
— ——-— r~ —!_—!- —---——--——-— .r - — — —- — — .- — — —- — . — — —

I
. .1

- ~• s .

—
-.

~~~~ ~irr1~II~ ~~~~~~~~~~~~~— •

• P RAcTICP~L ERPO R RECOVE RY FOR LR PARS ERS

by

Thoma s J. Pennello

Frank DeR~mer

‘ 74..

~~~~~
- —~~ Technical Report No. 78—1—002

T

-

-

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

•

: .~ -jf pi~b!ic y t .  •
~~ 

j~~ i. • ~~~~• •-

mdi.
‘ p  • 

...

C..D 

£ £ 

• A 9

_  _



-

~~~~~~~~~~~~~~~~~~~~
‘

-

~~~ ~~

—

~~

-‘— 

~~~~~~~~~
,~~~ 13 1

SECUR ITY CLAS S IF ICAT ION OF T HIS P A G E (Wh.n flab FnI.r. d) -
—

~E°’~~~ ~~~~~~~~~~~~
D A I E READ ~NST RL’C TION S

I~ I-%.lI ~~ I I1*JI.~~J IY* I’* I M I I~ 1fl ~~~~~ ’J flE FORE CO MP L E T IN C. FORM
I . REPORT NU M U E R - 2. GOVT ACCESSION NO. 3- REC IP I EN T S C A T A L O G N IJMUER

78—1-002 ~~~~ ~~~~~~~~~~~~~~~~~~~~~~

--
- - 4. TI TLE (and SubIiSt.) - ‘ ‘

~~~ - 
TYPE ~~f_ B&~ o*T-& -P4Re-GD-COVfREO

!RAC’rIcAL ~ RI~)R RECOVERY FOR LR ~ARSERS a I 
~
j  hnical - i-- 

~
— - - - - • - - - • ----—-——- —- - -

~ S. PERFORMING ORG. REPORT NUMBE R

7. AUT HOR(s ) S. ACT OR GRANT NUM$ER (a)

/ Thomas J. I~enneiio ~
~~~~ J~Frank ~DeRemer__J ONR 

~~~~~~~~~~~~~~~~ 
H

9. PERFORMING ORGANIZA TION N A M E  AND ADDRESS $0. PROGRAM ELEMENT. PROJECT , TASK
AREA 6 WORK UNIT NuMBERS

William M. McKeeman and Sharon Sickel
Information Sciences, UCSC, Rm. 239 AS
Santa Cruz, Ca. 95064 ____________________________

II. COP4TROLL IN GOFFICE N A M E  A N D  ADDRESS *2. REPORT DATE

Office of Naval Research December 10, 1977
Arlington , ’ Virginia 22217 - 13. NUMB ERCF P~,I?~~~ ,~

_________________________________________ 41 (~~~I Lt—~~~Qf
$4. MONITORING AGENCY NAME 6 ADORESS(t f dIif.,.n t (ton, Con trollIng Off ic.) IS SECURITY CL~~~~ (~f Th1a rfiEJ

Off ice of Naval Research
University of California — ‘77
553 Evans Hall • SCHEDULE
Berkeley, California 94720 • ____________________________

- 
$6 DISTRIBuTIoN s TA TEMENT

~~~~~~~~~~ :P~~~~~ 

ç~
I?. DISTRIBUTION STATEMENT (of Ih. .b.fr.ct .~ b.r.d ln Block 30, II dIU.,.nt &om Rap. ~

‘
~~

‘

I S. SUPPLEMENTARY NOTES

IS. KEY WO RDS (Continua en ‘.v.ra. aid. I(n.c...ary and id.nttfy by block nuo,b.r)

20 ASS R CT (ConUnu. en r.v.r.. aId. II n.c...ary and id.nfliy by block nuaib.t) -

A “forward move algorithm” and some of its forma l properties are pre-
sented for use in a practical syntactic error recovery scheme for LR
parsers. The algorithm finds a “valid fragment” (comparable to a valid
prefix) just to the right of a point of error detection . For expositional
purposes the algorithm is presented as parsing arbitrarily far- beyond the
point of error detection in a “parallel” mode, as long as all pa~ses agree
on the read or reduce action to be taken at each parse step. ~ (OVER)

DD , ~2~~I 1473 E0ITIOM OF I NOV SS IS OBSOLETE

S/N 0102 LF 014 66Q1
SECUR ITY CLASSIFICATION OF THIS PAGE (W~u•n D.’. Int.t.d)

/ ~
-

I. --
~~~~~:~~~~~

-‘
~~~~



~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
- 

~~ - •

ç~. ABSTRACT (continued)

In practice the forward move is achieved serially by adding “recovery states”
to the LR machine. Based on the formal properties of the forward move we
propose a practical error recovery algorithm that uses the “right context”
accumulated by the forward move . The performance of the recovery algorithm
is illustrated in a specific case and discussed in general.

Kay words and phrases: syntax errors , error recovery, parsing, LR( k ) ,
SLR (k ) ,  LALR(k) .

cR categories : 4.12, 4.42 , 5.23.

a

- - I
’

\c~*~ - .
. 

~~~ ~~i’~~
~~

‘

\~~~~~
‘ — \

t
.

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - - - -



_ 
~~~~~~~~~~~ -~~~~~~~~~~~~~ - - - - - - - -

PRACTICAL ERROR RECOVERY FOR LR PARSERS

by

Thomas J. Pennello

Frank DeRemer

December 10, 1977

Board of Studies in Information Sciences
University of California at Santa Cruz
Santa Cruz, California 95064

I
J •

1

Portions of this paper were presented at the Fifth ACM Symposium on the
Principles of Progranm*ing Languages, sponsored jointly by ACM SIGPLAN and
SIGACT, January 23-25, 1978, Tucson, Arizona, under the title, “A Forward
Move Algorithm for LR Error Recovery.” Research was supported in part by
the Office of Naval Research under Contract N000l4—76—C—0682. Submitted
for publication to the Coninunications of the ACM.

L ~~~~~~~~~~~~

- ~~~ —~~~~~~~
------- -

-

ii

CONTENTS

ABSTRACT • 1

0. INTRODUCTION 2

1. TERMINOLOGY 5

2. FORWARD t’~ VE ALGORITHM 10

3. FORMAL PROPEI~PIES OF FMA 15

4. REPAIR STRATEGIES USING FMA 26

5. MAKING FMA PRACTICAL 35

6. CONCLUSIONS 39

REFERENCES 42

I

II._
— -i -- --- —~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ A

—— -.--~—-- ~~~~~~~

1

ABSTRACT

A “forward move algorithm” and some of its formal properties are pre-

sented for use in a practical syntactic error recovery scheme for LR parsers.

The algorithm finds a “valid fragment” (comparable to a valid prefix) just

to the right of a point of error detection . For expositional purposes the

algorithm is presented as parsing arbitrarily far beyond the point of error

detection in a “parallel” mode, as long as all parses agree on the read or

reduce action to be taken at each parse step. In practice the forward move

is achieved serially by adding “recovery states” to the LR machine . Based

on the formal properties of the forward move we propose a practical error

recovery algorithm that uses the “right context” accumulated by the forward

move. The performance of the recovery algorithm is illustrated in a specific

case and discussed in general.

Key words and phrases: syntax errors, error recovery, parsing, LR(k),

SLR(k), LALR(k).

CR categories: 4.12, 4.42, 5.23.

- ~~~~~~~ ~~~~~~~~~~~~~~ ,~~~~

2

0. INTRODUCTION

Over the past twenty years much effort has been invested into the sci-

ence of deterministic parsing; that is, determining the phrase structure

of a sentence generated by a context—free granunar [H&U 691 during a single

scan, usually from left to right. The two pinnacles of this research are

the LL(k) and LR(k) grammars and their parsers, respectively top-down and

bottom-up techniques [A&U 721.

Unfortunately , the more adept parsing techniques have gotten, the more

difficult it has seemed to achieve flexible error recovery. It seems that

the more the parser knows about the input possibilities and specializes

itself via state transitions to restricted parts of itself, the more diff i-

cult it is for it, in the face of a detected error, to back out and get

global information necessary for good error recovery. In the words of

Graham and Rhodes (G&R 75 1: “The fact that the next move of the parser can

depend on the entire correct prefix already analyzed makes it difficult or

impossible to start up the parser after the error [detection] point.”

This paper is a contribution toward giving LR parsers some such global

capabilities. Indeed, we show that it is easy to extend them to start up

after an error is detected and to parse arbitrarily far ahead, gathering

right context. This context can then be used to guide the selection and

evaluation of repair attempts. Thus, we decompose the notion of error re-

covery into (1) gathering right context and (2) a repair strategy.

History. Graham and Rhodes [G&R 751 proposed an error recovery scheme

for deterministic bottom—up parsers that involves “condensing” context about

the point at which an error was detected. A “backward move ” condenses con-

text to the left and a “forward move” gathers context to the right. Such

~~~~~ - - - 
- -

- - - - - 

-



3

context is valuable input to an error repair strategy. Graham and Rhodes

show how the condensation is done for simple precedence parsers and give

an error repair strategy that uses the condensed context.

We have adapted the general idea of Graham and Rhodes to LR parsers

(A&J 74), by which we mean LR(k) parsers and all their variants:- LALR(k),

SLR(k), etc. Some of the investigation has already been reported in Pennel-

b ’ s Master ’s Thesis [Pen 77] (see also (O’H 76]). The present paper refines

the theoretical results developed in [Pen 77) and adds some algorithms and

some empirical results from a recent implementation.

