AUALTTY PRACTICABLE
ODD8 ™
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In view of the fact that, in R;, the Fkil with the Ckil together
1 »
are the functions which determine the affinity relationship,
still other C il, respectively r*kil occur in the symmetry con-
] ’
ditions of rk,l'

possibilities in the structure of the space.

which permit a greater multiplicity of the

In the following, we will investigate only those fields in
i i
e and Ck’1 of the

corresponding R: can be derived from a metric fundamental tensor.

greater d-tail, of which the quantities I

1.2, Fundamental Tensors of the Metric Rt
4

It is known that the metric spaces under the R; are the so-called
Finsler spaces (3). The square of the element of arc is speci-
fied by

A = p g, Ny Aot (1.5)

e > Sy

where the metric fundamental tensor gik(x,i) is generated from
a fundamental function £(v.¥ in the form (FN: In the following,

we will consistently use the designation %QSroduced in equation

iee .

citre gt ¢ 5'm )

(lL.4b). For example: Fro...reii. ;7 C
e = 1 (8% ' (1.%)
The function C(p,i).should be homogeneous in the first dimen-

sion in the ii, but g homogeneous in the zero dimension

r,s
because of (l1.6). Because of the Euler relationship
T 8 (1.7)

(L p—_—
= Srs

The fundamental quantities of the space are:

a) The unit vector ?, which possesses the same direction
as its line element, of which the contravariant, respec-

tively covariant components are

-

i’ rauy
.

SR S (1.8)

~

b) The torsion tensor

-’ ’ e \, ('

where e © Lilmo “9)
PHIS PAGE 1S BEST QUALITY PRACTICABLE
Froul COEX FURNISHED IO DDC s




{1.10)

Coim = Yaura = {12
¢) The functions, which determine the extremals of the
space, are:

(;»,‘H“(‘J’)., Vi J1.11)

& = g, O (1.12)

The quantities Gi, which are introduced in equation (l.4a), are,

in the metric case,

e (1.13)

as can be easily demonstrated (5).

d) In addition to the Ck}m , the transformation parameters
‘are the

ey L e (1.14)

Fota = Mbriw — Sam— Srmnd = Crop i - Cimp G} (1.15)

In addition to the transformation parameters, it is also

customary to use the quantities

I'* A g (1.106)

Lim sar

which are symmetrical in the indexes k and m, as results

from (1.15). ﬂ

e) Among the curvature tensors of the Finsler space, es-

pecially the Riemann curvature tensor R = has an im-

i k,rs
R
k,l‘s &,t

agrees with the tensor ¢
equation (1.2) formally, only that, instead of Gk of the affine

space, there is Gi given in (1.11) and (1.12) and, instead of

portance for us, given in

Cx:pgt.’n the tensor Akpr.?rn , where

#I.‘nddRh’.’nlk (1-17)

Additional torsion tensors of the space are

-\l'R«:A'ivk.‘-'iuh—-'*v'b.r‘"luk (1-'8)
and

- TREL L SR B R A (1.19)




- (for Vk see (1.24).

f) As is customary in the general theory of relativity,
we also define, in the Finsler space, the temnsor:
Roa= Rixs:
from which the invariaut
R=g*R
is derived.

0. Varga (6) has introduced the tensor
B =0 s
as the principal curvature tensor of the affine continuous mul-
tiplicity in general affine continuous line element spaces.
In the following, we will see immediately that the principal

curvature tensor

}1."',.!"( kan"-"kfpkgf,n (1.20)
can also be used in the Finsler space in the formation of the
curvature scalar, instead of the Riemann curvature tensor R*irs'

Because of the skew-symmetry of R*lﬁs, in the indexes r and s

k'lk Ay Rapr= -"f'\R.'.n=0.
thus because of (1.20), the invariant
R=¢g"H% ~ (1.21:
which we will designate in the following as the principal cur-

vature invariant of the space, is identical with R.

In the formation of R, the reduced principal curvature tensor
H 3 can also be used instead of the tensor R § , therefore
k,rs k,rs

we want to designate

Rvkd" HA.'k), (’.22)
or in explicit form
th == (r‘t.‘k)nao_(l“u.;t‘ ’ - l.‘,‘,) Ry == ('* ;') ) G;
z toalip, b
By LA } (1.23)

as Einstein-Ricci curvature tensor of our space (FN: It should
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be noted that R is symmetrical in its indexes i and k only

) ik
in the Riemann geometry (see Cartan, l.c.. equation XXIII.))

g) We now also have to still give the covariant deriva-

tion of the tensors. For example, let Tikh be a mixed

tensor of the third order, then
F o= (T — (TN Gi— 120 Th - DA T =T T (129)

