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1.0 INTRODUCTION

During the past few years, improvements made on the AEDC von Kirméin Gas
Dynamics Facility (VKF) three-degree-of-freedom (3DOF) test mechanism have led to
greater usage and increased emphasis on data quality and data reduction techniques. These
improvements consist primarily of the addition to the original system as reported in Ref,
1 of roll position measurement and increased axial and normal load capacity.

Before the system alterations were made, only a limited amount of data was reduced
to final form. This was due primarily to the relatively large computer time involved in
the analysis of data and the limitations imposed by the data reduction procedure. The
analysis of data for the extraction of meaningful aecrodynamic coefficients was hampered
by the use of data reduction procedures based on linear aerodynamics and on mass and
aerodynamic symmetry properties. of the model (Ref. 2). Since the majority of models
tested fail to conform to either one or both of these restrictions, more exact data reduction
techniques are required.

The capability of the 3DOF system to measure the roll position accurately permits
data to be analyzed in the body-axis system. Use of this system allows analysis of the
effects of model inertia anomalies and asymmetric aerodynamics on 3DOF motion.
Moreover, increased emphasis has been placed on studying the effects of nonlinear
aerodynamics for both symmetric (Ref. 3) and asymmetric configurations (Ref. 4).

This report presents improved data reduction and analysis procedures so that the
increased capabilities of the 3DOF system may be utilized. A modified Newton-Raphson
technique (hereafter referred to as the Chapman-Kirk method, Ref. 5} was employed to
develop two programs designed to extract aerodynamic coefficients from 3DOF data. The
asymmetric and symmetric programs utilize the full dynamic and kinematic equations and
assume mirror plane symmetry and axial symmetry, respectively. Other data reduction
methods currently used in aerodynamic parameter extraction are discussed in Section 2.0.
The formulation of the mathematical aspects of the Chapman-Kirk method and the
development of the governing 3DOF equations to be used in the extraction methods are
presented in Section 3.0. Section 4.0 gives a detailed description of the resulting programs.
In Section 5.0, the validity of the improved coefficient extraction technique is studied
using computer-generated motion and 3DOF data from Tunnel A. In addition, bench test
data are used to support error estimates of the extracted coefficients.

2.0 METHODS OF 3DOF ANALYSIS

During the past 20 years, much progress has been made in parameter identification
techniques. Early methods were difficult to implement and time consuming in application.
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The need for improved techniques was shown by the disagreement found between
extrapolated wind tunnel and flight test results (Ref. 6). The following discussion
concentrates on several types of identification techniques currently used in proces'sing data,
both in the wind tunnel and in full scale. The advantages and drawbacks of each type
are addressed.

Parameter extraction methods may be broadly classified into three categories: 1) the
so-called equation error methods, 2) output error methods, and 3) advanced methods.
The equation error methods assume a performance criterion (i.e., a set of differential or
algebraic constraints on the vehicle aerodynamics and/or motion) that minimizes the square
of the equation error. All methods that fall into this group are basically least squares
methods, and generally all responsc variables and derivatives must be measured. Application
of this method gives a set of n linear equations with n unknowns. Since the equations
to be solved are linear, the equation error methods are single-step processes. As such,
they are normally used only as a startup method for output error methods. In addition,
equation error methods are known to give biased estimates in the presence of measurement
noise.

Output error methods minimize the square of the error between the actual system
output and the modeled output. Characteristic of these methods is the ability to extract
meaningful parameters in the presence of measurement noise. [n addition, process noise
{modeling errors) produces biased results in the extracted coefficients and may result in
lack of convergence of the iterative scheme. Typical output error methods are
Newton-Raphson, gradient, Kalman filter, and modified Newton-Raphson. The modified
Newton-Raphson method, also referred to as the differential correction or quasilinearization
method, can be shown to be identical to the Kalman filter methed for the case of no
measurement noise.

