AD=A055 023 HUMAN RESOURCES RESEARCH ORGANIZATION ALEXANDRIA VA F/6 5/9
PROJECT IMPACT SOFTWARE DOCUMENTATION: VI. VOLUME 2. ZEUS PROGR==ETC(U)
AUG 72 J GARNEAUr W UNDERSHILL: D SHUFORD DAHC!S-?S-C-OOOQ
UNCLASSIFIED HUMRRO=RP=D1=72=5=V0L=2

| o o

o
E
- —

SR
I
{

||||| N
e [I2E

™

.

MICROCOPY RESOLUTION TEST CHA&T
, NATIONAL BUREAU OF STANDARDS-1963-4
:)

"y .

| CQ August 1972
‘ I N RP-D1.72.5
B & O :
I o
| y W
% f %
[|
. << Project IMPACT Sof
-'L :
I Zeus Program Logic Descriptions
T
-
% I Research Product
- o
u, Willi rhill, and Doris Shuford
% I 3-_ Jean Garneau, William Unde a oris Shufor:
5 1 &
L
t - Q' E HumRRO Division No. 1 (System Operations)
: : g Work Unit: IMPACT
E b Approved for public release;
{ P distribution unlimited.
& v
E« | -
ﬁ - HUMAN RESOURCES RESEARCH ORGANIZATION

300 North Washington Street o Alexandria, Virginia 22314

—-('wda,

| 78 06 07 002°®

T ———

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

L T Y

REPORT DOCUMENTATION'PAGE pp AD RETBUCTIONS
TALOG NUMBER
Sy = RT & PERIOD COVERED

PROJECT JMPACT SOFTWARE DOCUMENTATION: VI. JOLUME
e ZEUS ;nocmm LOGIC pESCRIPTIoNS. Resea

e SRRSO R GRART NONBERG
1.-"

J ean/ Garneau, William/ Undershil

“—}] potis/shuford r I 5] } panc 19—73—c—M4
9. PERFORMING ORGAN.ZATIO” NAME AND ADDRESS — | 10. PROGRA“ ERLKEUJS:CTT.N':‘R“O'JEEST TASK
Human Resources Research Organization 0) | 6
/

i og s

300 North Washington Street \4 3 (g‘b
Alexandria, Virginia 22314 CDA 2Q0531dm734 S

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 1
Office, Chief of Research and Development i

Department of the Army
Washington, D.C. 20310 144

14. MONITORING AGENCY NAME & ADDRESS(if ditferent from Controlling Office) 1S. SECURITY C@“j
' Unclassif foer '

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE
[16. DISTRIBUTION STATEMENT (of this Report)
i - : Approved for public release; distribution unlimited.
E 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
8. SUPPLEMENTARY NOTES "
Research performed by HumRRO Division No. 1 (System Operations), under Work ,
Unit IMPACT. 3

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

CAI Message Processing Tasking
Cathode Ray Tube Operating System (0S) Time-Sharing
Command Processing Queue Management

Memory Management System Support

ABSTRACT (Continue on reverse side if neceseary and identify by block number)

This research provides a description of Project IMPACT's time-sharing monitor,
ZEUS, which extends the capabilities of an IBM 360 or 370 computer system.

Its functions, capabilities, structure and operation are discussed. ZEUS
provides capabilities needed for real-time, interactive computer applications
using cathode ray tube displays. This document is intended primarily for
systems programmers, and is part of a series that will completely document the
IMPACT software subsystem.x

NG

DD 152:”7: 1473 cEocimionoF t uogs&om;ert MUnclassiﬁied

{ e
11 Lf @ - SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

|

Avugust 1972
RP-D1.72.5

Project IMPACT Software Documentation:
VI. Volume 2,
Zeus Program Logic Descriptions

Research Product

by
Jean Garneau, William Underhill, and Doris Shuford

HumRRO Division No. 1 (System Operations)

Work Unit: IMPACT

HUMAN RESOURCES RESEARCH ORGANIZATION
300 North Washington Street o Alexandria, Virginia 22314

e—— el

r
[——

Introduction

CONTENTS

Page

.. 2
Organization of thisDocumentc. .0t ronunnenrnnnsoens e
o e e e R R P S S P e 2
L T T T R N NS P S SR E TSR O TR S R e 5
Section 1: Message Processingooeeeeeeeneenneeannesns 5
Section 2: Command Processingccittt ittt 20
Section 3: System Support N e e ke e S R 35
SHCtion 4: TItIBlZATION: 1 i e is ¢ sl w5 9 ata a8 sl % s S s 67
.. n
£ AL MR S e R S e s R ol PRI SRS SRR o U i A T 73
B R i e R L i b s e ol o oo e e 74
BECEONER A v v it s e e s Sl L e e o 75
F o 0 L AT e e R T R e e P LS S e e AR S 77
F o (11,8 Sl e R R R S e e e T e S e g € 79
B EEERE - T e TSR G e e s e e 80
£y | o e e RN Sy SN SR e e SR T S e e 81
R L e i B e VT o B e AR o e ot e . 82
R I N et o e s o P e e e o6, e, b T 1 84
FEREEMENN. i oot o ool DTt 5%e o woa o Al o 3 L 1o o a8 o W S e 85
£ T T i o] e e R e S R A e Sk o L P R e 86
HGETMEM s i S i e e A R T ik St b8 R LU s e 87
3 213 5 1 9 CORRs G RO S M R P e AT e N e e e 89
HEBREG. sl fot i e e b S eaie o dishe gt b ok o 8§ S e T L 92
T R BRI) ok s e o s e o B0 0k o e AT T S e R T R ek i 93
E e e ot g S e e T e L A e 95
0\ e M S R S ey St N Rt e g N R 96
Cn R S I e B R Ty S A R e e 97
ERIERY 5r b D S A S e 10 b G A RS ST A e AN T A N g P e A 0 99
I i G i e R e T S R e R e AR i e s e e R 100
L1 LA e e ey e P S U SVERI S B S SR e s e 102

POEE o or v v v wvie wis e Bre i s A 8 e e N R e e e 103

i

Section 1: Control Blocks and Tablescc0uueununn 109
1 | EineContral Blaek . .2 ol i s o e v e s s 109
;;}: » Line Control Block—Overview 110
ol Line Control Block—Detailed Description 11
: ki Queue Foundation BIocKcc00ueeueeeennnnnn. 112
Queue Foundation Block—Overview 112
Queue Foundation Block—Detailed Description 112
Zeus Terminal Control Block¢cc0ovuuunnn 113
Zeus Terminal Control Block—Overview 13
Zeus Terminal Control Block—Detailed Description 115
eusNector-Table. oo e L R S s e e e 117
Zeus Vector Table—Overview 117
Zeus Vector Table—Detailed Description 120

Section 2: Queue Elements I e Vil o8 el AT 121 g

Core Queue Element ' ., i . i e s i e e 121

§ Core Queue Element—Overview 121

Core Queue Element—Detailed Description 122

BN Mot BNot o) s v i ininn s e mns 122 ;

Load Request Element—Overview 122 ‘

Load Request Element—Detailed Description 122 2

Resource Queue Elementcciiiiannnn 123 g

Resource Queue Element—Overview 123 f

Resource Queue Element—Detailed Description 123 f

B 0 TR = e e S e R S RS S G 123 f
M Timer Queue Element—Overview 123
i Timer Queue Element—Detailed Description 124
G CUCHRYPYOUREIIN . i il i ire mve e o e e v e e 125
e e e SR T B R £ S G R ot DO N 135

‘i Figures

4 ! N - T R S A e N TR I S e R e 3
1 2 Summary, by Component, of Zeus Main Memory Requirements 4
3 L A e e (S e 72

e T W T ks 38
ARSI Do bl s

Project IMPACT Software Documentation:

VI. Volume 2,
Zeus Program Logic Descriptions

INTRODUCTION

This is the second volume in a two-volume set of documents describing Zeus, a
time-sharing monitor for the IBM series 360 or 370 computer. In Volume 1, the nature, |
purpose, history, functions, and design concepts of Zeus are described; this document
presents the program logic for Zeus subroutines and macros. ‘

ORGANIZATION OF THIS DOCUMENT

Volume 2 is organized in five Chapters, as follows: !
Chapter 1, “System Modules,” describes each of the program modules in Zeus. |
The modules are grouped according to functions and these groups are presented in the
sequence in which the functions are described in Volume 1.
Chapter 2, “Macros,” describes the system macros provided by Zeus. These
2 macros are used by Zeus subroutines and many are also suitable for application program
use.
Chapter 3, “System Data Areas,” identifies the structure and uses of control !
blocks and queue elements in Zeus. ‘
Chapter 4, “Utilities,” describes utility programs provided for the support of
the Zeus system.
Chapter 5, “Procedures,” lists the Job Control Language (JCL) procedures
necessary for the implementation and operation of the Zeus system.
Program listings of Zeus modules and macros are available to the interested reader
through HumRRO Division No. 1 (System Operations).

OVERVIEW

A brief description of how a terminal interacts with Zeus, as illustrated in Figure 1,
will serve to place the Zeus components in proper perspective. In Figure 1, assume that
the Zeus initialization routines have completed processing and a Terminal Task has been
created for each terminal in the system. Each Terminal Task has issued a read to its
terminal via OS and a Zeus macro. These functions are performed by the TERMIO
component of Message and Command Processing. After initiating this operation, the
Terminal Task waits for terminal input by entering the DSPTCHR component of System
Support.

Eventually, the terminal initiates an input. At this time, OS notifies the Terminal
Task associated with this terminal (via System Support) of the message availability. The
Terminal Task, when activated, first determines if the message contains a command. If it
does not it is routed to the external processor associated with this terminal.

3 If the message contains a command, the Terminal Task calls the Command Process-
1 ing Subsystem to process it. (CMNDPR1 is the entry point to the Command Processing
E | ; Subsystem.)

T NPT Ty o ey S

i s The Command Processing Subsystem interrogates the command and executes it as
q appropriate, utilizing Zeus macros and System Support for timer, queue, and memory
i management. Control Blocks are updated as necessary to maintain a state vector for the
il : terminal.

Eventually Command Processing or the external processor will generate a request for .
output and subsequent input from the terminal, repeating the preceding operation. 3

A detailed description of this process can be found in Volume 1, Chapter 3, ‘
““Message Processing;” Chapter 4, “Command Processing;”’ and Chapter 5, “System Sup- 4
port Functions.” 11
b The main memory requirements for the major Zeus subsystems components are '
: summarized in Figure 2. The reader may refer to the program description in subsequent !
i chapters of this volume for detailed memory requirements for each Z:-us module.

Basic Zeus Structure

T ' \ T/P Lines / \Auxiliary Storage /
: Computer

_-T e
4 (0]
4 S
e
., 3 s 0
s 4 3
n
D , 0OS Macros J a
v [)] m |
= y i ;
a c !
m = System Support |
< M |
i A A]
c . ‘
m
| M [Zeus Macros] .
e r
, m T y
X [+]]
1 ; Message and Command Processing CMF
 § A
\
Queues Control Blocks, Tables
e - e - e e e e e s e e v e e - e - - — — — — e — — — — — — —
External Processor*”* | | 1

*Zeus Dynamic Memory used for transient routines, save areas, and queue extensions as well as 1/O buffers.
**Optional (non-Zeus) Component.

3 ***0S Dynamic Memory used for 1/O Appendages, Open/Close/EOV, etc.
: . Figure 1

Summary, by Component, of Zeus Main Memory Requirements

. Component Mo,:\.:y’
Message Processing 6K
4 ‘ EDITOR 3K
% Conitaind DIRECTOR 3K

% Frassuing Status/control 2K
i RJE 3K
} System Support 8K
il
i‘ Buffer Pool and Transient Routine Dynamic Memory 8K
¥ Control Blocks and Table for 9 Active Terminals 2K
0OS Dynamic Memory (open, close, appendages, etc.) 5K
Total 54K

*K = 1024 bytes of memory

Figure 2

i
‘

Chapter 1
SYSTEM MODULES

This Chapter presents salient items of information regarding Zeus system modules.
The system modules descriptions are organized alphabetically within sections, according
to the type of function performed. These sections are presented in the sequence in which
the functions are described in Volume 1. The subroutines are as follows:
Section 1: Message processing
Section 2: Command processing i
Section 3: System support .
Section 4: Initialization

SECTION 1: MESSAGE PROCESSING ‘
The program modules that perform message processing functions are shown in the :
following list:
Name Function \‘
CMF I/O Communication Interface between a proces- 1
sor and a Terminal Task }
CRTREAD Request message from terminal
EMPTY Request output to terminal ‘
FULL Process full output buffer condition
NTPIO Initiate nonteleprocessing I/O operation
RESET Acquire and initialize output buffer
RTERM Terminal Task to Line Task interface for terminal
input operation
E | RTERM1 Initiate terminal input operation
a STACK Format output buffer
‘ TERM10 Terminal Task foundation module 3
WTERM Terminal Task to Line Task interface for terminal
output operation
o WTERM1 Initiate terminal output operation

Zeus message processing concepts are described in Volume 1, Chapter 3. A descrip-
tion of each module follows.

- e TP g e
e —e i

NAME :
FUNCTION:

INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

EXIT:
ATTRIBUTES:
WRITTEN BY:

CMF

Read/Write Communication Interface between a processor and
a Terminal Task.

R1 - BTAM Data Event Control Block (DECB)
R13 » 18-word save are:

R14 > Return point address

R15 > Entry point to CMF

Updated DECB, TCB, and posted Terminal Task.

The CMF routine is called by a processor to initiate a read
or write operation on a remote terminal. CMF first inter-
rogates the bytes at offset 36 of the DECB for an X 'FF'
to determine if a terminal has been assigned to this DECB.
If a terminal has been assigned, it loads the address of
its TCB from bytes of the DECB and continues to the next
step. Otherwise, it locates the Zeus Vector Table, gets
the address of the TCB Queque from it, and scans the

Queue for an available TCB. If one is found, its address
is stored in bytes 37-39 of the DECB, the DECB address

is stored in the TCB, and the next step is initiated. If

a TCB is not available, the CMF returns to the caller.
After the TCB belonging to this DECB is known, the address
of the message to be output or the buffer to be used for
input is moved from the DECB to the TCB. Editing is per-
formed on outgoing messages as is required by specific
processors. Finally, an ECB in the TCB is posted complete.

#OPENP, #CALL, #GOTO, #LPSW, #COUNT, #CLOSEP, #GENSECT,
#FINDZVT
SPIE, STAE

403 bytes

ZEUSSVC, SPIE, STAE
Address in R14

Serially Reusable

Jean Garneau

NAME :
FUNCTION:

INPUT:

PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

} EXIT:
} | ATTRIBUTES:
g‘ WKITTEN BY:

CRTREAD

Request input from terminal, process and, as appropriate,
return data to caller.

R12 -~ TCB

R13 » 18-word save area

R14 - Return point address
R15 - Entry point to CRTREAD

CRTREAD is called by any routine that wants noncommand
input from the terminal. CRTREAD first checks the current
terminal output buffer to determine if it contains valid
data. If it does, an output operation to the terminal is
initiated by calling an output module, EMPTY. Upon return
from EMPTY, or if the buffer contained no data, an input
message from the terminal is ‘requested via RTERM. Upon
return from RTERM, CRTREAD waits on an ECB in its TCB for
completion of the scheduled input operation. When the
terminal responds, the message address is stored in the
TCB and the ECB being waited on is posted by the Line
Task associated with this terminal. When CRTREAD is dis-
patched, it checks the message for the presence of a

Zeus command. If a command is located, the command pro-
cessing subsystem is called. Upon return from this sub-
system, a branch is made back to the first step of
CRTREAD when the output buffer is checked for valid data.
This loop will continue as long as the messages being
input contain commands. When a message is input that

does not contain a command, return is made to the
original caller of CRTREAD.

#0PENP, #COUNT, #GOTO, #WAIT, #CLOSEP, #FREEMEM
EMPTY, RTERM, CMNDPR1, STACK
368 bytes

RTERM, GETSAVE, ICOUNT, EMPTY, FREEMEM
Address in R14
REENTRANT

Jean Garneau

J
3

{
o

NAME :
FUNCTION:
INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

EMPTY

Request output operation to terminal.

R12 - TCB

R13 -~ 18-word save area
R14 > Return point address
R15 -+ Entry point to EMPTY

Output buffer, if any, written on terminal and deallocated.

EMPTY is called to flush any valid data from the terminal
output buffer. EMPTY first determines if, indeed, the
buffer is available and does contain valid data. If not,
it returns; otherwise it calls WTERM to schedule an
output operation to the terminal. Upon return from WTERM,
it waits on an ECB in the TCB for completion of the out-
put operation. It then cleans up the TCB, frees the
buffer, and returns to the caller.

#OPENP, #GOTO, #SET, #WAIT, #COUNT, #CLOSEP, #FREEMEM

WTERM

316 bytes

WTERM, FREEMEM, GETSAVE, ICOUNT
Address in R14
REENTRANT

Jean Garneau

e ik

T

s 2 :

NAME :
FUNCTION:
INPUT:

OUTPUT:
PROCESS :

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

FULL
Handle full output buffer condition

R12 - TCB
R13 » 18-word save area
R14 -+ Return point address

R15 + Entry point to FULL

Buffer output to terminal and then deallocated

FULL first inserts a comment into Block One of the buffer
explaining that the output operation is caused by a
“full" CRT "page." The address of this block is available
in the TCB. EMPTY then calls CRTREAD which schedules the
output operation, waits for a "press-send", etc. CRTREAD

returns a message that is discarded by FULL. FULL then
returns to the caller.

#OPENP, #COUNT, #CLOSEP, #FREEMEM
CRTREAD
168 bytes

GETSAVE, FREEMEM, ICOUNT
Address in R14
REENTRANT

Jean Garneau

NAME :
FUNCTION:
INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

EXIT:
ATTRIBUTES:
WRITTEN BY:

NTPIO
Initiate nonteleprocessing I/0 operations.

R1 - I/0 buffer plus operation code
R12 -~ TCB

R13 -+ 18-word save area

R14 + Return point address

R15 -+ Entry point to NTPIO

1/0 operation scheduled

NTPIO, using the Basic Access Method DECB contained in the
TCB, initiates either an Input or an Output operation and
then returns to the caller. Register 1 at entry contains
the address of the buffer to be written from or read into.
If register 1 is negative, the operation requested is a
write, otherwise it is a read. If the first bit of the

FILECB (in the TCB) byte is on, the I/0 operation involves
keys, otherwise it is relative record I/0.

#OPENP, #GOTO, #COUNT, #CLOSEP
None
356 bytes

None
Address in R14
Serially reusable

Jean Garneau

B

NAME :
FUNCTION:

INPUT:

OUTPUT:
PROCESS :

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

RESET

If a terminal output buffer is not currently available,
RESET allocates one and formats it.

R1 - TCB

R13 -+ 18-word save area

R14 » Return format address
R15 -+ Entry point to RESET

Updated TCB

Reset checks SBUF1A in the TCB. If SBUF1A equals zero, a new
buffer is allocated via #GETMEM. The TCB fields SBUFIA,
PAGELINE, PAGEND, LINEREM, and POSREM are updated and
control is returned to the caller.

#GENSECT, #OPENP, #GETMEM, #COUNT, #GOTO, #CLOSEP,

#REGS, #FREEMEM

None

264 bytes

GETSAVE, ICOUNT, DSPTCHR, GETMEM, FREEMEM
Address in R14
REENTRANT

Jean Garneau

NAME :
FUNCTION:
INPUT:

OUTPUT:
PROCESS::

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

RTERM
To serve as an interface to the TP line task.

R12 - TCB
R13 + 18-word save area
R14 + Return point address

R15 > Entry point to RTERM

TCB and LCB updated to reflect current status.

The user specifies the address of the TCB, which points

to the terminal that is to be read. RTERM increments the
poll count (LPOLLC) field of the line (LCB) to which the
terminal belongs. If the line is idle, RTERM posts its LCB

complete and returns. If the line is busy, return is made
without posting. :

#OPENP, #REGS, #GENSECT, #SET, #GOTO, #CLOSEP
None
184 bytes

None
Address in R14
Serially reusable

Jean Garneau

il 2 denin N i i

NAME :

INPUT:

OUTPUT:

PROCESS :

Rl 2 Sk oloimas do ke o 5

FUNCTION:

RTERM1 (Line Task Foundation Module)

To issue a read initial to the requesting 1ine, move the
message read to a buffer, and translate the message from
ASCII-8 to EBCDIC.