In the general metric line element spaces, there also

exists the well-known identity:
F.g%=0. (1.25)

Paragraph 2. ON THE UNIVERSAL LINES OF THE GIVEN GENERAL
FIELD THEORY

e et e bl e s s

e e o

2.1, Geodetic Lines

If a charged mass point is in any condition of motion in the
four-dimensional space-time continuum, which, in our case, is

a Finsler space, its path can be designated as a universal line
in the customary manner., However, we now consider the space

as a four-dimensional metric point multiplicity, of which the
metric fundamental tensor g., is however not only a function
of the locus, but also of the direction (7). The equations of

the universal lines can be given in the form
i (2.1)

When the arc length is selected as the parameter (t=s), then

Fap and ¥ galP=1.

"The actual motion of a body comes about by the competition of
two influences, the guide field, which transmits the universal
direction of the body from moment to moment, and the force,

which deflects the body from this natural motion" (8). 1In the
general theory of relativity, it is customary to determine the

gravitational forces, which determine the motion of the body,
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by the structure of the guide field. If only gravitational
forces act on a mass point, its path is a geodetic line of the

space, which is a Riemann space in this case.

We now also want to take into consideration the effect of the
electromagnetic field by the influence of the structure of the
space. When, in addition to the gravitational forces, only
electromagnetic forces act on the charged mass point, its path,
in the guide field, will be an extremal of the Finsler space.
The metric field is the potential of the guide field, which,

in the prevailing case, is the combination of the electromag-
netic and the gravitational field. The structural deviation

of this space from the Riemann geometry, thus the space torsion,

will be determined by the electromagnetic potentials.

The extremals of the Finsley space, which, in our case, are thus
the universal lines of a mass point carrying out inertial

motion, are derived by the variation of the integral

". L’l rod y)

The arc length on a universal line (2.1) between the parameter

values t, and t, is given by the formula

1
: / e, il (2.2)

For physical reasons, it is appropriate, instead of the arc

length s, to introduce the proper time ¥ by the equation

! 5
T 5

which is identical to the arc length if, as we will always
assume in the fotlowing, the propagation velocity of light is

selected as the unit.

For the extremals

and the differential equations of the extremals are:
abiep FAGE LO Do L QUALL {4 II\A‘JIIC.Am

FROM COPY FURNISHLD IO DG ™
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2.2. The Metric Fundamental Form and the Null Sphere

As in th- general theory of relativity, we also have quite
analogous differences between the egometry of the positive de-
finite and the indefinite arc elements of the Finsler space (9).
For the geodetic lines emanating from a point Po(xé), the fol-

lowing conditions can exist:

oy dig :
f 2. ) J : 0 (2.4a)
]
! .o "l./ >4b
s.o-‘-" ot it <n ‘.--" )
Do s (2.4¢)
The directions - ;. - , which satisfy equations (2.4a),

(2.4b), respectively (2.4c), are called time-like, space-like,
respectively null directions. In the limiting case, when
there is no electromagnetic and gravitational field, our space

is transformed into a pseudoeuclidic space with the arc element

; . . > e s 3=9
d s i T R e T [

The permissible point transformations of the Finsler space are
constrained by this characterization of the space-time world
(10). The permissible coordinate transformations should trans-
form the space-like, respectively time-like directions always

into the same.

In order to make it possible to transform the arc element (1.5)
into the arc element of the pseudoeuclidic space, the followiag
relationships must be fulfilled (11):




I
;
|
|
|
|
|
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The entirety of the geodetic null lines, which thus satisfy
(2.4c), lie on a mantle of a sphere, which is designated as
null sphere. For the lines of the null sphere, the arc length

(2.2) cannot be selected as parameter.

Obviously, equations (2.3) are unusable for the null lines,
which are characterized by (2.4c), because of the disappearance
of the parameter (FN: see equations (2.2), (1.7) and (2.4c)).
In order to be able to also define the geodetic lines on the
null sphere, we will use their well-known other definition, in
accordance with which the geodetic line is a curve, which al-
ways retains its direction. This means analytically, because
of clit =0, @
that (FN: Varga, 0.:(1))

D dit 2y i dit at

Bl 15 5+l g, - =0, (2.5)
It can easily be verified that equations (2.5) are identical to
(2.3) (FN: see equations (2.4), (1.11), (1.14) and (1.15). 1In
accordance with Pauli (FN: see Pauli: l.c.), we define the
geodetic null line as follows: A geodetic null line is a
curve for which a curve parameter t exists in such a manner

that the differential equations

d 5 o odet di
a D), =0 (2.6a)
are fulfilled and
(2.6b)

L(x, %) =0

If there is no electromagnetic field, our conditions (2.6) and
(2.4c) are transformed into those of Pauli, which are given in

the Riemann geometry.
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2.3. The Osculatory Riemann Space

We now want to draw attention to a concept, which is important
in the following, and which has the relationship that it is im-
possible to "transform away'" the entire electromagnetic and
gravitational field of a charged mass point in the entire uni-
versal continuum all at once by constant transformations, but,
in sufficiently small environments of a universal point of the
space-time continuum, we can always specify a system, in which
the guide field disappears. It is well-known how this can be
accomplished in the case of the Riemann space. We still want
to refer to the fact that a similar relationship also exists

between the Riemann and the Finsler geometry.