The maximum likelihood method (as described in Ref. 7) is the most advanced
parameter identification technique currently available and is capable of handling both
process and measurement noise. This technique may be subdivided into three basic steps.
The first step employs the Kalman filter to estimate the magnitude of the states and
to generate a residual sequence. A modified Newton-Raphson algorithm is then used for
the parameter estimates. The final step uses an algorithm to estimate the noise statistics
(the mean and variance of both process and measurement noise). With this approach used
for parameter identification, the lower bound on the variances of parameter estimates
and the models for the measurement and process noise disturbances may be determined.

The majority of experience gained over the past 20 years in parameter identification
in the ballistic range and wind tunnel has been accumulated using some form of the
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differential correction method (see Murphy, Ref. 8, and Nicolaides, Ref. 9, for example).
The maximum likelihood method has seen limited use in the analysis of free-flight aircraft
test data. Thus, even though the maximum likelihood method appears to hold promise
for improved data analysis, the differential correction methods as used in the wind tunnel
and ballistic range are still of primary interest due to their relative ease of application
and proven reliability.

The differential correction method as used by Murphy (Ref, 8), Nicolaides (Ref. 9),
and others, is essentially a linear or slightly nonlinear analysis. Under suitable linearizing
assumptions, the angular motion equations of a basically symmetric model may be solved
in closed form. The coefficients in the analytic solution which are functions of the vehicle
aerodynamics are determined by fitting the solution to the data using the method of
least squares. This approach can be used only to extract relatively simple aerodynamic
coefficients from the experimental data. Furthermore, complex motion must usually be
analyzed in small time segments, and thus any cumulative nonlinearities that may be present
in the data are destroyed.

In the late 1960's a different approach to the differential corrections method was
developed that did not rely on the existence of analytic solutions. This technique, hereafter
referred to as the Chapman-Kirk method (Ref. 5), is also based on the minimization of
the least squares function. The partial derivatives as required in the method of least squares
are determined by numerically integrating parametric differential equations which are
derived from the governing equations of motion. This approach can satisfactorily handle
highly nonlinear aerodynamic moments and forces, but it requires substantially more
computational effort since, in addition to the integration of the governing equations, a
set of parametric differential equations must be solved.

The discussion of output error methods thus far has dealt with parameter identification
techniques that are deterministic in nature in that the aerodynamic modeling does not
account for measurement or process noise. All ballistic and wind tunnel angular motion
data contain a finite amount of measurement and process noise, however. The effect of
such noise usually appears in the higher order nonlinear coefficients, as pointed out in
Ref. 10, in the form of abnormally large variance and bias. The extended Kalman filter
method (as discussed in Ref. 11) provides an approach in which measurement noise can
-be satisfactorily modeled. This method provides direct estimates of the states of noisy
systems as well as estimates of the state variable uncertainties. Even though the extended
Kalman filter method provides more detailed information on the measurement noise of
experimental data, it provides no estimate of process noise, which is a serious noise source
in nonlinear systems. In this regard, the extended Kalman filter method has no distinct
advantages over the Chapman-Kirk method in processing real 3DOF data.
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Thus, the Chapman-Kirk method is used to develop an improved 3DOF data analysis
capability for use in continuous wind tunnels. Even though this approach does not yield
detailed information on measurement noise, as does the extended Kalman filter method,
it does afford sufficient insight into the effects of the measurement noise on the extracted
coefficients. In the absence of process (modeling) noise, it may be shown that the probable
error of the extracted coefficients for random measurement noise, using the Chapman-Kirk
method, is equal to the root-mean-square (RMS) deviation from the true value.

3.0 MATHEMATICAL DEVELOPMENT

The preceding section has dealt extensively with the different types of parameter
identification techniques that may be used for 3DOF data analysis. It was concluded that
the Chapman-Kirk method as described in Ref. 5 provided the best compromise in
mathematical complexity, reliability, and versatility of the methods considered. This section
presents in a concise manner the mathematical details of the Chapman-Kirk method as
applied to 3DOF data for axisymmetric bodies of revolution taken in continuous wind
tunnels. A similar development of the important equations for models with mirror plane
aerodynamic and geometric symmetry is given in Appendix A.