R1 - LCB

R15 » Entry point to RTERMI

TCBECB is posted complete (Byte 1 =
AIOBUF updated (only if return code

LSTAT updated
LPOLLC updated

Error codes returned in right-most byte of TCBECB

00 = Read 0.K.
04,08,0C = Read bad, try again.

X'40"')
= 0)

RTERM1 is attached once for each communication line to be
activated. It immediately branches to label "START". START
interrogates the LCB to determine if any terminals (TCBs)
require I/0 servicing. If none do, the task enters idle
mode by turning off the busy bit in the LCBFLGS byte of
the LCB, and issuing a #WAIT on an ECB in the LCB. The
task remains idle until a TCB associated with its LCB
requests I/0 by altering certain status fields in both

the TCB and LCB and then posting the ECB that the task

is waiting on.

When activated, the task first checks to see if a
(terminal) output operation has caused the activation.

If so, it branches to a routine (WTERM1) to take care

of it/them. If not, it attempts to acquire memory for an
input buffer. If not available, a #WAIT is issued to
wait for the memory to become available. If the memory
request is deleted during the wait, a branch is made

back to START. When the memory is acquired, the address
and length are saved and a read into the buffer is issued
to the line. If it completes without error, the message
is moved to a second buffer acquired in the same manner
as the first, edited, and translated to EBCDIC. If the
read completes with an error, the appropriate message is
sent to the console, a write negative acknowledgement is
issued, memory is freed, and a branch to START is issued.
If the read completes with a negative response to poll,
the negative response flag is turned on and a check is
made to determine if all terminals requesting input have
been polled. If not, the routine loops until all have been
serviced. If all have been checked, the input buffer is
freed and a branch is made to the write routine if any
writes have been requested during the period. If no writes
are pending, a #STIMER is issued and, when the interval
completes, a branch to START is made.

13

ZEUS MACROS #SET, #REGS, #GENSECT, #OPEN, #GOTO, #GETMEM, #WAIT,
USED: #MOVE, #FREEMEM, #STIMER, #CALL

ROUTINES
CALLED: WTERM1

il ~ SIZE IN
e BYTES: 920 bytes

EXTERNAL IECTTRNS, ITIMER, GETMEM, DSPTCHR, MOVEQOO, FREEMEM,
REFERENCES : ATE, WTERMI]

EXIT: To address in R14

N o doad B D o Bt

ATTRIBUTES: REENTRANT

s ypd

WRITTEN BY: Jean Garneau

T PN T AN Y Yt i, R 1 1

|
il ;
|
i

|

&l i

NAME :

" FUNCTION:

INPUT:

OUTPUT:

PROCESS :

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:

WRITTEN BY:

STACK

To scan character string and format page for output to CRT.

RO = Maximum length of scan.

R1 - Beginning of string to be scanned.
R12 - TCB

R14 -+ Return point

R15 > Entry point to STACK

Character string moved to output buffer and count of lines
and bytes remaining in page updated.

The character string is scanned and the 1ine count field
in the TCB is decremented by one for each carriage return
encountered or for each 84 bytes with no carriage return.
The positions remaining field in the TCB is decremented
by the length of the message. The scan is terminated when
an ETX is found or when the scan limit (R0) is reached.
The character string and prefix (if necessary) are moved
to the output buffer, the address of which is in the
SBUF1A field of the TCB. If the page is filled before

the scan terminates, FULL and RESET are called prior

to continuing the scan.

#REGS, #OPENP, #GOTO, #SET, #COUNT, #CLOSEP
RESET, FULL
578 bytes

GETSAVE, RESET, FULL, ICOUNT, FREEMEM
Address in R14
REENTRANT

Jean Garneau

R S I
-

5|
4
E

i

!
i
|

i
i
\
|
!
!
i

NAME :
FUNCTION:
INPUT:

OUTPUT:

PROCESS :

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

TERMIO (Terminal Task foundation module)

R1 -+ Terminal Control Block
R13 » 18-word save area
R15 » TERMIO entry point address

Updated DECB, TCB, LCB; I/0 operation initiated and
completed.

TERMIO is attached by the Zeus initiation routine once

for each terminal to be activated. It immediately waits on
a "no work" ECB in the TCB passed to it during the attach.
It remains dormant until its TCB has been acquired and
posted by an external processor. When the TCB is posted

by the external processor, the task becomes active. It
loads the external processor DECB address into a register
and checks the read/write flag. If it is a write operation,
a buffer is acquired, the message is moved to it and
translated, if necessary, to EBCDIC. Next, the message

is checked to determine if a Zeus command is present. If

a command is present, the Command Processing Subsystem is
called, otherwise a routine (STACK) is called which handles
message traffic to the terminal. If the operation requested
is read, a routine (CRTREAD) is called which handles incom-
ing messages from terminal. Upon return from this routine,
an address is available in the TCB which points to the
message to be passed to the external processor. TERMIO
loads this address into a register, translates the

message, if necessary, moves the message to the external
processor buffer, and posts the external processor's

DECB. Finally, TERMIO again waits on its "no work" ECB.

#OPEN, #GENSECT, #SET, #WAIT, #GOTO, #COUNT, #LPSW, #CALL,
#GETMEM, #FREEMEM
MOVE, STACK, CRTREAD, EMPTY, CMNDPROC

802 bytes

MOVE, IECTTRNS, CMNDPROC, STACK, EMPTY, CRTREAD, DSPTCHR,
LTE, FREEMEM, CTLTAB, ETL, GETMEM

N/A
REENTRANT

Jean Garneau

16

e i R e e i | s o T

Y e s YOI
e e i e TN s S s W g S S

NAME :
FUNCTION:

INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

WTERM

To serve as an interface between a Terminal Task and a
Line Task.

R12 - TCB

R13 -+ 18-word save area

R14 » Return point address

R15 » Entry point to WTERM

TCB and LCB updated to reflect current status.

The user specifies the address of the terminal (address of
the TCB) which is to be written. WTERM increments the
write count field (LADDRC) of the line (LCB) to which the
terminal belongs. If the ling is idle, WTERM posts it com-
plete and returns. If polling, WTERM calls RESETPL and then
returns. If waiting for an interval to expire, a #TTIMER
CNACEL is issued and then return is made. If waiting for
memory, the memory queue element for this request is can-
celled and return is made. -

#OPENP, #REGS, #SET, #GENSECT, #GOTO, #TTIMER, #FREEMEM,
#CLOSEP

RESETPL
304 bytes

ITIMER, RESETPL, FREEMEM
Address in R14
Serially reusable

Jean Garneau

NAME :
FUNCTION:
INPUT:

OUTPUT:

PROCESS:

, ZEUS MACROS
] USED:

ROUTINES
CALLED:

SIZE IN

|
p !
B
E l BYTES:

B EXTERNAL
i REFERENCES :

WTERM1

To issue an 0S, write to a specified line.

R12 -~ TCB

AIOBUFF -+ buffer

BYTES 1&2 = buffer length
BYTES 3&4 = message length
BYTE 5 = X'02' (STX)
BYTES 6 to n = message

TCBECB posted complete (Byte 1 = X'40')
LSTAT updated
LADDRC updated

Error codes in right-most byte of TCBECB

X'00' = no errors s

X'04' = message too long for buffer
X'08' = no write operation initiated
X'0C' = write completed with error

The message length and address are obtained from AIOBUF.
The message is then translated from EBCDIC to ASCII-8,

an ETX (X'03') placed in the last position of the buffer,
and a STX (X'02') in the first position to the buffer.

A write initial with reset is issued, and if there was

an error-free completion of the operation, the necessary
LCB and TCB fields are updated. The TCBECB is posted with
a 0 and return is made. If there was a non-X'7F' com-
pletion, an attempt is made to write a positive acknowl-
edgement. If unsuccessful, a message is sent to the console,
the TCBECB is posted with a 12, the necessary LCB and TCB
fields are updated, and return is made. If the write "ack"
is successful, the message is not sent but the TCBECB is
posted with a 12, the LCB and TCB fields are updated, and
return is made. If there was an error in the buffer length,
the TCBECB is posted with a 4. If there was a buffer
address error, a message is sent to the console and the
TCBECB is posted with a 0. If there was a bad write opera-
tion the TCBECB is posted with an 8.

#GENSECT, #OPENP, #GOTO, #WAIT, #SET, #CLOSEP, #REGS
None
464 bytes

IECTTRNS, GETSAVE, ETA, DSPTCHR, FREEMEM

18

EXIT: To address in R14

ATTRIBUTES: REENTRANT
WRITTEN BY: Jean Garneau

Name

CMNDPR1
CMNDPR2
SCAN
CON

EOJ
GCOUNT
ICTBLID
RJE0000
RJE0100
RJE0200
RJE0300
STA

WTL

WTO

SECTION 2: COMMAND PROCESSING

Zeus system modules that perform command processing functions are shown in the
following list:

Function

First-level command processing
Second-level command processing
Scan and edit Zeus command strings
Process console command

Process LOG command

Process counter status command
Counter name table

First-Level Remote Job Entry (RJE)
Second-level RJE

Third-level RJE

Fourth-level RJE

First-level interface to all status commands
Write message to system log

Write message to operator console

Zeus command syntax and purpose are described in Volume 1, Chapter 4. A
description of each module follows.

20

oo St v

Sl © O

NAME :
FUNCTION:
INPUT:

OUTPUT :

PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES :
WRITTEN BY:

CMNDPR1
Process Zeus commands.

R1 - First alpha character in command
R13 -+ 18-word save area

R14 - Return point address

R15 -+ Entry to CMNDPR1

Command is executed, appropriate error message is sent or
appropriate transient routine loaded and branched to.

First a check is made to see if a MODify is in process. If
so, a return is made with a return code of 8. If not, SCAN
is called and the command decoded. If it is a request for
INFO, a branch is made to process INFO requests. If the
command is POL, (), RJE, COR, or NOP a branch is made

to the appropriate routines for processing these commands.
For any other commands, CMNDPR2 is called to compile and
insert CRT control information if necessary. Upon return,
if the command was completely processed, immediate return
is made. If an invalid verb was found by CMNDPR2, a branch
is made to TRANLOAD to try to find the appropriate routine
for processing the allegedly invalid verb. If unsuccessful,
the appropriate error message is sent and return is made.
If a valid command was incompletely processed by CMNDPR2,
processing is completed within CMNDPR1--(CRE,COP,MOD,DEL).
Return is made with a return code of 0 if processing was
successfully complieted and with a return code of 8 if not.

#OPENP, #GENSECT, #GOTO, #SET, #CALL, #WAIT, #LOAD,
#DELETE, #CLOSEP, #REGS, #GETMEM, #FREEMEM #CONVRT, #MOVE

CMNDPR2, STACK, RJE0000, SCAN, EQJ, CONSOLE, SUBMIT, MSCHD,
CRTREAD, RESET.

2998 bytes

GETSAVE, DSPTCHR, IECTTRNS, FREEMEM, MOVEOOO, LDROOO,
GETMEM, SCAN, CMNDPR2, NTPIO, ATE, EMPTY, RESET, STACK, ETA,
CRTREAD, SCANKEY, IFILE, CMNDPR1, SUBMIT, MSCHD, RJE0000,
STATUS, EOJ, CONSOLE, LTE, CNVTOO0O.

Address in R14

REENTRANT

Jean Garneau

NAME :
FUNCTION:

INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

CMNDPR2

Called by CMNDPR1 to complete processing of some Zeus com-
mands and to compile and partially complete processing
of others.

R1 - Command left parenthesis
R13 - 18-word save area

R14 -~ Return point address

R15 - Entry point to CMNDPR2
AQWORK -+ Work area

Updated buffer and TCB

The appropriate second-level subroutine is branched to,
depending on the command being processed. The second-
level subroutines decode the commands and turn on the
appropriate bits in the TCB to indicate which command is
being processed and whether the processing has been com-
pleted. Third-Tevel routines are branched to if necessary
to determine file and record, and to identify literals.
Fourth-level routines are branched to, if necessary, to
process literals and record keys. Fifth-level routines
are branched to get next available buffer location. Each
level of routines returns to the next higher level,
eventually getting to the first-level routines which
insert the appropriate prefix, set the return code, and
return to CMNDPR1.

#OPENP, #REGS, #GENSECT, #GOTO, #CALL, #SET, #CLOSEP,
#FINDZVT, #FREEMEM, #CONVRT, #MOVE
RESET, EMPTY

2183 bytes

GETMEM, FREEMEM, ZEUSSVC, CNVT000, EMPTY, RESET, DFILE,
RFILE, FFILE, IFILE, QFILE, SCANKEY

Address in R14
REENTRANT

Jean Garneau

A
N
3

NAME : SCAN

FUNCTION: To determine if a character string contains a Zeus command
and if so to edit it.
INPUT: RO - Area in which to return SCANned command.
R1 - Beginning of character string
R12 » TCB
R13 - 18-word save area
R14 -» Return address
R15 > Entry point to SCAN

'1,_3(}*:1'374”?' ~ ij'ﬁ:_.n_(57

;Eé OUTPUT: Edited command in specified area, Rl » command terminator.

PROCESS: The character string is scanned for the first nonblank
E | character. If this character is not a left parenthesis,
a4 return is made. If it is a left parenthesis, the scan
i continues. If there are blanks, these are removed unless
| part of a literal. A Titeral is enclosed in balanced single
quotes and is left as is unless it contains two consecutive
single quotes, in which case one is removed. If unbalanced
command delimiters or quotes are encountered, or the
maximum length is exceeded, the appropriate message is
sent to the terminal and the command is ignored.

ZEUS MACROS

USED: #OPENP, #GENSECT, #COUNT, #GOTO, #CLOSEP, #REGS
ROUTINES
CALLED: STACK
§ SIZE IN
f BYTES: 726 bytes
F | | EXTERNAL

REFERENCES : GETSAVE, ICOUNT, FREEMEM, STACK
EXIT: Address in R14

g ATTRIBUTES: REENTRANT

WRITTEN BY: Jean Garneau

i il R i
Bl S —

23

3
-

1
i1

=
!
-
s |
i
;
{

NAME :
FUNCTION:

INPUT:

OUTPUT:
PROCESS::

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES :
WRITTEN BY:

CON

Formats and outputs to the requesting terminal a copy of
the contents of the 0S operator console buffers and
related information.

R11 > ZVT

R12 -~ TCB

R13 » 18-word save area

R14 - Return address

R15 > Entry point to CON

Formatted output buffer
CON is a transient module invoked by CMNDPR1 as a result

of a CON command. It stacks the following output for the
requesting terminal:

(1) Contents of the console input buffer.
(2) Contents of the console output buffers.

(3) List of outstanding replies by number and
requesting task RB name.

(4) List of tasks in dispatching priority order
giving jobname, stepname, and active RB name.

#REGS, #OPENP, #GOTO, #CALL, #CLOSEP, #GENSECT
STACK
543 bytes

None
Address in R14
REENTRANT, TRANSIENT

Jean Garneau

24

NAME :
FUNCTION:
INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

EOJ
Performs Zeus system shutdown functions.

Rl -+ (EOJ) command

R11 - ZVT

R12 - TCB

R14 » Return address

R15 > Entry point to EOJ

None

EOJ is a transient module invoked by an EQOJ command from
CMNDPR1. EOJ scans all TCBs in the system to determine if
any ports are logged on. If ports are logged on, a message
is stacked for the requester's terminal indicating that
EOJ failed. If all ports are logged off, EOJ forces com-
pletion of the RDRINTPR's outstanding #STIMER and returns
to CMNDPR1. The RDRINTPR then handles final EOJ processing.
#REGS, #OPENP, #GOTO, #CLOSEP, #SET, #TTIMER, #CALL,
#GENSECT

STACK

186 bytes

None
Address in R14
REENTRANT, TRANSIENT

Jean Garneau

R TR

|
|
|

NAME :
FUNCTION:

INPUT:

OUTPUT :

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

GCOUNT

Formats and writes on a terminal the contents of the
Zeus performance registers.

R11 » ZVT

R13 » 18-word save area

R14 - Return point address

R15 + Entry point to GCOUNT

GCOUNT calls STACK once for each nonzero counter value,

passing it a line of text containing a counter value and
description from CSECT 'ICTBLID'.

#OPENP, #REGS, #COUNT, #GOTO, #CLOSEP, #CALL, #FREEMEM
STACK

408 bytes

ICOUNT1, ICOUNT2, GETSAVE, ICTBLID, ICTBL, ICTLGTH,
STACK, FREEMEM

Address in R14
REENTRANT, TRANSIENT

Jean Garneau

o Ty e ey

o gieart v

o
&
bt
=
By

|
|
|
i
|

Conhl SR S o I R e A

NAME :
FUNCTION:

‘INPUT:

OUTPUT:
PROCESS :
ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXIT:
ATTRIBUTES:
WRITTEN BY:

ICTBLID

Driver for GCOUNT routine.

None

None

Nonexecutabie macro-operated table input to the GCOUNT
routine.

None (internal macro).

None

266 bytes
N/A
N/A

Jean Garneau

et vt B S

a2 AR

NAME :
FUNCTION:
INPUT:

OUTPUT:

PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

N i o i e B 79 2 B AT NS S . g I A 5 o33 A S N e i

RJE000O
Performs the services requested by (RJE) 'text' commands.

R1 -+ (RJE text)

R12 - TCB

R13 > 18-word save area

R14 -+ Return point address
R15 - Entry point to RJE0O00O

R15 = 4 The input command has been replaced by a new
command to be executed.
R15 = 0 No new command has been created.

RJECO0O0 is called by CMNDPR1 when an RJE command is
encountered. It examines the text portion of the command
to determine which function is to be performed, and
branches to the appropriate routine.

#REGS, #GENSECT, #OPENP, #GOTO, #CALL, #WAIT, #ENQ, #DEQ,
#CLOSEP, #CONVRT

STACK, NTPIO

2488 bytes

GETSAVE, CNVTO00, ETA, STACK, RFILE, NTPIO, DSPTCHR,
ENQCTRL, FREEMEM

Address in R14
REENTRANT
William Underhill

NAME :
FUNCTION:

INPUT:

E OUTPUT:
PROCESS :

o4 ZEUS MACROS
3 USED:

o ROUTINES
' CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

* EXIT:
i ATTRIBUTES :
; g WRITTEN BY:

RJEO100

RJEO100 is a resident module that handles the 0S job sub-
mission function of the Zeus RJE subsystem.

R11 > ZVT

R13 -+ 18-word save area

R14 - Return point

R15 -~ Entry point to RJE0100

Updated job submission queue

RJEOT00 is attached as a Zeus task which waits on a
#STIMER interval (currently set at 15 minutes). When the
interval is completed (RJEO000 may force completion of
the outstanding #STIMER in a VS system or upon encounter-
ing certain thresholds), RJEO100 loads and branches to
RJE0200 which determines if any jobs have been placed in
the Zeus RJE queue during the past interval. Upon return
from RJEO200, a return code is checked to determine
whether or not to load and execute REJ0300, which
processes the job directory table created by RJE0200.
Finally, RJEO100 checks a bit set by the EOJ processor
(EOJ may force completion of the outstanding #STIMER).
If the bit is not set, RJEDIO0 reissues the #STIMER and
waits for the next interval to complete. If the bit is
set, RJEO100 chains through the free queue elements in
the Zeus memory subpool and returns them all to O0S via

a FREEMAIN macro and then issues an operator message
requesting termination of Zeus.

#REGS, #GENSECT, #OPENP, #FINDZVT, #GOTO, #SET, #STIMER,
#DELETE, #LOAD.
None

552 bytes

ZEUSSVC, ITIMER, RFILE, RJEFILE, DSPTCHR, LDR000O
N/A

Attached Task

William Underhill

29

T R TR B T e

Ltk iR R e it

NAME :
FUNCTION:

INPUT:

OUTPUT:

PROCESS :

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

RJE0200

Creates a table of RJE text file pointers from the RJE job
submission queue and resets the queue to empty status.

RO - Table of DECBs to be used in I/0 processing.

R11 > ZVT

R13 + 18-word save area

R14 » Return point address

R15 -+ Entry point to RJE0200
R15 = 0 if queue was empty, or
R15 = address of created table.

RJE0200 #ENQs on the RJE text file to temporarily prevent
updating of the submission queue by RJE0000. It then
allocates a buffer and reads the submission queue record
(Record 7) from the RJE text file. If the queue is empty,
RJEO200 #DEQs and returns. If the queue is non-empty, a
buffer equal to the size of the active part of the queue
is allocated and the queue information is copied to the
buffer. The queue size is then set to zero, the record

is rewritten and RJE0200 #DEQs from the file and returns.