A so-called osculatory Riemann space with the following perper-
ties can be associated with any continuously differentiable
series of line elements

a)

b

= x'{l), (2

':‘ : .\'"fl (

v
L Y |

[ %)
:

a) Let the metric fundamental tensor (x) of the oscu-
ik

latory space be identical to that of the Finsler space.

b) The geodetic lines of the two spaces should osculate

each other.

¢) Let the invariant differential of a vector Ei(x, x)

be identical in both spaces.

For the purpose of the construction of the osculatory Riemann
space, we expand the field of the line elements (2.7) beyond
the curve (2.7a3), which can be carried out in the following
manner: Through each element (x, X) of the series (2.7), we
lay an extremal of the Finsler space, which then form, as an
entirety, a single parametric system. We embed these in a
system of extremals, which covers a certain point area B

smoothly. It is now possible to clearly associate a direction,




Ty

e

namely the direction of the tangent vector of the extremal
; r o () (2.8)

with each point xi of B, We also want to assume that the line

elements are so selected that they agree with the derivations

of the extremals in accordance with the arc length:
£ = rixh). (29

By inserting ' in g,iv, 1) , we obtain a tensor

s lX) = g lx, rixi), (2.10)
which we select as the metric fundamental tensor of the

osculatory Riemann space.

It can be easily proven that, with this construction, the oscu-
latory Riemann space has the characteristics specified in a),

b), respectively c) (12).

We wish to still note two additional properties of the oscu-

latory space:

d) The covariant derivations of the tensors are identical

along (2.7) in both spaces.

e) The Riemann curvature tensor of the osculating space
agrees, along (2.7) with the principal curvature tensor

of the Finsler space.

In order to prove d) and e), we still should note that the vec-
tors of the field (2.8), of which the points of engagement are

on (2.7a), are parallel in the osculating space; thus

R L TS (211a)

where the iﬂ; signify the Christoffel symbols of the .
A more extensive calculation shows that (2.lla) can be brought

into the form

=z (2.11b)

THIS PAGE IS BEST QUALITY PRA CABLE
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If we now calculate the covariant derivation of a vector Ei(x,x)

in the osculatory Riemann space along (2.7):

o .
f.;n E= ff‘(x,r(x)):m I A (242)

It is now seen immediately that, because of (2.10)

(] ?
Fyp= = (8o + Ep1iny — Buuip} +

Il
-

1 Earp LV CRey 1 E8ry s
i - - Yipy — ==
2 ér in - 2 e TR 5 TEsTTR | (213)

1 ! 1
TR {gkp\l) ia gpllk)"'gkllp\} 7 Ck,'n(;; T Cpls(;; he CklsG’p

= I}y J

and s E(xr(0) = En— &) Gh (2.14)

By inserting (2.13) and (2.14) in (2.12),
along (2.7), QED.

In order to also prove e), we note that the Riemann curvature
tensor is

i det % L S 2 9. Mg
R/‘.hl l)’.hl\ il ];.l‘.ky A lj.k ps‘l—l‘i.l s.k
In accordance with (2.9), (2.11) and (2.13),
1\’;'./:1 H,fu. 3~ (2-“)
QED,

We now want to add the final comment that the geodetic null
lines of the two spaces also osculate each cther, which follows
directly from identity (2.13) and from the equations of the
geodetic null lines (2.8) of the two geomertries.

2.4, The Fundamental Postulate of the Specified Theory

Following these gemneral preparations, we want to heuristically
summarize the fundamental postulate of our investigations as

follows.
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If a charged mass point is under the influence of a guide field
in any state of motion, its path in the four-dimensional space-
time continuum is given by its universal line. If, in accord-
ance with the general field theory in the narrower sense, we
want to express the guide field by the geometrical structure
of the space, and the guide field is a pure gravitational field,
a suitable Riemann space can always be gonstructed in such a
manner that the specified universal line of the mass point would
be a geodetic line of the geometry. If, however, in addition
to the gravitational field, an electromagnetic field is also
present, the Riemann space will not suffice to express the phy-
sical properties of the space. However, it is possible to use,
in this case, a more general geometry -- namely the Finsler
geometry --, which is suitable for the description of this
combined guide field.

