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SUMMARY

Over the past twenty years, there has been increasing
emphasis on research concerned with human decision making
abilities and with the development of formal methods to aid
decision makers in reaching logically consistent choices.
This broad area of research is of particular importance in
national security contexts where key decision makers must
resolve extremely complex decision problems characterized by
uncertainty, conflicting information, and enormously high
stakes.

This technical report presents a sumrt’ary of major
portions of the literature bearing on people’s ability to
process information and to reach decisions. It also contains
a review of laboratory and field assessments of judginentally-
based decision aiding systems embodying decision analytic
concepts.

The evidence reviewed provides a strong research basis
for the conclusion that unaided human judgment in complex
inference and decision tasks is highly fallible. Formal
algorithms (decision models) applied in these contexts
typically yield better results than global human judgment.
The data supporting these conclusionS suggest that people
are better at making simple judgments than they are at
aggregating large amounts of information to form overall
decisions.

Consistent with these findings, the decision aiding
technologies reviewed in this report are based on principles
of task disaggregation. A decision problem is divided into
its relevant attributes, each of which is well within the
judgmental capacities of the decision maker. People make

ii

-

~

. - --

~

- . - ------ - - -—  .—. . - - . - .--- --.- —.--— ,. -—- - - — -.- - - -



~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~

judgments about attribute probabilities and values, and

formal models are used to aggregate these judgments to

arrive at a decision. A large body of experimental and

experiential evidence supports the notion that this divide-
and-conquer approach leads to substantially better inferences
and decisions than otherwise would be obtained. This re-

search divides naturally into two parts, one dealing with

probability judgments, the other with value (utility)

judgments.

Probabilistic Information Processing (PIP) systems
decompose the task of probabilistic inference. People
identify relevant states of the environment and information
sources; they also estimate likelihood ratios linking the
data sources to the environmental states. Aggregating
information across data is assigned to Bayes’ theorem. The
literature leading to the formulation of PIP systems and
evaluating their application is extensively reviewed.

The second major input to decision making is judgments
of value. This requires that each possible consequence of
the action alternatives being considered be assigned a
single numerical value reflecting the utility of that conse-
quence relative to all other possible consequences. Both
the theory and methods for assigning utilities to complex
outcomes have recently become available. The technology
based on multi-attribute utlity theory is exciting and
promising , but still relatively in its infancy . The growing
body of evidence, both published and unpublished , on develop-
ment and application of this technology , as well as some of
its as yet unsolved problems, is reviewed in depth.

-.  - - 
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I
PREFACE

This technical report contains a review of the research

literature bearing on human decision making abilities and

presents a summary of field and laboratory experience with

decision—theoretic aiding systems which have been developed

to improve the coherence of judgments in operational decision

settings. The review was initiated by Decisions and Designs,

Incorporated (DDI) under support from the Defense Advanced

Research Projects Agency. In the course of the literature

search , DDI personnel happened upon an unpublishe d manuscrip t

prepared in late 1973 by Gregory Fischer and Ward Edwards’

(then at the University of Michigan), under support from the

6570th Aerospace Medical Research Laboratory. The paper by

Fischer and Edwar ds turne d out to be an excellen t treatment
of the same subject matter targeted for review by the DDI

researchers and only sligh tly outdated by the four years
that had elapsed since its preparation. The manuscript

captured and well-reflected about 14 years of relevan t

research (roughly 1960 through 1973). With the kind per-

mission of the 6570th Aerospace Medical Research Laboratory

to use the unpublished repor t (and , of course , with the
permission of the authors, as well ), the sco pe of the planne d

review effort was changed to updating much of the Fischer-

Edwards material with emphasis on the addition of field and

laboratory assessments of decision aiding systems that had

occurred since 1973.

~Dr. Pischer is now at the Institute of Policy Sciences andPublic Affairs, Duke University , Durham , North Carolina.
Dr. Edwards is at the Social Sciences Research Institute,
University of Southern California, Los Angeles. The third
author , Dr. Kelly, is with Decisions and Designs, Incorporated ,
McLean , Virginia.
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Sections 1.0 through 3.0 of this report summarize the

now—extensive literature which points to profound human

f allibi lities in probabilis tic decision makin g tasks , and
presen t data bearing on the usefulness of a varie ty of
decision aiding concepts which stem from a Bayesian approach

to decision making in the face of uncertainty. Inasmuch as

the general implications to be derived from these sections

are generally unchanged by rese arch that has been conducte d

since 1973 , and since an excellen t review of the intervenin g

literature has been recently completed,2 Sections 1.0 through

3.0 remain essentially as presented in the original 1973

paper wi th only minor modifications and additions having
been made.

In keeping with the major purpose of this review paper,

which was to summarize evidence bearing on the worth (utility)

of decision aiding metho ds , Section 4.0 has been expanded to
reflect applied experience with a variety of decision aids,

many of which were developed and introduced under the ARPA-

supported Advanced Decision Technology Program.

For those who seek a definitive quantitative answer to

the question of decision aid effectiveness , the results
summarized here will be disappointing . Although field

applications of decision aiding methods have occurred with

increasing frequency over the past five years , no one is in
a position to say if , or by how much, actual decisions were
improved through the use of aiding methods. There are many

reasons for this apparent shortcoming, not the least of

which is the very practical problem of having a busy, often

harried , operational decision channel operate in a struc tured

2Slovic, P., Fischhoff , B., and Lichtenstein, S. (1977).
Behavioral Decision Theory. Annual Review of Psychology.
28: 1—39.
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experimental mode for measurement purposes. Any such re-

quiremen t is bound to brin g the delica te matter of tech-
nology transfer to an early end. Other problems , some of

which are unique to decision aid evalua tion , inclu de:
the good decision-bad outcome phenomenon , the lack of ob-
jective cri teria against which to evalua te decisions , and

the fac t that mos t significant decision problems (those that
woul d meri t aiding) are uni que , single-occurrence events not
amenable to the systematic accrual of evidence.

For these and other reasons, the state of assessment of
operational decision aids is less objective and defini tive
than desired . Much of the evidence is anecdotal; more of it

comes from laboratory work via cons truc t and conver gent
vali dation approaches , a literature reviewed in part in this

report. While the validation work continues and until

occasional natural experiments in field settings offer

firmer evidence of the efficacy of decision aids , the question
of their value will be answerable only in terms of extensions

of labora tory evidence , axioma tic reasonin g , and throu gh
user acceptance.

viii
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DECISION THEORETIC AIDS FOR INFERENCE , EVALUATION,
AND DECISION-MAKING : p,~ REVIEW OF RESEARCH AND EXPERIENCE

1.0 INTRODUCTION

Computer-based decision aiding systems have been oriented

primarily to the problems of collecting , displaying, storin g ,
and retrieving information. This reflects a common belief

that lack of informa tion is the major obs tacle to good
decision makin g (Slovic and Lich tens tein, 1971). Modern

mili tary command pos ts , wi th their elabora te dis plays and
communications systems, typify this philosophy . But after

two deca des of research on human decision makin g and judg-
ments , psychologis ts are now in a posi tion to argue persua-
sively that this is not an adequate approach to decision

system design. Th,e available research demonstrates that

people are severely limited information processors who base

their decisions on a small number of items of information

(Slovjc and Lichtenstein , 1971 ; Slovic , Fischhoff , and Lich—

tenstein , 1977). Thus, management informa tion sys tems that
merely provide decision makers with large amounts of data

are misdirected ; the decision makers will be unable to use

most of this information.

Edwards (and many others) has proposed a different

approach to the design of decision-aiding systems. (See,

for example, Edwards , Lindman and Phillips, 1965). Edwards’

approach is based upon a Bayesian forinulatio~ of the decision-
making process. From this point of view a decision problem

is decomposed into two major subtasks: ~a) dia gnosing the
state of the decision maker ’s environment, and (b) based
upon this diagnosis, selecting that course- of action with

the highest expected utility.
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This review paper is divide d into ~wo major sections .
The firs t s ummarizes a body of litera ture abou t the human
ability to process information and make decisions. The

second section discusses the current state of the art in

judgmentally based decision-making systems. Here, we con-
sider not only the Bayesian approach, but also the regres-
sion or “bootstrapping ” approach to augmenting people ’s

decision—making capabilities.

Throu ghout thi s d iscussion , we will of ten use the term
“decision maker ” as if it referred to a single person . This

usage partially reflec ts the fact that res earch has been
almost exclusively focused on the decision-making processes

of single individuals. But more importantly , the usage
reflec ts the fac t that norm ativ e decision theory as sumer the
exis tence of an actor wi th an internally consis tent set of
beliefs and values. While such an assumption may be dubious

in the case of indivi duals , it is obviously false at the
level of complex or ganizations (March and Simon , 1958;

A llison , 1971). Later in this paper, we will argue , however ,

that norma tiv e decision theory can and should be use d to
reconcile conflicts of belief and value within organizations

so that or ganiza tions , or at least or ganiza tional subuni ts ,
may act in a rational and internally consistent fashion.

Thus , while most of the experimental studies we review will
treat the inf erences and decisions of sin gle individu als ,

most of the applied decision-aiding work we discuss has

involv ed mul tiple decision makers operating in an organiz a-
tional setting.

2
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I
2.0 DESCRIPTIVE STUDIES OF HUMAN DECISION MAKING CAPACITIES

Following the Bayesian formulation of a choice situation ,

our discussion of human decision-making abilities is divided

into two sections. The first deals with people ’s abili ty to
make inferences abou t the state of the environmen t and abou t
the possi ble consequences of the actions that might be
undertaken. The second considers human ability to integrate

these inferences with judgxnent3 about the value of the

possible consequences of actions to arrive at a final decision .

In this framework , probabilistic inference is the first

stage in the overall decision-making process.

2.1 Probabilistic Information Processing

2.1.1 Simple Bayesian inference — Decision makers

typically find themselves in poss ession of one or more items
of informa tion each of which is relevan t to dia gnosi s of the
state of their environment, but none of which are definitive .

The decision maker ’s goal in such a situation is to extract

from the data at hand the maximum amount of information

about the state of the environment and about the possible

consequences of actions in that environment. In addition ,

the decision maker will want to revise these opinions in the
light of any new evidence that becomes available during the

course of the decision—making process.

Bayes ’ theorem provides a formally optimal

procedure whereby the decision maker can aggregate information

across a set of independent data. Consider the case where

the deci sion maker can cons truc t an exhaus tive , finite set
of mutually exclusive hypotheses about the state of the

environment, and let these hypo theses be deno ted by 1119

3 
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H2 ,  Hn •
1 For example , H1 might be the hypothesis “The

enemy will attack objective X tomorrow , ” 112 the hypothesis
“The enemy will  attack objective Y tomorrow , ” and H3 the
hypothesis “The enemy w ill remain in hi s presen t defen sive
position tomorrow .” Note that exhaustiveness is often

obtained by fiat. Definition of a meaningful and manageable

se t of hypothes es will of ten represen t a major obstacle to
applying Bayesian decision theory in real world contexts.

• Here we simply assume that such a set of hypotheses has been

created. Next, let D1, D2, Dm be a set of data or
observations bearing on the true state of the environment.

Then , when cer tain additional assumptions are met, Bayes ’

theorem may be sequentially appli ed to revise the decis ion
maker ’s opinions in light of these data. In particular

P(Dk IH. ) P(H.)
P(HIIDk) = 

1 (1)

Here P(FI~ ) is the prior probability assigned to hypothesis

in light of all past data but prior to the consideration
of Dk; P(HjIDk) is the pos teri or probabili ty of Hi in light
of Dk and all prior information ; P(Dk JH j) is the probability

that Dk would be observe d given that Hi is true ; and P(Dk)

~ 
P(DJJH~ ) P (H.) is the uncon ditional proba bili ty of observin g

Dk. Bayes ’ theorem may also be wr itten in the odds likelihoo d

ratio form

11n many s ituations, the possible states of the environmen t
depend on the course of action selected by the decision maker.
This complicates the inference process but does not alter
the logic of the process or the rational solution . Henceforth ,
we generally ignore the distribution between predicting
states of nature and predicting states conditional on acts.

4 
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P ( H i I D k
) 

— 

P(DkIH.) P(H~ ) (2
P(H

J
IDk) P(Dk IH j) P(H~ )

or

= L~)0, (2b)

where

P (H
~ 

j Dk)
= , the posterior odds of H. to H.,
P(HjIDk) 

1 J

P(DkIH j)
L = , the likelihood ratio for Dk9

P(Dk IH
J
)

and

P(H)~~
= , the prior odds of H. to H..
P(H~ ) 

1 J

Thes e two forms of Bayes ’ theorem assu me : (a) that each
datum is reliably obs erve d and repor ted , (b) that the state
of the environment remains stationary (or constant) during

the time period of interest, and Cc ) that the data observed

are condi tionally independent of one another with respect to

the hypotheses of interest. To define the conditional

independence condi tion more precisely , Dk is said to be
conditionally independent of D1 with respect to Hi if and
only if P (Dk IH j, D1) = P(D

kIH i).

This simple formulation of a probabilistic

inference problem has given rise to over fifteen years of

5
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research in which people ’s inference processes have been
compared with those prescribed by Bayes ’ theorem . Rapoport

and Wallsten (1972) and Slovic , Fischhoff , and Lichtenstein
(1977) provide excellent reviews of this literature. In

general , humans have been foun d to be very suboptimal pro-
cessors of probabilistic information . Although they typically

revi se their opinions in the same direc tion as Bayes ’

theor em, they do not revise them enough. This conclusion is

based on a variety of experimental tasks in which subjects

have been aske d to make inferenc es about which of two or
more statis tical models has generated a given set of data.
For example , Phillips and Edwards (1966) used bookbags

filled with poker chips as binomial data generators . In one

condition , one bag contained 60 red and 40 blue chips , the
other 40 red and 60 blue. On each trial , one of the two

bags was randomly selected. Then a sample of chips was

drawn from the bag , one at a time, each sampled chip being

returned to the baa before the next one was selected. The

primary advantage of this and other tasks involving statistical

data-generating processes is that they permit the calculation

of “ objectively ” optimal Bayesian posterior odds. Since the

Philli ps & Edwar ds study many other experimen ts have repli-
cated the or iginal fin ding that peop le are conserva tive
information proc essors , that is, that they extract less

certain ty from sample data than does Bayes ’ theorem .

Moreover , this resul t has been obtained not only wi th binomial
data—generating processes, but also wi th mul tinomial (Philli ps ,
Hays, & Edwards , 1966) and normal data generators (DuCharme
& Peterson , 1968).

After the conservatism effect was well established ,

many inves tiga tors shif ted their attention to the probl em of
determining its cause. One popular hypothesis has been that

subjects misperceive the diagnosticity of data. In terms of

Equation 2 , they incorrec tly assess the likelihood ratio.
Lichtenstein and Feeney (1968), for example , asked subjects

6



to predict which of two targets was under attack by observing
the loca tions where bom bs actually impacted. In making

these inferences , subjects were told that the distribution
of bomb hits around the intended target was described by a

circular normal density function. The subjects , however ,
apparently simplified the task by considering only the ratio
of the distances from the bomb’s impact point to each of the
two targets. A number of other experiments have alsc found

that subjective sampling distributions deviate substantially
from the formally correct sampling distributions. In several

cases, subjective sampling distributions ~ave been found to
be too flat , a result which leads to the prediction of

conserva tism (Peterson , DuCharme, & Edwards , 1968; Wheeler &

Beac1 , 1968). Even worse , Kahneman and Tversky (1972) have

found that subjective sampling distributions are almost
totally unaffected Ly sample siz e, an extremely severe
violation of the formally correct statistical models.

A second explanation of the cor servatis~ effect

hypothesizes that subjects are unable to aggregate information

across data (Edwards , 1968). This hypothesis arose naturally

from the observation that conservatism was substantially

greater in large samples of data than in sr’all samples. In

her dissertation research, Wheeler (1972) obtained very

strong support for the misaggregation hypothesis. She found

that over a very wi de range of odds levels , odd s revisions
based on but a single datum were nearly optimal. But over

the same range of odds levels, inference based on several
data were quite conservative.

Misperception and misaggregation were originally
viewe d as competing hypotheses. For instance , the subopti-

mality of subjective sampling distributions was explained as

arisin g from the misaggregation of the data in the samp le
(Edwards, 1968). By now, however , it is clear that mispercep -

tion and misaggregation are complementary explanations of

7
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conservatism and that both contribute to the subo ptimality
of human inferences (Phillips, 1966; Rapoport & Wallsten,
1972).

Still another interpretation of conserva tism is
the hypothesis that a res ponse bias effec t causes it .
DuCharme (1967), for examp le, using two normal distributions

differing only in mean as his data generators , found that

subjects were reasona bly accur ate in odds es timates between
1:10 and 1C:l , and conservative outside that range. This

combines with the fact that almost any data aggregation

experiment requires very extreme posterior odds or proba—
bili ties to sugges t that perhaps subjects are simp ly reluc tant
to estimate such large numbers. This, of course , is a
particular version of the nhisaggregation interpretation--a

version quite d i f f e r en t  in spiri t from that which supposes
that something goes systematically wrong with the data

aggregation process inside the head.

DuCharxne ’s f inding and interpretation are
sharply challenged by Wheeler ’ s Ph.D.  thesis (1972) .  She
also used two normal distributions di f f e r i ng only in mean ,

usin g visually d is played extents instead of numbers as her
stimuli. The most important feature of her experiment was

its use of very carefully cons truc ted sequenc es of stimuli ,

inclu ding some in which the Bayes ian posterior odds rema ined
well within the range from 10:1 to 1:10 for sequences of ten
stimuli. Her main finding was that even within that range

subjects were systematically conservative--as conservative
within the range as outside it.  She found no more conservatism
for ex treme odds than for odds fallin g wi thin the central
range , once the ef fec t  of number of data items is taken into
account.

The issue of the locus of conserva tism is not
totally resolved as an abstract scientific question . 

It8
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seeme likely that both misa ggregation and mis perce ption play
a role; response biases may well do so also. While the

issue is important for science , it is perha ps les s impor tant
for application. From the point of view of applica tion , the

main point is that conservatism is wasteful. Indeed, the

accuracy ratio, the mos t fre quent index of conserva tism in
this literature, can be directly interpreted as an index of
waste ) An accuracy ratio of .20 , for example , means that
80% of the data (and so perhaps of the money spent gathering
data) have been wasted on suboptimal information processing--
in the sense that optimal informa tion pro cess ing would have
reached the same degree of cer tainty on the basi s of only
20% of the information that was in fact used. The challenge ,

then , is that of reducing or eliminating this waste.

Some scientists interested in this topic have

taken to ques tionin g the whol e line of res earch and thought
that bears on conservatism as irrelevant to psychology .

They argue that Bayes ’ theorem and Bayesian posterior odds
are ex ternal, ar bitrary standards , irrelevan t to human
thinkin g processes , and that conserva tism is not a psycho-
logical phenomenon. This argument seems quite strange to

us. It is somewhat like saying that comparison of a scale ’s

reading with the true weight of the object being weighed is

irrelevant to understanding the scale. In a sense , that may
be true . Yet anyone interested in usin g that sc ale for its
intende d prac tical purpose w ill be especially interes ted in
comparin g its reading with known true weights. Moreover,

such comparison easily leads to more profound understanding

of the processes underlying the scale ’s operation , as has
also happened in the conservatism literature. It is always
useful in psychophysics to have a model of the stimulus , and

to relate sensory phenomena to that model. In human proba-

bilis tic inference , models of the data-generating process

1See Section 2.1.8.

9
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(where known ) and Bay es ’ theorem together cons titute the
appropriate model of the stimulus—-and are as useful to the

study of human inference as Fourier analysis is to the study
of the psychoph ysics of sound .

2.1.2 Multi—stage inference - The inference tasks

descr ibed above are consi derably simpler than many face d in
real-world contexts. Here we consider the additional com-

plex ities intro duce d when the inference process involves
several levels of analysis. Consider, for example , the case
of data repor ts subject to error (as they will be in almos t
all realistic contexts). In the context of a hypothetical

military intelligence problem , suppose that a commander
wishes to predic t whe ther the enemy will (H1) or will not
(H2) attack his posi tion X in the followin g wee k, and that
on the basis of all prior in forma tion the comman der beli eves
that it is equally likely that the enemy will or will not
attack. That is, P(H1) = = .5. Assume also that the

commander has intelli gence repor ts that indica te whe ther the
enemy is (D 1) or is not CD 2) massing troops and supplies for
this attack. These intelligence reports are not wholly

diagnostic , however , for the enemy might give the appearance
of attacking objective Y. in order to divert friendly forces

from the true objective. In addition, the enemy can attack
wi thout makin g preparations by usin g res erves which he has
stored. Suppose that the commander ’s beliefs about whe ther
the enemy will make preparations given that he is or is not
planning to attack are summarized by the matrix below .

P(D1IH~ ) P(D2IH~)

H1: Attack .9 .1

H2 : No Attack .1 .9

10 
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For example , the commander believes that if the enemy decides
to attack , the odds are 9:1 that he will mass troops and

supplies for the attack .

