

Research Report CCS 295

GRADIENT STATES FOR SOME DUALITIES WITH THE C² EXTREMAL PRINCIPLE

D Dulare Jun 14 1970

by

A. Charnes* L. Seiford**

September 1977

*The University of Texas, Austin, Texas. **York University, Downsview, Cntario, Canada.

This research was partly supported by Project NR047-021, CNR Contract N00014-75-C-0569 with the Center for Cybernetic Studies, The University of Texas. Reproduction in whole or in part is permitted for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director Business-Economics Building, 203E The University of Texas Austin, Texas 78712 (512) 471-1821 **78** 06 06 056

ABSTRACT

Gradient characterizations of some convex function infima are derived which apply to extension of the Charnes-Cooper duality state characterizations to more general classes of convex programming problems via the Charnes-Cooper extremal principle for optimization dualities.

a"

DEESSION fo TIS	White Section		
NANNOUNC			
USTIFICATIO)N		
BY	AND		
DISTRIBUTIO	IN/AVANABILITY CODES		
BY DISTRIBUTIO Dist.	N/AVANABILITY CODES		
DISTRIBUTIO	IN/AVAILABILITY TODES		
DISTRIBUTIO	IN/AVAILABILITY TODES		

78 06 06 056

The C^2 extremal principle for dualities which was originally presented in Charnes, Cooper and Seiford [1] is an approach to deriving dual optimization problems with proper duality inequality which simplifies and generalizes the Fenchel-Rockafellar scheme [2, 3]. The derivation is accomplished in two stages. The first is the achievement of the duality inequality. The second is the decoupling of the primal and dual variables.

The C² Extremal Principle

Let $K(\delta, x)$ be a real valued function which is concave in δ for

$$(\delta, \mathbf{x}) \in \Delta \Theta \mathbf{X} \subseteq \mathbf{R}^{\mathbf{m}} \Theta \mathbf{R}^{\mathbf{S}}$$

and for which

0

 $g(\delta) \equiv \inf_{x \in X} K(\delta, x)$

exists for each $\delta \epsilon \Delta$. Let T be a map from the convex set $Z \subseteq \mathbb{R}^n$ into X. If $K(\delta,T(z)) = f(z)$, a convex function for $z \epsilon Z$, $\delta \epsilon \Gamma$, then $\Gamma \mathfrak{G}T[Z]$ is the decoupling set for (δ,x) . If we further require $\Delta \cap \Gamma$ to be a convex set, the problems

sup $g(\delta)$, $\delta \epsilon \Delta \cap \Gamma$

(1)

(2)

and

inf f(z), zEZ

are dual convex programming problems.

1

As an example in the use of the use of the C² extremal principle, we derive the dual problems for linear programming. Let

equilarous has estimate dotew villauport villaub regord dity adelecty solution $K(y,x) = y^T x$ the functiel-Rockefellar scheme [2, 3]. The derivation is accomplished to two

stages. The first is the schievement of the deality inequality. The second $y \in \Delta = \{y : y \ge 0\}$ is the decoupling of the prisel and dual

and

$$\mathbf{x} \in \mathbf{X} = \{\mathbf{x} : \mathbf{x} \ge \mathbf{b}\}.$$

Then

$$g(y) = \inf_{x} K(y,x) = y^{t}b.$$

If we let x = Az, then

 $y^{T}_{b} \leq y^{T}_{Az}$ wyea, wzez = {z : Az \geq b}.

Defining

$$\Gamma = \{ \mathbf{y} : \mathbf{y}^{\mathrm{T}} \mathbf{A} = \mathbf{c}^{\mathrm{T}} \}$$

E(5,7(2)) = f(2), a convex function for sel, wit, then [67]2] to the deeme we have

 $\sup y^{T}b \leq \inf c^{T}z$ YEA OF ZEZ

or equivalently

sup b ^T y	<	inf c ^T z	
subject to		subject to	(3)
$\mathbf{A}^{\mathbf{T}}\mathbf{y} =$	c	Az ≥ b	
w > 0			

It is well known that a duality gap cannot occur in linear programming. In the general case the existence or non-existence of duality gaps is dependent on the choices of $\Delta \cap \Gamma$ and Z.

Gradient Characterization of Some Convex Function Infima

The extension of our characterization to duality states for more general cases of dual convex problems of the form given in Charnes, Cooper and Seiford [1] depends on developing properties characterizing the existence or non-existence of infima for special classes of convex functions. In the following theorem we adduce some such properties.