If the universal line of the charged mass point is specified
in the Riemann space, then we can select, from the muitiplici-

ties of the possible Finsler spaces, those of which one of the

|
|
geodetic lines agrees with the specified universal line. In E
this manner, the charged mass point carries out an inertial j
J
|

motion in these spaces.

|
Paragraph 3. INFINITESIMAL COORDINATE TRANSFORMATIONS AND {
VARIATION THEOREMS IN THE FINSLER SPACE i

!

After we have seen how the guide field is related with the

2 metric of the universal continuum, we must investigate the ques~
tion how the metric is influenced by the masses and by the
charges, which produce the guide field. It must of course pri-
marily be expected of the equations, which specify the re-
lationship between the guide field and the structure of the
space, that they should be generally covariant. However, in ;
order to obtain a clear definition of these field equations,
we want to derive these from a variation principle, which is
customary in the field theories. 1In order to realize this

program, some mathematical preparations, such as the concept
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of the measure of capacity, the analysis of the tensor densities,

furthermore, infinitesimal transformations, variation methods
and various identities applied in the theory shall be discussed
in this paragraph.

3.1. The Concept of the Measure of Capacity in the Finsler Space

Because, in accordance with the Cartan theory, the Finsler geo-
metry can be considered as a line element multiplicity, the
measure of capacity of a partial area of the space has no im-
portance in the usual sense. This is related to the fact that
the measure of capacity in the usual sense is a concept which
is defined for point multiplicities. In the Finsler space, an
integrable area =-- consisting of points -- has a measure of ca-

pacity only with respect to a defined directional field (13).

It is therefore a directional field defined by the equations
B =1 (%) (3.1)
in this manner, the measure of capacity of an area V can be
defined, with reference to (3.1), by the integral
Si-g(nrinds (3.2)
where dx is the abbreviation of
dx=dx'dx¥dx3d x*
and
g = det g4 (x, 3)
Because of the transformation formula of =g, (3.2) is an in-
variant, which characterizes the measure of the area V. (FN:
In order to make it possible to define the measure of capacity
in a generally affine cohesive line element space, a function
q with the transformation character of V=g must be constructed.
(see Varga, 0.: (4)))

3.2 Tensor Densities and Their Analysis

If the integral (3.1)
[t

is a tensor of the second order along (3.1), then, with
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WEYL? %15 called a tensor density of the second order. This is
developed by multiplying a conventional tensor with ¢~g. The
tensor densities of teh zero order, which will play an outstand-

ing role in the following, are the scalar densities.

The algebra of the tensor densities also does not introduce
L anything new in the Finsler space, although there are certain
differences in their analysis, because the components of the
% tensors and tensor densities are now a function of the line

element (x, X).

N e e i s

% In order to be able to define the divergence of a tensor den-
sity, we will start, in accordance with Weil (15), with a sta-
tic vector field

' (x, X 3.3)
W =n'(x %), (
which thus satisfies the Fondition
N = 1y — ip Gh = Iy =0 (3.4)

by definition. If %, is a mixed tensor density (FN: 4,

shall be symmetrical in i and k), then
ot =%y
will be a vector density, of which the divergence can be de-

fined as follows:
Tiva b \'l..n . (}-S)

In accordance with (3.4), (3.5) can explicitly be brought into
? the form : bl ek o
| ﬂl.M = :?‘l. Y —I .l !‘nv :'I i “,ll' ('. Yegs ("6)
(FN: This formula also applies in the affine cohesive line

element space).

For special applications, it appears appropriate to restate

. our formula (3.6) in a certain manner.

Through a simple calculation, the result is

g 7 (IR} ( - Sy gk
l."'l A l!“;" “Congloyy, A

and 4 3 "
A X . . .v‘:" L3 W &
a.,-~{?l. l.“‘.‘l.‘.'.lv i ~Cixilsp R/ 'l'l'.“l’ ¢

(3.7)

After transvection of equation (3.4) with ik, the identity




. (3.8)

ak 1 o o
LRE l,',('l‘

(,"'," = ——I,I;
can be written because of (FN: See also (l.4a), 1.13), and

(l.4c) and observe the symmetry of "% in the indexes i and j)

ikj

- R =
l.rll X (’:

In accordance with (3.7), (3.8) and (1.10), in view of the homo-

geneity of the second order of G'
] ? * s AN ; .. s
"h=:ﬂ| A:"S;'u-‘-‘.ﬁ; Sl ;'--",x."-‘b.'li- (3.9)