The commander ’s inference problem about the
enemy ’s preparations is not completely reliable. Suppose
that the enemy ’s security is very good , so that fr iendly
intelli gence sources may fail to detect preparations which
are undertaken. In addition , assume that frien dly intelli-
gence sour ces may falsely repor t attack preparations when

• none in fact have occurred. Let R1 denote the intelli gence
report “It looks as if the enemy is preparing to attack ,”

and R2 the report “No enemy attack preparations have been
observed.” Suppose that the commander ’s beliefs about the
reliability of hi s intelligence reports is summarized by the
matrix below.

P(R1: “Preparing ”jD~) P(R2: “No PreParations ”~ D~ )

D1: Prepara- .6 .4

tion

D
~~
: No Prep- .2 .8

aration

For example, the commander bel ieves that the odds are 3:2

that his intelligence sources will detect enemy preparations
if they occur , but 1:4 that his sources will falsely report
preparations which have not been undertaken. The entire

struc ture of this inference p roblem can be represen ted by
the probability tree in Figure 2—1 .

Even though this p roblem is highly simp lified ,

it is not intuitively apparent what conclusions the commander

11
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should draw. For example , suppose he receives the report
that the enemy has been observed makin g prepara tions for an
attack . One strategy which experimental subjects sometimes

adopt is to ignore the unrelia bili ty of the repor t, treating
it as a true datum (Kelly, 1972). If a commander adopted
this inference strategy in the presen t example , the repor t
of enemy preparations woul d lead him to assi gn 9:1 odds to
the hypothesis that the enemy would attack . A second and

intui tively more appealin g stra tegy woul d be to degrade the
9:1 odds of attack to take account of the possible unreliability

of the report; for example , multiplying the 9:1 odds by .6,

the probability that the report is correct, to obtain final
odds of 5.4:1 in favor of the attack hypothesis. Both of

these inference strategies lead to ex treme es timates ,
however , for the objectivel y correct posterior odds in favor
of attack are only 2.33:1. In fact , both of the two heuristic
approaches to multi-stage inference discussed above will

produce extreme estimates in a wide variety of contexts.

Experimental studies of intuitive multi-stage

inference have generally foun d that subjects ’ inferences are
excessive relative to multi—stage versions of Bayes ’ theorem
(Snapper & Fryback , 1971). In one particularly interesting

experiment, Schum , DuCharrne , and Pitts (1971) had subjects
make tachistoscopic observations of data from which they

were to make inferences. Here unreliability was introduced

by the subjects ’ own perceptual errors. As in other multi-

stage inference experiments , estimates are generally excessive
relative to Bayes ’ theorem. Subjects adjusted their inferences

to reflect the unreliability of their observations , but not

enough.

Gettys , Kel ly ,  arid Peterson ( 1973) also obtained
extremism in a multi-stage inference task involving multinoinial

data generators. They found that their subjects fall into

two groups . Median data for the larger of the two groups
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was almost perfectly described by the “best—guess” strategy .

This is the second of the heuristic strategies described

above . Median data for the smaller group of subjects was
more nearly approxima ted by the optimal Bayesian odds. The

Bayesian model differs from the best—guess strategy in that

the best—guess strategy considers only the datum favored by

the report, then degrades the inference based on this datum
to reflect the unreliability of the report. The Bayesian

model , on the other hand , consid ers also the possi ble truth
of the datum not favored by the report. Steiger and Gettys

(1972) have obtained further support for the best—guess

model in a task in which sub jects merely indicated which of

two hypotheses was more likely on the basis of unreliable

data.

In contrast to the studies cited above , Youssef
and Peterson (1973) found that multi-stage inferences , while

generally subo ptimal, are not always excessive relative to

Bayes ’ theorem. They found that , for a given cumula tive
Bayesian pos terior odds, multi-stage inferences were always

excessive as compared to simple inferences. When the optimal

pos terior odds were lar ge, both simple and multi-stage
inferences were conservative ; when the optimal posterior

odds were small , both were excessive. It is significant

that this experimen t differs from the ones discussed above
in that inferences were based on several observations rather

than one. The best-guess strategy , which generally produces

extreme estimates for one—observation inference problems,

may not be as intui tivel y appealin g in the multi-observation

case.

Although more rese arch on the topi c of multi-
stage inference is required , it is by now clear that such
inferences are frequently very suboptimal. And in many
cases they are substantially excessive . From a decision—

making standpoin t , excessiveness seems even more dangerous

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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than conservatism. Falsely concluding that a potential

,enemY had initiated, an attack , for example , might precipitate
a disastrous exchange of nuclear weapons.

2.1.3 Non~stationary environments - Inference problems

are further compli_ated when the assumption of a stationary
) (unchan ging) ènvir~nment is violated . Yet many decision-

making systems are designed explicitly to detect changes in

a non-stati~~iary environment. The primary function of early

warning systems , for examp le, is to detect transitions from

a state of peace to a state of war.

~e will illus trate the logic of non—stationary

inf erence ’~~ith another simple example . Suppose a commander

has reason to believe that the enemy will attack his posi tions ,

and that his prior odds favor attack (H1) over non-attack

(H2) by 3:2. Suppose also that he can obtain data as to

whether the enemy is (d1) or is not (d2) marsh allin g tanks
fo~ the attack , and that the odds are 7:3 that a tank
buildup will be observed if an attack is planned , but only

3:7 if no attack is planned. (Here the problem is simplified

by assuming that all reports are completely reliable.) The

commander ’s inference problem is complicated by the fact
that the enemy commander can change his mind . That is, even
if he decides not to attack today, he may reverse his decision
tomorrow . Assume that the friendly commander believes that

the odds that the enemy will switch fran, a “no attac&” to

“ attack ” decision , given an initial “no attack ” decision ,
are 50:50. But if the enemy commander in i t ia l ly  makes the
“attack ” decision , he will have to go through with i t .

This inference problem can be represented by the

multi—stage inference tree of Figure 2-2. Here H1~ deno tes
“attack decision made on day i , ” for i = 1, 2. Similarly ,

deno tes “tank buildup observed on day i,” and d2~
deno tes “no tank buildup observed on day i ,” for i 1, 2.

15
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A few simple calcul ations reveal that one can
get into serious trouble by treating a non—stationary environ-

ment as if it were stationary . Suppose, for examp le , that

no tank buil dup is observ ed on day 1, but a buildup is
observed on day 2. If we treat the environment as stationary ,

an app lication of Bayes ’ theorem shows that these two
observa tions off set one ano ther , and

P(H1
2
~d2

1
1 d1

2)

2 1 2 = 60:40 or 1.5:1,
P(H2 I d 2 ,d1

the prior odds of an attack. But the correct odds , as

calcu1~’ted from Figure 2—2 , are 5.33:1 in favor of attack .

Failure to consider non-stationarity in the problem outlined

above woul d lead to extremely bad inferences.

Actual ly ,  the preceding discuss ion also illustra tes
the slipperiness of the concept of non—stationarity . In

order to draw Figure 2-2 and do the calculation based on it,

it was necessary to conce ptualize the env ironmen t in a
manner that treated the possibility of change as a stationary

fact of life. Stationarity is a property of any model; it

simp ly means that the char acter and parame ters of the mode l
remain unchanged over the time period of interest. Non-

stationary models are useless -- and so models of non—stationarity
are sometimes indispensable. The way to deal with a changing

world is to find a conceptualization that treats the possibility

of change in an unchanging way . Figure 2-2 is an example .

Experimen tal studies of intui tive inference have
revealed that people show a surprising ability to detect

changes in non—stationary processes. Rapoport (1964), for
example , had sub jects observe even ts genera ted by a binomial
process and asked them to es timate the parameter p of that

16 
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process. They were not warned that the actual parame ter
value of the data generating process would be changed during

the course of the experiment. Despite this, the subjects

did a good job of trackin g the firs t shif t, and an excellen t

job of tracking subsequent shifts. Robinson (1964) obtained

the same results in a similar experiment.

In a later study , Chinnis and Peterson (1970)

aske d subjec ts to make infer ences about whi ch of two binomial
processes had generated a sequence. Their task differed

from standard bookbag-and-poker-chip paradigms , however ,

bec ause there wa s one chan ce in ten that a new bookba g woul d
be selected between trials. Thus, their task closely resem-
bled the non—stationary attack scenarios discussed above.

Subjects ’ es timates were genera lly conserva tive rela tive to
the optimal Bayesian inferences. Nonetheless , statistical

analyses revealed that the subjects ’ judgments could be much
better approximated by a non-stationary Bayesian model than

by a stationary Bayesian model.

So although only a sm all amoun t of experimen tal
evidence is available , it would appear that people are

rather good at making intuitive inferences about non—stationary

processes. More studies are required , however , wi th par ticular
emphasis on complex inference situations. For it seems

quite possible that when burdened with a large amount of

informa tion , people will be forced to adopt simplifying

strategies which will produce suboptimal inferences. Even

in the Chinnis and Peterson study, subjects exhibited a

marked degree of conservatism .

2.1.4 Inferences based on conditionally nonindependent

data - In all of our previous discussion we have made the

simplifying assumption that all data are independen t wi th
respect to the hypotheses of interes t, that is , that
P(DiID j? Hk) = P ( D iIHk) for all i, j ,  k. This assumption

L. - 
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cannot be justified in many real-world contexts.

For example , suppose that D1 and D2 are photographs
of a given poin t taken by two differen t aircraf t and that
the second photograph was taken one hour after the first.

Suppose also that an intelligence analys t examines both
photos and observes a large fuzzy object which he believes

might be a well camouflaged enemy missile site. Both photos

are clearly relevant to the hypothesis that the enemy has

deployed missiles in the area being photographed . But they

are not independent with respect to this hypothesis. For

given the presence of a lar ge f u z z y  object on the f i r s t
photo, it is highly likely that a similar ob ject will appear
on the second photo , regardless of whether it is a missile
or not.~ Tha t is , P(D2 1D 1,H) > P(D~~H). In this example , D1
and D2 are redund ant, and failure to compens ate for this
redundancy woul d lead to an excessive es tima te of the proba-
bility that the enemy is deploying missiles. Examples can

also be cons truc ted in whi ch the occurren ce of two data is
more informative with respect to a given hypothesis than

would be indicated by the independent consideration of each

datum.

Several studies suggest that people are able to

adjust their intuitive inferences quite well when faced by

conditionally nonindependent data . Schum (1966) had subjects

make inferences using six data sources. Two pairs of data

sources were nonindependent in some experimental conditions .
Subjects were alerted to the possibility of nonindependence ,

tol d where to loo k for nonind ependence , and asked to tally

the join t frequency of occurrences of data from the desi gnated
sources. Given all this help , subjects did a f a i r l y  good
job of adjusting for the noriindependence. Schum found that

a Bayesian model which took account of nonindependence

provided a much better f i t  to the mean data than did a
simple Bayesian model which treated the data as independent.

19
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F Nevertheless, rank order correlations between the individual
subjects ’ responses and the Bayesian model were only moderate ,
typically in the .5 to .65 range.

In a similar series of three experiments , Schum ,

Southard , and Wombolt (1968) again found that intuitive

inferences based on six items of data with two—way non-

independencies were quite close to the optimal Bayes ian
values . But with samples of 12 or 18 data with pairwise

nonindependencies , intui t ive inferences were substantially
conservative.

Again it is di f f i c u lt to come to f i rm conclu-
sions on the basis of so little experimental evidence . The

data available suggest that subjects can make fairly good
inferences on the basis of nonindependent data provided that
the number of data being processed is small , but that they

do poorly with large samples of data. It should also be

noted that these studies bypassed the very difficult problem

of locating nonindependencies. Subjects were told which

data sources were correlated , and the use of frequency
matrices made the nature of the nonindependencies fairly

transparent. Further , subjects never had to cope with
three-way or higher order data interactions . Finally , it

should also be noted that the two studies cited above differed

from most simple inference experiments by using subjects
with extensive experience in inference tasks. Naive subjects

might have behaved less optimally.

2.1.5 Multi—cue inference — All of the studies discussed

above have utilized Bayesian inference models as a normative
standard against which intuitive inferences may be evaluated .
A second research tradition has util ized linear regression
models as a standard for evaluating behavior . Regression
studies typically use several data sources or cue dimensions ,
and one response dimension , which is usually continuous.

20
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For example , a college app licant might be described by the
cues SAT verbal score (X1), SAT math score (X2), and high
school grade point average (X3). The subject could then be

asked to predict the applicant’s f irst-year grade point
average in college (Y). Using a linear regression model a

statistician could estimate the coefficients b1, b2, b3, and
b4 in the equation

Y = b 1 X1 + b 2 X2 + b 3 X3 + b ~ + ~

where b1, b2, and b3 are weighting constants for the cues
X1, X2, and X3, b~ is an additive scaling constant, and c is
a random error term with mean zero which reflects the fact

that Y is only probabilistically related to the cues X1, X2,
and X3. The subjects ’ performance in such a task is usually

evaluated by comparing the correlation between the subjects ’

