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ABSTRACT

Gradient characterizations of some convex function infima are

derived which apply to extension of the Charnes-Cooper duality state

characterizations to more general classes of convex programming

problems via the Charnes -Cooper extremal principle for optimization

dualities.
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The C2 extremal principle for dualities which was originally presented

in Charnee Cooper and Seiford [11 is an approach to deriving dual optimiza—
• tion problems with proper duality inequality which simplifies and generalizes

the Penchel-Rockafellar scheme [2, 3]. The derivation is accomplished in two

H stages. The first is the achievement of the duality inequality. The second

is the decoupling of the primal and dual variables.

The C2 Extremal Principle

Let IC(6,x) be a real valued function which is concave in 6 for

(6,x)~~excR
tmeR8

and for which

• g(6) inf K(6x)
xEX

H exists for each 6cA. Let T be a map from the convex set Z ~ into X. If

K(6,T(z)) f(z), a convex function for zcZ, 6cr , then reT[z] is the decoupling
set for (6,x). If we further require t~nr to be a convex set, the problems

• sup g(6), 6cAflr (1)

• t and

- 

. inf f(z), zCZ (2)

are dual convex progr ing problems.
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As an example in the use of the use of the C2 .xtr al principle, vs

derive the dual. problems for linear programeing. Let

TK(y x) — y x

for
yc~~~~{y : y ~~~O}

• and

xcl — {x : x ~ b}.

Then
Tg(y) inf K(y,x) y b.

x

:1 If we let x — Az, then

yTb < YTAs yeA, ~ zeZ — : Az � b

Def ining TF — {y : YTA — c }

we have
T Tsup y b~~~inf c z

• yeA flF zCZ

or equivalently
T T

supby — 
in f c z

subject to subject to (3)

ATy _ c  Az~~~b

j ! I 
• •
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It is well known that a duality gap cannot occur in linear programming.

In the general case the existence or non—existence of duality gaps is

dependent on the choices of A f l F  and Z.

Gradient Characterization of Some Convex Function Infima

The extension of our characterization to duality states for more general
• 
‘ cases of dual convex problems of the form given in Charnes, Cooper and

Seiford [1] depends on developing properties characterizing the existence or

non—existence of infima for special classes of convex functions. In the

• • following theorem we adduce some such properties .

Theorem 1: Let f:X + R be convex and differentiable on an open convex set

X ~ R~. For the linear function A:Z -. X with Z convex, consider

C(z) — f (Az ) — bTz.

If we def ine

r — {6:6TA — bT}

A - Vf [x ]x

A5 — Vf[A(Z)]

then

(i) a) C(s) is bounded below implies

• b) A f l F  ~ $ implies C(z) is bounded below

• 1
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(ii) a) C(s) has an infimum implies

A5 flF~~~,, A5 f l F — $

b) A~ flr $, A5 flr - $ implies C(s) has an infiaum

(iii) C(s) has a minimum if and only if A2n F  # 5.

Proof: (i) a) Suppoee~~5flF — 5 .  Then

VC (z) — Vf (As) TA — bT

is bounded away from zero, i.e.,

II VC(z)~ ~ c > 0.

Consider the differential equation system.

(t) — 
VC(z(t))

Z 

~ 
VC (z (t))JJ

The function —VC(’)/II VC(’)II is continuous [2] and bounded, since VC is the

gradient of a convex function. Hence there exists a solution, z(t). For

F(t) C(z(t))

F’(t) — VC(z(t)) • (t)

— VC(z(t))

— -fl VC(s(t))fl 5 —s < 0.

Thus as t 4 + 0~

F(t) - C(z(t)) + - Co

• I and C is unbounded below.
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(1) b) If A f l F  ~ 5, let ~ £ A flF.

j Then C(s) - f (Az) — bTz — f (Az ) — ~
TA

Hence inf C(s) 
~ 

f (x) — ~T > f(x ) —

by the differentiable convexity of f where x0 satisfies Vf(x0) —

S (iii) Suppose C(z) attains its minimum at si,. Then

• VC(z0)
T. Vf(Az )TA — bT — 0.

Setting 6 — Vf (Az ) we have

6 e A  flr.z
Conversely, if ~ ~~~~~ then 6~ c F

so C(z ) _ f ( A z ) _ 6 0
TAz

and VC(s)T_ Vf (Az)T 
• A - 6 TA

• 
— (Vf(Az)T 

— 6 TA

Since 6~ e A , ~~z and that Vf (Az ) — 6.

Hence VC(z ) — 0 and C(z) attains its minimum at z.

(ii) a) and b) now follow by exhaustion.

Corollary 1 F — $ —> C(z) is unbounded below.

Proof: Consider the dual linear progr~~~ing problems

(I) (II)
T Tm a x b z  a i n 6 O

s.t. A z — 0  s.t. 6TA _ b T

- If F — 5, then II is in f easible. Since z — 0 satisfies (I), there exists a

• sequence 5n such that
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Az - 0 (~~n) and bTz~ + + Co

Thus C(s ) — f(Az~) — bTz

— f (0) — btz + — Co

That the characterization given by Theorem 1 is a best possible is shown

by the following examples.

E~~~ple 1: To show that (in i,b) we need A (~F #5 (rather than # 5) to

insure C(z) is bounded below, consider

• ( —&n(—x) if x 5 —1
f(x) — 

~ ~ + 1 if x > —l

Then b — O e !  but u r n  f(x )_ 0 .x _ cD .

ri!
Example 2: To show (in 1, a) that C(z) bounded below only guarantees

~~ $ and not A f l ~ i’ 0, consider

zf( z ) e

Then f(z) — e5 — 0 • z > 0 (~~z)

but 0~~~A , 0 e ~~~.z z

Conclusion

S In other work now in progress we employ these results to obtain duality state

characterizations of dual convex programs derived from the C2 principle. We also

make applications to two—person zero—sum games whose payoff function is of the

form K(6,x) — f(x) — 6T
~ + g(6) where f(x) is convex and g(6) is concave. Such

- ——-“----~~ —h” ~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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games have arisen in contexts where the x-player corresponds to a government

agency and the 6—player is the totality of enterprise groups whose activities

are being regulated.
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