Through analogous calculations, the result is that, for a

at o,
defined with the aid of a covariant static vector field
I,I '7‘!(';y

the divergence can be defined in the following manner:

&t e - e 3.10)
or Coel
P ¥ : ¢ g1k
.J.L—-—:!'..r == é:‘:'. SR = R T M0 3 TR “'i,

In the Riemann geometry, our formulas (3.9), (3.10) and
(3.11) are transformed into the well-known expressions of the
divergence (FN: See Pauli, l.c., formulas (149) and (150)),
but it will be more useful for the applications to consider
those static vector fields, which are a function of the locus
only, in order to make the divergence of the considered temsor
density independent of the vector field n} (or ni). For this
purpose, we use a static vector field

S=8(x) (3.12)
of which the analytical definition in accordance with (3.4)
is given by

5 -t et Sroo
‘.5‘ s'ch""l vk 0

For the construction of such a vector field (3.12), that pro-
cess can be used, for example, which leads to the formation

of the osculatory Riemann space (FN: Varga, O.: (E)).

With the aid of the static vector field (3.12), the formulas

of the divergence are given, instead of (3.6), respectively
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(3.7) and (3.10), respectively (3.11), by
; Tiva - afe & Tiv, A5 Div % - &, (3.13)

with (FN: See Pauli: l.c., p 609)
£J ‘k"\ k - royR

Tio AW = I, =20, — 4 g0 8"~ Caaj G A (3.14)

respectively with ‘
= SPUESRTLA 13)

i S AR 3
and formula (3.13) can also be written (FN: See equation (3.9))
with (3.12) in the important form

Ry ut gks w7 et
g =i wm~itaaX (1§ —S0anll Sax, (3-16)

k k d ks of R ks or ot -
Oy = {'.)l,. I 10 i, )lk;g-n: i 5 th\'g(ijst) X (3'1/)

We can add the same physical significance to the concept which
was just given concerning the divergence of the tensor densi-

ties as Weyl did in the case of the general theory of relati-

vity (16).

3.3. Variation Methods

In order to make it possible to formulate our variation prin-
ciples, it is appropriate to use infinitesimal coordinate
transformations. This method, which is carried out by Pauli
(17) in the Riemann geometry, has the advantage that certain
characteristic differentiél equations, which are fulfilled by
the quantities which characterize the geometric structure of
the guide field, can be obtained directly.

Such an infinitesimal coordinate transformation is also speci-

fied in the Finsler space by
(3-18)

F=x—sd(x) ;
where ¢ designates an infinitesimal parameter, This transfor-
mation can be plainly interpreted as a generalized Galilei

transformation with the velocity vector § i.
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We will develop the differences of the overlined and non-

overlined quantities in accordance with powers of £€; the term

in 2 0of the first order is designated as the variation of the

particular quantity.

L Analytically, this variation of the tensors can be specified
. in two different ways by the following formulas (FN: Pauli

designates the variation T as &)

B, = A (B4 0 (3.19a)
respeccively .........
| A=A (D =4 x T (3.19b)
!
As in the Riemann space, there is also, for the variation 7,
L in the Finsler case, for example,
oA =& ,A Bd, = ~ek, 4, (3.20)
respectively
34, =~ Ada ~Endl- (3.21)

kﬁ Because of the dependence of the quantities of ii, the varia-

tion §* has the following explicit form in the Finsler space

A = —e{Ad, A5, ~ 4,8 (3.22)

respectively

: o “r % 2 o ¢
P A= —~eldinnd ~ Ao~ A8 ~dai, 80 %Y. (3.23)

The formulas for the other components can be easily calculated.

In the variation calculation, it is also customary to introduce
the variation :
OA a. = (XD —Al(x ¥ (3.24)

which, as can be easily verified. is, for example,

o s viy
SAda=¢ldnd ~Aadxy

for tensors of the second order.

Between theivsymbols, which are thus introduced, there is the

following important relationship
L (3.29)
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For scalars, { will be =-{*,

We now want to also give the following formula, which is cal-
culated in an elementary manner:
5 —g = -1 -gg otk
respectively |- H-gsdg

Agt =gl by atiey. (3.26)

3.4, The Generalizing Palatini Identity

It is well known that the identity of Palatini plays an impor-
tant role in the derivation of the field equations of the

general theory of relativity from a variation principle. For
us, also, the generalization of this identity makes a simpli-

fication possible.