estimates 
~~~ 

and the true ~L scores with correlation between
the regression model’s estimates (Y) and the true Y.

From the subjects ’ standpoint this task differs

from typical Bayesian tasks in two respects. First, the

response dimension Y is continuous , which is equivalent to

stating that the subject has an infinite hypothesis set.

Bayesian studies seldom use more than five discrete hypotheses.
Second , the subject is not asked to assess a probability

distribution over the response dimension Y, but rather to
specify only the expected value of Y. If subjects were

asked to assess a continuous probability distribution over

Y , the responses in a regression experiment could be evalu-
ated against a continuous version of Bayes ’ theorem .

Slovic and Lichtenstein (1971) provide a compre-

hensive review of multi-cue inference studies , so here we
merely summarize the main findings of this rather extensive
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literature , providing representative rather than exhaustive
references.

Bayesian studies typically provide the subjects

with information about how each data class relates to each

hypothesis by providing them with the P (D~ IH~) matrix . The

emphasis here is on how the subject will aggregate information
across hypotheses. In regression studies, on the other
hand, subjects must discover the relation between each of
the cue dimensions and the criterion dimension Y. They do

this by making estimates and then receiving feedback on the
true state of the criterion variable Y. In the simplest

regress ion paradigm where there is only one cue, subjects
typically do an excellent job of learning the cue—criterion

relationship, though they have more difficulty learning
negative relations than positive ones. (Bjorkinan , 1965;

Naylor & Clark , 1968). Subjects also do better , relative to
the standard set by the optimal regression equation , when
the cue—criterion relation is strong , that is, when the

variance of the random error distribution ~ is small (Bjorkman ,

1968).

People also do very well relative to the optimal
regression policy in multi-cue learning situations when cues
are linearly related to the criterion (Smedslund , 1965).

They can also learn to utilize non—linear cue-criterion
relations, but not as well (Hammond & Summers , 1965), and
one study has found that people can learn to predict non-

additive cue-criterion relations such as Y = X1 
- X 2 or Y

X1 X2 (Brebmer , 1969). The study of non-additive cue utili-
zation considered two cues only , however , and even here
subjects ’ learning was very slow. Subjects can also learn

to correct their implicit cue weightings when confronted by

a non—stationary environment (Peterson , Hammond & Summers ,
1965) .

22
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Together , the multi-cue learning studies suggest

that people are rather good at making point estimate predictions

of a criterion variable on the basis of multiple cues,
provided that they receive extensive outcome feedback . It

would be quite interesting to extend these studies by having

subjects assess a whole probability distribution over the
criterion variable rather than just make a point estimate .

2.1.6  Real—world inference: Bayesian studies — A

number of investigators have gone beyond the laboratory to

see how well people do in making inferences about real-
world processes. In contrast to laboratory studies, these
studies tend to involve decision makers with some degree of
expertise about the process being studied . Because these

studies provide us with the only firm evidence about human

inferential capacities in the real world , each is considered
in some detail.

Peterson , Snapper and Murphy (1972) asked two
experienced meteorologists to make predictions about the
following day ’s high and low temperatures using a credible

interval procedure . (We illustrate this for the high

temperature only.) For each prediction the forecaster began

by specifying a temperature Tm such that he thought that it
was equally likely that the actual high temperature would be
above or below Tm • That is, P(T > T )  = P(T < Tm) = 1/2.

Next the forecaster was asked to estimate a Tu > T such
that P(Tm < T < Tu) = P(T > Tu) = 1/4. That is, Tu divided
the region above Tm into two subjectively equally likely
regions. Finally , each forecaster was asked to specify a
TL < Tm such that P(T < TL) = P(TL < T < Tm) = 1/4. Thus,

the three temperatures TL, Tm~ T~ divided the high temper-
ature dimension into four subjectively equally likely regions

as illustrated below
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Peterson , Snapper , and Murphy (1972) evaluated
these estimates in two ways. First, they compared Tm~ the
forecaster ’s median estimates, with the actual temperatures

recorded . A very strong linear relation between the predicted

and actual temperatures was observed . The forecasts were

also evaluated by noting how many of the actual temperatures
fell  between TL and T

~
. Ideally, one would hope that

approximately 50% of the observations would fall in this
region, for this would indicate that the forecas ter ’s

subjective likelihoods were well calibrated with their

environment. In fact, however, too many observations fell
in this central 50% credible interval , indicating that the

two forecasters studied were too conservative in estimating

TL and Tu~ They should have made estimates which were more

tightly clustered around

Murphy and Winkler (1973) conducted a similar
study and found not only that the median Tm estimates were
very good , but also that the central 50% and 75% credible
intervals were accurate in the sense that the proportion of

actual temperatures fa l l ing in a region closely approximated
the subjective probability assigned to that region by the
bisection method described above. But, when forecasters
were asked to directly estimate the probability of a tempera-

ture falling in a fixed region , they tended to overestimate

these probabilities. The authors concluded that the procedure

of dividing a continuum into subjectively equally likely
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regions may result in objectively more veridical probability

assessments than does the procedure of having subjects

directly assign probabilities to fixed intervals.

Stael von Holstein (1971) also studied the

ability of meteorologists to make predictions. He asked

experienced forecasters, university meteorologists , meteorology
students , and statisticians to directly assess the probability

that temperature and amount of precipitation would fall into
• fixed intervals. These intervals were selected so that, on

the basis of prior frequency data, each interval was equally
likely . To evaluate these forecasts Stael von Holstein used
the quadratic scoring rules

h 2Sk(p) 2pk Z p i .

Here p~ denotes the probability assigned to the i-th category ,

the probability assigned to the category in which the
observed event actually fell , and Sk (p) the score for the
probability vector p (p1, p2, ..., p~ ) given that the

observed event fell in the k-th category . Clearly , the

higher the probability assigned to the category which con-

tains the observed event, the higher the forecaster ’s

score. In addition , the quadratic scoring rule has the
property that the forecaster can maximize his expected score

only if he states his true opinion ; that is , there is no
incentive to hedge one ’s bets or to overstate the probability
of a likely category in hopes of receiving a high score

(Stael von Holstein, 1970). Using this scoring rule, only
seven of the thirty subjects received a higher score than

one would have obtained using the past frequency data. In

view of the large amount of additional information available
to the forecasters, this result is rather disappointing . On

the average , the subjects received a score which was 95.7%

25



that of the relative frequencies. Interestingly , the university

meteorologist outperformed the professional weather fore-
casters. The professional forecasters were too confident,

assigning excessively high probabilities to what they believed

were the most likely outcomes.

In a similar study, Stael von Holstein (1972)
asked market analysts , bankers , business students , and
statisticians to assign probabilities to five price-change

ranges for selected issues on the Swedish stock market.

Again , for each issue, the price—change ranges were selected
to be equally likely on the basis of past performance.

Forecasts were made for two-week intervals over a period of

several months. Here, only three of seventy—two subjects
beat the historical frequencies , with the average subject
receiving 94% the score of the historical model.

Together , these studies do not support the
belief that people are skilled intuitive statisticians.

Only the point estimates of the next day ’s temperature were
highly accurate. And 24—hour temperature forecasting is

relatively trivial given the inertia in temperature ; one can

do very well by using today ’s high temperature to predict
tomorrow ’ s.

The failure of Stael von Holstein ’s subjects to
outperform the historic frequencies is quite discouraging .

For the historical models were not conditioned on any of the
information available to the subjects. One possibility is
that , despite the use of scoring rules , the method of having
subjects directly assign probabilities to event classes does

not provide a good means for extracting what they really

know . The Murphy and Winkler ( 1973) results suggest that
the credible interval procedure of successively dividing a
continuous variable into subjectively equally likely ranges

will produce more veridical predictions. It seems unlikely ,
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however , that changes of response mode will lead to a dramatic
improvement in predictions . Rather , these real world studies

provide strong support for those who argue that people are

suboptimal probabilistic information processors who need all

the help they can get from statisticians and decision theorists.

2.1.7 Real-world studies: multi-cue inference

paradigm — With his classical review Meehl (1954) began a
controversy that has not yet been completely resolved after

over twenty years of additional research. Clinical psycholo-

gists and medical doctors spend a substantial portion of

their time classifying patients into disease categories on
the basis of multiple signs and symptoms. Since these signs

and symptoms are only probabilistically related to the

patients ’ true states, one can , if sufficient data is avail-
able , use linear statistical models to make these diagnostic

predictions. The goal of Meehl’s review was to compare

subjective or clinical predictions with statistical or

actuarial predictions to see which approach would produce

the more veridical results. To those with great faith in

human powers of reasoning , the answer seemed quite apparent.

Since people may (and claim to) consider subtle interactions

between cues , and statistical models rely upon fairly simp le-
minded (usually additive) forecasting rules, human diagnosticians

should be able to substantially outperform statistical

models. In reviewing almost twenty comparative studies ,

however , Meehl (1954) found no instances in which people
outperformed statistical or actuarial models ; in every case
either the two approaches were essentially equal , or the
actuarial approach was better. This result is particularly

damaging since the statistical procedures available at that
time were fairly crude (in terms of computational capacity) ,

and , as a consequence , the actuarial models used were very
simple by present standards.
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Subsequent research has not altered Meehl ’s
conclusion that people are not particularly impressive as

diagnosticians , at least not in comparison with statistical
methods. Oskamp (1965) found , for example , that as the

amount of data available to clinical psychologists increased ,

their confidence in their own assessments increased substan-

tially while the accuracy of their assessmen ts remained
relatively constant. Hoffman , Slovic , and Rorer (1968)

asked radiologists to assess the likelihoo d that a gastric
tumor was malignant on the basis of seven clinical signs .

The median interjudge correlation was only .38. Slovic

(1969) obtained a similar result when he asked two experienced

stock market analysts , known for their similar philosophies ,
to assess the growth potential of 128 hypothetical market

issues described in terms of attributes such as pr ice/earnings
ratios. Here the correlation between the two sets of assess-

ments was only .32 .  In neither of these experiments was an
external validating criterion present. But the low degree
of agreement between the supposed experts implies that their

average validity will also be low.

Additional studies for which external criteria
have been available support this conclusion . Dawes (1971)

found that graduate admissions committee evaluations of
prospective psychology graduate students correlated only .19

with subsequent faculty evaluations of those students who

were admitted . Simple multiple regression procedures , on
the other hand , generated scores which correlated .38 with

subsequent faculty ratings. Wiggins and Kohen (1971) found
that evaluations of graduate school applicants correlated
only .33 with the first year grades of those admitted whereas

regression models correlated .57 with these grades. And

Slovic ( 1971) reviewed ten studies of investment services
and leading stock market analysts and concluded that in

every case one would have done better to have disregarded

the advice of the experts and simply select a random sample

of stock issues.
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In the final study to be discussed here , Goldberg
(1968) attempted to determine whether the quality of multi-

cue predictions could be enhanced by extensive training and
feedback . He had experienced clinical psychologists , clinical
psychology graduate students, and na ive subjects make psy-
chotic vs. neurotic predictions on the basis of MMPI personality

inventory scales. Over the course of the experiment subjects

made thousands of predictions with immediate feedback on the

final diagnosis of each case. As one might hope , the naive

subjects improved considerably over the 17—week period . But

the experienced clinic ians and clinical psychology graduate
students showed little improvement. Despite their extensive

training , they accurately diagnosed only 65% of the test-

case patients as compared to 70% for a simple actuarial

model.

Together the real-world studies reviewed in the

last two sections reveal that people ’s abilities as intuitive

statisticians are quite modest. Whenever a substantial data

base has been available , simple statistical models have

outperformed skilled human judges. Thus, one implication of

this research seems quite clear: if adequate data are

available , use statistical models rather than intuitive

human judgment. But what if no large data base is available ,

or if data are too costly to collect? We shall return to
this question shortly.

2.1.8 Descriptive models of human inference - As
Rapoport and Walisten (1972) noted , the emphasis of inference
studies has shifted from the question of whether such infer-

ences are optimal--they are not--to the question of why they

are suboptimal. Initial attempts to explain this suboptimality

generally viewed people as degraded Bayesian processors .
For example , the odds likelihood ratio form of Bayes ’ theorem
may be modif ied by incorporating an exponent a:

= La
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This exponent has generally been referred to as an “accuracy
ratio” (Phillips & Edwards, 1966) and has served as the
dependent variable in many Bayesian studies. In their

review of the inference li terature, Rapoport and Wallsten
(1972) found that this accuracy ratio adjusted form of

Bayes ’ theorem did a good job of explaining the mean data
from the most simple probability revision experiments.

Nevertheless , they criticized this approach for a number of.

reasons. First, the actual value of the accuracy ratio is
highly task dependent, varying with the type of data gener-
ator, the diagnosticity of the data , and the number of data
observed. Second , the model does not always provide a good
fit to the data of individual subjects. And third , the

model provides no insights as to ~~~ intuitive inferences
deviate from Bayesian optimality .

Wallsten (1971) has used the theory of conloint

measurement to determine whether or not intuitive inferences
are even qualitatively consistent with the product rule of
Bayes ’ theorem. His analysis indicated that fully one-third

of the subjects in his study used a processing strategy
which was not even ordinally consistent with the product

rule of Bayes ’ theorem. In a similar view, Shanteau (1971)

used a standard bookbag-and—poker-chip paradigm and had his

subjects give their responses on a probability scale. Using

functional measurement tests (which are based on the analysis
of variance), Shanteau found that his subjects ’ responses
were based on an additive rather than multiplicative combi-

nation rule. Pitts, Downing, and Reinhold (196 9) also found
that subjects employed an additive strategy in a sequential
revision task, incrementing their estimate by a constant
amount with each new datum . In this study the size of the

increment depended much more on the number of data to be
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observed than on the diagnosticity of the data. Apparently ,
subjects adjusted the size of their increments so that they
would not “run out of room” on the probabili ty scale before
the last datum.

Beach , Wise , and Barclay (1970) found that

subjects used different strategies when presented with a

simultaneous sample of data than when presented with a

sequential sample. When presented with a sample of, say
five observations , subjects used the proportion of red balls

in the sample as the basis for their estimates of the proba-

bility of the predominantly red data generator . Such a

strategy completely ignores the diagnosticity of the data
being processed. When data were presented sequentially , on
the other hand , estimates did not depend so heavily on the

observed sample proportion .

Tversky and Kahneman have attempted to develop a

set of unifying princip les which will explain these and
other deviations from optimal inference. The basic idea

underlying their work is that people invoke simple heuristic

strateg ies which of ten have li ttle relation to formally
optimal models. For example , their “representativeness ”

hypothesis (Kahneman & Tversky , 1972) asserts that people
assess the likelihood of uncertain events by considering the

degree to which an event is similar to the main features of

its parent population or the process which generated it.

The strategy of focus ing on the samp le proportion of red
balls in a binomial revision task provides a good example

here. For the sample proportion seems, intuitively at
least, to be representative of the parameter of the binomial
data generating process. One consequence of the representa-

tiveness heuristic is that people tend to ignore samp le
sizes , for sample size is not a characteristic of the data
generator. Kahneman and Tversky (1971) have repeatedly

shown that in tui t ive  statistical inferences are grossly
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insensitive to the effects of sample size on sampling dis-

tributions.

A second heuristic princip le, termed by Tversky
and Kabneman (197lb , 1972) the “availabili ty ” hypothesis ,
asserts that the subjective probability assigned to an event

depends upon the number of favorable instances retrieved
from memory and the ease of their retrieval. These memory

retrieval proces ses are aff ected by recency , salience , and

imaginability, all of which may or may not be related to the
event ’s past frequency of occurrence . Tversky and Kahneman

have obtained extensive support for this hypothesis in

simple verbal learning tasks.

“Starting point and adjustment ” strategies

represent yet another simple heuristic (Slovic & Lichtenstein ,

1971). For example , in assessing a probability distribution

over the future price of some commodity, a marke t analyst
might take the present price , increment it by a fixed per-

centage , then get a rough fix on the distribution ’s spread.

Reliance on simple computational rules of this type can lead
to serious biases when the rule includes implicit assumptions

about the occurrence of events which are themselves only

probabilistically determined (Stael von~ Holstein, 1972).

Although our understanding of intuitive inference
processes is far from complete, it is by now clear that
people make extensive use of heuristic strategies which bear
little resemblance to optimal statistical strategies. In

later sections we shall discuss a number of decision-aiding

procedures which have been devised to augment limited human

inferential capacities and to eliminate some of the biases
inherent in intuitive inference.
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2.2 Suboptimal Decision Behavior

2.2.1 Simple gambling behavior — Choices between

simple gambles , usually involving only two possible outcomes ,
:1 

provide the prototypical setting for studying decision
making under risk. Although a number of other strategies

have been discussed , the expected u t i l i ty  principle is now
widely accepted as the appropriate normative standard for

decision making under risk (Luce & Raiffa , 1957; de Groot,

1970) .  N ota t ional ly ,  let A1, A 2 ,  ~ 
Ar denote a f in i te  set

of actions which are available to the decision maker and let
X1, X2, ... X5 denote a mutually exclusive and exhaustive

set of consequences which might arise from these actions.

Finally , let (p 1~X1~ p21X2, ... p5~ X5) denote the probabil-
ity distribution of consequences associated with action
where , for example , p2~ denotes the probabili ty that consequence

will occur given that act A~ is selected . When preferences

satisfy certain normatively appealing properties , it can be
shown (Luce & Raiffa , 1957) that there exists an interval

scale utility function U such that:

a) X1 X~ if and only if U (X~ ) ~ U (X~ )

b) A~ ~ A~ if and only if EU (A~ ) ~ EU (A~).

Here X~ ~ X~ denotes that X~ is not preferred to X1, and
EU(A~ ) denotes the expected utility of act A~ where

EU (A1) = p
1~U(X,) + p2~U(X2

) + ... + p5~ U(X5).

The expected utility principle , like Bayes ’ theorem, provides
a benchmark against which to compare human behavior.
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A number of studies provide strong support for
the contention that people evaluate simple gambles in an

expected utility maximizing fashion . Tversky (1967) asked

prison inmates to state minimum selling prices for simp le
gambles whose consequences consisted of cigarettes, money ,

and candy . Here, expected monetary value provided a good

approximation to the subjects ’ bids, and expected utility

models a near perfect fit. Goodman , Saltzman , Krantz, and

Edwards (1973) conducted a study in a Las Vegas casino.

Here considerable sums of money were at stake. Their pri-

mary finding was that expected monetary value came so close

to predicting what subjects did that it was not worthwhile

to consider more sophisticated models.

Both of the above studies inferred preferences

from bids. Lichtenstein and Slovic (1971) compared the

preference orderings inferred from bids with those obtained

by asking subjects to choose between pairs of gambles. They

found systematic discrepancies between the two orderings , a

result which is inconsistent with the expected utility

principle. When stating selling prices subjects focused

more on the amount to win, hut when choosing between gambles,
they placed more weight on the probability of winning .

Thus , even in evaluating simple gambles people sometimes
adopt strateg ies which violate the principles of rational
choice.

More recently, Slovic , et al (1977) have experi-
mentally investigated insurance purchasing behavior in the
presence of small probabilities of very large financial

losses. They found that people are more likely to purchase
insurance again~ t a moderate probability of a small loss
than against a small probability of a large loss. This

finding seriously violates the expected utility model’s

usual predictions about insurance purchases , and suggests
that the expected utility model fails to explain behavior in
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the face of low probability catastrophic events. This

interpretation is consistent with the findings of Kunreuther ’s

(1976) field study of earthquake and flood insurance purchases.

2.2.2 Complex decisions - In principle, complex decisions

could also be evaluated by seeing whether they conform to
the expected ut i l i ty  principle . In practice , however , they
have been compared with models which maximize expected
monetary value (EMV) using a probabil ity model based on the
objective parameters of the environment. This approach can

be rationalized on two grounds . First, in those studies in
which subjects ’ pay depends upon the quality of their

decisions , the actual money payoffs involved are typically
quite small. Other research has shown that utility functions

for money are essentially linear for small cash values
(Tversky , 1967), so it is not unreasonable to assume that

subjects do in fact attempt to maximize EMV. Other studies

in which subjects are asked to make hypothetical choices
with large monetary outcomes are usually presented as business

scenarios. Since EMV maximization is commonly used as a
goal in business and industry, it does not seem unreasonable
to evaluate subjects ’ performance against this standard .

In the simplest paradigm which we will consider
here , Pitz and Reinhold (1968) had subjects observe five

data sampled from one of two binomial processes. At the end

the the data sequence , subjects selected one of two binomial
processes. If correct, they received a positive reward; if
incorrect, they had to pay a penalty . Consider the following

two payoff matrices.

35



~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~-~~~~~~~~~~~~~~~~~~~~ .. -~~~~~~~~~~~~-—--.-. -~~~~ 
_ .

True Hypothesis

H1 H2 H1 H2

Subject H1 a -a H1 a —2a

says
H2 —a a H2 —a 2a

In the symmetric payoff matrix on the lef t, the optimal
strategy is very simple. Let p1 

= p(H1) and p2 
= p(H2).

One should predict H1 if and only if EMV (H1) ~ EMV (H2). It

can easily be shown that this will be the case if and only
‘~ ~ ~~~ 

Thus, one selects H1 only when p1 ~ p2. Since

the data—generating processes used by Pitz and Reinhold were

symmetric about .5 , subjects could maximize EMV simply by
selecting the color which occurred most often in the observed

sample. In this simple case, most of the subjects ’ choices
were in fact consistent with the EMV maximization strategy .

Consider now the asymmetric payoff matrix on the

right. Here too, the subject should predict H1 if and only
if EMV (H1) ~ EMV (H2). It is easy to show that in this

case the subjec t should select H1 if and only if p1/p2 > 2.

In general , asymmetric payoff matrices will lead to asymmetric
cutoff odds like these. Pitz and Reinhold ’s results indicated

that the subjects did shift their cutoff odds away from 1:1;
but not nearly far enough . Thus, even in this extremely

simple task , subjects made many suboptimal responses.

2.2.3 Optimal stopping tasks involve a somewhat more

complex paradigm. Here, too, data are sampled from one of
two randomly selected data-generating processes. In this

case , however , the subject must pay a fixed cost for each
datum he observes, and may decide at any point to stop
sampling. At this point he makes his decision . The optimal
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strategy for this problem can be simply stated . One should
continue sampling until the EMV of further sampling is less

than that of making a decision based on the data already
available . The mathematics of determining the EMV of con-

tinued sampling are quite comp lex (de Groot, 1970), but when
the decision maker may purchase an unlimited number of

observations, it can be shown that there exist critical odds

cutoffs ~l* and 
~2 

such that the decision maker should
continue sampling until either

p1
—

p2

or

p1
— 

~~~p2

(Edwards, 1965). Given the difficulty of this problem , it

may seem unreasonable to expect that intuitive decisions

will approximate those dictated by the optimal strategy .

Optional stopping tasks are quite insensitive to errors in
the selection of cutoff odds (Rapoport & Wallsten, 1972),

however, so if subjects use “reasonable” strateg ies they
should do very well relative to the optimal strategy .

Rapoport and Wallsten (1972) provide an overview

of the optional stopping literature. Fried and Peterson
(1969), for example, conducted an optional stopping experiment

in which subjects behaved quite suboptimally . Across the

various conditions of their experiment, subjects ’ actual
earnings ranged from 10% to 72% of the earnings they would
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have received had they employed the optimal strategy . In

general , subjects deviated from the optimal strategy by
buying too little information . This is not an uncommon

result .

Pitz , Reinhold, and Geller (1969), to cite
another example, found that subjects generally relaxed their

cutoff  odds as the number of observations previous ly pur-
chased increased . One heuristic strategy which will produce

such an effect has been termed the World Series strategy . A

subject might decide to selec t the first hypothesis favored
by four data. This is equivalent to using a “best out of
seven ” criterion, but stopping as soon as one hypothesis is
clearly the victor . This strategy can only be applied to
binomial tasks. Pitz, Geller , and Reinhold compared the
implications of the Worl d Series model with those of the
fixed-cutoff and fixed—sample-size models. Their test was

very general , for it allowed for the possibility that the
subject might shift his odds or sample size cutoffs from
trial to t r i a l .  Although none of the models provided a
perfect fit to the data , the World Series model was strongly
favored . So again we find evidence suggestive that subjects

simplify complex tasks by adopting intuitively appealing but
suboptimal heuristics.

Wendt (1969) studied information purchase using
a different experimental paradigm . Instead of having subjects

make sequential purchases at a fixed cost, he allowed them
to bid for the purchase of a simple datum . He then compared

the subjects ’ bids with the actual EMV of the data. The

optimal bids varied as a function of the prior odds for two

hypotheses , the diagnosticity of the data , and the payoffs
for the subsequent decision. The subjects ’ bids were generally

ordinally consistent with the EMV maximization model. But

subjects had an extremely suboptimal tendency to make sub-

stantial bids for data with little diagnostic value. In
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some conditions the subjects overbid by 200-300% for low

diagnosticity data. Shanteau and Anderson (1971) replicated

Wendt ’s f indings.  Their analysis showed that subjects ’ bids

were a simple multiplicative function of the priors , diagnos-
ticity , and payoffs. This strategy is generally ordinally

consistent with the optimal strategy , but leads to positive

bids for data which have no value, a prediction which was

supported by the data. Here, too, subjects consider the
appropriate variables , but combine them in a suboptitnal
fashion .

In a quite realistic information—purchase experi-
ment, Moskowitz (1972b) asked experimental aerospace R & D
managers to make hypothetical decisions about the development
strategy of a laser system . They were asked to consider two
competing designs and were allowed the option of developing
both systems in parallel. They also had the option of
buying experiments which could help them choose between the
two designs. Despite their extensive experience , very few

of the managers adopted the optimal alternative . They spent

far too much money on relatively uninformative experiments .

On the average , the EMV of the strategies adopted by the
subjects was only 74% of that for the optimal strategy .

Search problems def ine  another research paradigm
with close links to many real world settings. Formally , a

target may be located in any one of r locations , and the

subject has a prior probability associated with each of

these locations. He may then search locations one at a

time. The search procedure is not perfectly reliable ,
however , so that one may search the correct location but
fail to detect the target. In addition , each search has an
associated cost, which may vary across locations. The

optimal strategy , at each stage of the process , is to search
the location with the highest P(Detect)/Cost ratio. Through-

out the process , an optimal subject would use Bayes’ theorem
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I
to revise his location probabilities following each unsuccess-

ful search. Rapoport (1969) found that subjects generally

do not search the best location . This result was replicated

by Rapoport, Lissitz , and McAllister (1970). When the
search cost varies across locations , subjects tend to place
too much weight on probability of detection and not enough
on the cost of search. Despite the fact that they seldom
choose the optimal location, they do quite well at this
task , seldom incurring a cost more than 25% greater than

that of the optimal strategy . This result is due in part to

the fact that search tasks are relatively insensitive to

error. But it probably also reflects the fact that subjects

make reasonably good inferences about the target ’s locations.

Decision making becomes even more difficult when
the decision maker ’s actions affec t the state of his environ-
ment. Optimal policies for such problems can generally be

obtained only through the application of the mathematical

technique known as dynamic programming. Rapoport (1967)

provides a general discussion of dynamic decision—making

tasks and dynamic programming models. He also illustrates

the approach with a simulated stock market problem . Sub-

jects were confronted with the task of buying or selling

stock with unknown demand . The demand distribution for

future time periods varied as a linear function of the

subjects ’ present decisions . The subjects ’ performance was
compared with that of two EMV maximizing models. The f i r s t
model used a uniform distribution over demand throughout all
stages of the problem . The second model began with a uniform

demand distribution, but revised that over the course of a

scenario using Bayes ’ theorem. The subjects ’ performance on
the task was quite good , falling between that of the optimal
adaptive model and that of the optimal non-adaptive model.

Inventory problems represent another dynamic

decision task. Here, too, the decision maker is faced with
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uncertain demand . If he buys too much inventory , he will

have to pay storage costs ; if he buys too li ttle , he pays a
penalty cost for failing to meet demand . Because unused

inventories accrue over time , the task is dynamic. If the

problem has a fixed number of stages, the decision maker
should attempt to attain a zero stock level by the end of

the last stage. Because this task is representative of com-

plex real-world tasks, it is of considerable interest to see
how well subjects do on it. Rapoport and Calder (1970)

found that college students fare poorly. Mean earnings in

the various conditions of their experiment ranged from 53%

to 61% of those for the optimal strategy . Subjects generally
did not respond at all to the fact that they were coming to

the last stage of a problem , thus ending with excessive

inventory levels. They responded appropriately to storage

costs , but generally ignored the costs associated with
fa i l ing to meet demand .

Moskowitz (1972a )  obtained similar results using
graduate students in industrial administration who were

familiar with inventory problems . His task was even more
comp lex , with subjects being asked to set both work force
and production levels. Over all conditions , cos ts incurred

by subjects were 5 7 . 4 %  greater than those for the optimal
model. This d i f ference  ranged from 2 6 . 5 %  when demand estimates
were available only one stage into the future, to 94%, when
demand estimates were available three stages into the future .