#REGS, #GENSECT, #OPENP, #ENQ, #WAIT, #GOTO, #DEQ,
#FREEMEN, #CLOSEP, #GETMEM
None

474 bytes

None

Address in R14

Serially reusable, TRANSIENT
William Underhill

g
i
I
i
i
|
f

NAME :
FUNCTION:

INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

RJE0300

Reads, formats, and writes the submitted RJE file records
into a partioned data set and starts an 0S reader on the
PDS member.

RO - Table of DECBs to be used for I/0

R1 - Table of submitted RJE file record numbers

R11 » ZVT

R13 > 18-word save area

R14 > Return point address

R15 -+ Entry point to RJE0300

Batch jobs submitted to 0S/VS Reader

For each record given in the input table, RJE0300 does
the following:

(1) Translates record to EBCDIC

(2) Scans for carriage return character

(3) Moves Tine to 80-character output buffer and
pads with blanks

(4) If line is a job or exec card, writes line on
aoperator console

(5) Writes output buffer to PDS when full. When all

records have been processed, RJEO300 calls the
MSCHD routine with a "Start Reader" command
specifying the PDS member just created.

#REGS, #GENSECT, #OPENP, #GETMEM, #WAIT, #GOTO, #CALL,

#CLOSEP

MSCHD

1,197 bytes

None

Address in R14

Serially reusable, TRANSIENT
William Underhill

ki el vl 40 i

o L G
—

NAME : STA

i AN . = i ISR

¥ FUNCTION: Formats and outputs the contents of specified counters or
\ L) memory locations.
INPUT: R1 - (STAx)
R11 > ZVT
R12 -~ TCB

R14 -+ Return address
R15 -+ Entry address to STA

OUTPUT: R15 = 0 Normal return
R15 # if error encountered
Formatted Buffer

PROCESS : STA is a transient module loaded by CMNDPR1 in response to
a STA command. The fourth character of the command deter-
mines the service to be performed as follows:

(STAC) Outputs to the requesting terminal the con-
tents of the Zeus system performance counters
via the GCOUNT subroutine.

(STAM) Outputs a specified portion of contiguous
main memory locations in hex character and
EBCDIC format.

(STAZ) Outputs the Zeus Vector Table (ZVT) in
(STAM) format.

(STAT) Outputs the requesting terminals TCB in
(STAM) format.

(STAP) OQutputs a list of log on names for the active 4
ports on the system. |

ZEUS MACROS !
g USED: #REGS, #GENSECT, #OPENP, #GOTO, #CALL, #CLOSEP
1 ROUTINES
CALLED: GCOUNT, CHTB, STACK
SIZE IN ;
BYTES: 630 bytes i
EXTERNAL
REFERENCES : None
EXIT: Address in R14
4 ‘ ATTRIBUTES: REENTRANT, TRANSIENT
% WRITTEN BY: Jean Garneau

32

P

e

NAME :
FUNCTION:
INPUT:

OUTPUT:

PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES::
WRITTEN BY:

WTL

Sends messages to the WRITE-TO-PROGRAMMER Tlog.

R1 - (WTL 'message')

R13 -+ 18-word save area
R14 - Return point address
R15 » Entry point to WTL

R15 = 0 normal return
R15 # if syntax error in command
Output message to Zeus SYSOUT Tisting

The WTL process is identical to WTO except that, when the
0S WTO macro is executed, the MCSFLAGS field indicates
ROUTCDE = (11). '

#REGS, #GOTO
None
228 bytes

None

Address in R14

Serially reusable, TRANSIENT
William Underhill

33

NAME : WTO
FUNCTION: Sends messages to the operator console
INPUT: R1 -+ (WTO 'message')

R11 » ZVT

R13 - 18-word save area
R14 - Return point
R15 » Entry point to WTO

OUTPUT: R15 = normal return
R15 # if syntax error in command
Output to operator console

PROCESS : WTO is a transient routine invoked by CMNDPR1 when a WTO
command is encountered. WTO scans the message contained

in apostrophes, builds the 1ist form of an 0S WTO command,
and executes it.

ZEUS MACROS

USED: #REGS, #GOTO
ROUTINES

CALLED: None

SIZE IN

BYTES: 208 bytes
EXTERNAL

REFERENCES : None

EXIT: Address in R14

r.’l<

ATTRIBUTES: Serially reusable, TRANSIENT
WRITTEN BY: William Underhill

At 34

S ik

W g e

- g

SECTION 3: SYSTEM SUPPORT

The program modules that perform system support functions are listed as follows:

Name

ATCHOO
CHTB
CNVTO000
CNTXCTL
DSPTCHR
ENQCTRL
FREEMEM
GETMEM
GETSAVE
ICOUNT
ICOUNT1
ICOUNT2
ITIMER
LDR0000
LDR0100
LDR0200
MOVE000
MOVEO010

MSCHD
PROB
QUEMGR
RCVRMGT
SCANKEY
SUPV
TABLES

System support concepts are described in Volume 1, Chapter 5. A description of

each subroutine follows.

Function

Create Zeus Task

Convert hexadecimal to binary

Convert numeric character to binary
Transfer control to 1 of 3 count modules
Schedule all Zeus tasks

Provide serialized access to any resource
Release main memory

Acquire main memory

Acquire a register save area

Manipulate Zeus counter

Manipulate Zeus counter

Manipulate Zeus counter

Manipulate Zeus timer queue

First-level transient-load module
Second-level transient-load module
Third-level transient-load module

Move data within main memory

Move data and convert to hex within main
memory

Interface to the Master Scheduler
Return task to problem program state
Manipulate queue(s)

Process resource interlock condition
Hash key

Place task in supervisor state with protect key 0

Translate tables (not executable module)

35

Bt

A3 AN R a5

NAME :
FUNCTION:
INPUT:

OUTPUT :
PROCESS :

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:

WRITTEN BY:

ATCHOO
Create A Zeus Task

RO - Address of routine to attach
R14 - Return address
R15 -+ Entry address to ATCHOO

Attached Task

ATTCHOO is used via the #ATTACH macro to create a Zeus task.

After making itself dispatchable, ATCHOO BALs to the
specified routine. When this routine issues a #WAIT, the
DSPTCHR will return control to ATCHOO which will, in turn,
return control to the task that issued the #ATTACH. If

the attached task returns, it will enter a subroutine of
ATCHOO, which will then call the DSPTCHR with a special
code so that the DSPTCHR will never again dispatch this
task.

#REGS, #COUNT, #GETMEM, #WAIT, #FREMEM

None

150 bytes

ICOUNT, GETMEM, DSPTCHR, FREEMEM
Address in R14
Reentrant

J. Garneau

o e e Loh L unis s el s it St ool e B L ol cr s

NAME :
FUNCTION:

INPUT:

OUTPUT:

PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

CHTB

Converts a hexadecimal character string to its equivalent
binary value.

RO = # of characters to scan (1-8)

R1 - Start of character string

R11 - ZVT

R13 + 18-word save area

R14 > Return point

R15 > Entry point to CHTB

RO
R1
R15

¥

Binary value of field

Input character at which processing terminated
0 normal return

4 if scan 1imit (RO) is invalid

¥

CHTB scans the input string from low to high order positions.
Each character must be an EBCDIC 0-9 or A-F. The character
is converted to a binary value (0-15) and added to 16 times
the previous cumulative value. Processing terminates when

a non 0-9, A-F character is encountered or the scan limit

is reached.

None
None
148 bytes

None

Address in R14

Serially reusable, TRANSIENT
William Underhill

37

|
a4
|
1
|
|
|
|
|

o il i e e A G i

B o e S o £
»,.sg:t.:? 0t O A K w5 = S i

NAME :
FUNCTION:
INPUT:

OUTPUT:

PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

CNVTO00
Converts numeric character fields to binary.

R1 -+ Start of field

R13 - 18-word save area

R14 > Return address

R15 - Entry point to CNVTO0O

RO Value of Field
R1 - Nonnumeric which terminated the field
R15 = 0 if RO is valid

0 if an error occurred

CNVTO00 scans the input field for the first non 0-9
character, packs the resultant field, converts it to
binary and returns to the caller.

#REGS

None

86 bytes

None
Address in R14
Serially reusable

J. Garneau

i
(!
|

|
|
|
3
‘V

NAME :
FUNCTION:
INPUT:

OUTPUT :
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

CNTXCTL

To transfer control to ICOUNT, ICOUNT1 or ICOUNT2

R15 = base

1(R14) = code
@ - go to ICOUNT
1 - go to ICOUNTI
2 - go to ICOUNT2

N/A

The one-byte field at R14+1 is checked to determine to
which routine control is to be transferred. The address
of the appropriate routine is loaded into R15 and

branched to.

#GOTO, #REGS

None

52 bytes

ICOUNT1, ICOUNT2
To address in R15

Serially reusable

J. Garneau

NAME : DSPTCHR

FUNCTION: Distribute CPU cycles to all tasks active within the
ZEUS partition or region.
INPUT: R1 - ECB address list. Last entry in list has sign bit on
R13 - 18-word save area
R14 > Caller return point address
R15 » Entry point of DSPTCHR
OUTPUT: ECB address list added to DSPTCHR stack if copy does not

already exist there. First byte of first ECB address {
modified to reflect status of list. |

RO = ECB posted,
R15 = Relative offset of postgd ECB.

PROCESS: Upon entry, the DSPTCHR first stores the callers' registers
in the callers' save area, then checks the second bit of
the control byte (first byte of the first ECB address in
the passed 1list). If the bit is on, the list is already in
the DSPTCHR stack. If the bit is off, the 1list is added to
the stack and this bit is turned on.

The add operation is accomplished by scanning the list for
a sign bit in an ECB address word, checking for adequate 14
space in the stack, and then moving the list into the stack
area. An entry is made in an associated stack that contains
a count of the ECBs belonging to the task and the address
of the task's source ECB 1list.

i i o e i S S

After the dispatcher is certain the ECB list is contained
in the stack, it moves the first ECB from the source list
to the first word of the caller's save area. The caller's
save area address is then stored in the first word of the
source ECB Tist, and the third bit of the control byte is
set on to indicate that the caller is "dispatchable."

Dispatching is done on a "round robin" basis. Each entry
to the DSPTCHR causes all ECBs in the stack to be checked
for completion. The search always begins with the ECB
following the last one dispatched. If the end of stack is
reached before all ECBs are checked, the search is
reinitialized to the top of the stack and continues until
they are all checked.

When an ECB is posted complete the DSPTCHR searches the
stack to Tocate it. It then retrieves this ECBs register
save area, puts the address of the completed ECB in
register 0, its offset into R15, reloads registers 0 to
14, and then branches to the address contained in

. register 14.

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

When the entire list has been searched without locating
any completed ECBs, an 0S WAIT macro is issued to the
DSPTCHR ECB stack.

#GOTO, #SET, #COUNT

None

948 bytes

ICOUNT
Address in R14
Serially reusable

J. Garneau

NAME :
FUNCTION:
INPUT:

OUTPUT:

PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

EXIT:
ATTRIBUTES:
WRITTEN BY:

ENQCTRL
Provide serialized access to any resource.

R1 - Resource Queue Element (RQE)
R1 > 0 IF ENQ Request
< 0 IF DEQ Request
R13 > 18-word save area
R14 > Return address
R15 » Entry address

R15 = 0 if caller was given control of the resource
R15 # 0 if the requested resource is currently in use
#ENQ - The input RQE is added to a fifo ordered queue
maintained by ENQCTRL. The queue is ordered by the
second word of the RQE, which has been loaded with
the resource name as specified in the #ENQ macro. R15

is set depending upon whether or not a previous RQE
with the same sort field (name) existed.

#DEQ - The specified RQE is removed from the queue. If
the caller was first in the queue for the given resource
(i.e., had control of the resource), and if the next
queue entry specifies the same resource name, the

second entry is given control. This is done by posting
the ECB whose address is the third word of the RQE.

#FINDZVT, #REGS, #GENSECT, #GOTO, #QUE, #QFB
None
219 bytes

ZEUSSVC, QUEMGR
Address in R14
Serially reusable

Jean Garneau

e

B S —— g

B m
a0
|

S ————

NAME :
FUNCTION:
INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

EXIT:
ATTRIBUTES:
WRITTEN BY:

FREEMEM
To return memory to the ZEUS pool or to the OS pool

R1 -+ Memory to be freed
R1 - 4 = Size of memory to be freed
R14 » Return address

R15 » Entry address

Specified amount of memory at specified address freed
The amount and address of the memory to be freed are
obtained. If the memory belongs to the 0S pool, a
FREEMAIN is issued. If it belongs to the ZEUS pool, the
associated queue elements are updated. If the memory

to be freed is not on a double word boundary, an error
message is sent to the console prior to completing the
processing of the request. Next, the core queue is
checked to see if any routines are waiting for memory.

If so, the requests are satisfied, if possible, prior
to return.

#REGS, #GENSECT, #FINDZVT, #GOTO, #COUNT
None
576 bytes

ZEUSSVC, ICOUNT2, GETMEM
Address in R14
Serially reusable

William Underhill

43

NAME : GETMEM
FUNCTION: To obtain memory for use by ZEUS routines
INPUT: R1 - CQE
RO = Amount requested
QUTPUT: R14 > Return address

R15 - Entry address

PROCESS: The size of the memory request is obtained. The ZPOOLA
field of the ZVT is checked to see if the ZEUS pool is
available. If so, the requested memory is gotten from
the ZEUS pool. If unavailable the memory is gotten from
the 0S pool. If memory cannot be gotten--because none

Al is available, a pool is exhausted, a 1limit reached, or

F because of a boundary error--an attempt is made to free

E ; a transient area to satisfy ‘the request. If the memory

~”1 is obtained, it is marked with the pool ID and the

E requester's ECB is posted.

o ; ZEUS MACROS
L USED: #GOTO, #REGS, #GENSECT, #FINDZVT, #COUNT, #CALL
ROUTINES
CALLED: QADD, LDR0200
1 = SIZE IN
4 BYTES : 573 bytes
' EXTERNAL ZEUSSVC, ICOUNT, ICOUNT2, SUPV, LDR0200, QADD, :

| REFERENCES: ZMEM, PROB |1
F EXIT: Address in R14

{ E ATTRIBUTES: Serially reusable

|
-
; ‘
; g -

WRITTEN BY: William Underhill

4
4
Vl‘v

fi
4
i
4
3!

fé!
|

T A AT AR
»

NAME :
FUNCTION:

INPUT:

OUTPUT:
PROCESS::

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

GETSAVE

Acquire a save area, waiting for memory to become free
if necessary.

RO - Terminal control block (TCB) of active task
R1 - Size of requested save area in bytes

R11 - TCB

R13 > 18-word save area

R14 - Return address

R15 - Entry address to GETSAVE

R1 - Address of gotten memory

GETSAVE is used in conjunction with the #OPENP macro

when TYPE=RENT and TCBREG=n are specified. It handles

and restores registers in a nonstandard manner. GETSAVE
executes a #GETMEM macro for the amount of memory
specified in R1, using a reserved save area (pointed to by

the TCB) in order to wait for memory to become available
if necessary.

#GENSECT, #REGS, #COUNT, #GETMEM
None
104 bytes

ICOUNT, GETMEM, DSPTCHR
Address in R14
Serially reusable

Jean Garneau

45

B T

e, 2. i

&
4
b%
&
;

E
P ———
§ =
.- g

NAME :
FUNCTION:

INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

ICOUNT

Increments the specified ZEUS system performance
counter by 1.

R14 -~ A one-byte field containing the counter number
and return address - 4

R15 + Entry address

R15 = Current value of counter

The counter number is checked against the range of
available counters. If invalid, counter zero is used

as an overflow counter. ICOUNT increments the specified
counter by 1 and returns to the caller.

#REGS, #GOTO

None

224 bytes

ICOUNT, ICOUNT2, ICOUNT1
Address in R14 + 4

Serially reusable

Jean Garneau

T S p——

NAME :
FUNCTION:
INPUT:

OUTPUT:
PROCESS :
ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

ICOUNTI
Adds a given number to the specified ZEUS counter.

R1 = Value to be added to counter
R14 -+ One-byte counter number and return address - 4
R15 + Entry address

R15 = Current value of counter

Same as entry point ICOUNT, except that the value of
R1 is added to the counter rather than adding a 1.
None

None

20 bytes

ICOUNT
Branches to ICOUNT
Serially reusable

Jean Garneau

47

NAME : ICOUNT2

e e

FUNCTION: Loads a given value into the specified ZEUS counter.

INPUT:
Same as ICOUNT1
OUTPUT:

PROCESS : Same as ICOUNT1, except that the value in R1 is loaded
into the counter rather than added.

ZEUS MACROS
USED: None

ROUTINES
CALLED: None

SIZE IN
BYTES: 20 bytes

EXTERNAL
REFERENCES : ICOUNT

EXIT: Branches to ICOUNT
ATTRIBUTES: Serially reusable
WRITTEN BY: Jean Garneau

P> e

i
i
]
i
|
14

NAME :

FUNCTION:

INPUT:

* OUTPUT:

PROCESS:

IEXIT:

ITEST:

ITIMER

To set, test, or cancel a timer interval, or force a
previously set timer interval to O.

R1
RO

Timer Queue Element (TQE)
One of following codes:
0 - Add TQE to queue (#STIMER)

4 - Return interval remaining for this TQE (#TTIMER
remaining).

8 - Remove TQE from queue (#TTIMER cancel)

12 - Force TQE completion by making current interval
0 (#TTIMER complete)

R13 > 18-word save area
R14 - Return address
R15 » Entvy address ITIMER

Timer Queue processed as specified.

Upon initial entry, which is via an #ATTACH to create the
task, a branch is made to ICOMP2. The initial branch

instruction is NOPed. The address of the timer queue

address word (QAW) is saved and R12, the base for IEXIT

.is saved. The following routines (which are documented

bé&low) are branch and linked to by this task which never
terminates: ILAPSD, IPOST, IRESET. The completion bit in
the ECB is turned off and IEXIT is BALed to to process
any queued exits. The entire process is continuously
repeated.

Upon any entry subsequent to the initial one ICOMP2 is
not branched to. The TQE pointer and request type are
saved. The address of the QAW is obtained. The following
routines, (which are documented below), are BALed to:
IDSBL, ILAPSD, IENBL. Upon return ITEST is branched to

if the call was via the #TTIMER macro instruction. If the
call was via #STIMER, IADD and IPOST are BALed to. Upon
return, the completion bit in the ECB is turned off and
IRESET and IEXIT are BALed to. Return is made to the
address in R14.

A test is made for any queued exits. If there are none,
return is made. If any, a message is sent to the operator
and the program terminates with an ABEND I,DUMP.

If the request is for the interval remaining IPOST is

BALed to, the completion bit in the ECB is turned off,
IRESET and IEXIT are BALed to, and return is made via

49

it

A R e -

IDSBL:
IENBL:
ILAPSD:

IPOST:

IADD:

IRESET:

ICOMP:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

R14. If the request is to cancel or force to completion,
the interval is set to 0, the ECB or EXIT address is saved,
type = cancel is indicated, IPOST is branch and linked to,
the ECB or EXIT address is restored, the ECB completion

bit is turned off, IRESET and IEXIT are BALed to and return
is made.

The system mask is set to disable interrupts.
The system mask is set to enable interrupts.

This routine determines the amount of time that has elapsed
since the interval timer was activated and returns this
value in R6. If the interval timer is still active when
this routine is called, it will be deactivated and the time
left will be used in the computation.

The timer queue is gone through and each TQE with an
interval remaining of 0 is dequeued. If the completion
address is that of an exit address, it is queued on the
exit queue; if it is an ECB address, the ECB is posted; if
it is zero, no action is initiated, and the process con-
tinues. If the remaining interval is greater than 0, the
next TQE is checked. When the end of the queue is reached,
return is made via R11.

This routine puts a TQE into the timer queue. The contents
of R6)(e1apsed time) are added to the TQE value (in timer
units).

This routine obtains the address of the first TQE, if

any on queue, saves the current interval, resets the
interval timer (via STIMER macro), turns on the low order
bit of the QAW, and returns.

This routine is entered from 0S when the interval timer
completes. The registers are saved, and the low order bit
of the QAW is set to 0 to show that the timer is down.

The time of day in timer units is obtained (via TIME macro)
and saved. The timer ECB is posted complete to allow the
timer to be restarted. The registers are restored, and
return is made.