3.1 GOVERNING EQUATIONS FOR 3DOF MOTION

The 3DOF governing equations of motion are derived from Newton's second law
of motion, which may be written as

iy )

#
wherg> M is the external moment acting at the mass center of gravity (cg) equal to Mx_i>
- -
+ Myj + M,k, and h is the moment of momentum referred to the axis system as shown
in Fig. 1. For a rigid body, the moment of momentum may be shown (Ref. 12) to reduce
to Eq. (2).

h = hi + hj + hk==(®l,-ql, rl,)i
+ (—p]xy + q]yy - rlyz)j (2)
+ (=ply, - qly, + fl,) k

Here p, q, and r are the components of the angular velocity vector along the x, y, z
axis system (see Fig. 1), respectively, referenced to a space-fixed axis system, and Iy,
lyy, L., Ixy. Ixz, and ly; are the moments and products of inertia as defined in the
standard way by Kolk (Ref. 13) and others.

10
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Ltilizing Eq. (2) in Eq. (1). the governing Euler moment equations for a plane-fixed
axis system may be written in the form of Eq. (3). where the carct denotes the aeroballistic
axis system.

M, = b+ Fh — Bh, 3)

The dot as used here indicates differentiation of the scalar quantity with respect to time,
and 6, a, and T are the angular velocities of the plane-fixed axis system relative to the
space-fixed axis. For the case in which the body axis is a principal axis, the products
of inertia, I, I,,, and I, are identically zero. If it is further assumed that the body
is axially symmetric about the x axis, then I, = 1, = L

In order to derive the Euler moment equations in terms of angular measurements,
the Eulerian angles , 6, and ¢ are defined. Figure 2 illustrates the Euler angles ¢, 0,
and ¢ for the acroballistic axis system. Vectors in the space-fixed coordinate system may
be transformed to the aeroballistic axis system by successive rotations about the Z axis
through the yaw angle, {, and about the § axis through thc pitch angle, 0.

The Euler angles ¢, 8, and ¢ are related to the angular velocities through Eq. (4),
p=c - thsind

q=46 4

;/Jcos 0

-
il

with the plane-fixed angular velocities given as follows:

ﬁ:-&’;sinﬂ
i=96 (5)
= d cos

Inserting Eqs. (4) and (5) into the governing moment equations and simplifying, the
governing differential equations of angular motion may be shown to reduce to the form
of Eq. (6).

11



AEDC-TR-78-10

-

& =.\_']x -g:";écos{)-p ﬁltan{)— {2 = R) ¢ 0 tan 0 sin @
Réétanﬂ

o . (6)

§ =M, -0 -Rg2sinfcosh - R cos 6

v:-'; = |\_']Z,.-"cos 91 (2 - R u Jtan @ + R (.') 0/ cos @
—— ~ ——— A — fal
Here the definitions My = M, /I, M, = M,/l. My = M/l{ and R = L/l have been utilized.
The above equations describe the angulg\r mgtion of an axially symmetric body about
its cg caused by aerodynamic moments My, My, and M, in the aeroballistic axis system.

The solution of Eq. (6) depends on the form chosen for the moments as functions
of the dependent variables. In order to provide the most general form of the moment
coefficients for axially symmentric bodies, the ideas of Tobak, Ref. 14, have been utilized.
The moments are written as functionals of the parameters that directly influence the
moments. Thus, it is assumed that the moment coefficients. Cg, C,,,, and C, arc functions
of the velocity ratios v/U_ and w/U_ and the angular velocities p, q, and r. as shown in
Eq. (7).

M, = q/5d C‘(a, B: pyyqsD

A o

My = q-Sd C, (@, Bi:p>q.0 (7)
A

M, =qSdC_ (a,B;p,q.0

The variables @ and 8 are the velocity ratios w/U_ and v/U_, respectively, as depicted
in Fig. 1. The dynamic pressure, reference area (base area), and reference length (base
diameter) are denoted by q_, S, and d, respectively. By expanding the moment coefficients
about a and B and dropping nonlinear coefficients in fz, B, p. q. and r, the coefficients
of Eq. (7) may be reduced to

Cyla, Bip g0 = Cla. B) + i [pCzp(a.B)

+qCy @, B) + 1€y lal B) + aCyrlen B+ BCipGa. B)