Miller , Kaplan , and Edwards (1967 , 1969) conducted
probably the most complex decision-making simulation experi-

ments. Their subjects, USAF pilots and ROTC students , were
asked to allocate tactical fighter strikes on the basis of

mission requests. In making such decisions , one must
consider the value of the target, the probability of destroying
the target (which varies with the number of aircraft assigned

to it), the probability distribution of the values for
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future mission requests , and the number of aircraft remaining .
Scarcity entered the problem because only a fixed number of

strikes could be made in each time period . Subjects in one

condition of these experiments assigned values to each
target request as it came in , then decided how many (if any)
aircraft to allocate to it. Subjects in a second condition

merely assigned values to targets. A complex mathematical

programming model made the actual allocation decisions using
the maximization of subjective expected utility as a criterion .
The performance of the two systems was compared with the
decisions which would have been made by an optimization
model which knew beforehand what request would be received
in each time period . This mode l provided a “perfect hindsight”
standard of performance. The results of these experiments
generally indicated that the intui t ive judgment attained 40%
to 50% the score of the perfect hindsight model , whereas the
dynamic programming model at tained 85% to 9 0 % .

The implications of these studies are rather
clear . As decision tasks become increasingly complex , the
quality of intuitive decisions declines steadily when compared

with the decisions generated by formal optimization models.

This result provides strong support for those who have
argued that people are severely limited information processors.
It also suggests that formal decision theory might be applied

to overcome these limitations. The next section of this

paper discusses the decision-aiding technologies that have

been devised to accomplish this task.
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3.0 DECISION-AIDING TECHNOLOGIES

3.1 The Decomposition Approach--or, Divide and Conquer

The basic theme of the decision-aiding technologies we

will discuss is quite simple--divide and conquer. The

experimental stud ies discussed in the previous section
generally support the contention that people are better at

• making simple jud gments than they are at aggregating large
amounts of information to form an overall decision. In the

context of probabilistic inference, for example , people are
much better at assessing the diagnostic value of a single
datum than they are at aggregating information across a set
of data (Edwards, 1968; Slovic and Lichtenstein, 1972;

Wheeler, 1972). In the context of decision making, human
evaluations of simple gambles are much more nearly optimal

than are human decisions in complex tasks. These findings

have led to the conclusion tha t complex decision-making
tasks should be decomposed into a set of component subtasks ,
each of which is well within the judg mental capacities of
the decision makers involved. In such a system , people make

judgments about values and probabilities , arid formal models

aggregate the implications of these judgments to arrive at a

recommended decision. Usually, but not always, the formal
aggregation will be accomplished by a computer.

The decomposition approach which we will consider in-

volves six major tasks:

1. Recognizing that a decision problem exists.
2. Identif ying the possible courses of action .
3. Constructing a probabilistic model of the

decision-making environment.

4. Constructing a model to evaluate the possible

consequences of each available action.
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5. Selecting a course of action.

6. Implementing the alternative selected .

Our discussion focuses on the thir d, fourth, and f i f t h
tasks. We are still, unfortunately, ignorant of the creative
processes involved in the first two steps. Although prog-

ress has been made (Simon and Newell, 1972), we do not yet
have anything resembling an adequate normative theory of

creative problem solving. For the time being, at least, we
must rely upon the creative abilities of those who make

decisions. The final task, decision implementation, is also
important. We do not consider here the organizational

processes which intervene between a stated decision and the
actual behavior produced by the organization. When the

correspondence between intended behavior and actual behavior
is low , of course , the benefits of a careful decision analysis
may well be lost. Allison ’s (1971) d iscussion of the Cuban
r~Lissile crisis provides a fascinat ing example of the discrepancy
between decision makers ’ intentions and the actions of their
subordinates.

3.2 Probabilistic Information Processing Systems--The Tech-
nology of Inference

3.2.1 Simple PIP System — Early in the 1960’ s Edwards
proposed that probabilistic inference tasks be decomposed

into four major subtasks (Edwards , Lindman, & Phillips,
1965). In this formulation people identified relevant

states of the environment and information sources which

could discriminate between these states. They also estimated

likelihood ratios lizJ ing individual data with hypotheses
about the environment . The tasks of aggregating information
across data was assigned to Bayes theorem. These inference

systems came to be called PIP--an acronym for Probabilistic

Information Processing. Implicit in the original formulation
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of PIP was the assumption that the environment could be
described by a stationary , single-stage inference model in

which all data were conditionally independent with respect
to the hypotheses of interest. When this assumption is

satisfied, data may be considered one at a time; people can

assess single-datum likelihood ratios; and the simple odds-

likelihood ratio form of Baye s theorem can be used to update
the posterior odds distribution.

In one early attempt to vali date the PIP approach,
Kaplan and Newman (1966 ) asked subjects to make inferences
about the probable target of a bombing raid, given data
about the points of impact of the bombs dropped . In their
simulation , actual points of impact were circularly normally
distributed around the intended target. They found that PI P
was consistently better than unaided inference , generally

assigning a much higher (.2-.3) probability to the true

target.

In a more ambitious simulation study , Edwards ,
Phillips, Hays , and Goodman (1968) had subjects make infer-
ences about the strategies of nations in an imaginary ver-

sion of a future world. The data with which subjects worked

were designed to be good facsimiles of the reports with

which real-world intelligence analysts work. As expected,

PIP arid intuitive inference generally favored the same

hypothesis , but PIP assigned much higher posterior odds to
this hypothesis. Because there was no “true” data generator

in this study, however , it was impossible to determine
whether the PIP-assigned posterior odds were in fact more

optimal than those produced by intuitive inference.

Wheeler ’s (1972) thesis data provide by far the
strongest support for the PIP concept. Her subjects made

inferences about which of two normal distributions had

generated a given set of data. As in most simple revision

45

. .  —



- . -.-. - . - - .. -~~~~~~~~~~~~~~ --, . —- - - --- .-~~- 

experiments , intuitive inferences over a set of data were
very conservative. PIP-generated odds, on the other hand,
were nearly optimal over a wide range of data diagnosticity.

These results held for individual as well as group data.

Edwards and Seaver (1976) describe an experiment
undertaken to determine whether the use of judgmentally
averaged log likelihood ratios would contribute significant
improvements over the likelihood ratio judgment originally
proposed for use in PIP systems. Included as a variable was

the diagnosticity of the data used to elicit subjects ’

responses. It was found that data diagnosticity affected

quality of response for both response modes. Estimates

became more diagnostic. The primary finding of the study

was that quality of estimates did not differ significantly
in either verdicality of orderliness between likelihood
ratio estimates as originally proposed for the PIP tech-
nique and the averaged log likelihood estimates. Both

methods were found to produce better estimates than cumulative
certainty judgment , as is usual in such comparisons.

The reason for considering an alternative to
likelihood ratio judgments is that a problem may arise in

applying PIP systems in real-world contexts. The people

assessing the likelihood ratios will typically have access

to feedback about the posterior odds that are calculated
from their likelihood ratios. Goodman (1973), in a re-
analysis of data from five studies exploring methods of

eliciting judgments about uncertain events, concludes that
feedback about the implications of judgments makes them less

extreme and is probably the most powerful variable controlling

the extremeness of the judgments. Thus, even a PIP system

may be susceptible to conservatism in real—world applications.

This problem seems less likely to characterize judgments of
average certainty due to the very nature of the elicited
judgments. Should further research confirm feedback produces
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conservatism in PIP systems , average certainty judgments may
prove to be a useful alternative to PIP.

3 .2 .2  PIP in complex environments. One natural ques-
tion to ask before building greater complexity into a system

is--does it matter? Lichtenstein (1972), for example,

developed actuarial Bayesian models to predict psychosis vs.

neurosis using MMPI profiles. One model considered the

conditional dependencies between the various MMPI scales

whereas the other model ignored them . Lichtenstein found no
difference between the models inability to diagnose the
correct hypothesis. Her measure of effectiveness, however ,
was simply the number of times a model assigned a proba-
bility greater than .5 to the correct hypothesis. This is a
rather insensitive measure for it ignores the magnitudes of
the probabilities involved.

Domas and Peterson (1972) studied the effects of
data redundancy on inference. In a control condition in

which data were conditionally independent, PIP did outperform
simple intuition. But in the case of redundant data, intui-
tive judgments were more optimal than PIP , which assigned
excessive probabilities. Simple intuition also outperformed
a conditional likelihood ratio form of PIP in which subjects
estimated quantities of the form

d~ IH 2). In principle at least, this modified version of PIP
should have been able to cope with the nonindependence
involved. These results show that ignoring the existence of
conditional nonindependence can be considerably more mis-
leading than Lichtenstein ’s results suggest. They also show
that simple intuition may outperform an inappropriate decom-
position.1

1Snapper and Peterson (personal communication) obtained
a similar result in a study of real-world weather fore-
casting, an environment in which data redundancy is very
substantial.
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Schum, Southard, and Wombolt (1969) took a

slightly different approach to the conditional nonindepen-
dence problem. In their system, termed semi-PIP, data are
first  sorted into bundles such that no conditional depen-
dencies exist between data in different bundles. Data

within the same bundle, however , are dependent. Any datum

which is independent of all other data will define a bundle

of size one. In semi-PIP men first group data into bundles,

then assess likelihood ratios for each bundle. Because

bundles may include many data , men must absorb a considerable
portion of the aggregation burden . The success of semi-PIP
also depends on the ability of the system operators to make

likelihood ratio judgments which appropriately reflect the

nonindependencies involved. Schurn, Southard, and Wombolt
( 1969) conducted a series of experiments in which they
compared semi-PIP with simple inference. With sets of six
data, simple intuition was as veridical as semi-PIP. But as

the number of data to be aggregated increased, semi—PIP was
substantially better.

Although these results are encouraging, they do

not provide a complete test of semi-PIP. First, only two-

way dependencies were studied. People might have consider-
ably greater difficulty dealing with higher order dependen-
cies between data. Second, the system operators were alerted
as to the possible sources of nonindependence. Thus, these
studies bypassed the difficult problem of sorting data into
conditionally independent bundles. The success of semi-PIP
in the real world will depend heavily on the ability of

system operators to identify nonindependence and to sort
data appropriately. The identification and sorting problems
will be particularly difficult for systems which process
information over an extended period of time. An intelli-
gence report received today, for example, might interact
with reports received two weeks or even two months ago.
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When the amount of information to be processed is great,
system operators will be confronted with serious overload
problems.

The study of Schum, Southard, and Wombolt (1969)
was a part of a long series of studies done at Ohio State
University under Air Force sponsorship. Howell (1967)
summarized the program and outlined a set of thirteen prin-

ciples for the design of command and control decision aiding
systems based on its results. These principles generally

endorse the PIP idea, affirm the interaction between the
desirability of PIP and issues of data diagnosticity, and
raise such issues as data reliability , feedback concerning
system opinion, training , and evaluation of system output.
Ten years later, they still look like sound conclusions,
though of course much more detailed and sophisticated know-
ledge is available now than was available then.

PIP systems have also been devised to cope with
the problem of multistage inference. A general treatment of
multistage inference is provided by Kelly (1972). He pro-

vides general mathematical models for multistage inference
which can be directly translated into computer algorithms.
From a practical standpoint, however, Kelly ’s models are
tractable only when the problem can be structured to elim-
inate most conditional dependencies between data. When this
cannot be done, system operators will be required to make a
prohibitively large number of judgments.

Experimental evidence on multistage PIP systems

in unfortunately scant. Gettys, Kelly , Peterson, Michel ,
and Steiger (1973) have conducted two relevant studies. In
their first study subjects made inferences about a person ’s
college major based on his height and a hypothetical test
score which supposedly discriminated between men and women.
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Sex was an intervening variable, linking height and test
score with college major. Subjects ’ intui tive inferences in
this task were very good, though slightly conservative .
Multistage PIP was better, generating odds which were almost

identical with the Bayesian odds. Nevertheless, the dif-
ference between multistage PIP and the intuitive inferences
was small. The quality of the intuitive inferences left

little room for improvement.

In their second experiment, Gettys, et al. used

a scenario with a multinoinial intervening variable. Here,
there were cases where the most likely hypothesis was not
favored by the most likely state of the intervening vari-
able. Use of an as-if or best-guess heuristic strategy can
lead to very suboptimal inferences with a task of this type.
As expected, intuitive inferences were substantially exces-
sive, whereas multistage PIP was close to optimal. Together
these studies suggest that multistage PIP systems can be
effectively implemented and will, in some cases, yield
substantial improvement over simple intuitive inference.
More research is required, however, to firmly establish this
conclusion.

3.2.3 Pooling the assessments of a group of assessors -

One obvious way to overcome the limitations of individual
inference is to form a panel of experts. Because different
experts will have had access to different information about
the question at hand, a consensus probability distribution
based on all of this information should be more veridical
than the distribution of an expert randomly selected from
the panel. In addition, with a panel of experts one can
exploit the statistical properties of the averaging process.
The benefits of averaging are strikingly illustrated by a

• simulation experiment conducted by Huber and Delbecq (1972).
They considered the problem of point estimation on a theo-
retically continuous scale. In one example they assumed
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that each expert’s estimate was sampled from a normal dis-
tribution with mean equal to the true parameter value and

with a standard deviation equal to either 5% or 10% of the
scale range. For the 10% standard deviation case, their
analysis indicated that the expected absolute error for one
randomly selected judge was equal to 7.5% of the scale
range. For five randomly selected judges, however, the
expected error was only 3.4%, and for ten judges only 2.5%.

Dalkey (1969) has reported results with real
subjects which support the Huber and Delbecq analysis. He

asked subjects to make point estimates for such quantities
as the U.S. gross national product in 1970. As a measure of
the error of a group or individual estimate, Dalkey used

E = in Estimate

He compared the average error of individual estimates with
the average error of groups ranging in size from 2 to 29,
the number of subjects in the study. Averaging over groups
of five reduced the error score by 42%; averaging over all
29 subjects reduced it 65%. This reflects the decreasing

marginal value of additional predictors, a result which we
also noted in the Huber and Delbecq analysis. The greatest
reduction of error was obtained by going from one to five
judges. After ten judges, the reduction in error was fairly
negligible.

Winkler (1968) has shown that averaging can be
applied to probability distributions as well as to point
estimates. Suppose, for example, that we want a probability
distribution over the parameter 0 and that a set of experts
has assessed the distributions 

~l’~ 2 ’ ’~ n’ 
each of which

satisfies all of the normal laws of probability theory.
Winkler shows that f(0) = Z w f~ (0) also satisfies thei—i i

properties of a probability distribution provided that
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w . = 1, for o < w~ > 1. Here the w~ may be interpreted

as weighting factors. In the simple averaging case, of
course, Wj 

=

Alternatively, if all assessors agree on a par-
ticular family for the probability distribution, then esti-
mates of the parameter values themselves can be averaged.
In a waiting time problem, for example, experts might agree
on a Poisson process. Estimates o~ average time between
events could then be averaged to obtain the value of the
distribution’s parameter. Direct averaging of parameter
values raises a number of technical problems, however, which
limit the usefulness of this approach. (For a more complete
discussion , see Winkler, 1968.)

Virtually all studies of synthesizing the opin-
ions of experts have considered only the benefits to be
obtained from averaging together the judgments of individuals.

This is at least in part due to the fact that it is much
easier to collect judgments from isolated judges and average
them than it is to get a group of experts together and ha~re
them talk their way to agreement. This practical considera-
tion arises in real-world as well as in experimental environ-
ments. In addition, the use of nominal (statistical) as

opposed to interacting groups reflects the common belief
that direct interactions can result in biases, such as the
emergence of dominant figures, which will result in a poorer
consensus distribution (Gustaf son, Shukla, Delbecq, and
Waister, 1973).

Studies of simple averaging generally show that
this approach can lead to considerably more ve:idical infer-
ences. Winkler (1971), for example, conducted a long-term
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study in which subject assigned probabilities to various
point spreads in Big Ten and National Football League games.
Winkler evaluated these estimates using quadratic (QSR) and
logarithmic scoring rules (LSR). Because these, and all
proper scoring rules, are convex, one can show that any
average distribution did much better than this, outperfor-
ming 95% of the subjects in the study. Using the QSR, the
average distribution resulted in a 5% to 10% improvement;
with the more sensitive LSR, a 26% to 28% improvement in
score was obtained. Winkler also considered various dif-
ferential weighting schemes in which the weight assigned to
a given subject depended either on hi ~wn rating of his
competence, or upon his score in previous sessions. The
scores produced by these differential weighting schemes were
but negligibly different from those for the equal weighting
model.

if

Stae]. v. Holstein (1971) also examined the
effects of averaging in his weather forecasting study.
Recall that only 7 of the 30 subjects in this study were
able to outperform the unconditional climatological proba-
bilittes. The average distribution, however, did beat the
climatolog!cal odds. In addition, the average distribution
for the university meteorologists outperformed 28 of the 29
subjects in the study, including both of the official govern-
ment forecasters.

‘I
Staei. v. Holstein (1972) obtained similar results

in his stock market study. Here, too, the average subject
did worse than the simple unconditional historical frequen-
cies. But the average model for the stock market experts
outperformed all 72 subjects and was slightly better

53



than the simple historical frequency model. In terms of
QST, the average model outperformed the average subject by
about 6%.

Next we consider three studies which compared
statistical averaging with various modes of direct and
indirect interaction. Moskowitz (1971) compared nominal
groups with real groups which had to come to a consensus in
a Bayesian estimation task. Subjects were asked to evaluate
credit risks on the basis of three independent data sources
of known diagnosticity. Moskowitz used inferred accuracy
ratios as a measure of veridicality. Thus, an accuracy
ratio of 1.0 defined optimal performance. In general,
nominal groups were substantially more verdical than groups
with real interaction; accuracy ratios for the two types of
groups were .90 and .63, respectively. The advantage of the
nominal groups was most marked for data of high diagnos-
ticity. For low diagnosticity data, in fact, the fact-to-
face groups performed better. To summarize these results
using the traditional Bayesian terminology, Moskowitz found
that direct interaction resulted in substantially greater
conservatism than did statistical averaging of the judgments
of isolated individuals.

Gustafson, Shukla, Delecq, and Walster (1973)
compared the benefits of simple averaging with several types
of interaction. Subjects in this experiment were asked to
make inferences about a person ’s sex based on information
about the person’s height and weight. In th~ simple Esti-
mate condition, subjects made their judgments as individuals
without any interaction with other subjects. In the Talk-
Estimate condition, the members of a group talked over each
item, then make individual judgments. In the Estimate-Talk-
Estimate condition, subjects first made individual judg-
ments, then talked these over, then re—estimated individual
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judgments. In the Estimate-Feedback-Estimate condition,
subjects again began with individual estimates, then
re-ceived ananyrnous feedback about the estimates of
the other subjects in their group, then made new
estimates. This condition tested the value of the
popular Delphi technique (Dalkey & Helmer, 1963). All
groups in the last three conditions were comprised of
four subjects each.

To provide a control condition for the pure
effects of averaging, random groups of four subjects
from the Estimate condition were constructed, and the
judgments of the members of these “groups” were then
averaged together. The error score used to analyze
these judgments was percentage deviation from the
Bayesian posterior odds. Using this criterion the
Estimate-Talk-Estimate groups were clearly the most
verdjcal. The Estimate and Talk-Estimate groups were
roughly equal, and were both about 45% worse than the
Esimate-Talk—Estimate groups. The Delphi groups came
a distant last, with an error score 63% higher than
that of the Estimate-Talk-Estimate groups. This study
strongly suggests that a combination of averaging
processes and face-to-face discussion provides the
best mode of aggregating expert opinion. But suprisingly,
the discussion process is of little value unless the
discussants have previously committed themselves to a

prior estimate. The study also suggests that the
popular Delphi technique is a very poor way of aggregating
opinion.

In an effort to compare various behavioral
and mathematical techniques of group probability
assessment, Seaver (1977) experimentally compared two
aggregation rules, weighted arithmetic means and
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and we ighted geometric means , and three weighting procedures,
equal weights, weights based on self-rating, and DeGroot
we ights (DeGroot, 1974). Five behavioral interaction tech-
niques were compared, the Delphi method (Dalkey and Helmer,
1963), the Nominal Group technique, developed by Delbecq and
Van de Ven (1971), a modified nominal group technique in
which group members state their estimates and reasons wit.h
no discussion, a concensus technique in which groups were to
arrive at concensus in any way they wished, and no inter-
action or control group in which group members made estimates
with no knowledge of other member’s estimates.

The quadratic scoring rule was used as the cri-
terion for measuring the quality of group assessments. The
well-known insensitivity of that rule may account for the
lack of significant differences among behavioral techniques.
In general , interaction among group members reduced differ-
ences, reduced the calibration of the judgments, and in-
creased the extremeness of judgr- ’nts. Therefore, deciding
whether or not to use group interaction techniques involves
a tradeoff between calibration and extremeness of the
responses. Although no significant differences were found ,

slight differences as well as the results of other studies
point to slight superiority of the nominal group technique
to other group interaction methods.