Briefly, we found the “backward move” to be detrimental in enough cases

that we abandoned it, in favor of a philosophy of trying to do only what is

consistent with every context for as long as possible, resorting to guesses

only when we know of no other way to proceed. Pennello developed a “paral-

lel parse” exposition of the “forward move” for LR parsers that facilitates

understanding and proof of results, and we show how to “serialize” it so

that in practice the parser simply has some extra “recovery states” that work

just as the other states do, but are entered only in recovery mode. Several

theorems were developed, primarily relating to the “derived valid fragment”

accumulated during the forward move. Druseikis and Ripley [D&R 77) have

reported some similar results which we note as the issues arise.

Preview. We first present the forward move algorithm (FMA) in its par-

allel form. Then we state several properties of FMA that are relevant to

error repair. These properties suggest ways that the “forward context” may

be used in a repair strategy. Perhaps the most important of these indicates

that the forward context may be used to efficiently verify that a repair

attempt is “consistent” with the input text parsed by FMA.



~~~~~~~
— - ‘

~~~~~~~~~~~~~~~~ 

- - - T~~ ’””~. ~~~~~~~~~~~~~~~~~~~ —C -- ~~~~~~~~~~~~~ -w- - - - -
~~
- - - - -

4

Next we present several algorithms that are used in the repair strategy.

The analysis there starts with the simplifying assumption of but a single

error of insertion, replacement, or deletion of a single terminal symbol.

The effect of delayed versus ininediate detection is discussed , and then mul-

tiple errors are treated. For clarity and simplicity the algorithms are

presented without regard to certain practicalities, which are then discussed

in the text.

Finally, we show how to serialize FMA for a practical implementation.

We present some statistics on how many extra states are needed for some well

known programming languages. Then we demonstrate how our error recovery

performed on the example Algol program of Graham and Rhodes (G&R 75].

- - - -- -



— z ___ . ...__ -w~~ry,,rv-- -—- - . —~ar,-.--.-~~~~-e-r--r” ZZ~’ -

5

1. TERMINOLOGY

We review basic notation and terminology for strings, grammars, and

parsers. A vocabulary (or alphabet) V is a finite set of symbols. V~ de-

notes the set of all strings of symbols from V. V~ denotes V~ less A , the

empty string. If x is a nonempty string, First x denotes the first symbol

of x and Rest x denotes x stripped of its first symbol. (We typically do

not put parentheses around arguments to functions when the meaning is clear,

as above.)

A context—free grammar G is a quadruple (N,T,S,P), i.e. the nonterruinals,

terminals, start symbol, and productions, respectively; we define V =

N U T. Each production is a pair (A,w), left part and right p,
~~~ 

written

A -
~ w, where A c N and w c V~.

-
~

- is the rightmost derivation relation, in

which the rightmost nonterminal is replaced at each step; -~~~~ is its transi-

tive closure and ~~ is its transitive-reflexive closure. We assume a pro-

duction S -
~ s’j c P, where S’ c N, c T, and neither S nor j appear in

any other production. The language generated by G is L(G) = {w £ T* I S -~~~~ w}.

An LR parser, i.e. an LR(l), LALR(l), SLR(l), or other such parser

[A&J 74], for G (N,T,S,P) is a sextuple (K,V,P,START,SIGMA ,REDUCE) where K

is a finite set of states, START ~ K is the start state, SIGMA is the transi-

tion function mapping K x V into K, and REDUCE maps K x V into 2~~. If

SIGMA(q,h) = p, we also write this as the transition q h >
~

From

SIGMA and REDUCE we derive the parser decision function PD, mapping K x V

into 2M where M = {read, accept} U P; PD indicates, for a given state and

input symbol, all possible actions the parser may take; if the grammar G is

LR, PD always yields at most a singleton set. PD is defined as PD(q,h) =

{rea d q h > q’ for some q’ e K} U {accept h =
~

and q
h

> q ’ for

_ _ _ ~~~~~~~~~~~~~~~~~~~~~~ -~~

-~~~~__ _

— — -- —-— —- - .— ,—--
4

6

some q’ e 1(1 U REDUCE (q , h).

In figures we represent LR parsers as state diagrams in which states

are connected by arcs labelled with elements of V, according to SIGMA. For

each state q in which REDUCE indicates a possible choice of a reduction by

production p, we list p and its 1-symbol look-ahead set, {h € p £ RE-

DUCE(q,h)}. Figure 1. depicts a state diagram for the LALR(l) parser for

a common arithmetic expression grammar; in this figure, for example,

PD(**0,i) = fread}, SIGMA (**0,i) = i0 and PD(i0,+) = {p ÷ ii.

Note that REDUCE and PD may take a nonterminal as a second argument.

LR parser constructor algorithms easily generalize to include nonterminals

in look-ahead sets. We assume their inclusion, but also give alternate

means of implementing the results of this paper should their inclusion in

some implementation be too difficult. Also note that in Figure 1, there

happen to be no nonterminals in look-ahead sets due to the nature of the

grammar.

A path P in an LR parser is a sequence of states q~ , qi’ ..., q~ such

w w w
that q

~
1 >

~~~~~~ 
> q

~
, ..., q~~1 ~ q~. We define Top P q

~•

We say that P spells w = w 1 w2 ... w~ ; we define Spe1lin~ P = w. An alter-

nate notation for P is [q0 :w], given the parser or its state diagram. We

abbreviate (START:w] by (wJ ; thus 1] denotes START alone. We say that w

accesses q iff Top [wJ = q. The concatenation of two paths [q:yl and [q’:y ’]

where Top [q:y] = q’ is written [q:y)[q ’:y’) and denotes [q:yy ’l . If, for

some q, q’, and h, SIGMA (q’ ,h) = q, then Accessin~~~ymbol q = h (the access-

ing symbol for each state is unique, except that START has no accessing

symbol).

An LR parser configuration is a pair (Z,R) where Z is a path and R £ T+.



-- - - - — — ~~- -=-~=~~~~-——.——.—-- — ——-— -.— ~~~~~~~~~~~ ~~~~~~~~~~~~~~~ - -- r..~~ __ ~~~_ ~~~~~~~~~~~~~~~~~~~~~~~ -~~-
--

7

*

*

I- 
-

I— ‘.~~~ C __

* Q_ .— S

I
~~ — 1 +ww I - .