In order to make it possible to derive the generalized Palatini
identity, we form the variation of the Einstein-Ricci tensor
(Le23)

6RI. s (6[,.'?)).11 N “,l‘.l.'k) r (l: 5 (')I“a.'k) 1‘.7,‘""‘ (éli‘rfk) r‘l.'l—
7Y CARY L RANTY L RAWRTY RS et (3.27)
= (O VS, 5 — (T%0) 4, G ), ~ (%) (86 ), -

For the transformation law of /“J , there is (FN: Varga, O.:
(1), equation (1.17))
P s (3.2

T A T pitext e
I'*,*. is thus not a teﬁsor, but yet, as can be easily verified,
L will be a mixed tensor of the third order. Therefore,
equation (3.27) can be written, in accordance with definition
(1.24) of the covariant derivation, in the form
LU PR LT AT LT AR T RN o PR
', 5 65 ]
Equation (3.29) is the desired generalization of the identity
of Palatini (18).

(3.29)
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The two last members in equation (3.29) make the usual appli-

cation of the Palatini identity difficult., Added to this is
the fact that the transformation of the first members, in ac-
ccrdance with the Gauss theorem, into a surface integral pro-
vides additional interfering terms, which contain derivations
in ii, because of the special form of the covariant derivation

in the Finsler spaces.

However, when we use the Palatini identity along one line ele-
ment sequence (3.1) with the conditions (2.9) and (2.11), the
Palatini identity is simplified. In equation (3.27), in accord-
ance with (2.9) and (2.11), there is

'“rﬂJhn—Wérﬂﬂhncf—(rﬁﬂhnécz='drﬂ3M3anﬂu=(6Ffﬂm
and, in a similar manner, 3 = -

(61"..':):») Fa (61“,.’,),;, G; o (61‘.1.(.\).',, él;; i (‘)[‘v:.‘x)(kl g

We therefore have along (3.1), with the mentioned condition,
instead of (3.29):

S S FaBE ). (3.30) i

We have thus given the relationship of the Palatini identity

of the Finsler space with that of the osculatory Riemann space.

3.5 1Identities

It is well-known that the Bianchi identities play a significant
role in the general theory of relativity and in the modern
unified field theories. They can be used to derive those iden-
tities, which express the conservation laws of mass. In the
Finsler space also, important formulas can be derived from the
generalized Biachi identities, which are the direct generali-

zations of the relativistic conservation laws.

There exist the identities (FN: Cartan, E.: l.c., p. 37):
rIRIvl: '"LR,.,/ "ln‘l"r:h "-'-"n'chlr (3'3')
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where i PaeRe (332)

et L] )
Moikin T Parmite st~ eIty

which illustrate the generalized Bianchi identities.

Because of the skew symmetry of the tensor Rijkh in the in-
dexes (i, j) and (k, h),
R~ hiR o Bl M

develops from (3.31), and, after transvection with g

Y

e

jh ik
. g

GR-2LR Y =¢"¢ "M, cu=M
or

R -1 R = — 130, (3-33)
Ml, as can be determined immediately, disappears identically
in the Riemann space. The required generalization is obtained

in this manner. We will return elsewhere to the physical con-

E tent of this identity.
Paragraph 4, DERIVATION OF THE FIELD EQUATIONS

4,1, General Considerations

In order to make it possible to derive the field equatioas,

; which are the immediate generalizations of the Einstein gravi-
tation equations, we now want to formulate the variation prin- {
ciple in the following manner, with consideration of paragraph

2,3 and paragraph 3.1. If we form along a field of direction |

A=t (x) : (4.1)

£ the invariant integral
I=f Rz, (4.2)

where R is the principal curvature invariant density, which

is defined by equation (1.21).

In the general theory of relativity, the field equations are

derived by the disappearance of the variation of (4.2) and,

in this manner, the field equations for the entire space are

obtained., A different situation obviously prevails in the f
Finsler space. The field equations, which could be directly

derived by the disappearance of §I, would be defined only

it s, o e Rk A




D R
with respect to the directional field (4.1).

In order to expand the field equations to the entire space,

we require that

a) an absolute parallelism of the line elements will exist
in the space (in this manner, equations (2.11) can be fulfilled

along each extremal associated with the line element series),

b) that the tensor relations, which are obtained as field
equations, exist along each line element series (3.1) of the

Finsler space,

c) that, with respect to each line element series (3.1), the
field equations of the Finsler space agree with those of the

Riemann space, which osculates along (3.1).%

For the determination of the effect of the electromagnetic

field on the geometrical structure of the space, we still must

d) specify a tensor relation, which gives the Finsler space

a special character

* It can be shown in a simple manner that this continuation
is independent of the selection of the osculatory Finsler

space. On this comment, see 0. Varga (z).