Cpla-Bip, 0.0 = Cpla, B + L [pCrplas B

. . . \ (8)
+ q(..mq(a.ﬁ) +rC . B) +aC la,B) + BCHIB(a,B)]

C 3 ’ L] = W ’ d C L]
W Bip, 00 = Ca, @+ 4 [#C, @B

+ 1CpqlasB) + 1Chla. B) + aCrpla. B + C 4la, B

12



AEDC-TR-78-10

As can be seen, the new coefficients as defined in Eq. (8) are functions of the parameters
a and $ only. Before the expansion of the new coefficients about @ and 8 equal to zero
is accomplished, the relations describing a and § and their derivatives as functions of the
Euler angles will be presented. Using this information will result in simplifications which
ultimately will reduce the number of unknown parameters. Noting that the only component
of velocity that exists in a continuous wind tunnel situation in the space-fixed coordinate
system is -U_ along the X axis, transformation to the aeroballistic axis system results
in

a=i=cos¢rsin6
B:i:—sint/; 9

with rates of change of a and § given by

c.z=—!,/;sin¢lsin9+0.cos¢lc050
(10)

A comparison of Eqs. (10) and (4) makes it evident that for small pitch and yaw angles,
a is approximately equal to €. This of course assumes that 8 and ¢ are of the same
order, a valid assumption for bodies with axial symmetry or with relatively small
asymmetries. Thus, the rates a and B are approximate lineur combinations of the angular
rates g and r and approach exact linear combinations in the limit as ¥ and 8 approach
zero. Moreover, in Section 5.1 1t is shown that for reasonable levels of measurement noise,
the effects of the rate terms a and 13 cannot be satisfactorily separated from the angular
velocities q and r. Thus, to avoid over specification of the uerodynamics, it is assumed
that @ = e;r and B = eyr where e; and e, are constants. This reduces the coefficient
expansion as given in Eq. (8) to the form

C.a,Bip,q.0 = C,la,P) + i [pCipla. B - aCila, B) + rCyla, @] AN

where i equals &, m, or n.

In order to allow for a high degree of versatility in the coefficient expansions in
terms of a and B8, while at the same time retaining functional simplicity, Taylor series
expansions are made about a and § equal to zero for each of the coefficients Ci. G,
Ciq, and G;;. Terms involving the magnitude of a and § have also been included in the
expanded coefficients. Retaining terms cubic and lower in a and 8, for G(a,f), and

13
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quadratic and lower for C,,, Ciq. and C;,, the expanded form of the coefficients is given
in Eq. (12).

Cl(a,ﬁ) = aio + d“a - H,” |a', + ai2a2 + ﬂ’iza |a'
3 ’ 2 : . 2
s aga’ + ajgalal + 8B + a8 + 8B
’ 3 . 2 , .
+ai5|ﬂ|ﬁ+ “isﬁ "'ai6|B|B ""]i‘,'aﬁ"'ﬂﬁlalﬁ
-'- t"’alﬁ' f 1"" ﬁl ,1 2 ’ 2
17 i a7 laBl + aga®B 4 ajga”|B]
> r'd 0 2P
+ ag laBla + agaB® + ajgle| B + ajy BlaB)
, 2 .
Cill(a’B) = bio + b“a + b” |a| + bi?_a + h12a|a|
. P) ,
+ b B+ by 18] + bi-i-B + bl4[3|[3| + bzap
T b'islalB + blealB| + b7; laB] (12)
Cla,B) = ¢;g - cjja + cjylaj + ci2a2 + ciealal
, ) .
- cigB o+ oeip!Bl v ey BT - ¢y BIBY - cigaB
= ciglalB - ¢pa Bl cis 'af’
- 2 -
Ciplas B) = fp - fia + 7 la| + {pa® - Tioalal

s f3B - I8 4 1y B7 - T BIB. + [i5ap

v i la' B~ falB + 5 1aBl

Here, the coefficients a,, b,. ¢, and f, are independent constants that are functions of
the freestream conditions (such as Mach number and Reynolds number) and body
geometry.