#REGS, #OPENP, #GOTO, #SET, #CLOSEP, #CALL, #COUNT, #WAIT
QADD, PROB, SUPV

664 bytes

50

‘e EXTERNAL
‘ REFERENCES : ICOUNT, SUPV, PROB, QADD, DSPTCHR

P U EXIT: To address in R14
ATTRIBUTES: Serially reusable
WRITTEN BY: Jean A. Garneau

il ” : 3

NAME : LDR0O00O

FUNCTION: Called by the #LOAD macro to obtain the memory address of |
a transient module if available. Also called by #DELETE
macro to relinquish control of a module.

INPUT: RO -~ 8-byte name of module requested
R1 = Address of three-word load request block (LRB)

0 if no LRB specified with #LOAD macro

1 if called by #DELETE macro

R9 -~ TABENTRY Table

R13+> 18-word save area

R14> Return address

R15+ Entry address

OUTPUT: R15= Address of module if called by #LOAD
0 if module not available
4 normal return from #DELETE processing

-1 if module not available and load request block
was added to the queue of modules to be loaded.
Indicates that a #WAIT must be issued.

E ‘ PROCESS: #LOAD - LDRO000 seeks the requested name in a transient i
: module table. If the module is available in memory, its |
responsibility count is incremented and the address is
returned to the caller. If the module exists but is not
available, the request is queued only if an LRB was speci-
fied with the #LOAD macro. A BLDL macro is issued on the 1
ZEUS transient module PDS if the module is not found in i1
the name table (i.e., for the first load). #DELETE - The |
module is found in the transient module table and its
responsibility count is decremented.

ZEUS MACROS

|
E
|

USED: #REGS, #OPENP, #GOTO, #CALL, #CLOSEP, #COUNT, #QUE, #QFB
ROUTINES
CALLED: QADD

SIZE IN BYTES: 1740 bytes

EXTERNAL
REFERENCES : ICOUNT, TFILE, LRBQ, QUEMGR, LDRECB

EXIT: Address in R14
ATTRIBUTES: SERIALLY REUSABLE
WRITTEN BY: W. Underhill

AL R o — - g

NAME :
FUNCTION:

INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

EXIT:
ATTRIBUTES:
WRITTEN BY:

LDRO100

Loads requested transient modules into memory and posts
the associated requesting tasks. v
R9 - TABENTRY Table I
R13 » 18-word save area '
R15 - Entry address

Loaded Modules

LDRO100 is attached during Zeus initialization and
immediately waits on a "no-work" ECB. When the no-work

ECB is posted, LDRO100 de-queues the first LRB on the

LRB chain, allocates memory for the module, issues a

point macro on the transient file PDS, reads the module
into memory, and posts the associated ECB with the module's
address. The module's length and TTR are found in the
transient module table. LDRO100 repeats this process for
each LRB on the queue. When finished it waits on its no-
work ECB.

#REGS, #OPENP, #WAIT, #GOTO, #COUNT, #QUE, #QFB
None
472 bytes

ICOUNT, TFILE, DSPTCHR, GETMEM, FREEMEM, QUEMGR {1
WA
Attached Task :

William Underhill

il

= AL BT, e e

i

L8

NAME :
FUNCTION:

INPUT:

OUTPUT:

PROCESS :

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

EXIT:
ATTRIBUTES:
WRITTEN BY:

LDR0O200

Frees the memory being occupied by one or all transient
modules that are not currently in use.

R1

0 Free all unused modules

n>0 Free the least recently used module of size
n or greater.

R9 - TABENTRY Table
R13 » 18-word save area
R14 > Return address
R15 - Entry address

R15 = 0 If memory freed

0 If no memory could be freed.
LDR0200 scans the transient module table for modules with
a zero responsibility count. If Rl = 0 the memory occupied
by each such module is freed. If R1 = n>0 each unused
module's size is checked. When the table scan terminates,

the least recently used module (as indicated by a “ime
stamp field) of sufficient size (if any) is freed.

#REGS, #GOTO, #FREEMEM
NONE
254 bytes

NUMMOD, MODTAB, FREEMEM
Address in R14

SERIALLY REUSABLE

W. Underhill

54

")
O T Y o RO T -

o

e e

NAME :
FUNCTION:

INPUT:

OUTPUT:

PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

EXIT:
ATTRIBUTES:
WRITTEN BY:

MOVEOOO

MOVEOOO moves data (1 to 32767 bytes) from one location
to another.

RO - Source Area

R1 - Target Area

R14 » 2-byte length field, R14 + 2 » return address

R15 - Entry address to MOVEOOO

R1 Address of last input byte + 1
R15 = 0 Normal return
R15 # 0 if input length <=0

Data are moved, left to right, for the length specified.

#REGS, #GOTO

NONE

100 bytes

NONE
Address in R14 + 2
SERIALLY REUSABLE

J. Garneau

i -:AZ -

e R g e

P e
£ ’

NAME :
FUNCTION:

INPUT:

OUTPUT:

PROCESS :

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

EXIT:
ATTRIBUTES:
WRITTEN BY:

MOVEO10

MOVEO10 converts each input byte to two output hex
character bytes.

RO - Source Area

R1 - Target Area

R14 > 2-byte length field

R15 + 2 > return address

R15 » Entry address to MOVEO10

R1 = Address of last input byte + 1
R15 = 0 normal return,

R15 = 4 if input length <2

Each input byte is converted to its hexidecimal two-byte
equivalent. These bytes are stored in the target area.
The length specified is that of the target area. Conse-
quently, the number of source area bytes converted is
equal to one-half the length (in bytes) value specified.
The length is rounded down, if necessary, to an even
number before conversion.

#REGS
None
156 bytes

None
Address in R14 + 2
Serially Reusable

Jean Garneau

B S S——

NAME :
FUNCTION:
INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

MSCHD
MSCHD passes commands to the 0S or VS Master Scheduler.

R1 - Command
R13 > 18-word save area
R14 - Return address

R15 - Entry address to MSCHD

Command sent to 0S or VS.

The input string is scanned for an asterisk or ETX charac-
ter, which defines the end of the string. MSCHD then
enters supervisor state and protect key 0 and issues SVC
34 to pass the command to the Master Scheduler. If the

sign bit is on in R1 at entry, the command is also written
on the operator's console. ;

(NOTE: Command must be of format '(//y*' where y is an
acceptable 0S or VS command.)

#REGS, #OPENP, #LPSW, #CLOSEP
None
326 bytes

None
Address in R14
Serially reusable, TRANSIENT

Jean Garneau

NAME :
FUNCTION:

INPUT:

OUTPUT:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

PROB

Returns the Zeus system to problem program state and
restores its assigned protect key.

R13 = Base
R14 -» Return address
R15 > Entry address to PROB

Task in Problem State

#GOTO, #LPSW, #REGS

None

73 bytes

ZEUSSVC

Address in R14
SERIALLY REUSABLE
W. Underhill

. s e o

NAME :
FUNCTION:

INPUT:

OUTPUT:

PROCESS :

QUEMGR

QUEMGR is used to add/insert, delete, or locate an element :
on a queue. j

RO - Queue Foundation Block (QFB) j
R1 -+ Element or, if ID specified,.4-character ID. |
R14 - Argument and return address (-4)
R15 - Entry point to QUEMGR 3

R1 - Element deleted or located
Element chained onto queue if ADD, removed from queue if
DELETE.

R15 = Count of elements with identical ordering strings 5
TYPE = (FIFO,ORDERED...) specified otherwise R15 not f
relevant. : .

]
The type of QFB is saved. A check is made to determine
if the element to be processed is to go to either the
top or bottom of an ordered queue. If so, the argument
byte is saved. If the element is to be added to an
unordered queue, a branch is made to this routine. The
address of the last element on the queue is obtained from
the QFB. The address of the previous element is obtained
from the next address field of the last element. The
address of the new element is stored in the last element
field of the QFB and the previous last element address is
stored in the new last element link word.

If the element is to be added to an ordered queue, bits 1
and 2 of the type field of the QFB are used to set the
mask bits of a branch instruction that tests for a high or
Tow compare condition. The queue to which the element is]
to be added is searched until equal IDs are found at which]
time it is determined whether it is a FIFO or LIFO opera- g
tion. If FIFO, the element is added to the bottom of the
queue of elements with the same ID; if LIFO, it is added
to the top. In either case, the address chains are
updated by storing the address of the next element in the
current element and the address of the last element on
the queue in the QFB.

If the element is to be located or deleted, a check is made i
to determine if the search is to be made on ID. If so, the ‘
proper pointer is adjusted and the search is conductec in
the same manner as that for addition to an ordered queue.
When the correct element is found, the chain address is
updated by storing the address of the next element in the
next address field of the previous element. The last
element field of the QFB is updated if necessary.

L]

i o T SE———

ZEUS MACROS

USED:

ROUTINES
CALLED:

If the search is
the queue is sea

to be made by element rather than ID,
rched until the correct element is found,

at which time it is deleted by updating the next element

address field of
field of the QFB

Bits in the argu
Bits

the previous element and the last element
if necessary.

ment field and their meanings are as follows:

Argument

delete/locate ID equal
delete/locate ID Tow
delete/locate ID high
delete/locate ID equal or Tow
delete/locate ID equal or high

delete/locate/add to top of queue
delete/locate/add to bottom of queue
delete

locate

ID specified

The structure of elements in all queues is as follows:

g s word >
Status Link field
+4
Identification (optional)
+8
Optional data area (n bytes)

For details on i

ndividual fields see element descriptions

by type in Chapter 3, Section 2.

The structure of

all QFBs are as follows:

— word >
¢ Status | First element on queue
i Type Last element on queue
+
: Count Reserved
+12)
Option data area (n bytes)

For details on the STATUS and TYPE fields, see Chapter 3,

Section 1.

#REGS, #GOTO, #S

None

ET

SIZE IN
BYTES:

EXTERNAL

REFERENCES :

EXIT:

ATTRIBUTES:
WRITTEN BY:

354 bytes

None

To address in R14 + 4

Serially reusable

Jean Garneau

l
|
i
|
1

NAME :

FUNCTION:

INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

RCVRMGT

RCVRMGT attempts to diagnose and correct memory request
interlocks.

R13 > 18-word save area
R14 > regurn address
R15 > entry address of RCVRMGT

None

RCVRMGT is attached as a Zeus task. It normally waits on
an interval timer (currently set at 1 second). At the
completion of each interval, when RCVRMGT gains control,
it checks the memory wait queue. If the queue is empty,

it reissues the #STIMER macro and waits for the next
interval to complete. If the queue is non-empty, the

first entry is checked for a X'FF' mark. If absent,
RCVRMGT marks the entry with X'FF' and #STIMERS. If the
mark is present, the queue entry has been on the queue
since the last interval expired and a memory interlock

is assumed to have occurred. RCVRMGT sets a bit indicating
that the 0S memory pool is to be used rather than the Zeus
subpool and calls FREEMEM to attempt to allocate memory to
the waiting tasks.

#OPENP, #REGS, #GENSECT, #FINDZVT, #STIMER, #GOTO, #COUNT,
#SET

None
316 bytes

ZEUSSVC, ITIMER, ICOUNT, DSPTCHR, LDR0O200, FREEMEM.
N/A
Serially reusable

Jean Garneau

NAME :
FUNCTION:
INPUT:

OUTPUT:

PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

SCANKEY
To hashga character string into a reiative record number.

R1 - beginning of character string.
R13 -~ 18-word save area.

R14 - Return address.

R15 - Entry address to SCANKEY.

relative record number.
Edited character string used in hash operation.

R15
R1

¥

The input character string is scanned until an ETX is
encountered or for a maximum of 40 bytes. A1l blanks

and special characters are removed. The input character
string is replaced with the edited character string (the
KEY). The first four bytes of the key are logically added
to the second four bytes and this total is logically
added to the third four bytes. This number is made posi-
tive and divided by 1193. The result is the relative
record number that is loaded into R15.

#REGS, #OPENP, #CLOSEP
None
286 bytes

None

Address .in R14

Serially Reusable, TRANSIENT
D. Shuford

i
!
!

R —

e 3

S I s i st e At gl
A . R

NAME : SUPV
FUNCTION: Places the task in supervisor state, protect key zero
4 INPUT: R13 - 18-word save area
f§5 R14 > Return address !
1fi ‘ R15 > Entry point
a4 OUTPUT: None
o ZEUS MACROS
4 USED: #REGS, #GOTO, #LPSW
ROUTINES '
CALLED: None
E SIZE IN
& BYTES: 56 bytes
E EXTERNAL

REFERENCES: ZEUSSVC
EXIT: Address in R14
ATTRIBUTES: Serially Reusable

WRITTEN BY: W. Underhill

i

o

st sy

S < L SRRp———

NAME :
FUNCTION:

TABLES, ENTRY-ETL, LTE, ATE, ETA

To provide translate tables for use by Zeus routines.
The tables provided are:

ETL EBCDIC to 1050 1ine code.

LTE 1050 line code to EBCDIC.

ATE ASCII to EBCDIC.

ETA EBCDIC to ASCII

CTLTAB

The tables have been modified as follows:
ETL

Upper case letters changed to lower case.
Carriage return changed to null.
Horizontal tab changed to restore.
Vertical tab changed to bypass.
Home changed to end of addressing.
End of transmission changed to end of block.
End of test changed to end of block.
Dot (.) changed to space.
Back slash changed to reader stop.
Up arrow changed to punch on.
Left arrow changed to punch off.
LTE
Lower case letters changed to upper case.
End of addressing changed to null.
End of block changed to end of text.
Space changed to dot (.).
Idle changed to idle (ASCII).
Bypass changed to idle.
Restore changed to idle.
Null changed to carriage return.
Reader stop changed to back slash.
Pun;h on changed to up arrow.
Punch off changed to left arrow.

A11 modifications (LTE) are made to both upper and
lower case control characters.

65

S i

i . ittt | NEEHE 10 AN ot 5

INPUT:
OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

N/A
N/A
N/A

None

None

1,024 bytes

None
N/A
Read Only

Doris Shuford

T A S A P I A T o o P O P Y M0 SR T LT

iECTION 4: INITIALIZATION

The Zeus initialization programs are presented in the following list:

Name Function

INITO Open files, load external processors, and link
to INIT1

INIT1 Process Zeus parameter cards, attach tasks, create
control blocks, and transfer control to INIT2

INIT2 Create Zeus main memory pool and return control
to INITO

The initialization process is described in Volume 1, Chapter 6. A description of each
subroutine follows.

'}
4
|
|

NAME :
FUNCTION:
INPUT:

OUTPUT:
PROCESS :

ZEUS MACROS
USED:

ROUTINES
CALLED:
SIZE IN BYTES:

EXTERNAL
REFERENCES :

EXIT:
ATTRIBUTES:
WRITTEN BY:

INITO
First-level Zeus initiation.

R1 - External Processor Name
R13 - 18-word save area
R14 -~ Reirrn point address

R15 > Entry point address to INITO

Open files, and loaded external processor(s).

INITO first interrogates the parm field as passed via
register 1. If a name is present, it is assumed to be
an external processor name and an attempt is made to
load it. If no external processor is requested, a dummy
external processor is loaded. INITO then obtains the
address of the ZVT and from it gets a list of DCBs to

open, which it does next. Finally, it links to INITI.
Upon return, INITO initializes the external processor(s).

#OPENP, #GENSECT, #GOTO, #LPSW, #COUNT, #CLOSEP, #FINDZVT,
#SET, #WAIT
None

1,704 bytes

ICOUNT2, DDMOSNO1, GETSAVE, ZEUSSVC
Address in R14
REENTRANT

J. Garneau

68

NAME :
FUNCTION:

INPUT:

OUTPUT:

PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

EXIT:
ATTRIBUTES:
WRITTEN BY:

INIT]

Read Zeus parameter cards and create control blocks, and
ATTACH tasks which will be required for operation.

R1 - parameter list

R13 > 18-word save area

R14 > return address

R15 -» Entry point to INITI

Zeus parameter cards

The following tasks ATTACHed:

ZITIMER - interval timer (1)

ZRJEO100 - reader interpreter (1)

ZWTROO0 - writer (1) _

ZRCVRMGT - recovery management (1)

ZLDRO100 - transient loader (1)

ZLINEIO - line (1 per line)

ZTERMIO - terminal (1 per terminal)

The following control blocks created:

TCB - Task control block (1 per terminal)
LCB - Line control block (1 per line)

PAL - Polling/Addressing list (1 per line)

SYSIN is OPENed and the required tasks ATTACHed. The
parameter cards are read and the amount of main storage

to be RESERVED, ALLOCATED, or LIMITED is determined. This
value iséstored in the ZPOOLA field of the ZVT. The line
and terminals that are to be used are de termined and the
necessary control blocks created. When all parame ter cards
have been processed SYSIN is CLOSED and control is trans-
ferred to INIT2.

#OPENP, #GENSECT, #REGS, #FINDZVT, #WAIT, #LPSW, #GOTO,
#ATTACH, #SET, #GETMEM

None

1,832 bytes

None f
INIT2
Serially reusable

Jean Garneau

NAME :
FUNCTION:

INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

EXIT:
ATTRIBUTES:
WRITTEN BY:

INIT2

Determines the type of memory allocation scheme to be used
by Zeus.

R1 - parameter list

R13 » 18-word save area
R14 > Return address

R15 » Entry point to INIT2

ZPOOLA field of ZVT updated.

ZPOOLA word of the ZVT is interrogated. If ALLOCATE was
specified, memory is acquired and structured into a Zeus
Pool. If RESERVE was specified, memory is reserved for 0S
and what remains is structured into a Zeus Pool. If LIMIT
or no parameters was specified, no Zeus Pool is structured.
The ZPOOLA word of the ZVT before and after INIT2 is as
follows: :

Before:

Byte 1 bit 0 ALLOCATE
1 RESERVE

2 LIMIT
Bytes 2-4 value
After:

Byte 1 bit 0 No Zeus Pool

bit 1 Limit specified

Address of Zeus pool or limit value
or zero.

Bytes 2-4

#0PENP, #REGS, #FINDZVT, #GOTO, #CLOSEP, #SET

None

396 bytes

ZEUSSVC
Address in R14

Serially reusable

Jean Garneau

Chapter 2
MACROS

Several macros have been created to reduce the amount of detail coding required to
use Zeus functions. A number of these macros can be considered general purpose since
they may be used in any environment. Some may be used after careful consideration of
the effect of execution, and some may be used only within a system built on Zeus
components and architecture.

A summary listing of available macros is contained in Table 1. Column 3 of the
table indicates the level of utility of the individual macros. The symbols and notations
used to represent macro syntax are presented in Figure 3. A description of each macro

follows.

Table 1

Macros

Name

e
@
@

Function

#ATTACH
#CALL
#CLOSEP
#CONVRT
#COUNT
#DELETE
#DEQ
#ENQ
#FINDZVT
#FREEMEM
#GENSECT
#GETMEM
#GOTO
#LDREG
#LOAD
#LPSW
#MOVE
#OPENP
#QFB
#QUE
#REGS
#SET
#STIMER
#TTIMER
#WAIT
#ZEUSSVC

Create a Zeus Task

Call a subroutine

Close program and return to caller
Convert data from one format to another
Accumulate statistics

Delete Transient Module

Release resource from exclusive contro!
Acquire resource for exclusive control
Locate Vector Table

Release main memory

Generate Label Map

Acquire main memory

E xecute conditional branch

Load register

Load transient module

Load program status word

Move data with/without translate
Open program

Generate queue foundation block
Process Queue

Register symbol generation

Set bit(s) on/off/invert

Set interval timer

Test interval timer

Wait for event completion

Execute Zeus SVC

3
1
1
1
2
3
2
2
2
2
3
2
1
1
3
2
1
1
1
1
1
1
2
.
3
2

81 = General Use
2 = Restricted Use

3 = Zeus only

A 0 e

sk

ox= P T
——

Sy

Macro Coding Key

Symbol

Upper-Case
Characters

lower-case
characters

£
|
address

address-sym

(r)
register
char

Meaning

Code exactly as shown.

Replace as instructed.

Optional argument.

Select one option from stack. An underlined option will
be defaulted if the argument is omitted. If no option is
underlined, the argument cannot be omitted unless the
entire argument is enclosed within brackets.

Any address valid in an ‘LA’ instruction; a symbol valid
in an ‘A’ or ‘V’ type address constant; or (r), 2 <r < 12,
given the addiess is available in the register specified.

Any symbol valid within an ‘A’ or ‘V’ type address
constant.