<u>Theorem 1</u>: Let $f:X \neq R$ be convex and differentiable on an open convex set $X \subseteq R^m$. For the linear function A:Z $\neq X$ with Z convex, consider

$$C(z) = f(Az) - b^{T}z.$$

If we define works , behaved has is a sound more at the start start we want out of

 $\Gamma = \{\delta : \delta^{T} A = b^{T}\}$ $\Delta_{x} = \nabla f[x]$ $\Delta_{z} = \nabla f[A(Z)]$

then

(i) a) C(z) is bounded below implies

$$\overline{\Delta} \cap \Gamma \neq \phi$$

b) $\Delta_x \cap \Gamma \neq \phi$ implies C(z) is bounded below

P(E) = C(x(t)) 4 - ---

3

$$\overline{\Delta}_{\Omega} \cap \Gamma \neq \phi, \Delta_{\Omega} \cap \Gamma = \phi$$

b) $\Delta_x \cap \Gamma \neq \phi$, $\Delta_z \cap \Gamma = \phi$ implies C(z) has an infimum

(iii) C(z) has a minimum if and only if $\Delta_{z} \cap \Gamma \neq \phi$.

<u>Proof</u>: (1) a) Suppose $\overline{\Delta}_{z} \cap \Gamma = \phi$. Then

$$\nabla C(z) = \nabla f(Az)^{T} A - b^{T}$$

is bounded away from zero, i.e.,

$$\|\nabla C(z)\| \ge \varepsilon > 0.$$

Consider the differential equation system.

$$\dot{z}(t) = \frac{-\nabla C(z(t))}{\|\nabla C(z(t))\|} .$$

The function $-\nabla C(\cdot)/|| \nabla C(\cdot) ||$ is continuous [2] and bounded, since ∇C is the gradient of a <u>convex</u> function. Hence there exists a solution, z(t). For $F(t) \equiv C(z(t))$

$$F'(t) = \nabla C(z(t)) \cdot \dot{z}(t)$$
$$= \nabla C(z(t)) \cdot \left(\frac{-\nabla C(z(t))}{\| \nabla C(z(t)) \|}\right)$$

 $= - \| \nabla C(z(t)) \| \leq -\varepsilon < 0.$

Thus as $t \rightarrow +\infty$

$$F(t) = C(z(t)) + - \infty$$

and C is unbounded below.

(i) b) If
$$\Delta_{\chi} \cap \Gamma \neq \phi$$
, let $\overline{\delta} \in \Delta_{\chi} \cap \Gamma$.

Then $C(z) = f(Az) - b^{T}z = f(Az) - \overline{\delta}^{T}Az$.

Hence inf $C(z) \stackrel{>}{=} \inf f(x) - \overline{\delta}^T x \stackrel{>}{=} f(x_0) - \overline{\delta}^T x_0$

by the differentiable convexity of f, where x_0 satisfies $\nabla f(x_0) = \overline{\delta}$.

(iii) Suppose C(z) attains its minimum at z_0 . Then

$$\nabla C(z_0)^{T} = \nabla f(Az_0)^{T} A - b^{T} = 0.$$

Setting $\delta = \nabla f(Az_{0})$ we have

Conversely, if $\delta_0 \in \Delta_z \cap \Gamma$, then $\delta_0 \in \Gamma$ so $C(z) = f(Az) - \delta_0^T Az$ and $\nabla C(z)^T = \nabla f(Az)^T \cdot A - \delta_0^T A$ $= (\nabla f(Az)^T - \delta_0^T A.$

Since $\delta_0 \in \Delta_z$, $\exists z_0$ and that $\nabla f(Az_0) = \delta_0$.

Hence $\nabla C(z_0) = 0$ and C(z) attains its minimum at z_0 .

(ii) a) and b) now follow by exhaustion.

<u>Corollary 1</u> $\Gamma = \phi \implies C(z)$ is unbounded below.

Proof: Consider the dual linear programming problems

(I) (II)
max
$$b^{T}z$$
 min $\delta^{T}0$
s.t. $Az = 0$ s.t. $\delta^{T}A = b^{T}$

If $\Gamma = \phi$, then II is infeasible. Since z = 0 satisfies (I), there exists a sequence z_n such that

$$Az_n = 0 ~(\forall n) \text{ and } b^T z_n + \infty$$
.

Thus
$$C(z_n) = f(Az_n) - b^T z_n$$

= $f(0) - b^T z_n \rightarrow -\infty$. Hence for $C(x) \subseteq \operatorname{Inf} E(x) = \overline{0}^{T} x \subseteq E(x_{1}) = \overline{0}^{T} x_{1}$

That the characterization given by Theorem 1 is a best possible is shown by the following examples.

Example 1: To show that (in i,b) we need $\Delta_x \cap \Gamma \neq \phi$ (rather than $\overline{\Delta}_x \cap \Gamma \neq \phi$) to insure C(z) is bounded below, consider

$$f(x) = \begin{cases} -\ln(-x) & \text{if } x \leq -1 \\ x + 1 & \text{if } x > -1 \end{cases}$$

Then $b = 0 \in \overline{\Delta}_x$ but $\lim_{x \to -\infty} f(x) - 0 \cdot x = -\infty$.