Further simplification of Eq. (12) is not possible unless flow-field symmetry arguments
are employed. The primary justification for implementation of the symmetry conditions
is based on small angular motion about ¥ and & equal to zero. Since the maximum angular
displacement of the 3DOF gas bearing system is 10 deg, flow-field symmetry that is
compatible with geometric symmetry is implied. Thus, symmetry arguments as given by
Maple and Synge, Ref. 15, are used to reduce the number of unknown constants in Eq.
(12). To reduce the coefficients as given in Eq. (12) to those for a body symmetric about

14
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the x axis (see Fig. 3), two covering operations are required. A covering operation for
mirror symmetry about the x, z plane is performed first and is followed by a covering
operation for 90-deg rotational symmetry about the x axis. The mirror symmetry condition
results in

C,la,-Bi-p,q,- = C (a,B;ip,q,r)

C,la,-Bi-p,q,-0 = -C (a,Bip,q.0 (13)

Cpla,-B5;-p,q,-1) = -G, (a,B:p.q, N

Under the restrictions of Eq. (13), the moment coefficients as given by Eq. (12) reduce
as follows:

I . 2 ’,
Cm(a’ﬁ) =dh0 - e - A, al + g — amEalal
3 ’ 2 . 2
- Bpze’ + d,5@ |a| + Elm4-|BI - amSB
- ang BIBY + al a|B - ai|aB| + ange’|B]
mé m7 m7 m8
+ a” : + a 32 o a’ ! 2
! mB'aﬁ'a b Angdf * mg alB
. ’ 2 , '
(‘mq(a’ﬁ) = byg = byja v bpe| + bpga® + bloa'a’

+ buglB, + by B - brsalBl + by lapl

Corla, B = C3B + CLuBIBlL v ChzaB + ClslalB
(14)
Cop(@.B) = [,38 + T, BIBI ¢t fnsaB + frslalpB
Cila,) = a0 + 3,48 + aisBIBl + 2B’ + aqap
1 ai;lalB + aga’B + afyBlapl

Cila,B) = bigB + biyBIB| 1 bjzaB + bila|pB
Cila,B) = ¢j0 1 cyya + cf)'al + cjpa? + c¢lya, al

+ ciglBl + ci432 - ¢galB' - cTglaB]
Cpla,B) = fig = fja = fijial 1 fiza® = fyale]

- 318 v 14B8% + [5alB] + 177 |aB]
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Here, i = n, 2 The coefficient expansions as given in Eq. (14) are valid for asymmetric
configurations with the symmetry plane of the body in the x, z plane of the body-fixed
axis system. A 90-deg rotational symmetry requirement will result in a four-fold symmetry
of the body. The four-fold symmetry coupled with mirror plane symmetry is sufficient
for the specification of axial symmetry. A covering operation performed on a 90-deg
rotation of the axis system results in the coefficient constraints as given in Eq. (15).

C.(8,-a = C_(a,B)

- Cnr(ﬁ,—-a) = Cmq(a’B)
~C,y(B.=a) = Cpila, B

(15)

C‘(B,—a) = C‘ (a,B)

€y (B.-a) = Cyla, )
Crp(B.-a) = Cpa. B
Cyp(B--a) = €y las )

Employing these contraints with the additional restriction that, for zero spin rate, an axially
symmetric body will have no moments in the plane normal to the total angle-of-attack
plane, the aerodynamic coefficient expansions as shown in Eq. (16) will resuit.

Cpofa, B)/a
Cpqlas B) - 5B
C,.(@,B) = ccap
Crnple, BY/B = d3 + dila] + d}|B|
-C,ola, B)/B = Cola,B)/a
Cpqla: B = Cpilas B) {e)

ay + azllal + [B]) + agla® + B + ay|aB|

Cprla, B) ~ cga? = Cpola, B) ~ cgfB?
Copla, B)/a = dy + d5'B] + d}'al
Cpla. B) = e
Cipla, B) = fg + F1(lal + [B]) + frla® ~ 7)
Cyela, B)/a = g3 - 85|81 + g4le’

cgq(as‘e)ffﬁ = 83 + g%lal + g:}lB.
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The above expressions as used in Eq. (11) yield the required moment coetficients.