4,2, First Group of Field Equations

Following these general preparations, we now form the varia-
tion of the integral (see (2.10)) (4.2):

61 =IR'k b““&lx e f 51""'"R,kd.l‘. (4-3)
With the aid of the generalizing Palatini identity, we now

prove that the second integral disappears. In accordance with
equations (3.27), (2.15) and (3.29), in view of requirement b),
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we now have:

OR, - ,,,:,: (4.9

Following transvectiocn with gik, we obtain, because of (1.25),

with the abbreviation

f‘. def gx & f, Iﬂw: -': o f\" . ') 11':‘:* 2 (4‘5)
that @
grIR 1T (4.6)
Because, in the osculatory Riemann space, it is well knwon that
T e ) (4.7}
 § 1 :.
(y=det y,,) , we now have
groR, =T, (4.8)
in this manner, the second integral disappears -- in accordance

with the Gauss law, when we assume, as is customary, that the
variation of 8ik and its derivations will be equal to zero at

the boundary of the area of integration.

Then, in accordance with (3.26),

of = | .‘?\‘

e N
1k 2 8k -Il:r);’"&‘('r ==

Our field equations are thus in the space osculating along (4.1)

for the vacuum '
R,—1lg R-0 (4.9)

and, in accordance with the requirements b) and c¢), the field

equations will be in the Finsler space

K - e I == (4-‘0)

In order to also fulfill condition a), we must also require

that IY\)‘ () (4.11)

will be in the space (FN: Varga, O.: (Z), paragraph 4).

4,3, The Second Group of Field Equations

In order to make it possible to also fulfill condition d), we

must specify those tensor relations, which determine the

-
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special character of the Finsler space. We want to characterize
this characteristic of the space by the potentials of the

electromagnetic field. It is obvious that we cannot derive

this relation from a variation principle, because the electro-
magnetic field influences the dependence of the fundamental
quatities of the space of the %i, which cannot be established
through a variation of an invariant space integral (in the

usual sense).

It is fortunate that we must consider the torsion of the space
-- if we want to establish this group of the field equations
in accordance with our fundamental hypothesis formulated in
2.3 --; it is therefore necessary only to give a relation for
Because A is now a tensor which

ikh* ikh
is symmetrical in its indexes i, k, h, we must form a tensor

the torsion tensor A

of the third order, which is symmetrical in its indexes, from
the known electromagnetic field tensors, in order to be able

to identify this with A The energy-tension tensor of the

ikh’
electromagnetic field Sik is a symmetrical tensor, from which
we derive the tensor of the third order
—.’_,{r-.-“_:_. "‘.x S-‘.a'"l-§ S,-”} (412)

which has the desired character of symmetry; this tensor can
thus be identified with Aikh (19).

The electromagnetic field tensors, which were provided by the
known field theories, are of course a function of only the xi,
because these series are based on point spaces. We should,

therefore, first transform these tensors into the Finsler space.

If the guide field of the electromagnetic field is already de-
termined by its potentials

then we form therefrom -- as is customarily done =-- the tensors
ESCLo <@ (4.13)
with ot =0 (4.14)
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and e . |
1 y .\'N W ‘.." i A’ i I:‘I'J‘} : (4.1:)

where, as V, the covariant differential operator of the Fins-

ler geometry is of course understood (FN: It should be obser-

ved that Fik is also a function of ii because of definition

(1.24) of the covariant derivation).

The tensors F1k and Sik should satisfy the relations
ME! =4as (4.162),
and : |
Si'=0 (4-16D) |

which are the direct generalizations of the corresponding re-
lations of the relativistic Maxwell-Lorentz theories, where

3

3 si
tions (4.16) can of course also be considered the generalizing

= si(x) signifies the vector of the current density. Equa-
field equations of the electromagnetic field.

Following these preparations, it is now possible for us to
_ identify the torsion tensor with (4.12) in order to completely
kﬂ determine the geometrical structure of the space through the

electromagnetic guide field:

Ain==3 S+ VS + VSl (4.17)

Equation (4.17), together with (4.14) and (4.16) form the second

group of our field equations.

4.4, The Complete System of the Field Equations for Vacuum

and theMetric Fundamental Form of the Space

We now want to summarize the field equations defined in the

previous sections: i
! R,—1g.R=0, {(4.18a)
R =0, (4.18b)
[ LWE' =0, (4.18¢)
Vo' =0, (4.184)
Si.=0, (4.18e)
din==3thSu=LSu~-VSul- (4.181)
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Equations (4.18a) resolve into two groups:

R,_,-ﬁg,kR=0
and
R,g=0,
is the symmetrical and R

where Ri the skew-symmetrical por-

k
tion of the tensor Rik'

ik

Because of the properties of symmetry of the tensor Aikh and

the skew symmetry of the temsor R P in the indexes r and s,

%.TS
field equations (4.18) provide 66 differential equations.