0~~~ $ 4 ,  -4
T i l l  w ‘~~

I— I-~ a.....— (I)UJ

+ a.
Ui a.
, t * o

Ui l-
~ * * ‘4

-
~-I -I -4

• ~ a
—~ + U,

a a T  S+ +~~~~ k

0 0  ~-9 .tp S
0 

~~~~~~
-— A 4

T -.~J + IH a . .‘.- .-
~~~~~~~~~

- I I
I-~~~1(O~~1j> 

— .. 
-

H
_ 

-

— - ~~~~~~~~~~~~~~~~~~~~~~~



r ~~ ~~

-

~~~~~~~

‘

~~~~~~~~~~

- -

~~~~~

“

8

For example, when the first three symbols of the sentence i+i+..L have been

reduced to E+T by the parser of Figure 1, it is in the configuration ([E+TJ ,

+ij) = ((START,E0 , +~~ , T 0) , +ij).

The parser moves from one configuration to the next by reading or reduc-

• ing; thus we define a move as an element of the set {read} U P. - denotes

a move from one configuration to another; is its transitive closure and

* +is its transitive—reflexive closure. We sometimes use ... I— for I— .
If C I—c ’ by move M, we sometimes write c C’. We define as follows:

Given some ([q:y],R), consider the possible values of M = PD(Top[q:y],First R):

case {read}: Let h = First R. Then

((q:yJ ,R) ‘rad ([q:yhI ,Re~t R).

case (A -
~ w}: If [q:y] = [q:y ’w) for some y’, then

([q:y] ,R) ~~ ([q:y ’A],R).

case (accept) or {} or I M I > 1: There is no C such that

([q:y] ,R) J.— C. (I.e. the parser makes no move but

instead halts, accepting or rejecting the input, or

unable to proceed deterministically.)

The language recognized by an LR parser is {w £ T+ I ([),w) 1± accept)
where we abbreviate Us’] ,j) by accept. (Note that PD(Top[S’l ‘1)

=

{accept}.) The usual LR parsing algorithm is easily deduced from the

relation.

A final note: We present algorithms that may return results in two

different ways: via a return value and/or via so-called “result” parameters.

E.g., the phrase “if F(x,y,z) gives A , B ...“ tests the boolean return value
of F which is called with the three input expressions (actual parameters) x,

y, and z , and with the two result parameters, A and B; some side-effect will

4 . . C- .’. - - .e a . ..

1
happen to A and B according to the definition of F. Returning from such

a function is indicated by a statement such as “return True giving u, v.’

—.—-----.- -— --.--------- *---—--—- —

- - -

1

10

2. FORWARD MOVE ALGORITHM

When an error is detected, we wish to perform a “forward move” that

parses the input after the point of the error detection. The parse cannot

depend upon the left context already developed on the stack to proceed,

since it is precisely that left context that causes the parser to detect

the error. Thus, we devise an algorithm that parses ahead starting with

no left context. Our formulation of the “forward move algorithm” keeps

parsing input text until it must refer to the “missing” left context to pro-

ceed. At that point it halts, and we use the developed “forward context”

in an error repair strategy.

Consider an Algol-like language in which the symbol “do” can appear in a

“for” or “while” construct. Suppose the two productions involving these

constructs are

Stint -
~ for Id := Exp step Exp

until Exp do Stint (1)

Stint - while Exp do Stint (2)

where we capitalized nonterininals and left terminals uncapitalized. Now

consider the erroneous phrase

for X := 1 step 1 until do begin J := X end

where we have omitted the third Exp in the “for” construct. The forward

move, if started with its input head at the symbol “do,” reduces “do begin

J :— X end” to “do Stmt.” It goes no further than this because it needs

to know left context to determine whether at this point it must reduce by

production (1) or (2) (each of which end in “do Stmt,” not coincidentally).

The reason the forward move can parse this much of the input is because

— in both places that “do” appears in the grammar, it is followed immediately

- - - • - - 1 __

_ ________________ -_-—-----._•-‘•- - -- - .- -

11

by Stint. Thus, context to the left of the “do” is not necessary to reduce

“do begin J := X end” to “do Stint.” This situation occurs often enough in

programming languages that it is not uncommon for the forward move to make

quite some progress in the input text before it needs to refer to left

context. -

The essential idea of our algorithm is to carry out all possible parses

of the input text, as long as all parses agree as to the next move to make

(i.e. they must all manipulate the stack in the same way at each parse step)

and no parse refers to nonexistent left context. We present the algorithm

first as having a stack upon which we push sets of states rather than states;

these sets of states keep track of the parallel parses. At each step of the

forward move we inquire of each state in the set on the top of the stack

what its decision is with regard to the next symbol in the input. If all

the states in that top state set that accept the next input symbol agree as

to the next move, and this next move does not refer to nonexistent left con-

text, then we make that next move. For example , in the case of the “read”

move, we push on the stack the set of all the states that can be reached

from any state in the top state set by taking a transition on the next input

symbol.

Of course, manipulating sets of states is not practical, but we show

how the forward move algorithm can be easily converted into an algorithm

that manipulates states only , essentially like the conversion of a nondeter-

ministic finite state machine to a deterministic one. The converted algorithm

is as fast as the LR parsing algorithm.

Let ? be the set K of all the parser states. We now present the forward

move algorithm. The algorithm has an initialization step that causes it to

consume at least one symbol of the input, followed by repeated parse steps.

-- -

—--. ~~~~~~ -

12

algorithm Forward move (FMA)
input R - the remaining input
output the forward context developed

and the input not consumed
m it:

let Z be the stack consisting only of ?
First RPush {q’ q > q ’, q c ? } on Z

R ÷ Rest R
repeat

let h = First R, Q = Top Z,
and MOVES = PD(q,h)

q Q
select MOVES:

case {read}:
hPush {q q > q a n d q cQ) on Z

R ~- Rest R
case {A -

~ w}: * Reduce, if possible:

~! Izi > Iw l then
Pop ~~ state sets off of Z

Push {q’ I q A
> q’ and q £ Top z) on z

else return (Spelling Z,R) fi
* w does not reside on the stack

case {} * We hit an error
or {accept} * R is
or otherwise: * IPD (> 1

return (Spelling Z,R)
end repeat

end FMA

Notice that the repeated parse steps of FMA are identical to those that

the parser normally follows, save the “otherwise” case, the manipulation of

sets of states instead of states, and the check, just prior to a reduction,

that the entire right part resides on the stack.

FMA essentially follows all paths that allow the parsing of the input

text. It halts in case “otherwise” when two different paths end up in states

that disagree as to how to continue the parse, or in case (A -~ w} when all

paths end up in states requiring a reduction over the ? , or in case {accept)

when we read the entire input, or in case UI when we encounter another error,

i.e. no path can be continued. The set MOVES computed by FMA represents all

the possible ways that the states in the top state set Q wish to treat the

4

-~~~~~~~~ -~~~‘~~~
-

~~~~~~~~~ - 
-



- - ~
_ 

— 
— _____- 

13 

-

~~

input symbol h. Note that states q £ Q that cannot accept h (i.e. for

which PD(q, h)  — (I) have no effect on the parsing decision unless all states

in Q cannot accept h (case {}); we extend each path as far as we can, even

though other paths terminate.

We illustrate the halts of cases {A + w} and “otherwise” by Examples

1 and 2 below, where the parser of concern is that of Figure 1.

Example 1. Let the erroneous input string be i(i)1. The parser stops

with state stack (ii . The following displays the execution of FMA on the

remainder of the input.

FMA step Stack after Rest of
just made FMA step input

Init ? {(o) i ) j

(read) ? ((o } {i 0 } ) I.
(p  + i} ? ((01 (~ 0} 1 1
{‘r + P1 ? 

~~o
} {T0} ) j

{E + TI ? {~~ } {E 1} ) I
(read ) ? {(~ } {E1) {)o) I
{p -

~ (El ) ? {r’o) J..
{T + P} ? {T0,T1,T2} j

The algorithm halts here because PD(T0,j) U PD(T1,j) U PD(T2,j) a

{E + B + T , T + P ** T, E + TI. Of course, the expression between the par-

entheses could have been arbitrarily long with the same result.

Example 2. Input is oj. The parser halts with state stack LU .

FMA step Stack Rest

• Init ? Uo} I
Halt: PDO0,j) — {p ÷ CE)), and there are less than three items on the stack

above the ?.

L.I ~~~~~~~~ ~~ : 
- 

- TIlT. - -



.
~~~

14

In Example 1 , we face the possibilities of reducing by three different

productions. E + T is the proper reduction only if what immediately precedes

the T is a “ C” or nothing; E + E+T is the proper reduction only if what in-

mediately precedes the T is “E4”; and ‘F + p**T is correct only if ~~~~ pre-

cedes the T; but no context exists to the left of {TO,T1,T2}. Thus, we

cannot continue parsing without making a guess, and must halt. In effect,

the three different situations in the parser in which it can read a T yield

three different decisions as to what to do with the T.

In Example 2, we attempt to reduce with P + (El , but find that “ CE”

does not precede “) “ on the stack. The attempted reduction gives us an in-

dication of what the user intended, however, and may provide useful informa-

tion for an error repair strategy called “stack forcing,” as we explain in

the next section.

The initialization step m i t of FMA guarantees that the algorithm pro-

duces a forward context of length at least one. If we did not cause FMA to

read the first symbol, then it would consider all reductions that have the

first symbol in their look-ahead sets; possible choices between a read and

some reductions might have caused FMA to halt immediately in case “otherwise,”

making no progress whatsoever. (We assume also for the remainder of this

paper that we never invoke PHA on the input consisting only of j, otherwise

we would immediately read I in step m it.)

In Section 5 we precompute the state sets of FMA as states. This allows

us to extend the concepts of transitions and paths to FMA ’s state sets. Hence ,

if FMA consumes text u from string uv and produces forward context U, we may

write FMA: (?,uv) I!. ((?:U],v). The relation I— that can be deduced from FMA

is exactly the same as that of the LR parsing algorithm, but to prevent confu-

sion between the LR parsing algorithm and FMA , we prefix moves of FMA by “FMA :” ,

as above.

—
~~~~~~~~~~~ ~~~~~~~~~ — -