General purpose register 0-15 enclosed within parentheses.

General purpose register 2-12, parentheses optional.

One or more alphanumeric characters.

Figure 3

72

i
i3
|
18
{
I
| 4
|

o A

posn

e

e

> é

e ——

#ATTACH

#ATTACH -- Create a Zeus Task

The #ATTACH macro provides a facility whereby one task can create
another task.

EPADDR=address
[1abei] #ATTACH

?a?e-char } [,PARAM=address]
.

label

specifies the address of the first executable instruction generated
by the macro.

EPADDR=address

the address of a word in main storage where the address of the
routine being attached is stored.

name

code a character string from 1 to 8 characters which identifies the
routine to be attached. The name must satisfy the requirements of a
V-type address constant.

(r)

replace r with a register that has previously been loaded with the
address of the routine being attached.

PARAM=address

The address that will be passed to the attached task via register 1.
If omitted, register 1 will be passed unaltered.

Registers Altered: 0, 14 and 15
External References: ATCHOO
Written by: J. Garneau

73

B T

4
3

#CALL

#CALL -- Call subroutine

The #CALL macro provides a mechanism for transferring control to
another module.

[1abe1] #CALL name-char [, RESOLVE=LOCAL]

EPADDR=address }
(r)

label

specifies the address of the first executable instruction generated
by the macro.

EPADDR=address

The address of a word in main storage where the address of the
routine being called is stored.

name-char

code a character string from 1 to 8 characters which identifies the
routine to be called. The name must satisfy the requirements of a
V-type address constant.

RESOLVE=LOCAL

code this parameter to override the effect of the 'RESOLVE=#CALL'
parameter of the #GENSECT macro. The override is in effect during
the expansion of this macro only. If the #GENSECT macro option has
not been selected during this assembly, 'RESOLVE=LOCAL' is the
default. For additional details see the #GENSECT macro description
in this document.

(r)

replace r with a register that has previously been loaded with the
address of the routine being called.

Registers Altered: 14, 15
Written by: J. Garneau

sl
s
|

L

e R

#CLOSEP
#CLOSEP -- Close Program/Subroutine and Return to Caller

The #CLOSEP macro release save areas,! restores all (0-15)
registers, and returns to the caller.

value-char
[1abel] | #CLOSEP | [RC=

: }] LRET= [f%s}] [, SAREA=address]

label

specifies the label of the first executable instruction generated
by the macro.

_Jvalue
=12 lue}

_a value (0 to 4095) or a register that contains a value (1_232'])
that will be loaded into register 15 before return is made. If
omitted, return is made with register 15 unaltered.

XES
NO

rer-{ 168

If YES is coded or the parameter omitted, an unconditional branch
to the address contained in register 14 will be made after SAVE
areas have been freed, and registers 0-15 are restored. If NO is
coded, no branch will be made.

SAREA=address

The address of the save area from which registers 0-15 should be

loaded. Registers are loaded, 14 through 12, starting with the third

1Save areas dynamically acquired by the #OPENP macro will be freed
automatically by #CLOSEP. The size of the save area freed in such
a case is determined by the #OPENP, which physically precedes this
#CLOSEP in the assembly not the #OPENP, which may possibly precede
it "logically."

75

word of the save area. If this parameter is omitted, the address of
the save area from which the registers are to be loaded is assumed
to be stored in a word that is addressed by adding 4 to the current

contents of register 13 (note: this is standard 0S convention and is
compatible with the #OPENP macro).

Registers Altered: See 'RC=' option
Written by: J. Garneau

ping s | o

ek g e

A
PR A o oS AR L

l
| S

'* |
E |
| |
E |

#CONVRT

#CONVRT -- Convert Data From One Format to Ahother

The #CONVRT macro instruction is used to reduce numeric character
strings of unknown length to binary values or to expand binary values
to "edited" numeric character strings.

Convert to binary requires a character string address and a scan
limit value. The character string is scanned left to right (within the
limit imposed) for a nonblank character. The scan continues from that
point until either a nonnumeric character is encountered or until the
scan limit value equals zero. The character string so delimited is then
used as input to the conversion routine.

Upon return, register 15 will equal zero, register O will contain
the converted number, and register 1 will contain the address of the
character that terminated the scan. If during the scan or conversion it
is determined that the string is less than 1 character or greater than
15 characters in length, or the resultant value is larger than
2,147,483,647, return will be made with register 15 equal to 4, 8, or
12 respective” /.

Convert to character converts a binary value to an EBCDIC character
string equivalent. Upon return, general register 1 points to a '+' or
'-' followed by a string of digits equivalent to the (input) binary value.
General register 0 contains a count of the number of digits in the string.
Nonsignificant zeroes are edited out except when the input value is 0.
In such a case, register 1 will point to '+0' and register O will equal 1,

s

[data-address],TO-BIN(,1imit
(1abel] | #CONVRT (r) }
(data-register]),T0O-CH

address
is the address in main storage of the data to be converted, If

this argument is omitted, general purpose register 1 is assumed
to contain the address.

register

specifies the general purpose register that contains the number to
be converted. If this argument is omitted, register 0 is assumed
to contain the number.

77

TO-BIN

convert from character to binary

TO-CHA

convert from binary to character

limit

specifies a number equal to or less than 4095 (or a register, r,
which contains a number) to 1imit the scan. If omitted, a Timit
of 4095 is assumed. If the 1imit is contained in a register, the

register, upon return, will be reduced by an amount equal to the
number of bytes scanned.

Registers Altered: 0, 1, 14, 15
External References: CNVTO0O or CNVTO10
Written by: J. Garneau

#COUNT

#COUNT -- Accumulate Statistics

The #COUNT routine is used to add, subtract, or load data into a
series of full word counters. Upon return from a #COUNT, register
15 will contain a number equivalent to the current value of the
specified counter.

LOAD |
[1abel] | #COUNT | counter-char |, ={value-char _
ADD (r)

label
specifies the address of the first executable instruction generated
by the macro.

counter-char
code a number from 1 to 255 to specify the counter to be affected.

If a counter does not exist that can be associated with this number,
a special counter (counter 0) will be assumed.

LOAD_ value-char
ADD (7| (r)

code a number from 1 to 4095 or replace r with a register that has
previously been loaded with a number (+2-31). The number

is loaded into the specified counter or is added to the current
value of the specified counter depending on which keyword is coded.
If both these keywords are omitted, the specified counter will be
incremented by one (1).

Registers Altered: 1, 14, 15
External References: ICOUNT or ICOUNT1 or ICOUNT2 or CNTXCTL
Written by: J. Garneau

#DELETE

#DELETE -- Delete Transient Module

The #DELETE macro provides a facility whereby a task can delete a
module that had previously been loaded with a #LOAD macro.

address
[1abel] | #DELETE | EP={'char'’

label

The address of the first executable instruction generated by the
macro.

address
EP={'char'

The address of an 8-byte character string (padded with blanks if
necessary) or a 1- to 8-byte character string enclosed in single
quotes that identifies the module to be deleted.

Registers Altered: 0, 1, 14, 15
External References: LDR000O
Written by: J. Garneau

et]

#DEQ
#DEQ -- Release Resource From Exclusion Control

The #DEQ macro enables a task to release a resource that it has
exclusive control of.

[1abel] | #DEQ | [RQE=address]

label

The address of the first executable instruction generated by the
macro.

RQE=address

The address of the RQE that was specified in the #ENG macro
instruction issued to gain control of the specified resource.
If omitted, register 1 is assumed to contain the address of
the RQE.

Registers Altered: 1, 14, 15
External References: ENQCTRL
Written by: J. Garneau

81

R

#ENQ

#ENQ -- Request Exclusive Control of Resource

The #ENQ macro provides a facility whereby a task may request
exclusive control of a resource.

address
[1abel] | #ENQ [NAME={'char' }][,ECB=address][RQE=address][,WAIT=address]

label
The address of the first executable instruction generated by the
macro. i
address

NAME={'char' l
The address of a 4-byte character string (padded with blanks if :
necessary) or a 1- to 4-byte character string enclosed in single i
quotes. If omitted, the character string is assumed to have been

E % stored in bytes 4-8 of the RQE.

ECB=address i

4 The address of the ECB to be posted complete when exclusive control
e | 1! of the resource is acquired. If omitted, the ECB address is assumed
E to have been stored in bytes 8-12 of the RQE.

RQE=address

The address of the Resource Queue Element used to process the #ENQ
i A request. The RQE must be at least three words long. If omitted,
i Register 1 is assumed to contain the address of the RQE.

WAIT=address

The address of the ECBLIST that contains the address of the ECB i
that will be posted when the task gains exclusive control of the ,

q

requested resource. If omitted, no automatic wait is generated
within the #ENQ macro. It is possible for the task to #WAIT on
this 1ist at any latter point so long as the integrity of the
RQE is honored. :

Registers Altered: 0, 1, 14, 15
External References: ENQCTRL
Written by: J. Garneau

#FINDZVT
- #FINDIVT -- Locate the Zeus Vector Table

The #FINDZVT macro returns to the caller with the address of the
IVT (Zeus Vector Table) in register 15.

e et s A A -t M T 8 s
- d ey i

[1abel] | #FINDZVT

label

s e

specifies the address of first executable instruction generated by
the macro.

HRGHESG sl

i]
g Registers Altered: 0, 1, 14, 15

{ External References: ZEUSSVC

5 Written by: J. Garneau
i
4

1
k- ! "
b |

#FREEMEM

#FREEMEM -- Free Main Memory

The #FREEMEM macro provides a means for freeing main memory -
previously acquired via a #GETMEM macro.

[1abel] | #FREEMEM | [address]

Tabel

The address of the first executable instruction generated by the
macro.

address

The address of the memory segment to be freed. The memory segment
must have previously been allocated with a #GETMEM macro. If
omitted, Register 1 is assumed to contain the memory segment address.

Registers Altered: 1, 14, 15
External References: FREEMEM
Written by: J. Garneau

#GENSECT

#GENSECT -- Generate DSECT/CSECT

type

BASE=

The GENSECT macro provides a means of generating DSECTS (or CSECTS)
which map Zeus blocks and tables.

#GENSECT | type [,BASE=register] [,RESOLVE=#CALL]

code LCB to generate a '.ine Control Block DSECT, TCB to generate a
Task Control Block DSECY, ZVT to generate a Zeus Vector Table DSECT,
or DSKREC to generate a Text File Header DSECT. In each case the
name of the DSECT will be its type (e.g., LCB DSECT).

register

code any register notation valid in a 'USING' instruction. If
omitted, no base register will be assigned to the DSECT generated.

RESOLVE=#CALL

Note:

code in a ZVT generation request to cause the addresses of routines
referenced by a #CALL macro to be obtained from the ZVT. If the
parameter is coded, a valid base register must be assigned and
maintained throughout the module, since alT Zeus macros that gener-
ate requests to subroutines do so via (internal) #CALL macros.

Only one DSECT of each type may be generated during any assembly.
If more than one of a type is coded, its expansion will be bypassed
and a message issued. Base register reassignment will be executed,
however, if the 'BASE=...' parameter is coded.

Written by:.J. Garneau

#GETMEM

#GETMEM -- Allocate Main Memory

The #GETMEM macro is used to dynamically allocate main memory.
Memory is allocated on a "first come, first served" basis for all
contending tasks in the system. If memory is not immediately avail-
able, the requesting task can wait for it to become available. The
address of the memory segment allocated is returned in register 1.

address
[1abel] | #GETMEM {(r) } [CQE=address] [,WAIT=address] [,ECB=address]
char
label
The address of the first executable instruction generated by the
macro.
address
(r) }
char
The amount of main memory requested, in bytes. Code one of the
following:

(1; The address of a word that contains the amount required.

(2) A register enclosed in parentheses that contains the
amount required.

(3) A numeric character string equaling the amount required.

CQE=address
The address of the Core Queue Element associated with the request.

If omitted, and memory is not immediately available, the request
will not be queued.

WAIT=address

The address of the ECBLIST that contains the address of the ECB
that will be posted when memory becomes available. If omitted,

no automatic wait is generated.! It is possible for the task to
wait ag a later point so long as the integrity of the CQE is
honored.

ECB=address

The address of the ECB to be posted when memory becomes available.
If omitted, the address of the ECB is assumed to have been stored -
in bytes 8-12 of the CQE.

Registers Altered: 0, 1, 14, 15
External References: GETMEM
Written by: Jean Garneau

1ypon return from a #GETMEM without the 'WAIT' option, register 15
will equal zero if the memory requested was available. Register 1
will contain the address of the requested segment. If memory is not
available, register 15 # zero. If a CQE was available and memory
was not available, the request was queued. When the memory becomes
available, the ECB addressed by the CQE will be posted complete and
the address of the memory segment will be stored in the rightmost
three bytes of the ECB.

3
&
:

#GOTO
#GOTO -- Executive Conditional Branch

The #GOTO macro instruction is used to alter the instruction
~execution flow based on the evaluation of an expression.

[1abel] | #GOTO | address[,(expression)][,RET=register’

label

The address of the first executable instruction generated by the
macro.

address

The address of the instruction to be branched to if the expression
is evaluated toc be true.

expression

The expression to be evaluated to determine if the branch will take
place. The expression has one basic form as follows:

(operand A, operator, operand B)

Operands appear exactly as they would in standard assembler com-
parison instructions except for the following:

(1) Decimal operation (i.e. CP) is not supported.

(2) If the content of a register is to be evaluated the
register must be enclosed in parentheses.

(3) Literals are not indicated by a preceding equal (=) sign
except when the literal is an 'A' type address constant
(e.g., =A(X)).

(4) A register may be evaluated against zero by coding a
single 0 as the righthand operand.

(5) Bits within a byte may be evaluated by coding one or more
bit numbers separated by commas and enclosed within
parentheses. Bits are numbered within a byte left to
right 1 through 8.

89

e

B operator

Code one of the following

$ EQ equal
: GE greater than or equal
3 U LE less than or equal
: LT less than
i GT greater than
3 Bit-on Equal if specified bit(s) on
i Bit-off Equal if specified bit(s) off
;ﬂ Bit-any Equal if any bit(s) specified on
gg Examples
| Expression Is true if
£ (A, GT, B) A greater than B.
(A(6), GE, B) First 6 bytes of A greater than or
£ equal to first 6 bytes of B.
{8(3), LT, € "CAT*) First 3 bytes of B less than string
| 'CAT'
(5(10,7), EQ, 10C ‘A') Ten bytes addressed +5 from register
7 equal 'A's.
((5), EQ (4)) Register 5 equals register 4.
((5), LE, H '500') Register 5 is less than or equal to
or 500.
((5), LE, F '500')
((P4), eq, 0) Register 4 is equal to zero.
(A, Bit-on, 2) Bit 2 of byte addressed by A is on
(A+6, Bit-off, (1, 4, 5)) Bits 1, 4, and 5 of byte addressed
; by A+6 are off.
(0(R2), Bit-any, (1,2,3,4)) Any one or all of bits 1 through 4
as addressed by register 2 are on.
If the expression is omitted, the branch is made unconditionally.

RET=register

The register to be used as a return register in a 'BAL' instruction. 13
If omitted, register 14 is assumed. A 'BAL' instruction is generated i
only if the expression is omitted and two or more addresses are i
coded. Addresses must be separated by commas with the entire list
enclosed in parentheses. A single 'BAL' can be generated by coding
the second address as an asterisk.

S
e iE et

s
R ST

< B e e A

Examples:
#GOTO A unconditional branch to A
#GOTO (A,*) 'BAL' to A, R14 = return register
#GOTO (A,*),RET=3 'BAL' to A, R3 = return register
#6010 (A,B,C) 'BAL' to A, then B, then C,

R14 = return register

Registers Altered: See 'RET=' parameter.
Written by: Jean Garneau

N

AD=A055 023 HUMAN RESOURCES RESEARCH ORGANIZATION ALEXANDRIA VA F/6 5/9
PROJECT IMPACT SOFTWARE DOCUMENTATION: VI. VOLUME 2. ZEUS PROGR==-ETC(U)
AUG 72 J GARNEAUr W UNDERSHILL: D SHUFORD DAHC19=73=C=0004
UNCLASSIFIED HUMRRO=RP=D1=72=5=V0L=2 NL I

2 *‘)
.... ;

DATE
FILMED

1-78

e 12
]

e 2

‘grrr;’rrﬁ-f;ﬁ

I

2 flis pes

MICROCOPY RESOLUTION TEST CHART
_ NATIONAL BUREAU OF STANDARDS-1963-

- - "

#LDREG
#LDREG -- Load Register

The #LDREG macro provides a facility whereby other macros may
decode parameter values and load appropriate registers with a
minimum of effort. The #LDREG macro is intended to be used
only within other macro descriptions.

address
#LDREG (register[,option]),{ (r) }[,'message']

register

the register from 0-15 which is to be loaded.

option
code one of the following or omit:

LA Load address

L Load full word

LH Load half word

LN Load address and complement

For effect of omission of 'option,' see following parameter definition.

address
(r)

The value that is to be loaded into the register. If address is

coded and option is omitted, 'LA' is assumed; if (r) is coded

and option is omitted, 'LF' is assumed. If (r) is coded and 'LA'

is the option, the effect in instruction executed is 'LA register,0(r).’
'message’

Code a message to be output (via a MNOTE statement) if the source

data parameter is not available. If omitted, no message is generated.

Registers Altered: Any
Written by: J. Garneau

92

o e —E
.
.

#LOAD

#LOAD -- Load Transient Module

The #LOAD macro provides a facility whereby a task may request that
a nonresident module be made available for use. If a copy of the
module is currently available in main memory it will be used, other-
wise the module will be loaded from an external storage device. The
address of the module is returned in register 15. If register 15
equals 0, the module was not found or could not be loaded because

of I/0 problems.

'char' }[}LRB=address [,ECB=address][.NAIT=addressj]

address
[1abel] | #LOAD EP=‘

Tabel

The address of the first executable instruction generated by the
macro.

_[address
EP‘{'char']
The address of an 8-byte character string (padded with blanks if
necessary) or a 1- to 8-byte character string enclosed in single
quotes that identifies the module to be loaded.

LRB=address

The address of the Load Request Block used to process the #LOAD
request. The LRB must be (at least) three words long.

WAIT=address

The address of the ECBLIST that contains the address of the ECB
that will be posted complete when the loaded module is made
available to the task.

If the WAIT keyword is omitted, no automatic wait is generated
within the #LOAD macro. However, the task may issue a standard
#WAIT at any later point so Tong as the integrity of the LRB
is honored. In this case, upon return from the #LOAD, register
15 is negative if the request was successful (i.e., LRB was
added to Load Request Queue), and zero if the request failed
(i.e., module could not be located in library).

ECB=address

The address of the ECB to be posted complete when the module becomes
available to this task. If omitted, and the WAIT keyword is coded,
%he Ecghadfress js assumed to have been stored in bytes 8 through

2 of the LRB. ,

Registers Altered: 0, 1, 14, 15
External References: LDR0O00O
Written by: W. Underhill

#LPSH

#LPSW -- Load Program Status Word

% & The #LPSW macro will change the state of a program from supervisor .
; to problem or from problem to supervisor, setting protect keys as

_ required. ; . SR

[1abel] | #LPSH [state,KEY=|ad‘(’:‘)’ss]

label

specifies the label of the first executable instruction generated
by the macro.

state

3 code SUPV to load a supervisor state psw or PROB to load a problem
= _ state psw.

_J]address
KEY ((r)

:é‘ The address of a byte in main storage, or a register, in which the
B . protect key from the TCB can be stored after a change to Supervisor
k| state or fetched from during the change to problem state.

Registers Altered: 0, 1, 14, 15, also see 'KEY=' parameter
External References: ZEUSSVC
Written by: J. Garneau

#MOVE

i
1
|
!
v"!‘
i

#MOVE -- Move Data

The #MOVE macro allows data segments from 1 to 32,767 bytes to be
“moved, supports execution time length generation, and provides
automatic EBCDIC to Hexadecimal conversion. Register 1, upon return
from a #MOVE, will point to the last input character moved +1. CPU
‘ cycles and memory are optimized for each macro expansion.

‘ [1abel] | #MOVE | [TO=address] [.FR0M=add"eSS][TR"SLAT={EE_§]

fﬂi TO=address

& The address in main storage where the data will be moved. This
E address can take any format acceptable within the first operand
E of a '"MVC' instruction with the following additions:

(1; any length from 1 to 32,767 is valid
(2) the length may be loaded into a register and that register
specified in the TO address length field, e.g. T0= 0%(4),5)

If this parameter is omitted, register 1 is assumed to contain the ;
address and register 14 the length. |

} § FROM=address

The address in main storage from where the data are to be moved.
e | This address can take any format acceptable within the second
| operand of a 'MVC' instruction. If omitted, register 0 is assumed
to contain the from address.