If we now assume the fundamental form of the Finsley geometry
in the form (20)

4/(:-:7;TJWTES
9(;, x) = ]/ 3 ’." . --r,-l):;"'m (4'19)

(bpg ¥ %
where the tensors aijklm’

respectively brs’ which are symmetri-
: 4 ’ %
cal in all their indexes, are a function of only x~. We must

of course assume that L is not infinite for any direction ii

If the denominator is the sixth power of a linear form
/dvi = a, ‘{’_‘
and the numerator has the form
./0 (Cl 13 "“‘ .i‘*)z
then the fundamental form (4.19) will determine a Riemann geo-

metry with the metric fundamental tensor Cip”

In other cases, we want to assume that
By N

is a positive-definite quadratic form.

The field equations provide differential equations for the com-

ponents of the tensors a and br . The tensor has

ijklm s 3ijklnm
56 components and the tensor brs 10, the number of equations

(4.18) thus agress with the unknown.
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4.5. Comments on the Field Equations

a) Equations (4.18) experss in explicit form that the two es-
sential quantities of the geometry are determined by the com-
bined electromagnetic and gravitational field. 1In this case,
it is noteworthy that, while Rik is a function of the gravita-
tional field alone in the Riemann space, the electromagnetic
field also provides a contribution to Rik in the Finsler space.
This is shown, on the one hand, by the occurrence of Rik
(which identically disappears in the Riemann space), aﬁﬁ, on
the other hand, by the dependence of the generalized Einstein-
Ricci tensors on the xi; which means that the field does not

resolve into its components in any manner,

b) The charged mass points, which move under the influence
of the electromagnetic and gravitational field, carry out an
inertial motion in the Finsler space, as we have noted in 2.3.
Thus, their universal lines are geodetic lines (2.3) of the
space, of which the differential equations, thus the equations
of motion of the mass point, determine, which can be derived
through the variation of (4.17) in accordance with 2.1.

(FN: We wave the consideration of the effect of the electro-
magnetic characteristic field, which is excited by the moving
charged mass point. This consideration is a much more signi-
ficant problem in the defivation of the field equations for
nonempty space than for the gravitational fields.)

c) The tensor Ai%k’ which, in a way, determines the geometri-
cal structure of the space (21), has a concrete physical mean-
ing in our case. This result shows immediately when we trans-
vect equation (4.18f) with gkh. In accordance with (4.18e),
the result is

AymAN = =RS), (4.20)

N =

where A

{ obviously indicates the Lorentz power density (22).
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d) If, in expression (4.19) of the curve element, the numera-
tor can be divided by the denominator, L is reduced, as we have
alreédy shown, to a form ol

Rz, &) = Je, ¥,
which obviously determines a Riemann geometry, of which the
metric fundamental tensor is precisely Cik(x)' This happens
only in the case Aoy
i.,e. because of (4.17) in the absence of the electromagnetic
field. It cannot be determined with certainty whether this
occurs only in the absence of the electromagnetic field. 1In

accordance with (4.17) it is possible that A = 0 without

ikh

the identical disappearance of Si However, in this case,

also, the Finsler geometry 1is traﬁsformed into the Riemann,
and the given unified theory completely adapts to the Einstein
general theory of relativity. The discussion of this problem
will be of special interest in the case of the matter and

charge-filled space.

e) Finally, without going into details, we want to note

that, when current density si(x) exists in the space, equation
(4.16a) indicates the possible generalization of the field
equations given for vacuum. In order to also take the presence
of matter into consideration, we can start with identity

(3.32), but we want to come back to that another time,
CONCLUSIONS

In conclusion, we want to briefly discuss in how far the de-
veloped theory satisfies the postulates of Einstein, which
were mentioned in the introduction, and the problems which

we set as our objectives. It can be immediately determined
that field equations (4.18) completely adapt to the first Ein-
stein postulate. It is obvious that the invariant (1.21)

does not resolve into several invariant components in any

manner. The second postulate is also fulfilled and the fact
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that it was necessary for us to consider facts which are for-
eign  to the variation principle in the development of the
second group of field equations is related, on the one hand,
with the inner character of the Finsler geometry, which

differs from the Riemann space and, on the other hand, with

our postulated requirement that we sought the direct generali-
zation of the Einstein theory of gravitation. If we had not
taken this last requirement into consideration and if we had
not sought to develop a generalization containing the unchanged
Einstein theory, then it would have been possible for us to
base the variation principle on another invariant, which would
have summarized the electromagnetic and the gravitational

field still closer. However, we do not wish to cover this

possibility at this time.

We wish to thank Professor Dr. O. Varga for the valuable

discussions.
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