The data show that little if anything is lost by
using mathematical techniques to aggregate individual judg-
ments rather than behavioral interaction. Considering the
practical disadvantages of face-to-face meetings of groups,
this research suggests that there may be no point ii~ both-
ering with the sometimes lengthy procedures of behavioral
interaction. While results of this experiment dealt totally
with point estimates, further studies focused on eliciting
continuous distributions are needed.
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3.3 Multi-attribute Utility Theory--A Technology for

Evaluating Complex Outcomes

In many contexts decision makers may use the output of
a PIP system as an input to their decisions, but wish to
make the decisions themselves in an intuitive rather than
analytic fashion. The full power of the decision-theoretic
approach cannot be realized, however, unless alternatives
are selected using expected utility maximization as a cri-
ten on. This, of course , requires that each possible con-
sequence of the action alternatives being considered be

assigned a single numerical value which reflects the utility

of that consequence relative to all other possible conse-
quences. Until quite recently it was commonly believed that
utility assessment was feasible only when the outcomes in
question varied only with respect to a single value-relevant
dimension, such as dollar profits. Now, however, we have
both the theory arid practical methods for assigning utilities
to complex outcomes which vary along multiple value-relevant
dimensions. This section briefly discusses both the theory
and practical scaling techniques. For recent reviews or
discussions of the multi-attribute utility approach, see
Edwards (1976, 1971), Fischer (1972a), Raiffa (1969), and
von Wjnterfeldt and Fischer (1972). For a detailed book-
length treatment, the reader is referred to Keeney and
Raiffa ’s book, Decisions with Multiple Objectives, (1976).

In our discussion of the multi-attribute utility theory
(MAU) approach, we will use the following hypothetical
example. This example is both oversimplified and uninformed ;

its purpose is only to illustrate the method of analysis.
Suppose that deployment of an anti-ballistic missile system
within the continental United States is being considered.
The Defense Department has responsibility for deciding upon
appropriate ABM sites. The problem is a complicated one,

57



~ —-.-- ~~~~~~~~

for various reasons. For one thing, ABM systems become
available a few at a time, not all at once. For another
thing, the Defense Department must balance protection of
retaliatory capability, represented by strategic forces;
protection of defensive capability, and protection of popu-
lation , industry , and agriculture.

Utility theory is attractive as an approach to this
problem. In particular , it copes with the gradual avail-
ability of ABM systems by ranking possible locations; as
more systems become available, they can go to progressively
lower-ranking sites. (Some technical problems about syner-
gistic effects arise here, but can be ignored for the pur-
pose of this expository example.)

The first task in any utility theory analysis is that
of determining whose utilities are to be maximized. In this
case there is clearly no single decision maker whose inter-
ests are paramount. Ideally, the utility measure should
reflect the interests of the American people as a whole. In

reality, however, the actual decision will be made by a
small number of high—level officials. These officials
collectively constitute the decision maker in the analysis.
Of course they will not fully agree with one another; that
is one of the technicalities we must face.

Next we must consider the question of utility for what.
Suppose that in our example the decision makers agree on a
vaguely stated overall objective: the protection of the
lives and well being of the American people against a
strategic nuclear attack. Next, the decision makers must
list a set of value-relevant attributes or criteria that
bear upon this overall objective. This list of attributes
may be obtained in either of two ways. First, the decision
makers might simply draw up a list of considerations generally
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agreed to be important. Or second, the evaluation problem
could be attacked hierarchically. The first approach is
straightforward. The second merits further discussion.

Suppose that after careful deliberation, the decision-

making group decides that two major factors contribute to

the defensive posture of the nation: (a) maintenance of a
credible deterrent threat, and (b) direct and indirect
defense if deterrence fails. Each of these factors can in

turn be decomposed into a set of more specific attributes.
Assume, for example, that the decision makers decide that in
assessing the degree to which a given defensive posture
contributes to the “defense if deterrence fails ” criterion,

three specific criteria are of paramount importance: (a)
the percentage of the nation’s population that would survive
in an all out attack, (b) the percentage of the nation ’s
agricultural capacity that would survive such an attack, and
(C)  the percentage of the nation ’s industrial capacity that
would survive such an attack. Finally, suppose that t~he
decision makers choose percentage of retaliatory forces
surviving an all out first strike as an acceptable measure
of the deterrence criterion. These relations can be repre-
sented by the hierarchical structure in Figure 3. Equiva-
lently, the decision-making group might simply have drawn up
a list of the four specific attributes at the bottom of this
value hierarchy. It is obvious that the percentages of
retaliatory forces, population, and industrial capacity
surviving depend on the sites selected. Agricultural
capacity is also influenced, however; for example, the
location of ABM sites in remote areas where our own ballistic
missiles are located might increase population losses but
decrease agricultural losses.

Next, each of the possible action alternatives must be
evaluated in terms of the specific attributes at the bottom
of the value hierarchy. In the present example, these
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Overall Security
of Nation

Deterrence Defense if Deterrence
Fails
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FIGURE 3

VALUE HIERARCHY FOR NATIONAL DEFENSE
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alternatives would be the set of ABM sites being evaluated.
In assessing the degree to which each site contributed to
each of the four attributes, the decision-making group would
have to rely upon the judgment of experts. For each set of
sites a probability distribution would be assessed over each
of the four value attributes. These probability distributions
might be generated by simulation models incorporating infor-
mation concerning the capabilities and intentions of poten-
tial aggressors and the characteristics of the ABM ’s. Or
they might be based purely on expert intuition, perhaps
formalized as a multistage inference model.

With this information in hand we now turn to the final ,

and perhaps most difficult, stage in the evaluation process ,
namely, trading off attainment of one objective against the
attainment of others. For only rarely is it the case that
one alternative is clearly better than all others with
respect to every value-relevant attribute. Multiattribute
utility theory (MAU) provides the formal basis for making
such tradeoffs. In our discussion of MAU we distinguish
between risky and riskless decisions, because the logical
underlying utility decomposition is somewhat different in

these two cases.

3.3.1 Riskless decision making . A decision is said to
be riskless if the decision maker is able to specify with
complete certainty the consequences associated with each
possible course of action. Under these circumstances decision
making requires only that the set of consequences be rank-
ordered in terms of their desirability , and then that the
alternative associated with the most desirable consequence
be selected. The riskiess choice assumption is clearly an
idealization; all decisions involve uncertainty at some
level. Some situations may approximate the certainty assump-
tion, however. Also, there are circumstances in which it
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may be useful to treat an uncertain decision as if it were
riskless. Here one would specify one value for each attribute
of an alternative; the expected mean or median outcome with
respect to a given dimension are the most likely candidates.
This practice of treating an uncertain decision as if it
were riskless may be just.ified in some cases on the grounds
that the reduction of time and effort more than offsets the
loss in precision. Finally, the theory of riskless choice
is useful becasue it deals with the ordering of consequences,
and it is a fundamental principle of rational choice that
the ordering of consequences should not depend on whether or
not the decision involves risk. Thus, there are cases in
which we can apply a simple monotonic transformation to a
riskiess utility function to obtain a utility function which
is appropriate for decision making under risk.

A riskless decision strategy is said to be
rational (Arrow, 1963) if it satisfies two simple and logi-
cally compelling principles. The first of these, comparability,
asserts that for any two outcomes X and Y, either X < Y, Y
< X, or X “ Y, where X < Y denotes “X is not preferred to
Y,” and X “~ Y denotes “the decision maker is indifferent
between X and Y.” This condition is trivial, merely asserting
that the decision maker can compare any two outcomes in
terms of their desirability. The second condition, the
transitivity principle, is probably the most important and
least controversial principle of rational choice. It asserts
that for any three outcomes X, Y and Z, if X ~ Y and Y
Z, then X < Z. For a finite set of outcomes, satisfaction
of the comparability and transitivity principles is sufficient
to guarantee the existence of a riskless value function V
such that for any outcomes X and Y

X < Y if and only if V(X) < V(Y).
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Simple as the above notion of rationality may seem, the
intuitive preferences of individuals sometimes violate the

transitivity principle (Luce & Suppes, 1965; Tversky, 1969).
To the information-processing-oriented psychologist this
immediately suggests that, as in the case of probabilistic
inference , people have difficulty aggregating information

over the various dimensions of a stimulus. So here, too,

decision theorists have focused their attention on methods

for decomposing the judgment task into a simpler set of

subtasks. They have also been concerned with the assua~ tions
that are required to justify the various types of decompostions.

No decomposition is possible unless preferences
satisfy a condition termed simple independence (Krantz and
Tversky, 1971). Notationally, let the outcome X be represented
by the attribute vector (x1, ~~~~~~~~~~~ where Xk is the k-th
attribute of X. Preferences satisfy the simple independence
condition provided that there exists at least one attribute
Xk such that preferences for the states of with all
other attributes held fixed, do not depend on the particular
states in which the other attributes are held fixed. To
illustrate, consider the three attributes in our ABM sites
example that relate to the “defense if deterrence fails”
goal. Regardless of what proportion of the nation ’s population
and industrial capacity might survive a nuclear attack, more
agricultural capacity would probably be preferred to less.
Thus, agricultural capacity satisfies simple independence.
Similarly, more industrial capacity would probably always be
preferred to less, so industrial capacity also satisfies
simple independence. In both cases, one could always choose
later to operate at less than full capacity.

It is not obvious, however, that one would always
wish for a higher rate of survival among the nation’s popu-
lation. For example, suppose that only 10% of the nation’s
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agricultural capacity survived an attack. Would one then
prefer a 80% survival rate among the population to a 40%
rate? In the former case, there would be a terrible food
shortage which might in the long run result in a lower final
survival rate, say after five years. In addition, the
existence of extreme shortages of food might eliminate any
possibility of returning to a semblance of order.

These comments are only speculative. Nevertheless,
it should be clear that there ar~ dimensions which will not
in general satisfy the simple independence condition. In
exploiting the consequences of simple independence it is not
necessary, however, that the condition be satisfied for all
conceivable outcomes, but only that it be satisfied for the
outcomes being evaluated. For example, if no scenario being
considered resulted in less than a 30% survival of agricultural
capacity, one might well always prefer a higher population
survival rate to a lower one, in this restricted set. Thus,
tests of simple independence, and all of the other assump-
tions which we will discuss, should generally be confined to
the set of outcomes being evaluated.

When one or more dimensions do satisfy the
simple independence condition, it is possible to select one
of these as a base dimension and then to trade off all other
dimensions against the base dimension. In addition to
satisfying simple independence, the base dimension selected
should be: a) continuous, and b) capable of assuming a wide
range of values. After a base dimension has been chosen,
“standard states” for the remaining dimensions must be
specified . These standard states should normally be chosen

to fall somewhere in the middle of the range of states that
the dimension can assume. To illustrate how the sequential
trade-off procedure can be used to order outcomes, consider
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the following two outcomes from the ABM site problem. (Here
we consider only the evaluation of outcomes with respect to
the defense-if-deterrence-fails criterion.)

X Y Standard

% Ag. 75 10 ——

% Pop. 30 70 50

% Ind. 20 70 50

Outcome X represents a case in which urban areas
suffer extensive damage resulting in loss of life and industrial
capacity, while rural areas are relatively untouched, re—
suiting in a fairly high level of surviving agricultural
capacity. Outcome Y reflects an opposite pattern of damage,
with urban areas suffering less damage, but with rural agri-
cultural areas being very hard hit. In this example, we
have selected agriculture as a base dimension. As noted
earlier, the population f~ctor may not satisfy the simple
independence assumption. And, more important, people would
probable find it extremely difficult to make direct trade-
of fs into the population dimension. For both population and
industry, fifty percent survival rates were used in this
hypothetical example as standard levels.

Considering first outcome X, we begin the process
of trading off population and industry survival rates against
agriculture by attempting to specify a level of agricultrual
survival (a’) such that (.75A, .30P , .201) ‘~‘ (a’A , .50P ,
.201). That is, we ask the question “How much agricultural
capacity would we sacrifice to increase the population
survival rate from 30% to its standard level of 50%?”
Clearly, there is no objectively correct answer to such a
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question. Any well informed opinion would have to be based
on projections of how a reduction in food per capita would
affect long-run survival rates and quality of life for the
survivors.

For the sake of illustration, suppose that the
decision-making group sets a’=.30. Next, we trade off
industrial capacity against agriculture by attempting to
specify an a’ such that (a’A , .50P, .501) - (.30A , .50P,
.201). In such a crisis, agricultural capacity would presumably
be highly valued, so assume the decision makers specify
a’=.25. That is, given that food is already scarce, the
extra industrial capacity would be of little value. Thus,
by transitivity we have (.75A , .30P, .201) - (.25A, .SOP ,
.501). Suppose that through a similar process for outcome Y,
we obtain (.lOA , .70P, .501) - (.40A, .50P, .501). In this
case, the trade-off s imply a belief that the high initial
survival rates for population and industry will be considerably
offset by the absence of food to feed the survivors. Since
we have by our trade-of fs equilibrated X and Y in the population
and industry dimensions, it is now quite straightforward to
determine that Y is preferred to X from Y - (.40A , .50P,
.501) > (.25A, .50P, .501) .. X.

In what sense has this procedure assisted the
evaluation process? Clearly the trade-offs involved would
be extremely difficult to make. But any decision procedure
implicitly implies such trade-off s, and it can be argued
that it is better to know what trade-off s you are making so
that you can be sure that they reflect your real beliefs and
values. In addition, the sequential trade-off procedure
simplifies the evaluation process by allowing the decision
makers to concentrate primarily on only two dimensions at a
time. This could be of considerable benefit in problems
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involving a large number of dimensions. For a more complete
discussion of this approach and its shortcomings, see Raiffa
(1969)

A second approach to riskless value assessment
utilizes additive rating scale evaluation models. This
approach is more restrictive and is appropriate only when
stronger assumptions are satisfied. First, within the set
of outcomes to be evaluated, every dimension must satisfy
the simple independence condition. In addition, all dimensions
must satisfy the following joint independence assumption.
Preferences for combinations of any subset of dimensions,
holding all other dimensions constant, should not depend on
the particular levels in which the constant dimensions are

held fixed. For example, preferences for various combina-
tions of remaining agricultural and industrial capacity
should not depend on the percentages of surviving population.

The joint independences assumptions seems questionable
in the context of the example we have been discussing. (The
example was in part selected because it would represent a
difficult and extremely complex evaluation problem.) In
most decision-making centexts, however, dimensions can be
defined in such a way that both simple and joint independence
will be staisfied. It should be noted, however, that in
contrast to the transitivity principle, the simple and joint
independence assumptions have no normative appeal. When
they are staisfied, however, the evaluation problem is greatly
simplified. In particular, when these two assumptions and
several technical assimptions relating to the continuity of
dimensions and trade-off s are satisfied, then preferences can

be represented by a simple additive model of the form

V (X) V1(x1) + V 2 (x 2) + ... + V~ (x~)~ (2.1)
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where V~ is a value function defined over the i—th dimen-
sion. When the individual value functions are scaled to
have a constant range, say 0 to 1, then the model may be
written as

V(X) = w1V1(x1) + w2V2 (x 2) + .•.  + s~
V
~
(x
~
), (2.2)

where the w1 are scaling or weighting factors. The formal
theory underlying this additive model is termed the theory
of conjoint measurement; for a further discussion see Krantz,
Luce, Suppes, and Tversky (1971). It is particularly impor-
tant to note that the assumptions discussed above guarantee
only that an additive model can represent the preference
ordering.

Nevertheless, most procedures for developing an
additive value index for riskless choice assume that the
index has the properties of an interval or ratio scale.
Here we will outline a straightforward rating scale procedure
that has been fairly widely used. We assume that the initial
steps in the evaluation process have been completed; that
is, that the utility for whom and what questions have been
answered, that the set of value dimensions has been specified,
that the set of outcomes to be evaluated has been specified,
and that each outcome has been measured or scored with respect

to each of the value dimensions. Next, value functions must
be assessed over each of the dimensions. Then, the decision
makers must specify the most and least desirable states of
the dimension that could feasibly occur in the analysis.
These states may be arbitrarily assigned within dimension
values of 100 and 0, respectively. All intermediately
valued states of the dimension are then assigned values
using a direct rating scale method. If the dimension is
continuous, values may be elicited for three to five inter-
mediate states and a smooth curve interpolated through them.
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In the example we have been considering in this discussion,
the value function ~for percentage of retaliatory forces sur-
viving a first strike might look something like the one below.