= |EBC
TRNSLAT= HEX]

If EBC is specified, or if the parameter is omitted, data are moved
unmodified. If HEX is specified, each input data byte is converted
to 2 output "HEX" bytes, that is, the actual number of input data
bytes moved is one-half the number of characters specified as the
move length.

Registers Altered: 0, 1, 14, 15
External References: MOVEOOO or MOVEO10
Written by: Jean Garneau

#OPENP

#OPENP -- Open Program/Subroutine and Initialize for Execution.

The #OPENP macro saves callers registers, assigns base registers,

~acquires and initializes program save areas.

[1abel] | #OPENP nwumﬂEwn%%%}mmmwmhmuxJmenmﬂ

Type={RENS

1abel

Specifies the name to be assigned to the CSECT statement generated
by the #OPENP macro. If omitted, the label 'MAIN' is assumed. The
inclusion of any CSECT statement(s) prior to the #OPENP overrides
the generation of the CSECT within the #OPENP.

register

Specifies the one or more registers (if more than one they must be
separated by commas and the entire 1ist enclosed in parentheses)
that will become the program base registers. Registers are loaded
and assigned, one by one, to contiguous 4095-byte segments of the
program. If the parameter is omitted and the #0PENP is the first

in the program, register 12 is assumed. If the parameter is omitted
and the #OPENP is not the first in the program, no attempt to
reassign a base register will be made; however all remaining para-
meters will be assembled normally.

ENT

Specifies dynamic or static save area generation. If 'RENT' is
coded, the save area will be acquired at execution time out of
available storage within the partition or region assigned to the
program. If 'REUS' is coded or the parameter is omitted, an in-
line save area will be generated. In either case, the address of
the save area is loaded into register 13 and the save area is set
to zeros (x'00').

EXTEND=val-char

Specifies the number of words that the save area will be extended.
The address of the first byte of the first word of the extended

-

B T —

area is 72 (decimal) plus the contents of register 13. If this
parameter is omitted, the standard 0S 18-word save area is

generated. _ :

TCB=register

Code a register that contains the address of a Zeus TCB. If this

parameter is selected and TYPE=RENT is coded, the save area that

is acquired will be obtained via a #GETMEM Zeus macro (if memory
is not available it will be waited for); if omitted, an 0S GETMAIN

will be executed.

External References: GETSAVE if TCB=r and TYPE=RENT are coded
Written by: J. Garneau

98

#QFB
#QFB -- Generate Queue Foundation Block

' The #QFB macro provides a facility for describing and generating a
queue foundation block.

[1abe1] | #QFB | [QTYPE=(option,[...option])][,EXTEND=val-char]

S PO S ———

label

The label of the first byte of the first word of the QFB generated
within the macro.

kit
Wi
&
:
At
&
ai
L
1
28
Ry
et
s
¥ |
%
Atk
5!
¥
£3.5
ateh
‘1'1

QTYPE=option

Select one from each stack or as required:
{ELEQ, :
LIFO]

RDERED
ORDERED[-ASCENDING]]
ORDERED-DESCENDING ' ‘

EXTEND=val-char j

A numeric value from 1-4095 that defines the number of words the
QFB should be extended. The extended area begins at offset 8 bytes
from the first byte of the QFB. If omitted, the QFB is not extended.

| | - Written by: J. Garneau

QUE
#QUE -- Process Queue

The #QUE macro provides a facility whereby a routine may manipuIate

 a queue. The queue must have been originally defined with a #QFB '
. ' macro. ;

ADD,ELEMENT=(address[,option])

[1abel] | #QUE |{ DELETE ‘ELEMENT={address][opt1on]}' EQFB=[adg:§SS’]

LOCATE _ |1D= {aggﬁgss [,option])

e '
1
it
|

label

The label of the first executable instruction generated by the
macro.

ADD

add element to queue.

LOCATE

locate element and return its address in register 1. If element

cannot be located, register 1 will equal 0 when control is returned.

DELETE

locate and delete specified element. If the element is deleted,
register 1 will contain the address of the element; otherwise
register 1 will equal 0.

ELEMENT= {addressl

The address of the element to be ADDed, DELETEd, or LOCATEd. If O
is coded, either the absolute top or abso]ute bottom element on
the queue will be affected (see option parameter).

100

—

10-{ Glress)

The address of a 4-byte field (padded with blanks if necessary) or
a 1- to 4-byte character string enclosed in single quotes which
identifies the element to be deleted or located. The identifier is
maintained in bytes 4-7 of the element and consists of any bit

. combination from X'00000000' to X'FFFFFFFF.'

option
As subparameter of ELEMENT parameter only:

Code TOP or BOTTOM to ADD/DELETE/LOCATE either the absolute
top (first) or bottom (last) element on the queue (see
"ELEMENT" parameter). If omitted, the request is processed
as specified by the QFB options field.

As subparameter of ID parameter only:

Code TOP or BOTTOM to ADD/DELETE/LOCATE either the top (first)
or bottom (last) element on the queue with the specified ID.
Code LT (less than), GT (greater than), or GE (greater than
or equal) to ADD/DELETE/LOCATE an element relative to some
other element currently on the queue. If omitted, the request
is processed as specified by the QFB options field.

_|address
are= 4073

The address of the Queue Foundation Block associated with this
queue. If omitted, register 0 is assumed to contain the QFB address.

Registers Altered: 0, 1, 14, 15
External References: QUEMGR
Written by: Jean Garneau

101

! §; #REGS
0
£ 1) #REGS -- Register Symbol Generation

The #REGS macro provides automatic generation ' register symbols.

#REGS | [char][,PREFIX=char]

char

Code a number representing a register to be equated, or two
numbers separated by commas and enclosed in parentheses represent-
ing a range of registers to be equated. If omitted, registers 0-15
will be equated.

PREFIX=char

Code one to six characters to specify the prefix to be assigned to

each register selected. If omitted, the prefix "R" will be assumed.
Checking to protect against generation of duplicate symbols will be
performed only if the prefix "R" is either chosen or defaulted.

¥ o

Written by: Jean Garneau

Aot B0 102 ‘:

)

fiase i s

#SET -- Set Bit Status

The #SET macro instruction is used to alter the status of one or
more bits within a byte.

ON
[1abel] | #SET | byte-address ,BIT- OFF], (bit-char)
INV) |ALL

byte-address

is the address in main storage of the byte that is to be altered.

BIT-
is the type of operation to be performed where:
ON - turns specified bit(s) on
OFF - turns specified bit(s) off
INV - Inverts status of specified bit(s)
bit-char
is a single bit number, or several bit numbers separated by commas
and enclosed in parentheses. Bits are numbered within the byte,
left to right, 1 to 8.
ALL

can be specified if all eight bits are to be affected. This parameter
can be used in lieu of a specific request for each of the eight bits,
for example, ALL instead of (1, 2, 3, 4, 5, 6, 7, 8).

Written by: J. Garneau

103

#STIMER -- Set Interval Timer

The #STIMER macro allows a task to set one or more interval timers.
The task can wait for the specified interval to elapse or can con-
tinue processing. When the interval expires, the task can have
either an ECB posted or can request that an exit routine be
scheduled.

,EXIT=address

[1abel] | #STIMER SEC=char[,TQE=address][{,WAIT=address [,ECB=address]]

label

The address of the first executable instruction generated by the
macro. :

SEC=char

Code a numeric character string with 0, 1, or 2 decimal places to
specify the clock interval in seconds, tenths, and hundreds.

TQE=address

The address in main memory of the Timer Queue Element associated
with this request. If omitted, register 1 is assumed to contain
the TQE address.

WAIT=address

The address in main memory of an ECBLIST. The ECBLIST must contain

the address of the ECB that will be posted when the interval expires.
If omitted no automatic wait is generated by the macro. It is possible,
however, for the task to wait at any later point so long as the
integrity of the TQE is honored.

ECB=address

The address of the ECB to be posted complete when the interval expires.
If omitted, the ECB address is assumed to have been stored in bytes
8 through 12 of the TQE with the sign bit off.

5 %' EXIT=address

; ? | The address of a routine to be executed when the interval expires.
i : U Upon entry to the Exit Routine, register 1 will point to the

i originating TQE. Words 4 to n of this TQE can be used to pass

i P i information to the exit routine. The exit routine is executed

| U asynchronously with the task which requested the original interval.
4 ; Any synchronization required between the requesting task and the

2 exit task must be handled by the tasks themselves.

Registers Altered: 0, 1, 14, 15
External References: ITIMER
Written by: J. Garneau

—

3 ‘ 105

i a1

#TTIMER

3 : 5- #TTIMER -- Test Zeus Interval Timer

% § The #TTIMER macro is used to test, cancel or force completion of ‘
ﬁ% ; an interval timer previously set by a #STIMER macro. j

[1abe1] | #TTIMER | [type][,TQE=address]

label

specifies the address of the first executable instruction generated
by the macro.

type ?

code one of the following:

REMAINING Return time remaining this interval (in hundreds of
- seconds) in the second word of the specified TQE.
E . ‘ This is default type if parameter omitted.

e COMPLETE Force ECB referenced by specified TQE to be posted «
k| complete and cause TQE to be removed from timer 3
| queue. i
i CANCEL Cause TQE to be removed from timer queue (ECB not
3 posted).

TQE=address

The address in main memory of the TQE (Timer Queue Element) associated
with the request. If omitted, register 1 is assumed to contain the TQE
address.

Registers Altered: 0, 1, 14, 15
External References: ITIMER
Written by: J. Garneau :

P
£

FMALT

#WAIT -- Wait for Event Completion

R

i
1

The #WAIT macro instruction allows a task to wait for the completion
of one or more events. The event may be resource availability, I/0,
timer interval completion, memory availability, task synchronization,
and so forth. Upon return from a #WAIT register 0 contains the
address of the ECB posted complete and register 15 contains its
offset in the LIST (i.e., ECB=1, R15=0; ECB=3, R15=8).

ecblist-address g ;
[1abel] | #WAIT [ECBLIST=ecb]ist-address[][}EPADDR-entry'addresé] |

i i s

label

specifies the address of the first executable instruction generated
by the macro.

el ok S e

ecblist-address
ECBLIST=ecblist-address

specifies the address in main memory of the ecblist that contains |
the addresses of one or more ECB's to be waited on. Each ECB | 4
address is 4 bytes in length. The last ECB address must have bit i

0 (i.e. X'80"') on. If omitted, register 1 is assumed to contain {
the ecblist address. |

EPADDR=entry-address

The address in main memory of a word which contains the Dispatcher

E | address. If the Dispatcher address has previously been loaded into

b | a register, this parameter may be coded (r) where r is the register {1

b | so loaded. If the parameter is omitted, a V-type address constant
! for the entry point of the Dispatcher.

Registers Altered: 0, 1, 14, 15 ;‘
External References: DSPTCHR |
Written by: J. Garneau

107

ul
%
U

i
.

#ZEUSSVC

#ZEUSSVC -- Execute Zeus SVC

The #ZEUSSVC macro executes an SVC instruction which is stored in a
"remote" CSECT. (The purpose of this is to allow the Zeus SVC to be
changed with a single assembly and a relink-edit of Zeus.) Upon
return, register 15 will contain the address of the Zeus incore
address table and register 0 the address of the partition or region

TCB.

[1abel] | #ZEUSSVC

label

specifies the address of the first executable instruction generated
by the macro.

Registers Altered: 0, 1, 5
External References: ZEUSSVC
Written by: J. Garneau

108

e A e i R

)
3
1
il

!
|
i
)
A

A A RGNS W “
e 1

Chapter 3
SYSTEM DATA AREAS

The operation of Zeus requires that certain control blocks and queue elements be
created and maintained. Table 2 contains a list of these areas, a brief description of each,
and their primary use.

Table 2
Control Blocks

Name I Used For Number Required

LCB: Line Control Block Control /O activity on a TP Line or 1 per device type per line
local channel

TQE: Timer Queue Element Support a Zeus interval timer unlimited

CQE: Core Queue Element Support conditioned memory request unlimited

TCB: Terminal Control Block Control |/O activity on a terminal device 1 per device

ZVT: Zeus Vector Table Cross reference address table for main 1 per Zeus
Zeus components

QFB: Queue Foundation Block Anchor for each queue unlimited

LRB: Load Request Block Support transient module load function unlimited

A description of each Control Block and Queue Element is presented in this Chapter,
organized alphabetically within two sections—Section 1, Control Blocks and Tables and
Section 2, Queue Elements.

SECTION 1: CONTROL BLOCKS AND TABLES

Descriptions of the Zeus Line Control Block (LCB), Queue Foundation Block
(QFB), Terminal Control Block (TCB), and Vector Table (ZVT) are provided in this
section. For each, an overview is presented first, followed by a detailed description.

LINE CONTROL BLOCK

The Line Control Block (LCB) is used by the Line Task to control I/O on a remote
or local communication channel. More than one LCB may be assigned to a given channel.
However, I/O on LCBs assigned to separate channels is asynchronous while I/O on LCBs
assigned to the same channel is synchronous.

Synchronization of multiple LCBs on a single channel is accomplished by assigning
the channel exclusively to each LCB in turn. The #ENQ/#DEQ Zeus macros are used for
this purpose.

109

‘
|
1l
i
¥

]
? Line Control Block—Overview
i { il Offset < Word >
H 8
! : 0(0)
i DECSDECB
P Ll 4(4)
! DECTYPE last op. DECLNGTH
8(8)
DECONLTT | DECDCBAD
12(C) .
DECAREA
16(10)
DECSENSO DECSENS1 DECCOUNT
o 20(14)
j{_ i DECCMCOD | DECENTRY
b 24(18)
B : DECFLAGS DECRLN DECRESPN
£ 28(1C)
DECTPCOD DECERRST DECCSWST
32(20)
| DECADRPT
| 36(24)
Bl DECPOLPT
40(28)
LDECBA
j; 44(2C) ;
. LTCBC ; LTCBA
! 48(30) +
i LPOLS ! LLISTA
| 52(34) L :
& LPOLLC LADDRC
X 56(38) Y
4 . LCBFLGS | LCBNEXT
b | 60(36) .
68(44) LTQE LCQE
72(48)
LLTH
BN 110

4 SRR i Sk
R SN e

SUUOSR——_———

L
Line Control Block—Detailed Description
i Bytes and
| Offset Alignment Field Name
0(0) 0 DECB
: 0(0) 4 DECSDECB
L 4(4) 1 DECTYPE
5(5) 1
| 6(6) L DECLNGTH
L 8(8) 1 DECONLTT
8(8) a4 DECDCBAD
12(C) 4 DECAREA
16(10) 1 DECSENSO
17011) A DECSENS1
18(12) e DECCOUNT
20(14) 1 DECCMCOD
20(14) 4 DECENTRY
24(18) 1 DECFLAGS
25(19) = DECRLN
26(1A) e g DECRESPN
28(1C) 1 DECTPCOD
29(1D) o DECERRST
30(1E) i3 DECCSWST
32(20) 4 DECADRPT
36(24) 4 DECPOLPT
40(28) 1 LDECBA
41(29) 3
44(2C) 1 LTCBC
44(2C) 4 LTCBA
48(30) 1 LPOLS
48(30) 4 LLISTA
52(34) 2 LPOLLC
54(36) ed LADDRC
56(38) 1 LCBFLGS
, SR
Lz AR
ME %
2R
Siapalib 2
56(38) 4 LCB NEXT
60(3C) 12 LTQE
60(3C) 12 LCQE
72(48) 4 LLTH

1
Field Description, Contents, Meaning
Event control block
Type field
Last operation
Length

Reserved for on-line test
DCB address
Area address

First sense byte

Second sense byte

Residual count

Command code

Terminal list address

Status flags

Relative line number

Response field

TP op code

Error status

CSW status

Address of current addressing entry
Address of current polling entry
Reserved for DSPTCHR

DECB address

Count of this line’s TCBs

Address of first TCB on this line’s queue
Polling list control byte save area
Line polling list address

Number of active entries in polling list
Number of writes pending

Busy

Poli

Interval

Write

Memory wait

Address of next LCB on queue
Line timer queue element

Line core queue element
LCB length

S

i L

L

0

e

oiasts

e

g

S

QUEUE FOUNDATION BLOCK

The head pointer to each queue is located in a Queue Foundation Block. The Queue
Foundation Block is used as an anchor for all Zeus Queues. For example, the timer
queue, the memory queue, and the load request queue are all anchored with their own

QFBs.

Queue Foundation Block—Overview

Offset - Word

0(0) STATUS First element address
4(4) TYPE Last element address
8(8) Optional Extended Area

Queue Foundation Block—Detailed Description

Bytes and
Offset Alignment Field Name
0(0) 1 v
1(1) v
4(4) 1 TYPE
b
e
T | RN
1
D 4
5(5) o3
8(8) Any Data

. XX

Field Description, Contents, Meaning

Status bytes - null queue
Address of first element in queue

Ascending queue
Descending queue
Last in/first out - LIFO

First in/first out - FIFO
Count
Reserved

Address of last element in queue
Optional extended data area

d

ZEUS TERMINAL CONTROL BLOCK

The Terminal Control Block (TCB) is used by the Terminal Task to control I/O on a
(terminal) device.

Zeus Terminal Control Block—Overview

Offset - Word >
0(0)
TCBIDENT TCBCOUNT
4(4)
TCBECB
8(8)
TPIOECB
12(C)
BUFSIZE
16(10)
LINEREM
20(14)
POSREM
24(18)
RBLOKADR
28(1C)
RELBLOCK
32(20)
TCBRJE
36(24)
SBUF1L
40(28)
SBUF2L
44(2C)
REQDCB
48(30)
ACHAINSA
32(34)
SBUF1A
56(38)
SBUF2A
60(3C) -
PAGELINE
64(40)
PAGEND
68(44)
unused
72(48)
ALCB
76(4C)
ATAENTRY
80(50)
ARQDECB

(Continued)

13

Zeus Terminal Control Block—Overview (Continued)

Offset - Word
84(54)

ARQIOA

88(58)

unused
92(5C)

TCB NEXT
96(60)

TPIOECBL

100(64)
TCBECBL
104(68)

NTPDECBL
108(6C)

DECBDA

140(88)
144(8C) GLOSBLK
148(90)

PAGECB 147(8F)PAGECB2

USERNME
156(98)

USERID unused

160(9C)
unused
164(A0)

168(AH)

INFOBLK MSGBLK FILECB

172(AC)
AIOBUF
176(AC)

TCQE
184(B4)

TTQE

188(B8)
CURCDRD DATACORD

192(BC)

A s

Zeus Terminal Control Block—Detailed Description

Bytes and
Offset Alignment Field Name
- 0(0) 3 TCBIDENT
X'E3C3C2’
3(3) T TCBCOUNT
4(4) 4 TCBECB
8(8) 4 TPIOECB
12(C) 4 BUFSIZE
F’1048’
16(10) 4 LINEREM
20(14) 4 POSREM
24(18) 4 RBLOKADR
28(1C) 4 RELBLOCK
32(20) 4 TCBRJE
36(24) 4 SBUF1L
40(28) 4 SUBF2L
44(2C) 4 REQDCB
48(30) 4 ACHAINSA
52(34) 4 SBUF1A
56(38) 4 SBUF2A
60(3C) 4 PAGELINE
64(40) 4 PAGEND
68(44) 4
72(48) 4 ALCB
76(4C) 4 ATAENTRY
80(50) 4 ARQDECB
84(54) 4 ARQIOA
88(58) 4
92(5C) 4 TCBNEXT
96(60) 4 TPIOECBL
1 | e
100(64) 4 TCBECBL
1 | S
104(68) 4 NTPDECBL

| e

(Continued)

Field Description, Contents, Meaning

Characters ‘TCB’ to identify control block

TCB's number

ECB for CPU synchronization

ECB for terminal 1/0

Buffer size for terminal READ operation

Unused lines remaining in terminal output buffer

Unused characters remaining in terminal output
buffer

Address in page where miscellaneous systerm
messages are to be stored

Relative block number of text to be retrieved from
or stored on direct access storage device

Used by RJE subsystem
Length of buffer one
Length of buffer two

Address of DCB associated with current request for
text storage or retrieval this TCB

Address of initial save area in chain currently attached
to this TCB

Address of buffer one

Address of buffer two

Next available position in terminal output buffer
Last position in terminal output buffer
unused

A.idress of Zeus Line Control Block

Address of terminal addressing entry
Address of requestor DECB for this terminal
Address of requestor 1/0O area

unused

Address of next TCB

Address (list) of ECB for terminal 1/0

Address (list) of CPU synchronization ECB (TCB)

Address (list) of non-IP DECB for 1/0

Zeus Terminal Control Block—Detailed Description (Continued)

Offset
108(6C)

140(88)

146(8E)

147(8F)

148(90)
156(98)
168(9A)
160(9C)
162(9E)
163(9F)
164(A0)
168(A4)

Bytes and
Alignment Field Name
4 DECBDA
1 i
o1 8 | S b e
i
4
4
4
4
1 GLOSBLK
=3
.3 PAGECB
)
e N
o
o S
R
B
=15
PAGECB2
1o
o B
oo
A
Ly
P
e
8 USERNME
2 USERID
s 2
2
il CMID
i 0100 0000
4 AQWORK
1 LSTAT
s
S [
oKy
LR
R
5K e
ey,

116

(Continued)

Field Description, Contents, Meaning

Event control block
Type field

Type field

Length

DCB address

Area address

10B address

Key address

Block reference address

Relative position on terminal for glossary
‘ROLL’ request

unused

unused

Page control byte

Page contains valid data
Prefix processing completed
Suffix processing completed
Processing complete

CUR requested

ROL requested

DEL requested

MOD requested

Page control byte extension
COP requested

CRE requested

DIS requested

RES requested

LIS requested

LOC requested

cursor reset required
commands will be executed

User name

User identification

unused

unused

C’(" command id

space

Address of work space currently available

Line status byte

TCB processing READ request
TCB processing WRITE request
reserved

TCB waiting for terminal output
TCB waiting for terminal input
reserved

Terminal logged on

RJE function in process

. B

e

o

>
il
&
Iy
&
£
i

Zeus Terminal Control Block—Detailed Description (Continued)

Bytes and
Offset Alignment Field Name
169(A5) .1 INFOBLK
170(A6) et MSGBLK
171(A7) ey FILECB

XXX XX XX

172(A8) 4 AIOBUF
176(AC) 12 TCQE
176(AC) 12 TTQE
188(B8) 2 CURCORD
190(BA) st DATACORD
192 (BC) 4 TCBL

ZEUS VECTOR TABLE

Field Description, Contents, Meaning

Relative position on terminal of the ‘INFO’
input area

Relative position on terminal for system message
presentation

File control byte

Locate record with key

reserved

Address of terminal 1/0 buffer

TCB core queue element (CQE)

TCB time queue element (TQE)

XY cursor co-ordinates

XY data co-ordinates

Length of TCB

The Zeus Vector Table (ZVT) is used by all system routines to acquire data and

addresses of system resources.