~ — - - -
~~~~

15

3. FORMAL PROPERTIES OF FMA

-: Suppose FMA: (?,uv) (1? :U] ,V). U satisfies important properties

that we explore in this section. Essentially, U is such that during a parse

of any sentence ending in uv , u must be reduced to U. We formalize and in-

dicate the significance of this property in this section . To do so , we de-

fine some new terminology .

A vaU.d ~~~~ ix is any prefix of yw , where S -‘~~ yAv + ywv for some y c V~ ,

A + w ~ P , and v s T*. The string spelled by the stack at any point dur ing

LR parsing is a valid prefix. A valid fragment is a suffix of a valid pre-

fix; i.e. valid fragments are suffixes of the strings spelled by the parser’s

stack. For example, for the grannuar of Figure 1, E +~ E+P**i +

so any prefix of E+(E) is a valid prefix, e.g. E+(, and any suffix of E+(

is a valid fragment, e.g. + (. We now define the concept central to this

paper.

Definition 1. U c V~ is a derived valid fragment (DVF) of sentence

suf fix x if f

(1) U +* u and x = uv for some ü, v e T*, and

(2) for every valid prefix y such that

((yl ,uv) 1 read H accept,

((yhuv) I— ((yU],v).

Thus , during a parse of any sentence ending in uv, at some point the parser

-

- must reduce u to the valid fragment U. (The requirement that the first
~
—

is I— relates to the fact that FMA reads as its first move.)read
In the context of error recovery, this concept has the following sig-

nificance : Suppose the parser encounters an error and halts in configuration

(Z ,uv) with uv a suffix of a sentence , and that an error repair algorithm

—

16
-

—

suggests [y’J as a possible replacement for Z. We could verify that

*((y ’J,uv) acc~pt by actually trying the parse, but if many such Ey ’Is

were to be tested, reparsing uv each t ime would be costly. The significance

of having some DVF U of uv is that in U we have a “pirtially parsed” ver-

sion of u and need not repeat this partial parse, for the DVF property

states that u must be reduced to U no matter what the string to the left

of uv.

A necessary (not sufficient) condition that ([y ’],uv) — accept is

as follows: Let y be such that ([y’],uv) I— ([y],uv) and PD(Top LyJ ,First

uv) — (read); then it must be the case that ([y l ,uv) I~ (L y U I ,v) . This is

*by definition of a DVF and due to the fact that ((y ’],uv) (— accept only

if ((y],uv) — accept. For any given (y’], then, this requires only that

we compute (y] and determine whether a path exists from Top (y] spelling U.

Determining the existence of the path [yUJ is considerably cheaper than re-

parsing u if u is much longer than U, and gives us an inexpensive test to

determine if the proposed stack repair [y ’] is “good enough” to cause the

parser to consume u.

For future convenience we present the algorithm Consume DVF that per-

forms the computation just described.

algorithm Consume DVF
input (q:y) and U -— a path and a forward context.
output a boolean value -- indicating

whether (q :y] can consume U --
and giving either the successfully
computed path or an error message.

* First, do reductions triggered by First U.
while ((q:y] ,U) Ij~

(Z,U)

for M c P (the productions)
and for some path Z
do y 4 Spelling Z ad * i.e. reduce .

(cont .)

L

--—-~

17

* After all possible reductions have been made, the
* the next parsing decision must be a read.
let MOVES = PD(Top (q:y], First U)
if MOVES jtl (read) then return False giving Iq:y] fi

* Now we must be able to find a path
if path [q:yU J exists then return True giving (q:yU]
else return False giving “path ended in error” fi
end Consume DVF -

Note that the effect is the same when the computation of (q:yJ is based

on First U rather than First u, namely, if path [q:yU] exists both methods

produce the same result. However, if [q:yU] does not exist, using First U

rather than First u may cause the situation to be detected earlier: MOVES

might not be equal to (read). We get this “earlier detection” capability

because First U may be a nonterininal representing not only First u but also

some text to its right, and hence First u may be a member of look-ahead sets

of which First U is not a member. Parsers not having nonteriuinals in look-

ahead sets must retain First u for any DVF U in order to use Consume DVF.

Note further that Consume DVF takes any path as its first argument, rather

than just paths beginning at START; this is because we eventually intend to

use it with paths produced by FMA also.

Our main result is: For some sentence suffix uv, if FMA:(?,uv)

((?:tJJ ,v), then U is a DVF of uv. This results, intuitively, from the fact

that FMA parses uv with no assumptions about left context. Thus u must be

reduced to U no matter what the left context of u.

But first we consider a generalization of the DVF concept, and prove

our results in terms of it.

Definition 2. U t V~ is a restricted DVF (RDVF) of sentence suffix x

with re~pect to RQ E K if f

(3.) U+* u, x uv for some u, v~~~T*, and

- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
- -

18

(2) for every valid prefix y accessing some q r RQ

such that ((y] ,u:)
‘read ~

— accept,

([y),uv) ([yUJ ,v).

Note that a DVF is an RDVF with respect to ? = K.

To adapt FMA to the RDVF concept, we allow it to begin parsing with

any RQ ~ K, not just ? = K. Thus we may write FMA:(RQ,uv) I~ ([RQ:UJ ,v).

This requires only that the m i t step of FMA be altered to use RQ instead

of ?. We shall prove that if FMA: (RQ,uv) ((RQ:UI ,v), then U is an RDVF

of uv with respect to RQ. Letting RQ = ? gives us our main result as a

corollary to Theorem 1.

The reason for the RDVF concept is that sometimes we will want to apply

FMA to x in a situation in which we do know something about the context to

the left of x. In general, starting FMA with some restricted context RQ

allows it to both get farther in the input text (there will be fewer m ade-

quacies), and have better error detection capabilities. In essence, RQ de-

fines the possible contexts in which to parse x; if RQ = ? then we essentially

put no restriction on the left contexts.

First, we prove two lemmas concerning FMA . These demonstrate how FMA

keeps track in parallel of paths that would be computed by the parser.

Lennna 1. Let FMA:(RQ,uv)
~
— ([RQ:U),v) = (RQ Qi

~m ’
v). For any

path (yU] such that y accesses some p c RQ, Lp:U1 = p q1 ... q~ and q~ £ Qj~
1~~~ i~~~ m.

Proof. By induction on m. Let U = ai ... am. For in = 1: p £ RQ, j
hence by step m i t (for a1 £ T) or case (A -

~ WI (for a1 £ N) of FMA , q1 =

SIGMA (p,aj), q1 £ Qi~
and Qi = {q ’ q al

> q’ and q c RQ}. Now assume true

for m — k; thus IRQ:a1. . .akj = RQ Qi ... Qk’ (p:a1. . .akl a
p qi ... q~~

and

- - -
—I

qj £ Qj. 1 ~ i ~ k. By case {read) or case (A -“ w} of FMA , =

SIGMACq~,a~~ 1), qk+l £ Qj~~ , and Qk+ 1 = {q’ q
ak+l> q’ and q £

Lemma 2. Suppose FMA :-(RQ,uv) ~ ... I~
([RQ :UJ ,v) = (RQ Qi ...

If, for some y and y’, (Ly] ,uv) ((y ’ I ,v) and Top [yJ £ RQ, then

ly ’) — (y] q1 ... q~~, where qj £ Q1. 1 ~ i ~~ in. -

Proof. Given that the parser and FMA make the same moves M 1 ...
they stack the same symbols. Thus y’ = yIJ, and the result follows from

Lemma 1.

Theorem 1. For some sentence suffix uv, if FMA:(RQ,uv) I~ ...
((RQ:U],v), then U is an RDVF of uv with respect to RQ.

Proof. Let y be a valid prefix such that y accesses some q £ RQ,

C [y] , uv) I~~
, ... ~, accept and M~ = read. By induction we show property
I r’

P (r) to hold , where P (k) is defined for k ~ r as

r ’ � k and M~ = M. for 1 ~ i ~ k.
~

1

If P(r) holds, then ([yI ,uv)
~~~ 

... 
~
— ([yUI ,v), the desired conclusion.

1 Mr
For r = 1: M1 = read = M~ by step Init of FMA. Let P(k) hold. By

L emma 2, FMA ’s stack after move Mk is

RQ Ql Q2 Qm (RQ:IJ ’3

and the parser’s stack after move M.~ = M~ is

[yl q1 q2 q~ = [yU ’)

for some m , where c Qi’ 1 ~ i ~ in. Let the next input symbol be h (h is

• in u or is First v ) .  We prove by contradiction P(k+l ) , i.e. that in addi-

tion, r’ � k+l and Mk.fi = M’k+j.

(1) Assume r ’ < k+1; by the induction hypothesis, k ~ r’, so this

- 
: forces k = r’, i.e. the parser’s last move was Mr~~ 

Then ([yU’I1~ )

accept, so that in i, (yl = [ ),  and U’ = S’ (recall production

S + s’j). Since there is a unique state in the parser having

- 
- -~~~~~~~~~~~~ - . :~~~ .



20

accessing symbol S’, we have {q1 } = Q1 and PD(q1,j) = {accept},

so that for FMA , MOVES = (accept). Thus FMA cannot make move

Hence by contradiction , r ’ � k+l .

(2) Assume r’ ? k+l, but M~~ 1 j ~ M~ ,1. Now {M~~ 1 } = PD(q~ ,h ) .

But since ~ Qm ’ q”Y’~~ 
PD(q,h) would contain both Mk4~ 

and

M
~+l. 

By case “otherwise” of FMA , FMA would not make move

Hence Mj~+i 
a

Hence P(k+l) holds when P(k) holds, hence P(r) and our conclusion.

Corollary. If we let RQ = ? , we have immediately that U is a DVF of uv.
We claimed in section 2 that FMA parses as much as it can until it must

refer to nonexistent left context. We formalize this intuition below.

Definition 3. U c V~ is the maximal RDVF (MRDVF) of sentence suffix

x with respect to RQ E K jf I the following three conditions imply that

(LyU’I,v’) ~~- C [yU],v):

(1) U is an RDVF of x with respect to RQ where

U +* u a n d x = u v for some u, v c T *,

(2) U’ is any other RDVF of x with respect to RQ where

UI +* u~ a n d x = u ’v’ for some u, v c T *,

(3) there exists valid prefix y such that

y accesses some q £ RQ and

~~
— accept. 

* *Thus, by the definition of DVF’s, ((yJ,uv) 
~
— ((yti’I,v’) ([yUI ,v),

so that an MRDVF U is “as far up” the derivation tree of yuv as possible.

v must be a suffix of v’, so that ~~ ~ ~~~ i.e. U derives the longest

possible prefix of x. If v = v’ then we see that U is reduced as much as

possible , since then U +~ U’. An algorithm that produces the MRDVP would

therefore read as far as it could into the input , and reduce as much as it 

. : -±:
~~~~ .- : 



~~~~~~~~~~~~~~~~~~~~~~ _ —~~~~~~~--n~~— —-  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~-nr ----—- - - - ~~~~~~~~

21

could. It is clear from the definition that the MRDVF is unique.

FMA , when started in state RQ, does not always compute the MRDVF. This

is because FMA is restricted to using the same parsing technique as the par-

ser and therefore to the same finite look-ahead. An algorithm superior to

FMA might scan all of x, perhaps discovering some contextually significant

symbol located towards the end of x that could help it parse earlier text.

An FMA based on an SLR machine might be bested by one based on an LALR ma-

chine for the same grammar. Rut given the limitation of the base parser,

FMA does as best it can. These restrictions are encoded in the following

theorem that formalizes FMA ’s performance in terms of its base parser.