Value 
10: 

~~~~~~~~~~~~~~~~~~~

% Retal.

The s-shape of this function indicates that anything much
above 50% survival of our missile forces should provide an
adequate deterrent, while anything less than 10% provides
very little deterrent whatsoever.

After value functions have been assessed over
all dimensions, weighting or scaling factors must be assessed.
These factors are necessary because although each of the
value scales runs from 0 to 100, they are not scaled in
common units. That is, a 10-point change on an important
dimension should matter much more than a 10—point change
on a trivial dimension. To assess these weights, the decision
makers should begin by rank ordering the dimensions in order
of their importance. This ordering should be based on the
change in overall value induced by moving the dimension
from its best feasible state to its worst feasible state.
Thus, the importance of a dimension depends upon the range
of feasible outcomes with respect to that dimension. After
the dimensions have been ordered, quantitative weighting

factors can be assigned by having the decision maker make
ratio comparisons of the relative importance of pairs of
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attributes. Typically, either the most or least important
dimension is compared with all others. These importance

weights should then be normalized to sum to 1.0. Overall

“alues for any given outcome may then be obtained by using
the additive form of equation 2.2. For a more complete dis-

cussion of this procedure , see Edwards (1971).

Experience suggests that the additive rating
scale procedure will generally be easier to use than the
sequential trade-off method. This seems to be due to the
fact that people are very uncomfortable about making direct
trade-off s, particularly when one of the dimensions involves

loss of human life. But the additive rating scale model
p implies a set of direct trade-of fs which the decision maker

should be willing to live with. In applying the additive
rating scale method, care should be taken to assure that the
decision makers are aware of the implied trade-of fs and that
these trade—of fs reflect their true values.

The rating scale procedure is also much easier
to use in situations in which a large number of outcomes
must be evaluated . The sequential trade-off procedure must
be directly applied to each outcome being considered. When
the number of outcomes is large, the time and effort re-

quired could be prohibitive. The additive rating scale
method, on the other hand, is unaffected by the number of
outcomes to be evaluated. Once the value functions and
weighting factors have been assessed, a computer can be used
to evaluate any possible outcome for which dimensional

measures or scores are available. (Of course, the task of
measuring or scoring outcomes with respect to dimensions
might also be extremely costly in terms of both time and
resources.) Because it is so much easier to use, the
additive rating scale method will probably be preferred in
many practical situations. It should be noted, however,
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that the additive model is based on a considerably more
restrictive set of assumptions, and when these assumptions
are not satisfied, the sequential trade-off method provides
an alternative approach. Trade-off methods are also in-
structive in communicating the true meaning of any multi-
attribute evaluation model.

3.3.2 Risky decision making . A decision is said to be
risky when the decision maker is uncertain as to the conse-
quences that will result from each course of action, but is
able to specify a probability distribution over these conse-
quences. This probability distribution might be obtained

through direct intuitive assessment , as the output of a PIP
system, or as the output of a statistical or simulation
model. Notationally, let (p1~x1,p2~x2,...,p51x5) be the
probability distribution for outcomes associated with the

i-th action alternative where p~~ is the probability that
outcome x~ will occur given that act A1 is selected. Recall

from our previous discussion of decision making that the
expected utility principle provides a formally optimal rule
for choosing between alternatives, each of which gives rise
to a probability distribution over a set of outcomes.
According to this principle, there exists an interval scale
utility function U such that:

a) For any outcomes x1 and x~ x1 < xj if and
only if U ( X ~ ) 

~~ U(X~ ) ;

b) For any actions Am and An~ 
A < A~ if and

only if 
~ 

pimU(Xj) < ! 
~in° i~i=l i=l

Here we consider the problem of assessing the utility func-
tion U. Note that like any riskiess value function V, U
must preserve the preference ordering for outcomes. In
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addition , U must possess the interval-scale properties
required for the expected util i ty computation .

When outcomes are along only one value relevant

dimension , risky ut i l i ty assessment is relatively straight-
forward. One method, discussed by Raiffa (1968), is par-
ticularly simple and may be applied in a wide variety of
contexts. Given the finite set of outcomes X1, X2,...X8 to
be evaluated, the decision maker begins by specifying the
most and least desired of these outcomes, denoted by X* and
X~, respectively. Then, for any other outcome X1, he is
asked to specify a probability p~ such that he would be
indifferent between receiving the outcome X1 with certainty
or accepting the probability distribution of consequences
(p.X* , (l—P~)X~

). If the decision maker assigns these
probabilities in an expected utility-maximizing fashion ,

then it can be shown that U ( X ~ ) = p1. Since the experi-
mental studies reviewed earlier indicated that people
evaluate simple gambles in a manner which is consistent with
the expected uti l i ty principle, this seems a reasonable
procedure for evaluating unidimerisional outcomes. When
outcomes are multidimensional, however, information overload
problems again become important, so decision theorists have
also developed decomposition procedures for risky util i ty
assessment.

Note that since any riskiess value function V
and any risky utility function U must identically order out-
comes, there must exist some monotonic transform R such that.
U(X) = R(V(X)). Thus, given a riskless value function V, we
need only to assess the transfc’rm R to obtain an interval-
scale utility function. Suppose, for example, that all out-

comes have been traded off into some base dimension , so that
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the simple preference ordering over the base dimension
itself serves as a riskless value function . Then to obtain
the risk transformation R, one need only to assess a utility
function over the base dimension itself. This utility
decomposition is relatively simple to employ. The only
really difficult stage here lies in obtaining the riskiess
trade off judgments.

When the riskless evaluation function is ex-
pressed as an additive rating scale model , it is not quite
so simple to obtain the transformation R. Here several
multi-attribute outcomes, which span the full range of V,
must be selected and overall ut i l i t ies assigned to them
using the ut i l i ty assessment procedure discussed below. The
values of these outcomes are then plotted on the abscissa of
a coordinate system, the utilities on the ordinate; a
smooth curve is interpolated through them to obtain the
transformation relating U to V. This interpolation procedure
is illus trated below :

U / ~~~~~~~~~~

Note that although the value function V is additive in this
case, the resulting utility function U need not be. For
example, suppose that U(X) = log V(X) = log Z w1 V~ (xi),
which is clearly non-additive. In general, U will be addi-
tive only if U and V are linearly related. Throughout this
paper we refer to these two risk transformation decompositions
as R(V) utility decomposition models.
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It is possible to obtain direct risky utility
decomposition models, thus bypassing the need to construct a
riskiess value function. But direct utility decomposition
requires that an additional assumption, termed utility
independence (Keeney and Raiffa, 1976), also be satisfied .
The utility independence assumption asserts that preferences

for probability distributions over any subset of dimensions ,

holding all other d imensions constant , should not depend
upon the particular states in which the constant dimensions
are fixed. This is a slightly stronger version of the
simple and joint independence conditions required for riskless
additivity . Again , in the example we have discussed, we
might expect that the ut i l i ty independence assumption will
be violated because preferences for uncertain outcomes with

respect to the population dimension might well depend on the
amount of surviving agricultural capacity. When this
utility independence assumption and the simple and joint
independence assumptions are satisfied , then it can be shown
(Keeney and Ra i f f a , 1976), that a multi-attribute utility
function will assume one of the following two forms :

S
U(x1, x21...,x ) = Z w .U~~(x.). (2.3)

i=l 1 1

U(x1, x2,...,x5) = U ((1 + w~U~~(x~ )) — . (2.4)

Here the U~ are utility functions over each dimension ,
ac~led to run from 0 to 1, the wj are scaling constants to
reduce the dimensions to a common scale, and k is a scaling
constant reflecting the type and degree of non-additivity ,
if any , which is present. Keeney and Raiffa (1976) show that
the additive form of 2.3 is a special case of the more
general mul tiplicative model , 2.4. In particular , the
additive form holds only if preferences under risk satisfy a
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final and extremely restrictive condition derived by Fishburn
(1965) and frequently referred to as t.he marginality assumption.
Fishburn proved that an additive risky utility assumption is

appropriate only if the decision maker is indifferent between
all alternatives that have identical marginal probability
distributions over outcome dimensions. The following example

shows that this assumption is often seriously violated.

Consider that probability distributions PD1 and PD2 where

r ’~’ith probability 1/2 the outcome (.8P, .8A, .61)
PD1

L~~jth probability 1/2 the outcome (.lP, .lA , .61)

rwith probability 1/2 the outcome (.8P , .1A, .61)
PD 2 =

~~Lwith probability 1/2 the outcome (.lP, .8A, .61).

An additive risky utility function is appropriate for the

example we have been considering only if the decision makers

are indifferent between PD1 and PD2. It seems likely that

most policy makers would prefer PD1, which provides a 50%
chance of having a large number of survivors with enough
food to feed them, to PD 2, which gives either a lot of sur-
vivors with no food, or a lot of food with no one to eat it.

That is, people care about the joint distribution , not just

the marginals.

When the utility independence assumption is

satisfied, a decomposed utili ty model can be constructed
using the following procedure devised by Keeney and Raiffa

(1976) . To obtain within-dimension utility functions, the

decision maker need only consider lotteries over the single

dimension in question. Consider the i-th dimension and let

X~~ and X .,,, be the most and least desirable states of that
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dimension which could feasibly occur. Since the overall
utility function is defined only on an interval scale, we
may arbitrarily set Ui(xi*) = 1 and U

~~
(x
~*
) = 0. To obtain

a within-dimension utility for any other state of the i-th
dimension, (X jO) the decision maker must satisfy a probability

such that he is indifferent, between receiving xjo with
certainty or accepting a gamble yielding the probability
distribution (p±ox~*, (1 

- PjO) x1~), assuming all other
dimensions to be held constant. It can easily be shown that
U
~
(x
~
o) =

Next, the scaling factors for each dimension
must be assessed. Let (xi*, x1~) denote the outcome that
has the most desirable state on dimension X

j 
and the least

desirable state on all other dimensions. Then to assess the
importance or scaling factor for the i-th dimension , the
decision maker must specify a probability w~ such that he
would be indifferent between receiving the outcome (x e,

x1~~) with certainty and accepting the gamble (w~X*, (1 —

w~
)X
~
). Again , it can be shown that w~ provides an appro-

priate scaling factor for either equation 2.3 or 2.4.

Finally , a choice must be made between the
additive form of model 2.3 and the multiplicative form of
model 2.4. Keeney shows that the additive model is appro-
priate if and only if Z w = 1. Thus, the w. themselves
provide a means to choose between models. In addition, if
Z W

j ~ 1, the multiplicative constant k in model 2.4 can be

~btained using a simple interactive procedure based only on
the Wj. (In practice, the selection of a model form should
probably be based not only on the E W

j 
test, but also on

direct tests of the marginality assumption.) The multiplicative
model 2.4 can express two types of interaction. First, when
Z W

j 
< 1, attributes combine in complementary fashion. High

values on one dimension mean little unless all other dimensions
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have similarly high values. The preference for PD 2 in our
example of the marginality test implies that Z wj < 1. In
addition , the multiplicative model can reflect a substitutability
relation. For example, a decision maker might be very loath
to risk losing an outcome that was excellent in any attribute.
Here, E w

~ 
< 1.

Logically, both of these models are special
cases of the more general R(V) formulation . Thus, whenever
either of the Keeney models is appropriate, an R(V) model
can also he used. In this case, choice of an evaluation
procedure should be based on practical considerations such
as ease and meaningfulness of assessment.

3.3.3 Validating multi-attribute evaluation models.
Two approaches to the validation problem have been proposed.
The f i r s t , and by far the most widely applied approach, is
convergent validation. Studies employing this strategy
typically begin by having subjects make overall intuitive
judgments about multidimensional outcomes, usually on some
type of rating scale. Then decomposed evaluation models are
constructed and used to assign values or utilities to the
same set of outcomes. Finally, the intuitive and decomposed
evaluations are correlated with one another. Most studies
which have employed this strategy have considered only
riskless rating scale procedures. The correlations obtained
in these studies have generally been quite high, ranging
from the low .70s to high .90., with most correlations in
the high .80. or better (Pollack , 1964; Hoepfl & Hither,
1970; Huber, Daneahgar, & Ford, 1971; Pai, Gustafson, &
Kiner, 1971; Fischer, 1972). In a slight variant of this
approach, additive rating scale models have also been vali-
dated against hypothetical (Yntema & Klem, 1965) and real
choices (Huber, Daneshgar, & Ford , 1971). In both cases the
models afforded fairly good predictions.
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Trade-off and risky . utility assessment pro-

cedures have received less experimental attention, perhaps
because psychologists have been less aware of the relevant
literature dealing with these models. Fischer (1972) com-
pared a special additive case of the sequential trade-off
method with intuitive judgments and additive rating scale
models and found a high degree of convergence between the
three methods. Von Winterfeldt (1976) studied additive
risky utility models and found that they did a fair job of
predicting intuitive assessments of 14 dimensional outcomes.

Fischer (1972) compared the Keeney and R(V) approaches to
risky utility decomposition and obtained a high degree of
convergence between the two methods. Both types of models
also yielded excellent predictions of intuitive utility
assessments.

In summary , convergent validation studies have
generally indicated a high degree of agreement across dif-
ferent scaling procedures. This agreement suggests that all
of the methods do in fact tap the same underlying attribute,
namely, subjective value.

The second approach to validating multi-attribute
evaluation models rests on the notion of external validity .
That is, given that the true value of the outcomes will be
ultimately known, it is possible to validate assessment pro-
cedures by comparing their outputs with these objectively
correct values. In this vein, Yntema and Torgerson (1961)
had subjects assign values to visual stimuli varying in
size , shape, and color. During the training portion of the
experiment, subjects estimated the value of a stimulus,
then received feedback on its “true value.” These true
values were generated by a simple mathematical rule which
was arbitrarily specified by the experimenters. On a subsequent

78

L. -- . -_-__- - -—  — - - . .
~~~~

- —



—~~ ~~~~~~~~~~~~~~~~~ 
. . .— --- 

~~
-..-- .. . . -

series of test trials, the subjects assigned values to the
stimuli without feedback. Finally, decomposed additive
rating scale models were constructed to evaluate the same
set of test stimuli. Both the intuitive and decomposed
evaluations correlated highly with the true values of the
test stimuli, with the decomposed models doing slightly
better. This study provides further support for the belief
that decomposition procedures provide a good means for
assigning values to outcomes.

A second study involving an external criterion
was conducted by Eils (1977). In that study, utility assessments
about the credit worthiness of people reflected in credit
briefs were elicited from twenty-four groups, each of which
consisted of four graduate or undergraduate students who
knew each other prior to the experimental session. Group
utilities were elicited (via consensus) for ten hypothetical
applicants for bank credit cards. The research design
completely crossed two factors in assessing group utilities:
1) using a decomposition procedure (MAU.) or not, and 2)
using a formal group communication strategy (GCS) or not.
The quality of each group ’s utility judgments was defined to
be the Pearson product moment correlation between the group’s
judged utilities and utilities output from a configural
(nonlinear) model used by a bank in evaluating applicants ’

credit cards.

Eils found that the decision technology of MAUA
greatly aided groups in reaching decisions that were in some
sense consistent with decisions based on a systematic collection
and interpretation of a large amount of relevant data (i.e.,
the bank model). When unit weights were used in place of
the elicited differential weights, the MAU groups evidenced
even higher correlation with the bank model. The application
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of a communication strategy did not significantly alter the
quality of group evaluations.

Eils’ research is perhaps the first to demon-
strate a greater degree of fit to an external criterion
than wholistic judgments. The formalized bank model used to
measure judgmental validity reflects the complex nature of
the relationship between applicant characteristics and
a subsequent loan, as evidenced in the data used to generate
the formal model. Although this criterion is not a totally
satisfying one, it is clearly better than none.

3.3.4 The social utility problem. All of our discus-
sion of multi-attribute utility models has implicitly
assumed the existence of some decision maker , with a con-
sistent set of preferences, whose utility is to be maximized.
Yet our example, and most contexts in which we would like to
apply the theory, involve many decision makers or interested
parties with conflicting sets of values. Arrow (1963),
however, has proved that there is no way to combine a set of
individually transitive preference orderings which assures a
collectively transitive group preference ordering, at least
not if the method of arriving at a group preference ordering
satisfies a number of criteria, such as non-dictatorship,
which are generally valued in democratic societies. Because
the issues here are quite complex, the reader is advised to
refer either to Arrow ’s original work or to the more intui-
tive discussion presented in Luce and Raiffa (1957).

Arrow’s formal arguments have not discouraged
those who wish to apply utility theory in complex organiza-
tions. Although the resolutions to this problem are heuristic
at best, they seem intuitively reasonable, and seem much
more desirable than traditional institutional power strug-
gles which also must implicitly cope with the problem of

80

_ _ __ __ __ __ _
_ ---4



conflicting sets of values. As Edwards (1971) has noted,
many participants in a decision-making process are expert on
only certain aspects of the problem. In applications of

multi-attribute utility theory, such experts only make judg-
ments about the particular problem dimensions falling in
their area of expertise. When more than one expert is
involved in assessing a given value or utility function,
some sort of averaging procedure can be used (for example,
O’Connor, 1972). Although no formal rationale can be given
for such averaging , it seems reasonable. In other cases,
experts may be able to reconcile their differences to arrive
at a concensus function for the dimension in question.

The social utility problem is more severe in the
matter of specifying trade-of fs among dimensions, or equiv-
alently, assigning importance factors to dimensions. If
there is one organizational decision maker with overall
responsibility for the decision, he should make these trade-

offs. (This will often be the case in military organiza-
tions.) If several people must share the ultimate respon-
sibility , then they should attempt to resolve their differ-
ences to arrive at a consensus Set of trade—offs. Sensi—
tivity analyses can be helpful in this regard, in that often
the decision will be such that small value conflicts will
not affect the final decision. But if all such attempts
fail, some sort of averaging process might be used. Nash
has shown that, when utilities are defined on an interval
scale , a multiplicative averaging process has certain nor-
matively desirable properties possessed by no other strategy
for resolving interpersonal utility conflicts. (See Luce &

Raiffa, 1957, for a discussion of the group utility problem,
including the Nash solution.)

Whatever approach is adopted, it seems clear
that the multi-attribute utility approach can assist. members
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of an organization in identifying their implicit value
conflicts and force them to communicate directly about them.
Despite the heuristic nature of the approaches discussed
here, we would argue that they represent a substantial
improvement over intuitive goal-setting in organizations
which results in different sub-units pursuing conflicting

goals or in sequential attention to conflicting goals over
time (Cyert & March , 1963; Allison , 1971) .

3.4 Bootstrapping--An Alternative Approach to Decision-
Aiding Technology

All of the decision-aiding technology discussed above
has been based on the assumption that better decision making
can be achieved if complex problems are decomposed into a
set of relatively simple factors, with people making judgments
about these factors, and with a mathematical model being
used to aggregate the implications of these judgments for
the final decision. A second approach to decision aiding is
based on the assumption that intuitive inferences and decisions
are unbiased, but subject to a substantial degree of random
error (Bowman, 1963; Goldberg, 1970). When this assumption
is true, it should be possible to fit a statistical model to
a set of intuitive judgments which can capture the systematic
aspects of the judgments while filtering out the random
error. Yntema and Torgerson (1961) provided the earliest
empirical support for this decision-aiding strategy which
has come to be called “bootstrapping.” They fit additive
main—effects models to the test trial responses in their
experiment in which subjects learned to assign values to
geometrical stumuli. These main-effects models correlated
.88 with the true values of the stimuli, whereas the intui-
tive judgments upon which the main-effects models were based
correlated only .84 with the true values.
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Other examples of bootstrapping for both deci-
sion making and inference will be discussed in the real-
world applications section of this paper. For a more corn-
prehensive discussion of the logic of bootstrapping , see
Bowman (1963) and Goldberg (1970).
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4.0  REAL WORLD APPLICAT ION S OF
DECISION THEORETIC AID ING CONCEPTS

Over the past ten years, and particularly during the
past five years under funding support provided by the Defense
Advanced Research Projects Agency, there has been a bur-
geoning of efforts to apply the decision-aiding concepts
discussed in this report. These real-world applications

have focused on decision problems in both the civil and

military sectors and the aiding concepts employed cover the

spectrum of elements of decision-analytic methodology
ranging from the explicit numerical expression of uncer-

tainty through probabilistic inference, uti l i ty assessment,
and comprehensive decision analytic applications.

In this section , we will review applications of this
technology with particular emphasis on evidence bearing on

the utility of the decision-aiding methods. As will be

noted , however , there are severe practical d i f f i cu l t i e s
which, in most applied decision contexts, preclude objective
evaluation of the worth of decision aids. Among these

difficulties are the frequent absence of an objective cri-
terion against which to assess decision quality , the general
lack of parallel decision channels that would permit compara-
tive assessment of alternative decision methods, and the
unique , non—repetitive nature of most significant decisions,

a factor that further limits objective evaluation. Because
of these practical measurement problems , much of the evidence
about the ut i l i ty of decision aids in applied contexts is
anecdotal and far short of the level of experimental rigor
that would be desired. An excellent discussion of some of
the problems attendant to “real-world” evaluations is contained
in Fischhoff (1977) and Miller , Kaplan and Edwards (1967).
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4.1 Probabilistic Information Processing

Intelligence analysts are almost solely concerned with
highly fallible predictions. Traditionally , they have
relied on verbal analyses of the type frequently encountered

in history or political science. The first significant

break with that tradition caine when Zlotnick (1968), an
analyst, learned about PIP from reading some of Edwards ’
articles , and decided (with consultative help from Edwards)

to try it out on intelligence data. His article reports a
re-analysis of the data from the Cuban Missile Crisis--a re-

analysis that suggests the possibility that if PIP had been

in use at the time , the United States might have had signif i-
cantly earlier warning that the Russians were putting long-

range missiles into Cuba. Other studies not reported in
Zlotnick ’ s paper were carried out , wit~. similar results.

Althoug~i subsequent to these experiments, interest in
PIP wanted in Zlotnick ’s agency, there as been a recent re-
surgence of interest. Schweitzer (1976), for example,
describes the application of Bayesian inference and Delphi
techniques to a number of intelligence estimation problems.

Other applications of decision analytic methodology are
reported to be underway.

Kelly and Peterson (1972 ) report on work in a dif ferent
intelligence agency. This work led to the present situation

wherein probabilistic and Bayesian techniques are in produc-

tion use in elements of the agency , and incoming analysts
are routinely trained in the techniques.

One key to Kelly and Peterson ’s success, perhaps the
salient one, was that they did not set out to do research on
PIP or to validate its usefulness in a particular context.
Instead, they simply set out to discover how probabilistic
techniques could be made a part of the working tools of
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certain intelligence analysts. To overcome initial resistance

to quantitative techniques, Kelly and Peterson sought to
/ demonstrate the ambiguity of verbal expressions of uncertain-

ty. In one demonstration , they asked groups of analysts who
co-authored intelligence estimates to express the implied
predictions in quantitative terms . Although the analysts
felt somewhat uncomfortable about the implied precision of
these estimates , the results were so striking that small
errors were of little concern . To cite one particularly

surprising example, two analysts had co-authored a paper in
which they stated that “The ceasef ire is holding but it

~ou1d be broken in the next week .” One author inter~reted

this as implying a .30 probability that the ceasefire would

collapse. The other interpreted it as implying a .80 chance
of a collapse. Prior  to the study , they had not realized
that they disagreed about what the quoted sentence meant.

In general , the Kelly-Peterson data clearly established that

verbal qualifiers (such as “likely,” “could ,” “probably”)

provide an extremely poor means for conveying subjective

beliefs about the likelihood of certain events .

After  winning the analysts ’ support for quantitative
probability assessment , Kelly and Peterson focused on the
problem of determining which response modes seem to provide
the most reliable and meaning ful  responses. Based on day-
to-day experience , Kelly and Peterson concluded that , of
the response modes tried, a logarithmically spaced scale
calibrated in both odds and probabilities works best.

They also discussed problems associated with applying PIP
systems in real—world intelligence contexts . For example ,
analysts found it very difficult to estimate likelihood
ratios. Statistical models are generally applied to prob-

lems where it is reasonable to assume that some hypothesized
state of the environment generates a set of data. In in-

telli gence analysis, however , it frequently appears that
causality runs from data to hypothesis. For example,
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increasing the number of troops stationed at the Sino—Soviet
border (a datum) increases the odds of Sino—Soviet military
conflict (a hypothesis) at least in part because such troop
concentrations might provoke border incidents that could
escalate into Sino—Soviet conflict. The analysis techniques
used by Kelly and Peterson also typically provide the analysts
with feedback on the posterior odds generated by the PIP
system. Although laboratory work suggests that inferences
are less conservative when no feedback is provided, Kelly
and Peterson argue that it would be unreasonable to expect
analysts to accept responsibility for the predictions of a
PIP model without being aware of the model’s predictions.
(The same point had previously been raised by Edwards,
Phillips, Hays, and Goodman, 1968.)

Peterson and Kelly (1976) have collected data relating
intelligence forecasts to actual outcomes, a calibration
method made possible only when uncertainties are expressed
in the form of explicit probabilities as opposed to verbal
qualifiers. They found that analysts’ probabilistic estimates
were quite realistic in terms of the percentage occurrence
of predicted outcomes. There was a slight tendency for
analysts to overstate the likelihood of future events, a
result which is to be expected in light of the warning
function analysts serve and the costs of underestimating in
that context.