Zeus Vector Table—Overview

Offset <= Word =
0(0)
ZDSPTCHR
4(4)
ZMASTER
8(8)
ZITIMER
12(C)
ZRJEO100
16(10)
TCBQ
20(14)
ZLCBQ
24(18)
ZCOREQ
28(1C)
ZTIMERQ
32(20)
ZCNVTOOO
36(24)
ATE
40(28)
ETA
(Continued)

117

R A e e e

Zeus Vector Table—Overview (Continued)

Offset - Word
44(2C)
TPDCB
48(30)
ZNTPDCBT
52(34)
ZWTROO
56(38)
ZLINE10
60(3C)
ZTERMIO
64(40)
LTE
68(44)
ETL
72(48)
ZCTLTAB
76(4C)
ZMOVE
80(50)
ZMSCHD
84(54)
ZCHTB
88(58)
ZCTB
92(5C)
ZCMNDPC1
96(60)
ZCMNDPC2
100(64)
ZGETSAVE
104(68)
ZGETCORE
108(6C)
ZFREECOR
112(70)
116(74)
120(78)
ZQUEMGR
124(7C)
ZRCVRMGT
128(80)
ZRESET
132(84)
ZRTERM
136(88)
ZSCAN
140(8C)
ZSTACK
(Continued)

118

Zeus Vector Table—Overview (Continued)

Offset - Word
144(90)
ZSTATUS
148(94)
ZPOOLA
152(98)
ZLDRO100
156(9C)
ZLDRO0O000
160(A0)
ZENQCTRL
164(A4)
168(A8)
ZCNTXCTL
172(AC)
ZMOVEX
176(B0)
ZRITQE
180(B4)
ZGCOUNT
184(B8)
ZLDR0200
188(BC)
ZSUPV
192(CO0)
ZPROB
196(C4)
ZMOVEO000
200(C8)
ZMOVEOD10
204(CC)
ZWTERM
208(D0)
ZCRTREAD
212(D4)
ZNTPIO
216(D8)
ZEMPTY
220(DC)
ZFULL
224(EO)
ZZS0B001
228(E4)
ZVTL

19

S —

Zeus Vector Table—Detailed Description

Bytes and
Offset Alignment Field Name
0(0) 4 ZDSPTCHR
4(4) 4 ZMASTER
8(8) 4 ZITIMER
12(C) 4 RJE0100
16(10) 4 TCBQ
20(14) 4 ZLCBQ
24(18) 4 ZCOREQ
28(1C) 4 ZTIMERQ
32(20) 4 ot
36(24) 4 ATE
40(28) 4 ETA
44(2C) 4 TPDCB
48(30) 4 ZNTPDCBT
52(34) 4 ZWTROO
56(38) 4 ZLINEIO
60(3C) 4 ZTERMIO
64(40) 4 LTE
68(44) 4 ETL
72(48) 4 ZCTLTAB
76(4C) 4 ZMOVE
80(50) 4 ZMSCHD
84(54) 4 ZCHTB
88(58) 4 ZCTB
92(5C) 4 ZCMNDPCI
96(60) 4 ZCMNDPC2
100(64) 4 ZGETSAVE
104(68) 4 ZGETCORE
108(6C) 4 ZFREECOR
112(70) 8
120(78) 4 ZQUEMGR
124(7C) 4 ZRCVRMGT
128(80) 4 ZRESET
132(84) 4 ZRTERM
136(88) 4 ZSCAN
140(8C) 4 ZSTACK
144(90) 4 2 ZSTATUS
148(94) 4 ZPOOLA
1

;R

(Continued)

Field Description, Contents, Meaning

Address of dispatch subroutine

Address of ZEUS command interface
Address of interval timer task

Address of reader/interpreter task

Address of first TCB on queue

Address of first LCB on queue

Address of first CQE on queue

Address of first TQE on queue

unused

Address of ASC11 to EBCDIC translate table
Address of EBCDIC to ASC11 translate table
Address of TP DCB

Address of non-TP DCB table

Address of writer task

Address of line 1/0 task

Address of terminal 1/0 task

Address of line code to EBCDIC translate table
Address of EBCDIC to line code translate table
Address of ASC11 control character table
Address of move subroutine

Address of master schedule subroutine
Address of convert hex to binary subroutine
Address of convert to binary subroutine

Address of command processing subroutine-part 1
Address of command processing subroutine-part 2

Address of GETSAVE subroutine

Address of GETCORE subroutine

Address of FREECORE subroutine

unused

Address of QUEMGR subroutine

Address of recovery management task
Address of output buffer allocation subroutine
Address of terminal 1/0 interface subroutine
Address of SCAN subroutine

Address of STACK subroutine

Address of STATUS subroutine

No subpool
Address of Zeus subpool

|
|
8
|
|
|
]
|

SPBURESEN SRS NI TS SRe T

PPLERE SS = P

il kndgdi

e el N N a0l b

e ot il it it

Zeus Vector Table—Detailed Description (Continued)

Bytes and
Offset Alignment Field Name
152(98) 4 ZLDRO0100
156(9C) 4 ZLDRO0000
160(A0) 4 ZENQCTRL
164(A4) 4
168(A8) 4 ZCNTXCTL
172(AC) 4 ZMOVEX
176(B0) 4 ZRITQE
180(B4) 4 ZGCOUNT
184(B8) 4 ZLDR0200
188(BC) 4 ZSUPV
192(C0) 4 ZPROB
196(C4) 4 ZMOVEO000
200(C8) 4 ZMOVEO010
204(CC) 4 ZWTERM
208(D0) 4 ZCRTREAD
212(D4) 4 ZNTPIO
216(D8) 4 ZEMPTY
220(DC) 4 ZFULL
224(EO) 4 INITO
228(E4) 2 ZVTL

Field Description, Contents, Meaning

Address of transient routine loader task
Address of transient routine queue manager
Address of ENQ/DEQ processor

reserved

Count subroutine ‘XCTL’ control

Address of character to hex move subroutine
Address of reader-interpreter QF B

Address of routine to format and dump
Address of transient table dump routine
Address of supervisor state routine

Address of problem state routine

Address of move routine

Address of movex routine

Address of TP output interface routine
Address of real terminal routine

Address of non-TP 1/0 routine

Address of TP output buffer empty routine
Address of TP output buffer full routine
Address of ZEUS first level initialization routine
Length of ZVT %

SECTION 2: QUEUE ELEMENTS

Descriptions of the Zeus Core Queue Element (CQE), Load Request Element (LRE),
Resource Queue Element (RQE), and Timer Queue Element (TQE) are presented in this

section.

CORE QUEUE ELEMENT

The Core Queue Element (CQE) is used, in conjunction with a conditional memory
request, to queue a request for more main memory than is currently available.

Core Queue Element—Overview

Offset
0(0)
4(4)

8(8)

Word

Y

Status

Link

Reserved

Size of Request

ECB Address

|
|
{
|
!
|
|
J

ccmne

Core Queue Element—Detailed Description

Bytes and

Offset Alignment Field Name

0(0) 1 Status

XXX XX XX

.3 Link

4(4) 1 XXXX XXXX
3 size

8(8) 4 Pose

LOAD REQUEST ELEMENT

Field Description, Contents, Meaning

Last entry on Queue

Reserved

Address of next CQE on core request queue.

If last CQE on queue link will address previous
CQE.

Reserved

Amount of memory required to satisfy this request.
Address of ECB which is to be posted complete
when enough core becomes available to satisfy the
request. When the ECB is posted complete the
address of the core element obtained will be
stored in its rightmost three bytes. The CQE is
then removed from the Core Queue.

The Load Request Element (LRE) is used to process a load request for a transient
module that is not currently in main memory.

Load Request Element—Overview

Offset - Word —
0(0) =
Status Link
4(4)
Table Entry address
8(0)
ECB address

Load Request Element—Detailed Description

Bytes and
Offset Alignment Field Name
0(0) 1 Status
XXX XX XX
o & Link
4(4) 4 Table
4(4) 4 Post

122

Field Description, Content, Meaning

Last Entry on Queue:

Reserved

Address of next LRE: on Load Request Queue.

If last LRQ on queue link will address previous CQE
Address of table entry for module to be loaded
Address of ECB to be ,posted when module becomes
available

i
|

B U S —

RESOURCE QUEUE ELEMENT

The Resource Queue Element is used to synchronize accessing of system resources.

Resource Queue Element—Overview

Offset - Word T-
0(0)

Link
4(4)

Resource Name

8(8)
ECB address

Resource Queue Element—Detailed Description

Bytes and
Offset Alignment Field Name Field Description, Content, Meaning
0(0) 1 Status
e el Last Entry on Queue
XXX XXX X Reserved
g Link Address of next RQE on Resource Queue
If last entry on queue, link points to previous entry
4(4) 4 RName Resource name--any four characters, X'00’ thru
X’FF’, may be used. If the name is less than
4 characters, it must be kept adjusted and padded
with blanks
8(8) 4 Post Address of Event Control Block

TIMER QUEUE ELEMENT

The Timer Queue Element (TQE) is used to create and maintain an interval timer.

Timer Queue Element—Overview

Offset - Word =
0(0)

Status Link

4(4)
Interval Value
8(8)

Flags Address (ECB or EXIT)

123

e

i i
3 I
} Timer Queue Element—Detailed Description
I U Bytes and
i | Offset Alignment Field Name Field Description, Content, Meaning
* 0(0) 1 Status
] } R R Last Entry on Queue
il XXX XXX X Reserved
i g .3 Link Address of next TQE on Timer Queue. If last
;:: ' element on the Timer Queue address of previous TQE.
4(4) 4 Time Remaining interva! this element at time of last Timer
Queue ‘post’. If this TQE is the first on the queue,
then this interval was used to set the last ‘real’ clock.
8(8) 1 Post
| e R R RS Exit address in next 3 bytes
e ECB address in next 3 bytes
XXX XXX X Reserved bits
8(8) 13 When the TQE interval is reduced to zero, the TQE
is removed from the queue. Depending upon FLGS
either routine is scheduled. This field contains either
the exit address or the ECB pointer.
ol |
i
H
b 124

o o e < 2

S s e gl A e et
0 0 e g e

S e e TR

Chapter 4
UTILITY PROGRAMS

This chapter describes the programs necessary to implement, operate and maintain
the Zeus system. A summary of the programs contained in this chapter is presented

below.

Program Name

BLDIFLE1
BLDIFLE2
BLDIFLE3
BLDXFILE
BLDTFILE
BLDRFILE
IMACOPY
IMAPDSMD
IMAPTPCH

Function

Format key file

Add records to key file

Replace records in key file

Format text files

Add modules to transient routines file
Format Remote Job Entry file

Copy one or more files

Update a partitioned data set
Print/punch utility

NAME : BLDIFLE1
FUNCTION: To format a direct access file for input of the glossary
records
: INPUT: None
i § OUTPUT: A disk file of 1200 dummy records formatted for 40-byte
1 | keys
ﬁ PROCESS: The output file is opened.
§ 1200 dummy records are written,
%l The file is closed.
.f',"
MACROS USED: #REGS, #OPENP, #CLOSEP
3l ! ROUTINES
i _ CALLED: None
i SIZE IN
E BYTES: 434 bytes
1 | EXTERNAL
: REFERENCES : None
EXIT: To address in R14

WRITTEN BY: D. Shuford

126

NAME :
FUNCTION:
INPUT:

OUTPUT:

PROCESS:

MACROS
USED:

ROUTINES
CALLED:

SIZE IN BYTES:

EXTERNAL
REFERENCES:

EXIT:

WRITTEN BY:

B e i S A i o i e

BLDIFLE2
To add records to the glossary (IFILE)

A card file containing the QFILE record numbers of the
records to be transferred to the IFILE;

The QFILE

A printed listing of keys and relative record numbers
of records added to the IFILE. Both the derived and
actual record numbers are listed.

A disk file organized with 40-byte keys and 800-byte
data records.

A punched or printed error file containing error messages
and images of the input card records that caused the
errors.

The input card file is read to determine which QFILE record
is to be added to the IFILE. The QFILE record is read. The
first line of the record, up to the delimiting period,
carriage return characters, or the first 40 bytes is used
as input to SCANKEY which removes spaces and special char-
acters to and from the key and derives an IFILE relative
record number for the record to be added. The record and
key are written in the IFILE. The printed listing giving
key and actual and derived relative locations is written.
Any errors cause an error message to be written along with
the card record that caused the error.

#OPENP, #REGS, #CLOSEP

SCANKEY, CTB
3,294 bytes

SCANKEY, CTB
To address in R14
D. Shuford

5 B S e i 1 SNt

NAME :
FUNCTION:
INPUT:

4

OUTPUT:

PROCESS:

MACROS USED:

ROUTINES
CALLED:

St ks LT (A

SIZE IN
BYTES:

EXTERNAL
REFERENCES:

” | EXIT:
WRITTEN BY:

BLDIFLE3
To update the IFILE.

A card file containing relative record numbers of
QFILE records to be transferred to the IFILE.

The QFILE.

The IFILE.

The updated IFILE.
A printed listing of IFILE records added or replaced.
A printed or punched error file.

The files are opened. The card file is read to obtain
the relative record number of the QFILE record that is
to be transferred. The first 40 bytes or the characters
up to the delimiter, period-carriage return, of the
QFILE records are used as input to SCANKEY, which
removes space and special characters to form the record
key and derives a relative record number for the IFILE
record.

The IFILE is read. If no record with the key being used
is found, the QFILE record is written in the IFILE. If a
record is found in the IFILE, with the key being used in
the search, this record is checked to determine if it is
"active." If so, an error message is written. If not,

the QFILE record is written in place of the inactive
IFILE record. A printed listing is written giving the
keys and actual and derived relative record number of all
records written in the IFILE.

An error file is produced for records that could not be
written. A record may not be written because it was to
replace an "active" record or because there was no

room within the specified search limits.

#OPENP, #REGS, #CLOSEP

SCANKEY

3,718 bytes

SCANKEY
To address in R14
D. Shuford

S
?
]

ot i ey,

NAME :
FUNCTION:
INPUT:
OUTPUT:

PROCESS :

MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL

REFERENCES :

EXIT:

WRITTEN BY:

BLDXFILE
To allocate space for the D, F, éhd Q files.
R1 PARM field

‘A direct access file containing the number of records

specified in the PARM field and of the size specified
in the DCB BLKSIZE field on the DD card; a print file
containing error messages.

The files are opened. The parm field is examined to see
if the number of records has been specified. If not, an
error message is printed and processing stops. If a
number of records exceeding the maximum 32-bit binary
number (2,147,483,647) is specified, an error message

is pointed and processing stops. If a valid number of
records is specified, this number of records is written.
The records are formatted with the first 100 bytes set
to zero and the remainder--up to 1,028 bytes--set to
spaces. If errors occur while writing a record, an error
message is printed and processing continues. When the
last record is written, the files are closed and process-
ing ceases.

#REGS, #OPENP, #CLOSEP
None
1,964 bytes

None
To address in R14
D. Shuford

129

FUNCTION:

INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN BYTES:

EXTERNAL
REFERENCES:

EXIT:

WRITTEN BY:

BLDTFILE

To load Zeus transient routines ?; e&ecutab]e form into
partitioned data set.

R1 Parm field for name of load module Linkage Editor
output (SYSLMOD).

The specified transient routine loaded into IMP1.TFILE.

The parm field is checked. If no name has been specified,
or if a name exceeding eight characters is specified, an
appropriate error message is printed and processing is
discontinued. If a name with a valid length is specified,
it is saved. The files are opened (if either file fails
to open, an error message is printed and processing is
discontinued). A BLDL instruction is issued for the input
data set. The results are checked to make sure that the
module in question does exist in executable form.

If not, the appropriate error message is printed and
processing is discontinued. If so, the size is checked.
If the size is eight bytes or 7,000 bytes, an error
message is printed and processing discontinues. If the
size is valid, the module is loaded and written into
IMP1.TLOAD.

The PDS directory is updated to reflect the addition of
the member with a STOW instruction. If an error occurs,
the appropriate message is printed and processing dis-
continues. If there is no error the files are closed, a
message indicating that the module has been successfully
placed in the PDS is printed and processing discontinues.

#CLOSEP, #OPENP, #GOTO, #REGS

None

1,330 bytes

None
To address in R14
W. Underhill

C—

NAME:
FUNCTION:
INPUT:
OUTPUT:

PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
WRITTEN BY:

BLDRFILE
To build the RFILE
Parm field data to specify file size

RFILE containing the specified number of 1,124-byte
records. Records 0 and 1 are special records for use
by the RJE functions of Zeus.

The parm field is checked. If it is missing an error
message is printed and processing ceases. If the file
size is <8 or if (file size -8)/8 is >1,020 an error
message is printed and processing ceases. If a valid

file size is specified, records 0 and 1 are formatted

and written. The remainder of the file is written with
records formatted with zeroes. A message is printed,

upon completion, saying that the file has been formatted
and giving the record number of the iast record. Process-
ing ceases.

N/A--program written in PL/1
WTP
1,048 bytes

WTP
To System .
W. Underhill

131

i

s

A et
TR SRS R O

.

|
|
| |
1
¥

NAME :
FUNCTION:
INPUT:
OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
WRITTEN BY:

IMACOPY

To copy any data set

Data set(s) to be copied--up to 10

ccpied data set(s)

The input data set is copied to the output data set.
The process is repeated for each input and output data

set specified.

#OPENP, #CLOSEP

None

946 bytes

IMACOPY
To address in R14

Jean A. Garneau

132

NAME :
FUNCTION:

INPUT:

OUTPUT:
PROCESS:

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
WRITTEN BY:

IMAPDSMD

{o a?d/rep1ace/delete members of a partitioned data set
PDS).

Parameter card indicating what operation is to be per-
formed; member to be added or replaced.