Theorem 2. Consider suffix uv of a sentence. If there exist RQ ~ K,

integer r ~ 1 and a sequence of moves M1 ... Mr such that
(i) M

1 
= read ,

(ii) there exists some state q c RQ and U £ V~ such that

(q, uv) 
~~~ 

...
~

([q:U],v), and
1 r

(iii) there exists no valid prefix y, integer k < r ,

and configurations C and C’ such that

y accesses some q’ £ RQ,

f l - i I-,

~iyj ,uv ,
M M M’I k k+1

and Mk÷l ~
then FMA:(RQ,uv)

~
...

~~~~ 
C [RQ:U1 ,v).

1

• Proof. By induction. We prove P(r), where PCk) is defined for

k ~ r as

FMA :(RQ ,uv) ... 
~
— C ’ ’M 1 Mk

for some configuration C ’ ’ . P ( l )  holds since = read and FMA reads as its

first move, by step m i t  of FMA. Let P(k) hold ; we show that PCk+l) holds.

Let q be as in hypothesis (ii). If P(k), then by Lemma 2 we have

-- - - .-



-, - —-.——- .
. 
~-~~~-4 --~~ w v a  ~~~~~~~~~ —,..,r:w-,- ’,a&~ ~~~~~~~~~~~~~~

22

and 

FMA :(RQ,uv) ... ~ Q Qi Qm ’ R) (= C’’)

(q, uv) ... ~~~ (q q1 ... ~~~~~~ 
R)

for some m and R, where c Q1, 1 ~~ i � m. The parser ’s next move is

from (q q1 ... q~ ,R); we show by contradiction that FMA makes move

from (RQ Q1 ... Qm, R). Assume instead that FMA does not make move M~~ 1.

Consider the possible ways in which this can happen. Let MOVES =

PD ( q, First R):

(1) MOVES = = (A + w}, but FMA cannot make move A + w because

in < wi . Then neither can the parser make move A -‘~ w by the de—

finition of j—; in < wJ implies that there exists no y’ such

that q q 1 ... q,
~ = [q:y’wI.

(2) MOVES = {Mj~.f1} and M~~~ ~ 
Mk+i. But since £ Q~, Mk#l £ MOVES,

so that MOVES ~‘ {M ~~~1
}.

(3) MOVES = (}. But again since q~ £ Q
~’ Mk÷l £ MOVES.

(4) IM0~ESl > 1. Then let {M
~÷1, 

Mk+i } E MOVES. Let q q1 ... q5~ =
(q:y ’]. There must exist some q’ £ RQ, q’ ~ q, such that

PD(Top [q’:y ] , First R). Let y access q’. Then

(LyJ ,uv) 
~ 

... ([yy ’],R) 
~~~~~ 

C’
1 Mk

for some C’. But this contradicts hypothesis (iii).

We have shown all possibilities contradictory ; hence P(k+l) and thus P(r):

FMA :(RQ,uv)
~j

... I~j
C’’ .

1 r

for some C’’. But since (q, uv) ~ ... l~ (Lq:U] ,v), C’’ = (LRQ:U],v).
1 r

Corollary. FMA applied to a sentence suffix makes the greatest number r

of moves possible, where r is as defined in Theorem 2.

Proof. Merely let the q of hypothesis (ii) be such that r is maxi-

mized.

L --- ..-—----
-
--- ---

~~~~~

--
~~~~~


— - ~~~~~~~~~~~ -_ ~~~
. -

23

Apart from the significance of DVF ’~- in validating error repairs, DVF ’s

satisfy other useful properties. The “next move” property is helpful in

selecting error repairs. Let uv be a sentence suffix, and U be the DVF of

uv returned by FMA (when started with ?) . When FMA halts, the value of

MOVES is such that

MOVES =
£ ~~

{M j (LyUI ,v) C for some C)

(yU] a valid prefix

In other words, MOVES contains all the moves that the parser may make from

some configuration ([yU),v). Intuitively , since FMA parses without knowing

y, at each step MOVES represents the set of moves for all possible y ’s.

The utility of the next move property is illustrated as follows. For

the Algol example of the previous section, MOVES would contain the two moves

indicating “reduce by production (1)” and “reduce by production (2)” , where

U = “do Stint”. The next move property says that if we find some y such that

the parser makes move M from configuration (LyU] ,v), then M must be one of

those two reductions. Either reduction puts a constraint on y; it must end

in either “for Id := Exp step Exp until Exp” or “while Exp”. We may thus

sometimes use the elements of MOVES to guide us in the selection of y ’s.

We call these reductions “long reductions” because if performed during the

forward move, they would attempt to pop the ? state set (in the Algol example

FMA halted in case “otherwise”). Such long reductions can sometimes provide

“instant solutions” to some errors. In this example , a comparison of the

stack with the set MOVES shows that we should patch up the stack by insert-

ing the missing Exp and continue. In practice , we may simply search the

stack preceding the point of error detection for some state that can read

the left part of either production (we call this technique “stack forcing”).

______ - — ----.--. -.- _ _ _ _ _ _ _

24

We mention this again in the next section. MOVES may contain elements

that are not long reductions, such as “read” or a “short reduction ,” but

we do not yet know how best to make use of this information. We formalize

the next move property as follows:

Theorem 3. Let x be a sentence suffix, RQ ~ K, U an RDVF of x with

respect to RQ with U u and x = uv, and

MOVES q c T~~~[RQ:U]
PD(q, First v).

Then we have the following :

Let X =
~~~~~ 

{M I ([yU] ,v) i~ C for some 
c}.

(yU] a valid prefix
Top [yl £ RQ

Then MOVES = X.

Proof. Let M £ MOVES. By the definition of MOVES, there exists some

q £ TOP (RQ:U1 such that M £ PD(q,First v), and hence some q’ £ RQ such

that Top Lq ’:UI = q. Let y access q’; then M £ PD(Top[yU],First v) so that

there exists C such that (LyU] ,v) C. Hence MOVES E X.

Consider now M £ X; corresponding to M there is a valid prefix yU such

that M £ PD(Top LyU] ,First v) and Top [y] c RQ. But Top LyUI C Top LRQ:U]

by Lemma 1, so that by the definition of MOVES, M £ MOVES. Hence X E MOVES,

and our conclusion.

Corollary. If RQ = ?, then I MOVESI � 1.

Proof. Since x is a sentence suffix , there exists some valid prefix y

such that S +*yx; thus (LyJ ,x) I-~ 
accept. Without loss of generality let

read c PD(Top LyI ,x). Then by the RDVF definition , ([y],x) — ( [yU ) ,v ) .

Let C be such that ([yU],v) (~~ C for some M (there must be at least one

since (Ly] ,x) I— accept); M c MOVES. Hence I MOVESI ~ 1. (For a similar

result where RQ a ? see LD&R 7 7 ) . )  