Decisions and Designs, Incorporated, under Air Force
and ARPA sponsorship, has developed and placed in trial
use a computer-based Bayesian hierarchical inference model
designed to serve an indications-and-warnings function of
interest to the intelligence community . The model permits
continuous analysis of 120 threat indicators and produces an
intelligence conclusion in the form of a probability distri-
bution over several potential courses of hostile action.
This model (described in Barclay, 1976; Stewart, 1977; and
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Stewart, Chinnis, Kelly and Peterson, 1976) has not been in

use long enough to assess its performance against actual
outcomes. In terms of user acceptance, preliminary indica-
tions are that the users (intelligence analysts at a major

Command Headquarters) are uncomfortable with the precisely
expressed probabilistic output of the model. Whether this
disquiet is over a mistrust of the model dynamics and,

hence, of the model output, or whether it stems from the
loss of “maneuvering room” afforded by the previously used
verbal estimates remains to be seen.

Hierarchical inference models have also been applied to

other intelligence assessment problems such as order—of-
battle assessments (Kelly and Stewart, 1976), and technology
forecasting. Here again, the events against which the
models could be assessed have not yet materialized , so there

is no basis for formal validation.

Gustaf son and his colleagues at the University of
Wisconsin have been active in the application of PIP to
medical diagnosis and related topics. In his dissertation,
for example, Gustafson (1966) showed that Bayesian methods
could be used to predict the number of days of hospitaliza-
tion for patients after hernia operations. In a crowded
hospital, such predictions could be useful for scheduling
surgery for non—emergency cases and for anticipating acute
overcrowding on surgery wards. In a 1969 paper, Gustaf son,
Edwards, Phillips, and Slack called for more general appli-
cation of Bayesian techniques in medical diagnosis. Gus-
tafeon, Kestly, Greist, and Jensen (1971) have discussed the

application, of Bayesian inference models to the diagnosis of

thyroid disease. In this work, they compared both subjective
Bayesian models in which physicians assessed the likelihood
ratios for disease states, given various signs and symptoms,
and actuarial Bayesian models in which likelihood ratios
were estimated from a large sample of clinical records. In
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general, both approaches worked well, achieving an approxi-
mately equal degree of accuracy. This approximate equality

is quite noteworthy. For, in terms of cost, the subjective
approach is much less expensive to implement. In many real-
world contexts, in fact, it would not even in principle be
possible to collect a set of data upon which to base a
model. In a conference1 on decision making and subjective

probability, Gustaf son discussed a similar system used to
assess the likelihood that psychiatric outpatients will
attempt suicide. The model apparently yields much more
accurate predictions than do the intuitive assessments made
by clinical psychologists and psychiatrists.

In 1968, Dr. Lee Lusted, a radiologist, wrote a book
explaining decision—analytic techniques and calling for
their widespread application to medical problems. An appli-
cation is now in progress, under the leadership of Lusted,
Dr. John Loop, Edwards, and others. The problem is assess-
ment of the efficacy of x-rays. In principle, an x—ray
might be called efficacious only if the patient is better
off as a result of its having been taken than he would have
been otherwise. This ideal definition of efficacy turns out
to be impractical for large—scale screening in radiological
practice because it requires judging what would have happened
if the patient had been treated differently from the way he
was treated, and physicians find it virtually impossible to
make such judgments. Instead, a far more modest definition
of efficacy has been adopted: an x-ray is efficacious if it
affects the physician’s diagnostic thinking. This can be
measured by observing his prior distribution over the patient’s
possible diseases, and then observing his distribution just
after receiving the x-ray results. If the two distributions
are identical, the procedure was inefficacious.

1Ann Arbor Bayesian Conference, May 1973.
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To proceed with the study, Lusted and his co-workers
trained approximately 50 radiologists in techniques of
probability estimation; the radiologists in turn trained
attending physicians in the same estimating techniques. In
the course of their medical practice, participating physi-
cians, when requesting radiological services, supplied
information about their tentative diagnosis, the reason for
requesting the x-ray, and their estimates of the probabili-
ties that the most important prospective diagnosis and most
likely prospective diagnosis would prove correct. After
receipt of the requested x—ray, the physicians re-estimated
the probabilities in light of the radiological evidence. As
of July 1976, approximately 8,000 such pre- and post-x-ray
estimates were in hand. Among the tentative results gleaned
to date are the following:

1. The procedure is feasible. The required proba-
bilistic estimates can be made in an orderly way
and do provide information about the diagnostic
thinking of atte~iding physicians.

2. In the vast majority of cases (over 90%), x-ray
examinations do impact diagnostic thinking.

3. About 75% of the examinations produced a lowering
of the clinicians’ initial probabilities for the
tentative most important diagnosis, thus the tests
were more a matter of reassurance than of confirming
alarm.

This study is of particular significance in supporting
the usefulness of the methodology in yielding information
about the behavior of individuals performing socially important
and policy-relevant functions. Extensions of this work may
well lead to recommendations for improving the distribution
of health—care services.

.10 90



The use of probabilistic inference models is also
growing rapidly in business applications of Bayesian decision
theory. In these applications, the probability model is
typically embedded in a larger model which is used to select
a utility maximizing option. Spetzler and Stael von Holstein
(1972) prepared a report summarizing the insights which have
emerged from the work of the Decision Analysis Group of the
Stanford Research Institute. In contrast to the medical and
military intelligence contexts, most of the important uncer-
tainties in business problems involve continuous variables.
Thus, Spetzler and Stael von Holstein’s article is oriented
primarily toward assessment procedures for continuous van -
ables. They argue that proper specification of the uncertain
variable is crucial to the encoding process. In particular ,

the variable should be so stated that an omniscient observer
with perfect foresight could specify the outcome which will
actually occur in the form of a simple number--for example,
the price of gold on the Paris market at the close of trading
on 30 June 1974 will be $X. The quantity should be expressed
in terms of a measurement scale which is meaningful to the
person making the judgment. Spetzler and Stael von Holstein
also strongly emphasize the importance of eliminating implicit
assumptions about other uncertain quantities by fully de-
composing the inference tree. They have found that “as-
iffing” can be a serious problem in real—world contexts.
Spetzler and Stael von Holstein go on to discuss specific
techniques for eliciting judgments from subjects. Most of
these have been discussed in previous sections of this
paper. In their work, they typically ask the expert assess-
or to specify a few points on a distribution, then fit some
theoretical function (such as a normal curve) through these
points. They argue that the functional form of a distribu-
tion should usually be determined by a priori modeling
considerations. In this approach, the subject’s judgments
simply specify the parameters of this preselected distribu-
tion.
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We will encounter other applications of subjective
probabilities in our subsequent discussion of decision
analysis. These applications typically have used relatively
standard procedures and do little to improve the methods
already discussed. They do, however, provide evidence for
the feasibility of the approach.

It is unfortunate that real-world applications of PIP
have not attempted to validate the predictions of the models
against actual outcomes. (The medical research of Gustaf son
and his colleagues is an important exception.) The semi-
experimental studies of weather, stock market, and football-
score forecasting conducted by Murphy , Winkler, and Stael
von Holstein did provide such validation, but these studies
involved only unaided intuitive inference. They did not
decompose the inference problems as PIP does. Thus, they
are not informative about the quality of the predictions
which might be generated by a real-world PIP system.

To the totally convinced subjectivist, it is not neces-
sary to validate a subjective probability model. If the
model reflects the decision maker’s true beliefs, then it is
appropriate to use it. We are slightly more skeptical,
however, and believe that it should be possible, over the
long run, to evaluate real-world forecasting models in terms
of the veridicality of their predictions. Such validation
is possible, of course, only in decision-making systems
which make a relatively large number of predictions over an
extended period of time. We believe that such validation
studies should receive high priority in future research on
Bayesian decision—aiding systems. For if systematic biases
are observed, it may be possible to improve the subjective
inputs to the system, either through additional training or
through mathematical transformation of the assessor’s raw
estimates.
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4.2 Multi-Attribute Utility Assessment

Multi-attribute utility theory (MAU ) is being used
increasingly in significant applied contexts both as an
independent tool for complex assessments and in the context
of full-scale decision analyses. In this section, we will
review utility theory applications which have been conducted
without reference to some larger decision problem, then turn
in Section 4.4 to applications in the context of full-scale
decision analyses.

Chinnis, Kelly, Minckler, and O’Connor (1975) applied
MAU procedures to the assessment of the relative military
value of four alternative combat radio net configurations
under consideration for the Army inventory in the post—1980
time frame. A hierarchical structure consisting of several
levels was developed, starting with military utility, which
was partitioned into major dimensions of utility, e.g.,
technical system utility and operational acceptability.
These dimensions were further fractionated into sub—dimensions
which, in turn, were further partitioned, each partition
becoming more specific until a level was reached at which
one or more technical performance characteristics served to
describe each of the sub—dimensions . The military utility
for different levels of each of the performance character-
istics was established by assessing a utility function over
the relevant range of that characteristic. The relative
importances of the different performance characteristics
were assessed by assigning relative importance weights and,
using both additive and multiplicative combination rules, an
aggregate, weighted utility for each system was derived.

The model was implemented on a computer to permit the
user to conduct sensitivity tests and rapid “what if” analyses
by varying performance parameters and weights and recalcula-
ting utilities. The model was subjected to both internal
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and external sensitivity tests as a form of validation. As
would be expected if the model were valid, it was found to
be insensitive to minor changes in assigned weights, yet
sensitive to differences between systems. The model also
appropriately identified the known lesser utility of a
Korean—war-era system which was included in the evaluation
as an external criterion. The A~rn~’ Special Task Force
responsible for the evaluation used the computer-based model
not only for their own system evaluation purposes, but also
as a highly convincing vehicle for presenting and justifying
their selection to higher echelons as well. It is interesting
to note that this same radio system evaluation problem was
approached independently through construction and use of an
elaborate simulation model. Both the MAU model and the
simulation model produced the same results, but the MAU
evaluation was completed in one-third the time and at one-
tenth the cost of the companion simulation approach.

In another application (Allen, Buede and O’Connor,
1977), a multi—attribute utility model was developed to
ha~dle the extremely complex matter of assessing the combat

readiness of military units, in this case, U.S. Marine Corps

units. The model structure for evaluating a Marine infantry
battalion decomposes the overall battalion mission into
thirteen mission-performance standards. Each of these are
further decomposed into successively finer-grained tasks and
sub-tasks yielding at the lowest level of the hierarchy up
to 800 specific characteristics for which ratings are required.
These input values are then aggregated over weighted value
dimensions to provide art overall measure of combat readiness.
The disaggregation to 800 rating elements is probably far
more than necessary for readiness-assessment purposes (an
excess also recognized by the analysts). In this case, the
level of detail was driven principally by the sponsor’s
interest in a comprehensive model and one that could be used
to pinpoint specific things needing correction.
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In applications of the model in the context of Marine
Corps exercises, user acceptance was found to be high.
Marine Corps officials responsible for combat-readiness
evaluations reported that use of the model reduced evalua-
tion efforts by an estimated 75% over previously used methods
and provided the best method for readiness evaluation yet
devised. The model, or refinements of it, has been adopted
for Marine Corps-wide combat—readiness assessment applica-
tions.

Similar multi-attribute utility assessment models have
been developed and applied in evaluation contexts, such as
determining the optimal mix of aircraft for naval aviation
(O’Connor, Rhees, and Allen, 1976), selecting optimal design
proposals for a Navy Electronic warfare suite (Hays, O’Connor,
and Peterson, 1975), system design evaluation for a variety
of Army weapon system procurements (unpublished), and the
assessment of alternative designs of a hostile weapons
location system (Barclay, Chinnis and Minckler, 1975). A
particularly interesting and valuable use of multi—attribute
utility theory is presented by Barclay and Peterson (1976)
in a report on a quantitative method for optimizing outcomes
in complex multi—issue negotiations. The computer-based
negotiation model developed by Barclay and Peterson has been
used to explore alternative bargaining postures for the U.S.
in two significant international negotiations.

In a medical context, Gustaf son, Feller, Crane, and
Holloway (1971), have developed an index of the severity of
burns using additive utility models. In this model, they
used five measures of burn severity: size of full thickness
burn, size of partial thickness burn, age of the patient,
number of past serious medical problems, and location of
burns. The first four measures represented continuous, or
near continuous dimensions, whereas the last measure, location
of burn, was divided into nine dichotomous scores for face
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and head, front of body, and so on. Four physicia t3 assessed
functions relating each of these five measures to the over-
all severity of a burn. They also assigned weights to each
of the measures using a ratio comparison procedure. The
experimenters then averaged together the models of the
individual physicians to obtain an overall model.

This model was validated in two ways. First, the same
four doctors rank-ordered 28 hypothetical descriptions of
burn patients in terms of the severity of their cases. The
experimenters then averaged these ranks and correlated them
with the rank-ordering predicted by the average overall
model. The correlation obtained was .92, indicating that
the overall model did a reasonable job of reflecting the
subjective beliefs of the physicians studied. (The use of
averaged ranks as a criterion variable seems undesirable,
but it is probable that similar results would have been
obtained if an interval-scale measure of severity had been
used.) In addition, the model was validated against the
survival rates of a real sample of burn patients. In general,
severity of burn (as indicated by the model) showed a strong
negative relationship with ultimate survival rates. Thus,
the model shows considerable promise as a tool for classi-
fying patients who will require varying degrees of sophisti-
cation in their treatment. The authors suggested that the
model might also be useful for evaluating the effectiveness
of burn treatment operations. The index could be used to
standardize for the severity of the cases encountered by a
particular facility.

Patrick, Bush, and Chen (1972) provide another example
of the application of multi—attribute utility theory to
medical problems. Their primary goal has been the develop-
ment of an overall index of health status. Their index
takes account of three classes of variables: age , disease
state, and the ability of the person to carry out various
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types of mental, physical, and social functions. In the
study cited above, they asked a group of medical profession-
als, including both students and a~ rtinistrators, to evaluate
a set of profiles which described persons in terms of the
variables listed above. Each evaluator made three sets of
judgments, one based on ratio comparisons of cases, one on a
simple categorical rating scheme, and the third using a
complex indifference-judgment response. Averaging these
intuitive ratings over judges within particular response
modes, they obtained high (.90+) correlations between methods,

especially the ratio and categorical rating methods. Within-
judge reliability was also quite good, with test—retest
correlations ranging from .74 to .83. Most encouraging was
the considerable degree of consensus found across judges.
Correlations between the ratings of individual judges and an
overall model obtained by averaging over judges ranged from
.7 to .8. Based on these results, the authors argued that
it might well be feasible to develop an overall index of
health status which would reflect the subjective preferences
of the American public. Such an index would have to be
based on survey research data, with respondents probably
making categorical judgments about age—disease-functional
state profiles. Such a model would not only provide a tool
for evaluating the quality of medical care in different
locations, but might also be useful for allocating research
money. Whether or not the particular approach adopted by
Patrick, Bush, and Chen ultimately proves useful, it seems
likely that some kind of multi-dimensional health status
index will be developed as a tool for guiding and evaluating
the health care service provided in this country.

O’Connor (1972) has constructed similar indices for the
evaluation ~~~~~~~~ quality. In this study , water—quality
experts from across the country first specified a list of
factors relevant to water quality, then constructed scales
relating levels of each factor to overall water quality ,
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then assigned weighting factors to each value dimension.
Through repeated visits with the experts during which they
were shown the weights and functions assessed by other
experts, O’Connor was able to obtain consensus about the
functions relating each dimension to overall quality. But
conflicts between importance weights seemed to reflect real
differences among the regional interests of the experts.
Thus, O’Connor averaged their weighting assessments to
obtain the overall water-quality index. (In fact, two
indexes were constructed , the first for the evaluation of
water for public use, and the second for water sustaining
fish and wildlife.)

To validate his evaluation models, O’Connor used the
overall index as well as the indexes for each of the indi-
vidual experts to assign values to a real sample of water
specimens. He found extremely high correlations between the
models of the individual judges and the overall model.
Although the experts disagreed about the weighting factors,
the degree of disagreement proved quite minor, and had very
little effect on the overall values assigned to water samples.
O’Connor ’s work clearly established the feasibility of
developing a set of water-quality indexes which could be
used nationwide to evaluate water quality and to allocate
resources for cleaning up our rivers, lakes, and streams.
Natural resource and public health professionals have con-
tinued this work)

In another project, Snapper, Guttentag, and Edwards
applied multi—attribute utility measurement techniques to
the problem of measuring the benefits of research on child
development sponsored by the Office of Child Development of
the Department of Health, Education, and Welfare. Value

1
~O’Connor, personal communication.
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dimensions were elicited from a large group of experts on
child development, both inside and outside the Office of
Child Development (OCD) . Importance weights were estimated.
It turned out that the group could easily agree that some
dimensions were clearly unimportant, but that they could not
agree at all about the importance of the more important
ones. The problem was resolved by using the weights assigned
by the Director. Location measures on the dimensions,
fortunately, presented far fewer problems of disagreement.
In order to convert the interval-scale utilities obtained
from multi-attribute utility measurement to ratio—scale
numbers suitable for use in cost—benefit ratios, it was
necessary to determine the true zero point. Fortunately,
this proved easy: a research program has positive utility
if and only if it would be undertaken if it had zero cost.
Development of an explicit value system for OCD ’s research
activities has served a catalytic function in stimulating
OCD thinking about its program and its values.

Multi-attribute utility models also have considerable
potential as a tool for measuring public preference for
goods and services. In one application, Lehmann (1971) used
utility models to predict stated preferences for television
shows. Respondents in a survey-based marketing research
study evaluated a set of television programs on each of six
dimensions. They also weighted these dimensions in terms of
their importance. Then they rank—ordered a set of 20 pro-
grams in terms of how much they liked them. Here, the mean
rank-order correlation between additive utility models and
the respondents’ stated preferences was .72. Clearly,
actual viewing habits would be much more difficult to pre-
dict, for one would have to consider the alternatives
available at the time of the program. Nevertheless, the
study does demonstrate the feasibility of using multi-
attribute utility models in survey studies of public pre-

• ference.
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In another context, Klahr (1969) compared decomposed
additive utility models with multi—dimensional scaling
models in predicting the decisions of a graduate admissions
committee. He found that both did a good job, with the
simple utility model doing slightly better. His results
suggest that, at least for preliminary screening, additive
utility models might substitute for highly paid academic
professionals who serve on admissions committees. Dawes
(1971) has obtained similar results using bootstrapping
techniques.

Although each of the applications described above
concerned decision making under risk, the scaling procedures
used did not explicitly reflect this fact. Keeney (l972a)
has described a case study in which he had hospital managers
develop a risky multi—attribute utility model for use in
bloodbank decision making. The principal trade-off to be
made in this context involves shortages versus the deterio-
ration (and subsequent nonuse) of blood. The more blood
held in stock, the less likely one is to be unable to fill a
request. Unfortunately, large stocks also increase the
probability that blood will go unused too long and will have
to be disposed of as unfit for use. Keeney’s article pro-
vides an extremely detailed discussion of the procedures
involved in a realistic application of risky multi-attibute
utility models. - It is also noteworthy that the function
developed was substantially non-additive. Ellis and Keeney
(1972) and de Neufville and Keeney (1972) describe similar

• applications of risky multi—attribute utility models in the
areas of air pollution regulation and the evaluation of
alternative locations for a major international airport.

Most of the applications described thus far have re-
solved the social utility problem by averaging across
evaluators. Spetzler (1968) presents an alternate approach
in his discussion of the development of a risk policy for a
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large corporation. In all, thirty-six corporate officials,
including the top officers, participated in the development
of a utility function for the evaluation of risky capital
investments. Initially, each official evaluated a large
number of simple (and hypothetical) investment decisions.
These decisions were used to estimate, for each official,
the parameters of a fairly complex logarithmic utility
function. Later, the whole group of managers met to discuss
the implications of their earlier assessments. This dis-
cussion revealed a striking degree of risk aversion, even
for decisions which involved investments which were very
small relative to the total corporate assets. The final
utility function agreed upon was much less risk averse than
the utility function of the average manager. The main
effect of the discussion, apparently, was to bring home the
realization that the corporation need not display risk
aversion for the large number of relatively small investment
decisions which they made. Only for very large decisions
was risk aversion desirable. In this case, discussion led
to a consensus utility function which was much different
from the one that would have been obtained had the original
utility functions been averaged together.

Together, these studies illustrate that utility models
can be implemented in realistic settings. Decision makers
can be persuaded that the models can be of value to them,
and can be induced to devote the time required to develop
such models.

4.3 Computer-Based Decision Aids

Decision analytic applications have long suffered froir
the laboriousness of the method and the usual requirement
for shepherding by a skilled decision analyst. As a result,
a great deal of attention has been given to the development
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of computer-based routines to reduce these burdens. Most of
the effort in this area has been focused on the development
of computer tools suitable for use by decision analysts.
More recently, there has been increased emphasis on the
development of computer-based decision aids which embody
decision analytic concepts and which are intended for on-
line use by decision makers and their staffs, rather than by
decision analysts. Ulvila (1975) presents a review of com-
puter routines developed to aid in decision analysis appli-
cations.

In the remainder of this section, we will focus atten-
tion on recently developed computer—based , decision-analytic
aids intended for direct on—line use by decision makers.
Such aids are apparently few in number, but constitute
important harbingers of future directions in the application
of decision analytic concepts.