Example 2: To show (in i, a) that C(z) bounded below only guarantees $\overline{\Delta}_{z} \cap \Gamma \neq \phi$ and not $\Delta_{z} \cap \Gamma \neq \phi$, consider

Then $f(z) = e^z - 0 \cdot z > 0$ but $0 \notin \Delta_z$, $0 \in \overline{\Delta}_z$.

(¥z)

 $f(z) = e^{z}$.

Conclusion

In other work now in progress we employ these results to obtain duality state characterizations of dual convex programs derived from the C² principle. We also make applications to two-person zero-sum games whose payoff function is of the form $K(\delta,x) = f(x) - \delta^T x + g(\delta)$ where f(x) is convex and $g(\delta)$ is concave. Such

6

games have arisen in contexts where the x-player corresponds to a government agency and the δ -player is the totality of enterprise groups whose activities are being regulated.

 A. Gierese, W. W. Gneper and L. Selfore, "Extremal Principles and Optimization Desilities for Schuchan-Kaliback-LeShier Estimation," Center for Cohernetic Stadies, Research Report CCS 261, The University of Texas, Amatia, Texas, April 1976. To appear in Scitachrift Machematische Operationsforschart und Statistik, Series Oppistization, issue 1, vol. 9 (1978).

N. Fenchel, "Convex Conce, Sets, and Functions," Locater Moteos, Princetos University, Department of Machinematics, September 1953.

 T. Rocksiellar, Convex Analysis, Frinceton University Frees, Princeton, New Jacesy, 1970.

REFERENCES

 A. Charnes, W. W. Cooper and L. Seiford, "Extremal Principles and Optimization Dualities for Khinchin-Kullback-Leibler Estimation," Center for Cybernetic Studies, Research Report CCS 261, The University of Texas, Austin, Texas, April 1976. To appear in Zeitschrift Mathematische Operationsforschung und Statistik, Series Optimization, issue 1, vol. 9 (1978).

- W. Fenchel, "Convex Cones, Sets, and Functions," Lecture Notes, Princeton University, Department of Mathematics, September 1953.
- 3. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.

Unclassified Security Classification DOCUMENT CONTROL DATA . R & D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified) OHIGINA TING ACTIVITY (Corporate author) 20. REPORT SECURITY CLASSIFICATION Unclassified Center for Cybernetic Studies 2b. GROUP The Universityof Texas REPORT HTLE Gradient States for Some Dualities with the Extremal Principle 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Charnes - Cooper AUTHOR(S) (First name, middle initial, last name) A./Charnes L./Seiford TOTAL NO. OF PAGES 76. NO. OF REFS Jul 077 . 10 3 CONTRACT TNATOR'S REPORT NUMBER(S) NØØØ14-75-C-Ø569 Center for Cybernetic Studies PROJECT Research Report CCS 295 NR047-021 OTHER REPORT NO(S) (Any other numbers that may be assigned this report) 10. DISTRIBUTION STATEMENT This document has been been approved for public release and sale; its distribution is unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Office of Naval Research (Code 434) Washington, D.C. 13. ABSTRAC Gradient characterizations of some convex function infima are derived which apply to extension of the Charnes-Cooper duality state characterizations to more general classes of convex programming problems via the Charnes-Cooper extremal principle for optimization dualities. DD FORM 1473 (PAGE 1) Unclassified 46197 S/N 0101-807-6811 Security Classification

	LIN	LINKA		LINK B	
CONTROL DATA R & BUNNING	ROLE	w T	ROLE	WT	ROLE
A CALL AND A DESCRIPTION OF A CALL AND A CAL	3				14 1 7 14 (5)
Unclassified	a	Studio	retory		het ne
an entities		d	are'l i		Distore
Gradient characterizations					
Convex function infima	estatio	pa pa	102,00	ateta	2 30.9)
Charnes-Cooper extremal principle	franco e	arang ma da	is the states of the	NOTION &	40.00
Dual convex programs	-		Carton B	Partie Lain	a unit qui
					1997.16
		1.0			D'ROLL
calle to as of tablet to be attended as					
יין אין אין אין אין אין אין אין אין אין	1		and the second	Chi Yate	
				2.4	1.65%
			1		130-
					The second of
	approx	n best	ped as	i inei	a a dob
	and the second second	103		R. H. I	P.C.S.S.
Office of Naval Research (Code 434)					
Washington, D.C.					
					1
	ald sta	diest	eduna	Sec. 34	inerit
	e Chu	1.10.n		to a	topage .
	altan a	s of a	elasia naine	1007302	12 93
•				*	1.1.1.1
D . NOV 1473 (BACK)	1		L		1
			fied Classifi		

the second s