—-— -- ~~~~~~~~~~~~~
—--

~~~~
-
~~~~~

--
~~~~~~~~ — ----~~~--~~------ ~~~~ --~~~~--


-_ -- a~~~~~~~~~-~ . .

25

We can further use the next move property to help pinpoint errors .

If FMA(? ,uv) — ([?:U] ,v) but halts in case fl, i.e. MOVES = { } , then uv

is not a sentence suffix. That is, an error has occurred somewhere in the

text uv, because there exists no y such that S -~~~ yuv. More specifically,

since we are dealing with LR(l) parsers, the error has occurred -in the

• “window” comprised of the first ~u~+i symbols of uv.

In suimnary, we have shown that FMA (1) provides an inexpensive test

for stack replacements, (2) sometimes points us directly to the repair we

need to continue the parse, and (3) sometimes finds a “window” within which

an error has occurred. We do not know how, in the general case, to come up

with stack replacements. In a more specialized case in which we assume

some knowledge of the types of errors, we have a chance of designing stack

replacements.

— ~. -~~c~ - -~r~~-~~~~~~~~

26

4. REPAIR STRATEGIES USING FMA

Given FMA and its formal properties, we now proceed to develop an

algorithm that finds a useable configuration in which to restart the parser.

In our initial analysis we make the “simple error assumption” (SEA), viz.

the non-sentence z in question resulted from a sentence via a single “mutil-

ation”: an insertion, a replacement, or a deletion of a single terminal

symbol.

Insertion : z = ytx and S --~ yx but not S +~ ytx

Replacement: z = ytx and S +~ yt’x but not S ~~ ytx

Deletion: z = yx and S -~~~ ytx but not S -~~~ yx

In the next few paragraphs we assume an LR(k), as opposed to SLR(k) or

LALR(k) , parser and we even assume that the parser detects the error at

the point of mutilation. Then we generalize gradually and discuss the con-

sequences.

Suppose the parser detects an error in configuration (Z,tx). Thus, t

is an unexpected symbol in the left context spelled by Z. Suppose further

that we have reason to believe that an insertion of t occurred. How could

we confirm that suspicion? A straight-forward way is simply to determine

if (Z,x) — accept; i.e. delete t and resume parsing . Similarly, if we

thought the mutilation was the replacement of some terminal t’ by t, we must

resume with (Z,t’x), and if the deletion of some t’ just prior to t, then

(Z,t’tx).

Now, in the error recovery context we have no clue as to which of the

above repairs may work, so we must try them all. Furthermore , if none of

them work, we can conclude for an LR(k) parser and under SEA that the mutila-

tion occurred left of the point of error detection , i.e. the parser somehow

27

incorporated the mutilation on its stack. In the case of an SLR (k) or

LALR(k) parser, even if the correct “unmutilation ” is found, the above trials

may not work since the parser may have made reductions (by looking ahead at

or ignoring the unexpected symbol) that the corresponding LR(k) parser

would not have made. Repairs in these cases will involve some form of back-

ing up the parser. But before considering those implications, let us con-

sider the use of FMA to reduce the cost of trial parses.

To limit the repeated parsing of x we apply FMA to x recursively until

it has been reduced to a sequence of DYF’s U1, ..., U
1~
. We call, this pro-

cess FMA+, which can be defined as follows:

FMA+(x)

if x =

U such that FMA:(?,x) — ([?:U1 ,v)

followed by FMA+(v)

Furthermore, before trying the insertions, not having found a deletion or

replacement that will work, we should apply FMA+ to tx , thus producing some

... , U~ for some m ~ n+l. Let u1 be the terminal string that was reduced

to Uj by applying FMA+ to x. We have in = n+l and Uj4~ = U
1
for 1 ~ i � n if

the first application of FMA to tx parses t and then halts; in = n and Uj =

for 1 ~ i ~ n if FMA parses t and all of u1 but then halts; in = n-l and

= U~, for 2 � i � it if t, u1, and u2 are similarly combined by FMA . Talc-

ing advantage of the fact that u1, ..., u5 have been reduced to U1, ...,

by the previous application of FMA+ to x, we can avoid applying FMA+ to tx

by instead using the following algorithm to “attach” t to the “extended for-

ward context” U 1 ... ~~ producing the same result.

algorithm Attach
input h , C-- the symbol to be attached and

the sequence of DVFs to attach it to. (cont.)

_

.

28

output a Boolean value, and giving
the resulting sequence of DVFs.

let P be a path such that Consume DVF(?,h) gives P
while C is not null do

iet P’ be a path variable
if Consume_DVF(P, First C) g~ives P’

then P ÷ P’; C -4- Rest C
elseif P’ = “path ends in error”

-
- then return False -

not giving anything; irrelevant.
else return True

giving~ Augment(Spelling P, C)
fi

od
return True giving Spelling P
end Attach

In the above we have assumed the operation , Augment , on sequences that pro-

vides a sequence of length n+1 by adding a new element , the left operand,

to the front (left) of a sequence of length n , th right operand.

Non—immediate detection. Suppose that none of the deletions, replace-

ments, or insertions succeed. An easy way to proceed next is to start

backing down the stack, one symbol at a time, trying deletions and replace-

ments of each symbol h, then if none of these succeed, attaching h to the

previDus extended forward context and trying insertions in front of h, just

as we did for the unexpected symbol, which has now been “exonerated” (for

LR(k) parsers, at least). We summarize this entire strategy as follows.

algorithm Error_recovery
input (Z,R)--the erroneous configuration.
output the repaired configuration.
let h and h’ = First R, Z’ =

EFC and EFC’ = FMA+(Rest R)

• while Z’ is not empty do
* Try deletion , replacements,
* attachment, then insertions.
let C be a configuration variable
if Try (Z’, (I t) , EFC) gives C then return C fi
if Try (Z’ , T, EFC) gives C then return C fi
if not Attach (h,EFC) gives EFC then

exit ft # implies a “window”
if Try (Z’ , T, EFC) gives C then return C ft
h Accessing_symbol (Top Z’); Pop Z’ (Cont.)

I..—
- -

_____________ -
~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~ ___________ ——~~~~. --. ‘.

29

od
if Try_stack_forcing (Z,V,h’ ,EFC’) gives C

then return C ft
return (S’ ,j ) * i.e. give up by

* returning accept.
end Error recovery

Note that we return from Error_recovery, when we Try a repair that

succeeds , with the repaired configuration C. However , if an error is de-

tected by Attach , we exit from the while loop, having isolated the mutila-

tion to within a “window” comprising the text from the leftmost token of

the phrase associated with the symbol h up to the original unexpected sym-

bol, inclusive. (A message should be printed to this effect.) Perhaps in

this case we should just delete all the text in the window and call Error_

recovery recursively. Instead we have indicated above to Try_stack_forcing

as suggested in Section 3. At this point further investigation and develop-

ment of the overall algorithm is needed.

Backing down the stack is, of course, an atten~ t at repairing damage

caused by the mutilation. In some cases the mutilation will not have affect-

ed the phrases around it. A replaced’ symbol , for example , may still be on

the stack, unreduced or simply reduced. Then a deletion, replacement, or

insertion of a single symbol may precisely undo the mutilation. In fact,

to increase the likelihood of a useful repair we have found it worthwhile to

Try nonterminals as well as terminals, i.e. TRY(z’,V,EFC), as replacements

and insertions. This pays off when, for example, a mutilation has affected

only one phrase.

On the other hand , a mutila,tion only belatedly detected can have caused

an arbitrarily large amount of “damage” to occur on the stack, in the sense

that many reductions may have occurred that would -not have on the unmutilated

string. For example , insert ing a semicolon before an operator in the right



‘S

30

part of an assignment statement, e.g. “K = X + Y; ~ Z; ” , typically results

in the text to the left of the semicolon being reduced to a statement; but

then we are left with an expression fragment to the right of the semicolon.

Ideally, in such cases we would like to partially “unparse” some symbol(s)

on the stack , then Try the repairs. Another example is the PL/I- conditional

statement, which when the if is deleted, may look like an assignment state-

ment up to the then: “... ; X = Y + 2 then ... else ... ;“. Here the un-

wanted reduction of X = Y + 2 to statement might occur with a LALR(l) or

SLR(l) parser but not with an LR(1) parser.

We are still investigating possible approaches to recovering from such

potentially massive damage, approaches about which something formal can be

said;- and we are looking for grammatical restrictions that might limit such

damage. However, since that research is incomplete, we refrain from dis-

cussing the ideas here, other than to note that “stack forcing” mentioned in

Section 3 above appears to have good development potential. Ultimately,

any scheme used must have a significantly greater potential for facilitating

“upper level” parsing after making a repair (FMA will have done the “lower

level” parsing) than it has potential for causing an avalanche of spurious

error messages, e.g. if the repair discards several left bricket symbols.

Finally, note that we may give up by telling the parser it is done, i.e.

by returning to it the accepting configuration. This is not unreasonable

since we have already partially parsed the input beyond the point of error

detection and we are only giving up the opportunity to parse the remaining

upper level, thus losing the opportunity to detect some other errors. Now in

practice we do not parse all of the remaining input, but rather we stop FMA +

at a convenient point after it has produced at least seven , say, symbols of

L - -



-~ 
— - ------_--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

31

extended forward context. We consider a trial successful , then, if after

the repair, all of the extended forward context can be parsed; then we re-

turn to the parser the resulting stack and the remaining input. For expo-

sitional purposes, however , we continue the presentation in terms of the

simpler, if impractical, approach of partial parsing to the end of the

• program. The practical modifications are not difficult to make, but they

would obscure the presentation.

algorithm Try
input Z, V, EFC -- a state stack ,

vocabulary, and a sequence of DVF ’s.
output a Boolean value, giving a configuration.
f o r s CV d o

let Z’ = Z
let EFC’ = if s = A then EFC

else Auginent(s ,EFC) f i
while EFC’ is not empty and

Consume DVF(Z’, First EFC’) gives Z’
do EFC’ ‘4- Rest EFC’ od

if EFC’ is empty then
return True giving (Z’,j ,) ~~

od
return False * giving nothing; irrelevant.
end Try

Pragmatics. The algorithms presented above are idealistic in several

ways. We have already mentioned limiting FMA+ rather than allowing it to

proceed to the end of the program being parsed. Now we consider the possi-

bility of several mutilations to the program. In this case FMA+ may end in

error before accumulating the desired number of symbols; thus we simply

accept the first repair that successfully reaches the subsequent error de-

tection point.

However , it may happen that FMA+ will not detect a subsequent error,

due to its lack of “upper level” parsing. Any such error will have to be

detected after a repair is made. For example, suppose “...; X < Y + 2 then

then ... else ...;“ was created by deleting an if and inserting a then, and

- - -- -  - -
. -



32

suppose one relevant production is: If_clause -
~~ if Bexp then. An error

is detected at the “<“, “Y” is skipped , and FMA+ is invoked. After the

first then the parser may be ready to reduce without needing to look ahead ;

but no reduction can be made due to incomplete parsing to the left. So FMA+

calls FMA again, starting at the second then, and the inserted then is not

reported as an error by FMA+. Again the solution of choice is to take the

repair that results in getting the farthest into the extended forward con-

text before detecting a subsequent error. 
- 

-

Semantics. Given this error recovery scheme it is unlikely to be

worth trying to continue to drive “semantic routines” that perform static

semantic analysis and/or code generation, even after the first error is

encountered, since parsing proceeds in a non—canonical order while recover-

ing. On the other hand, in a compiler whose parser builds an abstract-

syntax tree , which is to be traversed subsequently to parsing for further

analysis and code generation, we may continue tree-building during FMA+;

and simple repairs will lead to knitting the subtrees together appropriately

for subsequent processing. Of course, gross repairs will result in a mangled

tree, but that in turn just presents an error detection and recovery prob—

lem to the subsequent processor. Presumably, if a formal technique such

as an “aff ix grammar ” [Kos 71] is adapted to describe the static semantics

of languages based on abstract-syntax trees , then automatic techniques can

be used to perform the analysis (see, e.g., [Wat 75] and [DeR 77]), and thus

our recovery algorithm may prove useful there, too.

Improving FMA+. Having nonterminals in look-ahead sets allows us to

construct an improved version of FMA+. When FMA is applied to a sentence

suf fix, it may halt by encountering an inadequacy (case “otherwise”); i.e.



- -  ‘~ •

33

the next (terminal) symbol is insufficient to resolve the parsing conflict.

However, FMA+ immediately applies FMA to that symbol and what follows, re-

sulting in a DVF that may begin with a nonterminal that is sufficient to

resolve the conflict. This is because the nonterminal may represent an

arbitrarily long look—ahead, i.e. the phrase that was reduced to- it and

perhaps one symbol beyond (due to the usual look-ahead). It behooves us

then to review recursively the decision at the end of the prior DVF each

time a new one is computed that begins with a nonterminal. This approaches

the non—canonical parsing of the LR(k,t) style as suggested by Knuth [Knu 65].

algorithm Super_FMA+
input x -- a sentence suff ix .
output a sequence of DVFs derived from x.
if x = j then return
else

let U, v be such that
FMA:(? ,x) 

~~
- ([?:U] ,v)

let S be an empty stack of paths
Push [?:U] on S
while v p~ j do

let U’ , v ’ be such that
FMA : (?,v) -

~~
‘- ( [ ? :U ’) ,v ’)

V -4— V ’

if First U’ in N (the nonterminals) then
while S is not empty do

let Z be a path variable
if Consume DVF(Top S, U’) gives Z

then U’ ÷ Spelling Z; Pop S
else Push [? :U’ l  on S; exit

# exit from inner loop
fi

od
fi

od
return the sequence of DVF5 spelled by

the paths on S, followed by 
~fi

end Super FMA+

Even this algorithm can be improved. Each time we “restart” FMA , at

the beginning of the outermost while loop, we begin with “?“ , representing

no knowledge of left context whatsoever. But we do know something about the



-

34

left context in this case, viz, the possibilities are restricted to those

implied by the top state in the top path on S. Assume FMA has halted with

Q on the top of its stack. Then instead of restarting with state set ?,

we restart with state set 
q
t+•~1

J
Q 
RS (q), where

RS(q) = {q’ I S --~ y ’x ÷~ yx ,

y, y’ e V~ , x c T*,

y accesses q, y’ accesses q ’)

The states from which First x can be read, after y is (optionally) reduced

to some y ,  are in RS(q). The idea of using a restricted restart state has

been suggested by Tai [Tai 77] for use in non-canonical SLR(l) parsing, al-

though his restart states are different from ours and do not apply to LR(k)

parsers in general .

We have implemented such restricted restart states and have observed

that, while they do in fact improve error recovery, their expense in terms

of the size of ~he parser + error recovery machine may be too great. For

the statistics see the end of Chapter 5.

I
_________

_____________ 
— --— -



•,

~~

—- ,- .-- —-

.

--

~~

- -----

~ 

— —

~

----—