The first of these aids, known as OPINT, is designed
for the rapid screening of decision options. The model is
capable of handling decision problems having only one main
decision-—a single choice among several options--and is
further restricted to decision situations having but one
major uncertain event. To use the model, the decision maker
specifies the structure of the problem by listing the deci-
sion options, the possible outcomes of the uncertain event,
and the dimensions along which the value of the consequences
of options and outcomes will be measured. The decision
maker then addresses probabilities of occurrence for differ-
ent outcomes, the desirability of each consequence along
each value dimension, and the relative importance of each of
these value dimensions. All this information serves as
input to the computer program. The output of the computer
program is a summary measure of expected value for each
option. By adjusting the various inputs to the computer
program, the decision maker can then test the sensivity of
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these expected values for the different options to various
assumptions, for example, assumptions such as the probabili-
ties of the outcomes and the weights of different dimensions
of values for the consequences.

This evaluation procedure provides a way for decision
makers to study a set of options in an approximate fashion
when a rapid analysis is necessary either to identify areas
for further detailed study or to support a decision that
must be made immediately. The procedure can also be used
before a problem arises for contingency planning. The
capabilities and limitations of this model are fully detailed
in Selvidge (1976).

The second computer—based decision aid is an additive
multi-attribute utility model for option evaluation under
certainty. Designated EVAL, this model was programmed for
operation on the IBM 5100 portable computer and, like the
OPINT model, is self—tutorial in that the program guides the
user through the process of problem structuring and value
elicitation. The EVAL model is capable of handling compara-
tive assessment of eight alternatives simultaneously , each
having up to eight hierarchical levels.

Under the technical cognizance of the third author,
these decision aids were placed in trial use in a major U.S.
military command headquarters in October 1976. Following
introductory training in the concepts of decision analysis
and the specific dynamics of the decision aids, the aids
were used extensively by various staff elements of both the
parent and subordinate headquarters in addressing and re-
solving real decision problems of immediate interest to the
Commands. During the same time period, less extensive
applied tests of the decision aids were conducted through
participation in political—military simulation exercises,
through app1i~ations in intelligence contexts and through
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use in a number of problem-solving demonstrations in a
classroom environment. In all, during twelve months of use,
approximately 45 different decision problems were addressed
using the two generic decision aids. Most of the decision
models were initiated and constructed by staff officers, to
address decision problems confronted in their areas of
responsibility. Some of the decision models were executed
by decision analysts working in close conjunction with
users.

Because of the factors discussed earlier that limit
formal evaluation of decision aids in applied contexts, the
kind of quantitative validation that would constitute firm
evidence as to the effectiveness of the decision aids is
again lacking. Kelly, however, offers the following anec-
dotal assessment of the trial application of the decision
aids based upon his personal observations and user comments.

1. Introduction of the decision aids clearly stimu-
lated the informal use of decision analytic
concepts within the Command. The use of prin-
ciples of problem disaggregation, probability and
expected value became evident in staff decision
recommendations completed without reference to the
decision aids.

2. The decision models served a highly valuable com-
munication function. The visible problem structure,
implicit rationale, and sensitivity testing
features provided by the computer-based models
proved to be an efficient and compelling means for
conveying staff recommendations for courses of
action. This was particularly evident in simulation
exercises conducted at the National War College
where, for comparative evaluation purposes, groups
of students, aided and unaided, decided on courses
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of action in political-military simulations.
While both groups reached the same general con-
clusion, it was the reported judgment of the
faculty receiving the teams’ briefings at the
conclusion of the exercises, that the team using
the decision aid had a far more compelling case

• for their decisions than did the unaided team. As
another example, a staff officer at the major
command test site reported that using the decision
aid as an analytical and communications vehicle
enabled him to obtain Command approval of his
staff recommendation in three days in contrast to
the norm of two and one-half weeks in a process
requiring fifteen concurrences.

3. Use of the decision aids appeared to force users
to distinguish between option value and likeli-
hoods and to treat both explicitly. Early in the
trial application experience, it was noted that
unaided decision makers tended to allow consider-
ation of option value to dominate their thinking.
The decision aids, of course, force explicit
treatment of both value and probability to derive
expected values for options.

4. The benefit of numerical expression of uncertainty
(required by the decision models) as opposed to
verbal qualifiers, was again evident. In review-
ing the details of a staff recommendation developed
via the decision aid, a senior commanding officer,
noting probabilistic estimates by his intelligence
staff of the likelihood of significant events,
reported that it was the first time he realized
that his intelligence staff reqarded one of the
events as much more likely than the other and
exactly opposite to his prior belief.
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5. The structure and explicit information require-
ments of the decision models appeared to facili-
tate coordinated, efficient action on the part of
staff elements involved in a given decision. The
model made the information required of each staff
element quite specific and, hence, more directly
and efficiently addressed and communicated.

On the other hand, a number of deficiencies and needs
became apparent during the trial application experience:

1. Even though the models were designed to assist
users in structuring decision problems, it was
found that this aspect of decision modeling
remained troublesome. About one-third of the user
population would not or could not correctly struc-
ture decision problems. The reasons for this are
not immediately apparent, and there is a serious
need for further research on problem structuring
and option generation.

2. Many users voiced a requirement for a capability
to reflect in the decision model verbal rationale
for the values, probabilities and structure. Over
time, users forget why and on what basis values
were arrived at. This problem is particularly
acute in those instances wherein the mode]. reflects
multiple staff inputs. A rationale capturing
capability is needed.

3. The capability to conduct sensitivity tests is an
important feature of the decision aids under
study. On both the OPINT and EVAL models, this
feature was restricted to manipulation of values
for a single variable at a time and results were
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displayed in a matrix format. Users expressed a
need for a simultaneous multivariate sensivity
testing capability and for a graphical display of
results.

Freedy, et. al. (1976) presents a report detailing an
evaluation of a highly promising computer-based decision aid
which employs adaptive “learning” techniques to capture the
decision makers utilities and to suggest courses of action
consistent with those values. The decision aid termed ADDAM

(Adaptive Dynamic Decision Aiding Methodology) continuously
observes both the decision maker’s choice behavior and the
decision environment, “learns” his decision policy and
offers decision suggestions based on the apparent value of
the alternatives to the decision makers.

As currently configured, ADDAM is used to assist
operator performance in two related decision tasks: deciding
on a means of information acquisition and, on the basis of
acquired information, deciding on a course of action. In
information acquisition, ADDAN infers the operator’s utility
structure, combines the utilities with estimates of informa-
tion availability and recommends the information source with
the highest expected utility. In the action-selection task,
aidinq is provided by a Bayesian probability updating program.

The adaptive decision aid was tested in a simulated
anti—submarine warfare exercise involving deployment of
sensors of various types and different levels of reliability
to track a submarine. In the simulation, points were awarded
for correct submarine location reports, and penalties were
deducted for incorrect reports. A cost factor was also
introduced depending on the sensor resources allocated. The
quantitative elements served as the basis for an objective
game score, where the score was defined as: points-penalties—
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cost. Results of the tests indicated that the decision aid
improved mean performance scores by about 88% over unaided
trials, and decision consistency was significantly enhanced
for those using the decision aid.

4.4 Decision Analysis in Real and Simulated Environments

Decision analysis brings all of the elements of statis- —

tical decision theory to bear on complex problems. Bayesian
inference models are used to predict the consequences of
decisions, utility models are used to evaluate these conse-
quences, and selection of an alternative is based on the
principle of expected utility maximization. In addition,
the probability models used in decision analysis frequently
take the form of complex Monte Carlo simulations. The
initial impetus for this approach to decision making came
from men interested in the analysis of corporate decisions
under risk. As Howard Raiffa, Robert Schlaifer, and their
colleagues at the Harvard Business School became actively
involved in practical business decision-making problems,
they became increasingly convinced of the merits of the
Bayesian interpretation of probability, and of the need to
solve complex problems through analysis rather than intuition
(Raiffa, 1968). Students in the leading business schools
are now routinely trained in the discipline of decision
analysis, and excellent business oriented texts are available
(for example, Raiffa, 1968; and Schlaifer, 1969). A number
of articles also provide a good introduction to the decision
analysis approach (Howard, 1966; v. Holstein, 1972). More-
over, numerous real-world applications of decision analysis
have been carried out in corporate settings. Unfortunately,
few of these analyses have been published in journals.
Proprietary problems arise, for many of the decisions in-
fluence corporate outcomes in a competitive market. (But
for an exceptionally interesting analysis of the decision to
seed hurricanes, see Howard, Matheson, and North, 1972).
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Brown (1971), however, has discussed some of the results
which emerged from a project in which he attempted to assess
the degree to which business managers have found decision
analysis useful. His analysis is based on a survey of a
large number of companies which have applied decision analysis,
and on an in-depth study of four companies which have made
extensive use of decision analysis. In some cases, the
decision analysis approach has not lived up to expectations.
Brown attributes most of the disappointing results to a
failure to involve top-level decision makers in the analysis.

Companies in which middle-level managers or staff men
carried out the analyses were generally less enthusiastic
about the approach than those in which top-level managers
were actively involved. When top decision makers were not
involved, analyses often failed to solve the right problem.
Important options were neglected and important value con-
siderations left out. On the other hand, some companies
routinely apply decision analysis to all important decisions;
then top executives are thoroughly familiar with the approach.
Not surprisingly, decision analysis has the greatest support

in these companies. Thus, Brown argues that successful
application of the decision analysis approach in business
settings requires that key decision makers be familiar with
and actively involved in such analyses.

Analysts on the staff of Decisions and Designs have
conducted a number of decision analyses directed at various
defense and related issues. These are reported in Brown,
Kelly, Stewart, and Ulvila (1975); Brown, Peterson, and
Ulvila (1975); Decisions and Designs, Incorporated (1973);
and Peterson, Chinnis, and Hoblitzell (1975). Focused on
topics ranging from policy regarding the export of computer
technology through strategic decisions and resource-alloca-
tion considerations, these studies are logically compelling ,

but their recommendations are objectively unverified and
unverifiab].e for reasons discussed prev~ous1y.
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A collection of articles edited by Drake, Keeney, and
Morse (1972) describes the application of operations re-
search and decision analysis to public policy decision
making in the non—defense area. The articles by Ellis and
Keeney (1972) and de Neufville and Keeney (1972) are par-
ticularly interesting because they adopt a fairly sophis-
ticated approach to the evaluation of social alternatives
under risk. (See the previous section of this paper for a
further discussion of the utility measurement techniques
utilized in these studies.) Keeney and Raiffa (1976) devote
two chapters to these and other applications.

Most of the applications cited above have involved the
analysis of “one-shot” decisions which had to be made at a
given point in time. They did not deal with repeated or
relatively routine decisions. One area of application in
which decisions must be made repeatedly is that of medical
treatment. Ginsberg (1969) has described the application of
the decision analysis approach to patient management. His
model, which deals with one class of illness--the pleural
effusion syndrome, assists the physician in selecting diag-
nostic procedures, evaluating their outcomes, and determining
a course of therapeutic action. In his work, Ginsberg was
forced to confront the very difficult problem of assigning
utilities co outcomes characterized by probability of death
or severe disability, number of days in bed, number of days
in severe pain, and so on. He adopted the tack of develop-
ing different utility models for different patients. The
three persons who participated in his project assigned
utilities using both the probabilistic utility models we
described earlier and direct monetary bids. The degree of
within-patient convergence between assessment methods was
strikingly high and very encouraging. The utility assess-
ment problem is quite difficult in medical contexts. For it
does not seem practical to ask each patient to develop a

utility model before one treats him. In many cases, the
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patient will be too sick for that. One possibility is to
develop an “every person’s” utility function for medical
outcomes which would reflect not only the interests of the
average patient but also the needs of society.

Betaque and Gorry (1971) describe a slightly less
ambitious medical patient management decision analysis which,

if modified to include more possibilities, could also be
applied to repeated decisions. In their work, two renal
experts separately developed decision-tree models for the
management of renal patients. After developing the models,
the doctors were presented with 28 hypothetical patient
descriptions and asked to decide what would be the first
stage in the treatment of the patient. These decisions were
then ~

‘ompared with the decisions which would have been made
by the models. One physician and his model agreed 26 out of
28 times. The other agreed only 22 times with his model,
but stated that in two of the six disagreements, the model’s
decision was at least as good as his own. It is also inter-
esting to note that the models agreed on 23 cases while the
physicians agreed on only 21.

The final application of decision analysis in a repe-
titive decision making environment is the previously dis-
cussed tactical fighter strike allocation model--JUDGE.
Although the JUDGE simulation experiments (Miller, Kap)~ n,
and Edwards, 1967, 1969) did not involve the use of subjec-
tive probabilities--except as they were specified as param-
eters of the programming model--they provide what is to date
the most clear—cut evidence of the superiority of decision
analysis over intuitive decision making. They also clearly
establish the feasibility of implementing decision analysis
in on-line decision—making contexts where repeated decisions
must be made. Similar research applications in realistic
simulated environments are clearly called for.
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5.0 CONCLUDING REMARKS

• We feel that a strong research basis exists for a
number of conclusions.

1. People are seriously suboptimal processors of
information, particularly in probabilistic
inference and complex decision situations. The
use of formal decision-aiding algorithms improves
performance in these contexts.

While these conclusions are based mostly on lab-
oratory experiments using student subjects, we
have little doubt that they transfer to real
situations and to expert, highly trained infor-
mation processors and decision makers. Such
evidence as is available on the behavior of experts
shows them to be no better than students at proba-
bilistic inference. Expertise, we believe, is
profoundly important; neither PIP nor any other
facet of decision analysis could function without
the judgments of experts. But the functions of
expertise are primarily those of knowing what
kinds of information bear on the problem, and how.
These functions are necessarily performed by
people in all decision contexts.

2. A considerable bndy of experimental and exper-
iential evidence supports the idea that the divide—
and-conquer approach to information processing and
to decision making can lead to substantially
better inferences and decisions than would be
obtained otherwise. Another , less pompous way of

• putting this conclusion would be: analysis often
helps. The main reason why it helps is that
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analysis permits partitioning of a complex intel-
lectual task into components for at least some of
which suitable formal tools are available. It is
scarcely surprising that people, if asked to solve
dynamic programming problems in their heads, do so
suboptimally. The effect of analysis is to sepa-
rate, for example, the task of assigning values to
targets from the dynamic programming task of
dispatching aircraft so as to maximize values of
targets destroyed. Once the tasks have been thus
separated, it is obvious and easy to let the
expert judge the target value, and to let the
computer do the dynamic programming.

3. Experience with applications of decision-analytic
tools, though still somewhat scanty and even more
scantily reported, seems to bear out the expecta-
tion, based on laboratory studies and plausibility

• arguments, that these tools are practical and
valuable decision aids. But the experience also
shows some clear technical and conceptual traps
for the unwary--and it seems unlikely that all
significant traps have been found and marked.

4. The technology based on multi-attribute utility
theory is as exciting and promising now, in 1978,
as the Bayesian technology was over a decade ago--
and as much in need of further development.
Multi-attribute utility measurement techniques
seem to do a good job of representing preferences,
especially in riskless situations. Among the
unsolved problems are time preferences, risk
preferences, and best elicitation techniques.

5. The approaches discussed in this paper seem most
impressive in dealing with rather discrete , slow,
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important problems. Although continuous models
for inference and decision exist, most of the
interesting experimental and practical results
deal with highly discrete cases, and the tech-
nology seems far simpler for such cases. One
obvious consequence of this conclusion is that

- decision—theoretical tools are at their most
promising when applied to inference and decision
problems, not to continuous control tasks.

6. Most of the most persuasive studies bearing on the
merits of decision-analytic approaches are simu-
lation studies set in complex but controlled
environments. However, these studies have seldom
been simulations of specific existing or contem-
plated systems. Instead, they have been simulations
that captured the essential features of a real
inference or decision task without attempting
detailed , high—fidelity simulation of an actual
task environment. They differ from traditional
laboratory experiments primarily in making a
serious attempt to capture the complex , untidy,
redundant messiness of the real world and of real
tasks in it.

Research on flat maxima in decision analysis has strong
implications for elicitation technology. In both probabilis-
tic inference and multi—attribute utility , there is a clear
conflict between elicitation techniques that emerge from
axiomatic formulations of the underlying models and thus
guarantee the appropriateness of those models, and much
simpler elicitation techniques (typically direct-estimation
or rating-scale techniques) that have far less intimate
connections with axiom systems but that seem far more prac-
tical for harried decision makers. No one has done (yet)
the obvious and necessary comparison studies, especially in
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the utility field. But the general flatness of decision—

theoretical maxima invite the hypothesis that subtleties of

elicitation technology may often be beside the point; ball-
park accuracy may be all that is required. If so, the
simpler, easier-to-use techniques clearly win. But the
research basis for this conclusion is by no means nailed
down as yet; it should be.

In the area of multi-attribute utility, the most urgent
research need obviously is some external standard of value
with which to compare values subjectively elicited by various
techniques and under various circumstances. A conclusion
that different techniques produce different results is far
less useful than one which adds that the result of technique
A is consistently much closer to objective correctness than
the result of technique B. The preceding sentence will
raise the hackles of those who take seriously the idea that
tastes and preferences are ultimately subjective, so that no
external prescription of them can ever be appropriate. Our
own view is that tastes and preferences are neither more
nor less subjective than probabilities. Both are subjective
quantities with external referents, and sometimes those
external referents should be definitive, sometimes not. The
situations in which definitive external referents exist are
obviously convenient for experiments, and equally obviously
unlikely to occur in application. Discovery of such situa-
tions for utility is a deeply felt research need—-and , in
our view, by no means hopeless.

A final comment concerns the relation between decision
technology and experiment, model, or statistic. It should
be clearly recognized that decision technology based on
subjective estimates is no substitute for activities aimed
at making those subjective estimates more objective. Use of
estimates should never be allowed to inhibit attempts to
replace those estimates with data obtained from experiments
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or from field investigations, or with suitable and valid
models. In this sense, the use of estimates can be seen as
a sort of first—aid measure——what to do till the statistician
comes. But often it takes so long for the statistician to
come and obtain the evidence he needs that subjective esti-
mates, even though flawed, offer the only feasible approach.
This is especially likely to be the case when the stakes are
astronomical and the decisions unique.

And even after an objectively based model is available,
it is an empirical question whether it performs better or
worse than procedures based on subjective estimates. Instances
of both kinds have been reviewed in this report. Until much
more experience at comparative evaluation has accumulated ,
the availability of competing objective and subjective
approaches should be taken as a signal for a comparative
evaluation of them, rather than for an automatic assumption
that either is preferable to the other.

In the next few years, we believe that the following
will be the most stimulating and successful research direc-
tions for decision technology.

1. Further work on elicitation and validation of
multi-attribute utility measurement.

2. Research on the simplification of MAT) models; the
trade-off between modeling error and assessment
error.

3. Development of real—time, on-line decision aids.

4. The packaging of decision analysis--training tech-
niques, standardization of elicitation techniques,
and so on.
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5. Further work on problems of interpersonal dis-
agreement, especially about values.

6. Accumulation of further evidence bearing on the
applied utility of decision-analytic technology.

7. Research on decision problem structuring and
option generation.

I
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of judgmentally—based decision aiding systems embodying decision analytic
Concepts. 

~<
The evid~~ee—~eviewed provides a strong research basis for the con-

clusion that unaided human judgment in complex inference and decision tasks
is highly fallible. Formal algorithms (decision models) applied in these
contexts typically yield better results than global human judgment. The
data supporting these conclusions suggest that people are better at making
simple judgments than they are at aggregating large amounts of information
to form overall decisions.

Consistent with these findings, the decision aiding technologies
reviewed in this report are based on principles of task disaggregation. A
decision problem is divided into its relevant attributes , each of which is

• well within the judgmental caDacities of the decision maker. People make
judgments about attribute probabilities and values, and formal models are
used to aggregate these judgments to arrive at a decision . A large body
of experimental and experiential evidence supports the notion that this
divide—and—conquer approach leads to substantially better inferences and
decisions than otherwise would be obtained. This research divides naturally
into two parts, one dealing with probability judgments, the other with
value (ut i l i ty)  judg ments .

Probabilistic Information Processing (PIP) system s decompose the task
of probabilistic inference. People identify relevant states of the environ-
ment and information sources; they also estimate likelihood ratios linking
the data sources to the environmental states. Aggregating information acros~
data is assigned to Bayes ’ theorem. The literature leading to the formu-
lation of PIP systems and evaluating their application is extensively
reviewed.

The second major input to decision making is judgments of value. This
requires that each possible consequence of the action alternatives being
considered be assigned a single numerical value reflecting the utility of
that consequence relative to all other possible consequences. Both the
theory and methods for assigning utilities to complex outcomes have
recently become available. The technology based on multi—attribute utility
theory is exciting and promising , but still relatively in its infancy .
The growing body of evidence, both published and unpublished , on develop-
ment and application of this technology , as well as some of its as yet
unsolved problems , is reviewed in depth .
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