Modified PDS.

The parameter card is read and interpreted to determine
what operation is to be performed; the name of the
member; whether to print the entire input data; whether
an identification is to start in location 73 and if so

what it is; and what the increment for sequencing is to
be. The specified PDS is then modified as indicated.

#REGS, #OPENP, BSECT, RET, CLOSEP
None
3,937 bytes

None
To address in R14

Jean A. Garneau

133

NAME :
FUNCTION:
INPUT:

OUTPUT:
PROCESS :

ZEUS MACROS
USED:

ROUTINES
CALLED:

SIZE IN
BYTES:

EXTERNAL
REFERENCES :

EXIT:
WRITTEN BY:

IMAPTPCH

Utility for printing or punching sequential data sets.
Sequential data set. PARM field indicating operation to .
be performed. e

Printed or punched data set.

The PARM field is interrogated to determine which opera-
tion is to be performed; at which record in the data set
the operation is to begin; whether any subsequent records
are to be skipped; whether the entire operation is to be
repeated, and if so for how many times; whether sequence
numbers are to be placed in the output record (if punched)
and if so, what the initial value and the increment are
to be; whether printed output is to be spaced, and if so
how many blank lines (0 to 3) are to be between records;
whether conversion to hexadecimal or to EBCDIC is to be
made. The specified operations are performed and the
output data set written.

#REGS, #OPENP, #GOTO, #BITS, #BSECT, #RET, #CLOSEP
CTB, MOVEX, MOVE
3,176 bytes

CTB, MOVEX, MOVE, IECTTRNS, IMAPTPCH
Address in R14

Jean A. Garneau

.’
1
|
i

e ———

= A

A

Chapter 5
PROCEDURES

This chapter lists all the Job Control Language (JCL) procedures required to support

Member Name

ASMFC
ASMFCG
ASMFCL
#ASMFCZ

ASMFCLG
ASMFCLT

MOVE
COMPRESS
PDSMOD
RDRZ
RGET
RPUT
UT
ZEUS
ZOLD
ZREG
ZTEST

the Zeus system. A summary of the procedures, along with a brief description of them, is
presented in the following list:

Description

Assemble and store object module in Zeus library
Assemble and Go

Assemble and Linkedit

Assemble and store object code in Zeus object
code file

Assemble, link, and go

Assemble, linkedit, and store executable module
in Zeus Transient Routine file

Mode data set

Compress a partitioned data set

Modify a partitioned data set

Zeus reader

Extract data set off-line from RJE file

Add data set off-line to RJE file

Print/Punch file

Zeus procedure

Zeus Job (Old Zeus)

Zeus Job (Regular Zeus)

Zeus Job (New Zeus)

MEMBER NAME #ASMFC

// PROC
//7ASM EXEC .
//5YSL18 DD

/7 oD
//SYSPRINT DO
//5YSuUtl DO
//5YSUT2 0D
//7SYSUT3 DD

//

//5Y¥SG0 00

NAME=TEMP

PGM=IEUASM ¢ PARM=*NODECK ¢ LOADyNOXREF® y TIME=20
DSN=IMP1 . ZMACRO¢ DISP=S HR

DSN=SYS1 .MACL IB,OISP=SHR
SYSOUT=A,0CB=(LRECL=121,RECFM=FBM,BLKSIZE=363,BUFNO=5)
SPACE=(CYL9(393))oUNIT=(SYSDA,SEP=SYSPRINT)
SPACE=(CYL¢(343))oUNIT=(SYSDA,SEP=(SYSPRINT,SYSUTL))
SPACE=(CYLy(343))oUNIT=(SYSDA,
SEP=(SYSUT2,SYSUTL,SYSLIB))
DISP=0LDyOSN=SYS1.GARN(ENAME)

MEMBER NAME #ASMFCG
//ASM EXEC PGM=IEUASM,PARM=*NODECK(,LOAD®,TIME=10
//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,RECFM=FBM,BLKSIZE=363,BUFNO=9)

//s5YSL1IB DD
/7 00

DSNAME=IMP1 .ZMACRO, DISP=SHR
DSNAME=SYS1.MACLIByDISP=SHR

/7/75YSUTL DD SPACE=(CYLy(343)),UNIT=(SYSDA,SEP=SYSPRINT)
//SYSUT2 DD SPACE={CYLy(393))eUNIT=(SYSDAy SEP=(SYSPRINT,SYSUTL))

//SYSUT3 DD
7/

/7/5YSG0 DD
/7

//GO EXEC
//5YSLIB DO
7/ 00
//SYSLIN DO
/v 00

//SYSLOUT 0D
//SYSPRINT LD

UNIT=(SYSDA,SEP=(SYSUT2,SYSUTL,SYSLIB)),
SPACE=(CYLy(3,44))

UNIT=SYSDA¢ DSNAME=ELOADSETy SPACE=(CYLs(191))DISP=(MOD,
PASS)

PGM=LOADER¢COND=(84LT,ASM)
DSNAME=HUM]1 . SUBRTLIByDISP=SHR

OSN=IMP1 .SUBRTLIB,DISP=SHR
CSNAME=%,ASM.SYSGO,DISP={0LDyPASS)
ODNAME=SYSDIN

SYSOUT=A

SYSOUT=A

//SYSUDUMP 0D SYSOUT=A

MEMBER NAME #SASMFCL

//7ASN EXEC PGM=IEUASM,PARM=°L0OADy NODECK®,TIME=10

//SYSPRINT DD .SYSOUT=A,DCB=(LRECL=12]1 RECFM=FBM,BLKSIZE=363,BUFND=9)
//5YsSLIB DD OSNAME=IMPL .ZMACRO,DISP=SHR

/" 00 DSNAME=SYS1.MACLIB.,DISP=SHR

//SYSUT1 DD SPACE=(CYL¢(393)) UNIT=(SYSDA,SEP=SYSPRINT)

//SYSUT2 DD SPACE=(CYL(343)),UNIT=(SYSDA,SEP=(SYSPRINT,SYSUT1))
//5YSUT3 DD UNIT=(SYSDASEP=(SYSUT2,SYSUT1,SYSLIB)),

17 SPACE=(CYL¢(3,4))

//5YSGO DO UNIT=SVYSDA DSNAME=ELOADSET ¢ SPACE=(CYLs(141)),DISP=(MUD,

/7 PASS)

/7/LKED EXEC PGM=IENL jPARM=(XREF,LIST,LET)COND=(8,LTyASM)
//SYSPRINT DD SYSOUT=A,0CB=(LRECL=12]1 yRECFM=FBM,BLKSIZE=3634BUFNO=9)
//7SYSLMOD DO DSNAME=ETEMPIPDS) ¢ UNIT=SYSDAoSPACE=(CYL,(1ly1lol)),

/7 DISP=(MOD,PASS) 0030000
//5YSL1IB DO DSNAME=SYS1 .L INKLIB,DISP=SHR

17/ 0D DSNAME=HUM1 . SUBRTLIB,DISP=SHR

/1 DD OSN=IMP1.SUBRTLIByDISP=SHR

//SYSLIN 00 DSNAME=ELOADSET,DISP=(0LD,DELETE) 0024000
7/ DD DONAME=SYSIN 0026000
//SYSUT1 DD UNIT=(SYSDA ¢SEP=(SYSLIN,SYSLMOD)) 2

// SPACE=(CYLy(1,y1)}

MEMBER NAME #ASMFCZ
// PROC NAME=TEMP
//ASM EXEC PGM=1EUASM,PARM="NODECKLOAD,XREF®,TIME=20

e—

//SYSLIB DD
/7 DD

//SYSPRINT 0D

//5YSuUTl 0D
//5YSUT2 DO
//5YSUT3 DD
7/

//S5YSGO 0D

DSN=1IMP]1 .ZMACRO, DISP=SHR

OSN=SYS1.MACLIBDISP=SHR
SYSOUT=A,D0CB=(LRECL=121,RECFM=FBMyBLKSIZE=363,BUFNO=5)
SPACE=(CYL¢(343))4UNIT={SYSDA,SEP=SYSPRINT)
SPACE=(CYL9(343))UNIT=(SYSDA,SEP={SYSPRINT,SYSUT1))
SPACE=(CYL+(3,3))4UNIT=(SYSDA,
SEP=(SYSUT2,SYSUT1,SYSLIB))
DISP=0LD,DSN=1IMP1.Z0BJ (ENAME)

137

MEMBER NAME #ASMFCLG

//ASM

EXEC PGM=IEUASM,PARM=*NODECK,LOAD®,TIME=10

//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,RECFM=FBM,BLKSIZE=363,BUFNO=9)

//5YSLIB
1/
//5YSUT1
//75YSUT2
//SYSUT3
//
//5YSGO
//
//LKED

0D OSNAME=IMP 1 .ZMACRO, DISP=SHR

DO DSNAME=SYS1 .MACLIB,DISP=SHR

DD SPACE=(CYLy(3¢3))oUNIT=(SYSDAy SEP=SYSPRINT)

DD SPACE=(CYLy(343)) UNIT=(SYSDA,SEP=(SYSPRINT,SYSUT1))

00 UNIT=(SYSDA,SEP=(SYSUT2,SYSUT1,SYSLIB)),
SPACE=(CYLy(3¢4))

00 DSNAME=ELOADSEToUNIT=SYSDA¢SPACE=(CYLs(1,1)),
DISP=(MOD, PASS)

EXEC PGM=IEWL PARM=(XREFILET,LIST),COND=(8,LT,ASM)

//SYSPRINT DD SYSOUT=A,0CB=(LRECL=12]1,RECFM=FBMyBLKSIZE=363,BUFNO=9)
//75YSLMOD DD DSNAME=EGOSET (GO) yUNIT=SYSDAySPACE=(CYLy(1ylel))y

/7
//SYSLIB
1/

/7
//SYSLIN
/"
//75YSUT1
/7/

//G0

DISP=(MOD,PASS)

]} DSNAME=SYS1 .LINKLIBDISP=SHR

DD OSNAME=HUM1 .SUBRTLIB,DISP=SHR

00 OSN=IMP1 .SUBRTLIB,DISP=SHR

00 OSNAME=ELOADSET ¢DISP=({OLOyDELETE)

00 DONAME=SYSIN

00 UNIT=(SYSDASEP=(SYSLIN,SYSLMOD)) .
SPACE=(CYL,(1,1))

EXEC PGM=+*,LKED.SYSLMOD

//SYSPRINT 0D SYSOUT=A
//5YSUDUMP DD SYSOUT=A

MEMBER NAME SASMFCLY

/7
//ASM

PROC NAME=TEMP
EXEC PGM=IEUASMPARM= (NODECK) LOAD¢ XREF)T IME=10

//SYSPRINT DD SYSOUT=A,0CB8=(RECFM=FBM,LRECL=121,BLKSIZ2E=363,8UFNO=9)

/7/5YsL 18
/"
//5YSUT1
//SYSUT2
//5YSUT3
/7
//5YSGO
7/
//LKED

DD DSN=IMP1.ZMACROyDISP=SHR

DD DOSN=SYS1.MACLIB,DISP=SHR

DO SPACE=(CYLs(343))oUNIT=(SYSDA,SEP=SYSPRINT}

DD SPACE=(CYLy(393))UNIT=(SYSDA,SEP={SYSPRINT,SYSUT1))

DD UNIT={SYSDA,SEP=(SYSUT2,SYSUT1,SYSLIB)),
SPACE=(CYL,(3,%4))

OD DSN=GELOADSETUNIT=SYSDA.SPACE=(CYL,(1,1)),
DISP=(MODyPASS)

EXEC PGM=1EWL yPARM=(XREF¢LISToLET),COND=(09NE,ASM)

//SYSPRINT DD SYSOUT=A,0CB=(RECFM=FBM,LRECL=121,BLKSIZE=363,BUFNO0=9)
//SYSLMOD DD DSN=&E&GOSET(ENAME) yUNIT=SYSDA,SPACE=(CYL,(1slol)),

/7
//SYSL1B
//SYSLIN
//75YSUT1
//L0AD

DISP=(MOD,PASS)
0D DUMMY
DD DSN=GELOADSETDISP=(0OLO,DELETE)
DD UNIT=SYSDAySPACE=(CYLs(1,y1))
EXEC PGM=TLOAD¢PARM=(ENAME) yCOND=(0yNE,ASM)

//STEPLIB DO DSN=IMP1.DATAL IB.UNDERHIL DISP=SHR

//INPUT
//0UTPUT

DD DSN=L&GOSET,DISP={0LD,DELETE)
DD DSN=IMP1.TFILEsDISP=SHR

//SYSUDUMP DD SYSOUT=A

0018000

0030000

0024000
0026000
20032000

0038000

e E
!
i
{

MEMBER NAME MOVE

/" PROC SERL=USRLIBSER2=USRLIB¢SER3=USRLIB,SER4=USRLIB
//MOVE EXEC PGM=1EHMOVE

//SYSPRINT DD SYSOUT=A

//SYSuTl 00 UNIT=2314,01SP=0LD,VOL=SER=USRL IB

Al 00 UNIT=2314,VOL=SER=ESER1,DISP=0LD
1/N2 0D UNIT=2314,VOL=SER=ESER2, DISP=0LD
1/v3 00 UNIT=2314,VOL=SER=E SER3,DISP=0LD
//v4 0D UNIT=2314,VOL=SER=ESER4,DISP=0LD

———————

MEMBER NAME COMPRESS

e /7 PROC ON=

& //COMPRESS EXEC PGM=IEBCOPY

. //SYSPRINT DD SYSOUT=A

- //7INPUT DD GON sDSN=EPDS »DISP=0LD,UNIT=2314
E | 7/SYSIN DD DSN=HUML .PCSLIBLCOPY) , DI SP=SHR
P4 /7/5YSUT3 DD UNIT=DISK,SPACE=(TRK,(1y25))
//SYSUT4 DD UNIT=DISK,SPACE=(TRKy(1,425))

MEMBER NAME PDSMOD

/7%

//% UPDATE PARTITIONEO DATASET
//*

// EXEC PGM=IMAPDSMD

//SYSPRINT DD SYSOUT=A,DCB=(LRECL=133,BLKSIZE=399,RECFM=FBA)
//SYSLIB DD OSNAME=LPODS yDISP=0LD

MEMBER NAME RORZ ‘
E | // PROC LIB=*'IMP1.2ZSOURCE®yMBR=ZREG ; 0000001
E //1EFPROC EXEC PGM=IEFIRC PARM=°80503004001024907001SYSDA . 0000002
: //1EFRDER LU DSNAME=ELIB +(EMBR) ¢DISP=SHR 0000003
//1EFPDSI DO DSNAME=SYS1.PROCLIB,DISP=SHR 0000004
//1EFDATA DD UNIT=SYSDA,SPACE=(80+(5+100)9yRLSE,CONTIG) 20000005
// DCB=(LRECL=80,BUFND=2,BLKSI ZE=800,RECFM=FB,BUFL=800) 0000006

//SYSABEND DD SYSOUT=A,SPACE=(CYL,(10,10)) 0000007

P T

MEMBER NAME RGET

i //R EXEC PGM=RGETPUT,PARM=°0UT ,LLOGON®
i //STEPLIB 00 DSN=IMP1.DATALIB.UNDERHIL ¢DISP=SHR ‘
o //SYSPRINT DO SYSOUT=A,DCB=(RECFM=F ,BLKSIZE=100) ;
/75YSUDUMP 00 SYSOUT=A
//RFILE 0D OSN=IMP1 .RFILEsDISP=SHR

MEMBER NAME RPUT

/7 PROC LOGUN=TEMP

/IR EXEC PGM=RGETPUT,PARM="IN, ELOGON"®
//STEPLIB 0D DSN=IMP1.DATALIB.UNDERHIL yDISP=SHR
//SYSPRINT 00 SYSOUT=A,DCB=(RECFM=F ,BLKSIZE=100)
//SYSUDUMP 00 SYSOUT=A

//RFILE 00 DSN=IMP1 .RFILE,DISP=SHR

MEMRER NAME UT

& | //UT7 EXEC PGM=IMAPTPCH

a8 //SYSPRINT 0D SYSOUT=A,DCB=(LRECL=133,RECFM=FBA+BLKSIZE=399)
i | //SYSPUNCH DD SYSOUT=BDCB=(LRECL=804yBLKSIZE=240yRECFM=FB)

P % ng e

s aBl e TR

" T
 —

MEMBER NAME ZEUS

4 PROC PROG=STUDMODE LIB="IMPLl.PROGLIB"
//1EVUS EXEC PGM=&PROG,TIME=1000
//STEPLIB DD DISP=SHR ,DSN=ELIB

//CRTLO DD UNIT=050 720 CRT LINE 1
//CRTL1 DO UNIT=051 720 CRT LINE 2
//CRTL3 DO UNIT=053 720 CRT LINE 4
//DUMNY DD UNIT=AFF=CRTLO DUMMY TP LINE
//FILED 00 OSNAME=CAIL.DFILEV3,DISP=SHR
//FILEF DO DSNAME=CAI1.FFILEV3,0ISPaSHR
//FILEL DO OSNAME=CAI1.IFILEV1,0ISP=SHR
//FILEQ DD DSNAME=CAI1l.QFILEV3,0ISP=SHR
//FILER DD OSN=IMPl.RFILE,DISP=SHR

//TFILE DO OSN=IMPl.TFILE,DISP=SHR

//SUBRFL DO DISP=SHR yDSN=CAI2.SRFILE
//5Y5010 DD DSN=CAI1.S5YS010,DISP=SHR
//5YSO11l DD UNIT=2314,DSN=CAI12,SYS011,DISP=SHR
//5¥S012 DD OSNAME=CAIl.SYS012,DISP=SHR
//5Y¥5020 00 DISP=SHR yDSN=CAI2.5Y5020
//5YS021 DO DISP=SHR ¢DSN=CAI2.5YS021
//5Y5022 00 DISP=SHR ¢DSN=CAI2.5YS5022
//LDAFLE DD DISP=SHR ¢OSN=CAI2.CAILDA
//SYSLST DD SYSOUT=A,UNIT=SYSOUT

//701050C DD UNIT=AFF=DUMMY

//7 0D UNIT=AFF=DUMMY

// DO UNIT=AFF=DUMMY

// DD UNIT=AFF=DUMMY

/77 0D UNIT=AFF=DUMMY
/77 0D UNIT=AFF=DUMMY
' 0D UNIT=AFF=DUMMY
// DD UNIT=AFF=DUMMY
/7 0D UNIT=AFF=DUMMY
//ILINE1 0D UNIT=AFF=CRTLO
// oD UNIT=AFF=CRTL1

/17 00 UNIT=AFF=CRTL3

//SYSUDUMP DD SYSOUT=F,UNIT=SYSOUT

J/RJEFILE DD OSNAME=IMP1l.RJEFILE,DISP=SHR

//%

//% THE FOLLOWING 3 DD CARDS ARE REQUIRED ONLY IF THE ZEUS WRITER
//¢TASK IS TO BE MADE ACTIVE

//#% !

//SYSWTRL DD OSN=SYS1.POSTFILE,DISP=SHR

//SYSWTR2 DD DSN=SYS1 .WTRSPUOOL yDISP=SHR,DC B=RECFM=U

//SYSWTR3 DD UNIT=00E,DCB=(RECFM=UM,BLKSIZE=133)

141

N——

T —— T

MEMBER NAME Z0LD

//1MPONL JOB (253A¢ IMPONL0)¢°0LD ZEUS® +CLASS=M¢MSGLEVEL=1
// EXEC LEUS,PROG=STUOMODF,PARM=CWV2108J

Z/SYSIN DD *,0CB=BLKSIZE=80

(10911909 (74896)9(495¢3)¢ALLOCATE=8800

MEMBER NAME ZREG

//71MPONL JOB (253A¢ IMPONL 40) s *CURRENT ZEUS®CLASS=M,MSGLEVEL=1
// EXEC IEUS,PARN=CWV2108BJ,PROG=STUDMODE

//SYSIN DD #,DCB=BLKS [ZE=80
(1001199)9(T798¢6)9(495,3)¢ALLOCATE=8800

MEMBER NAME Z2TEST

//1MPONL JOB (253A, IMPONL ¢0) ¢*NEW ZEUS® ,CLASS=M,MSGLEVEL=1
// EXEC ZEUS,PROG=TESTMODE,L IB=°SYS1l.GARNEAU®,PARM=CWV2108BJ
//SYSIN DD #*,0CB=BLKSIZE=80
(1001199)9(T9B896)9(495¢3)ALLOCATE=8800

142