~~~

-- - — - -

~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~ 

—

~

-— -—--‘-,-- — - -
~ ‘1

5. MAKING FMA PRACTICAL

In this section we re—describe FMA as an algorithm that manipulates

not state sets but pre-computed states, thereby making it practical.

FMA computes state sets dynamically by referring to the parser’s

states -- see cases (read) and (A ÷ w} of FMA. There is no reason why we

cannot precompute these state sets and the transitions between them; this

gives r ise to a separate set of states for FMA .

We compute these states as follows. Let K be the set of parser states.

The set K’ of FMA states is computed by beginning with K ’ = {?}. Repeatedly

add to K’ the successors of state sets in K’, where for s c V, the s-

successor of Q c K’ is {q’ q > q’ and q e Q) . We use ERSIGMA to

mean the thus computed transition function for K’. Now we define the deci-

sion function PD(Q,h), where Q is a state in K’ and h c V , in terms of the

states Q. Simply,

PD(Q,h) =
qc.

J

Q

PD(q,h)

Observe that the computation of MOVES in FMA is just this same computation.

Thus, algorithm FMA ’ below achieves the same effect as FMA .

algorithm FMA ’
input -- as in FMA
output -- as in FMA
m it:

let Z be the stack consisting only of ?
Push ERSIGMA (?,First R) on Z; R 4- Rest R

repeat
• let h = First R, Q Top Z, and MOVES = PD(Q,h)

select MOVES:
case {read}:

Push ERSIGMA(Q,h) on 2; R ÷ Rest R
case {A -

~~ w): # Reduce, if possible:

!~. I z I > Iwl then
Pop ~wI

states off of Z -

Push ERSIGMA (Top Z,A) on 2
else return (Spelling Z,R) fi (cont.)

______________________________________ - -
~~~

36

case {} # We hit an error
or (accept} # R is
or otherwise: * IPo l > 1

return (Spelling z,R)
end repeat

end FMA’

It should be evident that FMA and FMA ’ are equivalent. FMA ’ is as fast

as the LR parsing algorithm save the check in case (A + w} that Iw l states

reside on the stack.

Now that FMA ’ manipulates states rather than state ,~ets, we can suggest

a space optimization. Suppose for some q € K, {q} ~ K’ (this occurs often).

If q 
$ > q’ is a transition, then {q} S 

> (q ’} is also a transition.

Once FMA’ pushes a state {q} on its stack, and until it sometime later pops

{q}, it will behave as if it had pushed state q on its stack. Thus we may

“share” state {q) in K’ with state q in K; states in K’ having transitions

into {q} can be modified to instead have the same transitions into q. Such

sharing reduces the storage required for the parser/error recovery package.

The following state sharing criterion, satisfied by (but not only by)

the singleton states in K’, determines whether state sharing may occur : For

any q ~ K , Q e K’, Q may share with q 1ff for every y in V , if y spells a

path from q to q’ and a path from Q to Q’ then PD(q’ ,s) = PD(Q’,s) for

every s c V. In other words, the parsing decisions that Q’ and q ’ make

must be the same. States in K’ other than singleton sets satisfy this cri-

terion. To see this, let t0 = [A + t.} and t1 = + t’, B “ t.1 , both mem-

bers of K (A ÷ t~ and B + t’ are final items, productions whose right part

has been recognized; see [A&J 741 or [DeR 71]). Let {t0, t1 } c K ’. Note

that t0 U t1 t1. Then if PD(t1,s) = PD({t0,t1 ),s) for every s c V, {t0,t1 }

may be shared with t 1. This is the same as requiring that the look-ahead

for production A .s. t in state t~ be a subset of the look-ahead for production



~~~~~~~~~~ ——-- 

;_ L~~ -

37

A 9’ t in state t1. Non-singleton states that can be shared occur in prac-

tice, but they are non-trivial to determine. Singleton states are easy to

find when generating K’. Figure 2 shows the state diagram for K’ with

singleton states shared with states in the state diagram of Figure 1.

Due to state sharing, the percentage of extra states needed over the

original parser is only about 20-50% , and the percentage of extra transi-

tions about 39%-78%, depending upon the grammar. For Pascal (Wir 73) we

need increases of 48% and 78%, respectively, for XPL [MHW 70] 22% and 39%,

and for PAL (A&U 72] 27% and 40%. With restricted restart states included,

the percentages for PASCAL are 125% and 426%, for XPL 80% and 259%, and for

PAL 74% and 384%.

The significant differences between our approach and that of Druseikis

and Ripley (D&R 76,77] is that they compute the states K’ via the LR(O) con-

structor algorithm, using actual sets of LR items (see [A&J 74]) and they

do not show how to compute the look-ahead sets needed by FMA ’ for LALR(l)

or LR(l) parsers. Our technique works equally well for SLR(l), LALR(l), or

any other LR—style parser.

_________________ ~~

‘
38

?

T

~ j +,), Jj : E—u’~T

I+j,Jj: E-’E+T
(+ ,),i1:

p
~

p0
C o

** sp

~~

I.
~~~

rig. 2. State diagram representing transitions between states in K’.
Singleton states in K’ have been shared with  the corresponding
states in K. Reductions associated with ? have been omitted ,
since FMA ’ never considers them.

___________ - A



- p_____~~~~_~._-_ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 
_
~—_--‘——_—__— __-——__-.~—~

_- -~
.- c&— - t - -

39

6. CONCLUSIONS

The proof of art error recovery algorithm is in its performance in a

practical environment, quite apart from any nice theoretical properties

it might have . Druseikis and Ripley [D&R 76] were kind enough to share

with us a tape containing erroneous student Pascal programs. We ran our

preliminary implementation on some of them, given a Pascal grammar deduced

more-or-less mechanically from the Pascal syntax diagram [Wir 73].

Each repair selected by the algorithm was rated “excellent” if it

repaired the text as a human reader would have, “good” if not but it still

resulted in a reasonable program and no spurious errors, “poor” if it re-

sulted in one or more spurious errors (in fact, none resulted in more than

one spurious error), and “unrepaired” if no repair was selected but we

continued to parse via FMA+ rather than the parser. The results follow:

Excellent Good Poor Unrepaired Total

32 21 9 14 76
(42%) (28% ) ( 12%) ( 18%) ( 100%)

We have counted spurious errors in these statistics. Note that 70% were

good or excellent. With some tuning, we hope to reduce the poor and unre-

paired responses in number. The unrepaired cases both rob us of upper-

level parsing and sometimes adversely affect recovery from other nearby

errors. We have no idea how much different these statistics might be for

more “sophisticated” errors made by seasoned system programmers intimately

familiar with the language.

As another concrete demonstration of the algorithm ’s performance, we

present in Figure 3 the erroneous Algol-like sample program used by Graham and

Rhodes to illustrate the performance of their error recovery algorithm



40

[G&R 75). We used the same Algol subset grammar as they, and our repairs

are identical to theirs, without the need for a weighting for symbols or

a pattern matching algorithm. We used the algorithms presented in Chapter

5 except that we modified them to prefer insertions to replacements and

replacements to deletions. We rate each repair as “excellent,” -except the

insertion of the <identifier> between * and / on line 5, which we rate

“good ” since we have no idea what the human might have done.

We should note that backing down the stack infrequently resulted in a

good repair , except in the critical case of the deleted if in the program

above. Thus , there is some question as to whether that technique is worth

its computational cost; it should at least be delayed until no more-produc-

tive techniques have succeeded . Clearly more research , trials, and errors

(no pun intended) are in order. As yet we have not implemented Super_FMA+.

0



- -- - - -- .— - --0 - - T~ r - ~r —- - -

41

- I
2 a i&u A . I (1..S
3 ~DLQ~t& I. J. k, 1.;• Up: X • J > 1 • L • • ~~~~ ~ 

Li tin K Ia 2;
S A 1,2 :— I I 3 • ( X~.J, J * / K)
~ £L I 1 iku~~ku 22 t9 Up;
7 1.2: iM

tins 2, token 10, un expected “1”
Z2&LQ~~ 

Blockh ead Boun ds, list Expression .. “5”
~Q5~~~Q ? .~~ Expression ) ? ; 7 Declaration ; 7 ~~bs1_ DefLattioe•,“ yas inserted after “5” and befoc. 9.

Line II, token 1. unexpec ted .“

~QLLQ!~ Dlockbod y U~~~ N

~Q~~j~Q 7 Prinary 7 R.lationop fxpr 7 ~~~~ 7 22 (ERROl)
j~” was inser ted after Slockbod~ and b.fors W IN .

ZJ~9J Line ‘4 , token 1’i, unexpected “Li ”
L2LLQ~ Blockbod y If ,, tben,,cl q~£QB khIQ ‘ tiR~ 7 “It” (ERROR)

“SQ” was inser ted after “92” and before “Li”.

ZHQB Line ‘4 , token 17, un expected “Is”
ZQLL Q~~ Blockbod y If ,, then _cl Else_clause “K”
~~~~~~ ? Pris ary 7 7 “A” (ERROR )

“Is” was replaced with “ :““ after “K” an d before “Pri.ary ”.

~flQ~ tin. 5, token 2, unexpected “1
tQLL2i~ alockbod y “A”

- ZQ~WI32 P , 7 “ 2” (ERR OR)
9” was inserted afte r “A” and before 9”.

tine 5, token 5, unexpected ~~~~~~
Z2~&~~~ 3lock~.od y “A ” C Expression , “2”
Z Q . ~~Q 7 N 5W 7 (7 Pri.ary ? * (Expression (ERROR)

“)“ was inserted aft er “2” and before N :~~~N
•

• ZUQi Line 5, toi.n ib , unex pected “,“

~~~~~~~ blockbod y Va riable :“ “B” ( Ter n * ( Expressio n
LQH 1~Q V Prilary V * (ERROR) •
IRUI “)“ was inserted after “Expression ” and before “..

Line 5, token 17, unex pected “/“
£Q&&Qk~ Dlockbody Variable :“ “B” ( Ex pression , Tar. *
ZQI&!112 7 Prisary 7 ) (ERHOR) -

“(Iden tifier >” was inserted a f te r  II$ N and before “i’”
JUQI Li.. 6, token 1,, unexp ected 9,~”

• ZQLLQ~~ 
Blockbod y Variable := “B” ( Expression , Expressio n )

• 
~Qfl~3Q V Pri.ary 7 Relationop Expression 7 ~~~~ (ER R O R )

• “; “  was inser ted after “) “  and before 9L”.

S1IQ~ Line 6, token 6, unex pected “thin”
Z2LI. Qt~ Dloekbod y j~ Ex pression ~~~ij

~9UhZQ V State.ent 7 ; V Label _ defini tion ? tol
“thin” was deleted, at tar 

~~~~~~~~~~~ 
and before “Stat..•nt”.

JR 2!

Figure 3. Run of error recovery algorithm on program of Graham and Rhodes.

— -

42

REFERENCES

(A&J 74] Aho , Alfred V. and Johnson, S. C. LR parsing. Computing Sur-

veys 6, 2 (June 1974), 99—124.

(A&U 72] Aho , Alfred V. and Ullman , Jeffrey D. The Theory of Parsing,

Translation, and Compiling. Vol. 1, Prentice-Hall, Inc., Englewood

Cliffs , N.J . , 1972.

(DeR 71) DeRemer , Frank . Simple LR(k) grammars. Comm . ACM 14, 7 (July

1971), 453—460.

(DeR 77] DeRemer, Frank. Tree-affix dendrogrammars. Research proposal

to NSF, Information Sciences, University of California, Santa Cruz,

CA. 95064 , 1977.

(D&R 76] Druseikis, Frederick C. and Ripley, G. David. Error recovery

for simple LR(k) parsers. Dept. of Computer Science, University of

Arizona , Tucson, AZ. 85721, 1976.

[D&R 77] Druseikis , Frederick C. and Ripley , G. David. Extended SLR(k)

parsers for error recovery and repair. Dept. of Computer Science,

University of Arizona , Tucson , AZ. 85721 , Feb. 1977.

LG&R 75) Graham, Susan and Rhodes, Steven. Practical syntactic error re-

covery. comm. A~M 18, 11 (Nov. 1975), 639-650. H

[H&U 69) Hopcroft, John E. and Ullman , Jeffrey D. Formal Languages and

Their Relation to Automata. Addison-Wesley, Reading , Mass., 1969.

(ICos 71] Koster , C. H . , A. Af f ix grammars. In Peck, J. E. L., Algol 68

Implementation. Amsterdam , North Holland , 1971.

[1.51W 70] McKeeman , W. M., Horning, J. J., and Wortman , D. B. A Compiler

Generator. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1970.

(O ’H 761 O’Hare , Michael F. Modification of the LR(k) parsing technique to

include automatic syntactic error recovery . Senior thesis , University

~ - - -~~~~~~~

43

of California at Santa Cruz , Santa Cruz , CA. 95064 , June 1976.

(Pen 77] Pennello, Thomas J. Error recovery for LR parsers. M.Sc. Thesis,

Information Sciences, University of California at Santa Cruz, Santa

Cruz , CA. 95064 , June 1977.

(Tai 77] Tai, Kuo-Chung. Noncanonical SLR(l) grammars. Computer Science

Department, North Carolina State University, 1977.

[Wat 75] Watt, David. The parsing problem for affix grammars. Department

of Computer Science , University of Glasgow , Glasgow , Scotland, 1975.

[Wir 73] Wirth , Niklaus. Systematic Programming: An Introduction.

Prentice—Hall, Inc., Englewood Cliffs, N.J., 1973.

OFFICIAL DISTRIBW~I0N LIST

Contract N00014-76-C-0682
-

Defense Documentation Center Office of Naval Research
Cameron Station Branch Office , Pasadena
Alexandria, VA 22314 1030 East Green Street
12 copies

- Pasadena , CA 91106
1 copy

Office of Naval Research
- -

Information Systems Program New York Area Office
Code 437 715 Broadway - 5th Floor
Arlington, VA 22217 New York , NY 10003
2 copies 1 copy

Off ice of Naval Research Naval Research Laboratory
Code 1021P Technical Information Division
Arlington, VA 22217 Code 2627
6 copies Washington, DC 203 75

6 copies
Office of Naval Research
Code 200 Dr. A. L. Slafkosky
Arlington, VA 22217 Scientific Advisor
1 COpy Commandant of the Marine Corps (CodeRD-

Washington , 0. C. 20380
Office of Naval Research 1 copy
Code 455
Arlington, VA 22217 Naval Electronics Ltboratory Center
1 copy Advanced Software Technology Division

Code 5200
Of fice of Naval Research - San Diego , CA 92152
Code 458 1 copy
Arlington , VA 22217
1. copy Mr. E. H. G•leissner

Naval Ship Research & Development Cent~
Of fice of Naval Research Computation and Mathematics Department
Branch Office, Boston Bethesda , MD 20084
495 Swimer Street 1 copy
Boston, NA 02210 -
‘copy Captain Grace M. Hopper
Office of Naval Research NAICOM/MIS Planning Branch (OP-916D)
Branch Off ice, Chicago Office of Chief of Naval Operaticns

• 536 South Clark Street Washington , D. C. 20350
Chicago , IL 60605 1 copy
l copy

•

Mr. Kin B. Thompson
Technical Director
Information Systems Division (OP-~?11G)
Office of Chief of Naval Operati’~ns
Washington , D. C. 20350
1 copy

-- -. — - • - •- - . - - - U -
-

_ _
~~~~~~~~~~~~~ &_ _ __~.

_
~~

_ _~.  -.“ 
- .. - --—- -