It is important to note here that the expansions as given in Eq. (16) are not unique
in describing axially symmetric body aerodynamics. Indeed, other expansions, such as those
in terms of the total angle of attack as used by Whyte (Ref. 16) and others, are also
valid. The "correct” expansion of coefficients describing the aerodynamics of a body,
in the parameter identification sensc, is that which yiclds the "best" fit to the
experimental data and does not violate cstablished symmetry constraints. With the
establishment of the required aerodynamic coefficients, the governing equations of motion,
Eq. (6), may be solved.

3.2 FORMULATION OF PARAMETER EXTRACTION METHOD

In order to determine the cocfficients describing the aerodynamic model as given
in Eq. (16) for axial symmetry or in Eq. (14) for mirror plane symmetry, a parameter
extraction technique must be used. The 3DOF gas bearing as described in Ref. 1 yields
angular position measurements in yaw, pitch, and roll which provide the experimental
data necessary to extract the unknown parameters. In Section 1.0 the Chapman-Kirk
method was selected as the parameter identification technique to be employed here. This
technique is an output error method and, as such, uses the method of least squares to
minimize the cumulative error between observed and calculated motion.

Normally when one is fitting data with a least squares method, the function to be
fitted is given with constant coefficients that appear linearly in the function. This results
in a set of simultaneous linear equations that may be solved in a noniterative fashion
for the unknown coefficients. For nonlincar functions, the coefficients must be evaluated
by the differential corrections method. This technique provides corrections to improve
the estimates of the unknown parameters and, as a result, is an iterative process.

Since the 3DOF governing equations as given in Eq. (6) are nonlinear and the unknown
parameters as given in Eq. (16) are complicated functions of the Euler angles, ¢, @, and
. the differential corrections method will be used. Consider the problem of fitting the
3DOF motion of a model to known functions of the unknown parameters, If the variables
®m & Om® and v, ¢ are defined as the experimental values of the roll, pitch, and vaw
positions at each time point £ residuals (ug, vg, wg) yielding the difference between the
measured and calculated data may be expressed by Eq. (17).

u = él - ‘-"’mg

Ve = 0, - 0y (17)

. /
“’g = l-'ll - Y
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Here. ¢g, 0¢, and ¢ are the calculated values of the roll, pitch, and yaw, respectively,
which are functions of a set of independent constants, a,. These constants are the
aerodynamic coefficients to be determined as shown in Eq. (16). In order to determine
the change in the coefficients. Auy;. required to reduce the residuals in the least squares
sense, a Taylor series expansion of the calculated solution is made. Expanding ¢g, 0¢,
and Yg, and discarding second and higher order terms and using the definitions as given
in Eq. (17), one obtains Eq. (18).

N,
o+ Sy = by v D A ?

=1 !

N

V‘ 1 oml = 9‘0 1 Z '—\ﬂi 6_01. (18)
i1 aal
N’

. ; . W

Wit Ymg T Yo + 2 Aa; a‘_l‘

1=1 !

The functions ¢g,, 8¢, and Y@, correspond to the values of ¢g, 8¢, and g, respectively,
evaluated at each time point for the given constants a;. and N, is the total number of
parameters a, to be determined. The best fit of ¢g. 0g, and g to the experimental data
is established by minimizing the sum of the squares of the residuals for all time points

considered. Thus,

N N c .
E (uf + \-3 - wjz) = Z [(Z Ailiplu - R”_)z
2 =1 £ =1 =1
X N (19)
4 (E Aa: Pojy - "21)2 ’(Z Aa Py, - “3;)2]
=1 =1
is subject to the minimization condition as given in Eq. (20).
N
2 2 2
a-__\a.._ (g + vg + w)) =0 (20)
tog=1
where ac'bl 66‘ o
Pnz= Ja Pm£= P Psu ‘;;f’
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N is the total number of time points considered, and
Rig = g — Dao - Ry = Opy = g0 - Ry - W~ Wy

Performing the indicated partial differentiation in Eq. (20) and combining terms results
in
Cpo day = D

. (21)

where C;; is a symmetric (N, x N;) matrix of parametric influence coefficients given by

N
S 22 (PrisPrys - PouPas = PauPyjs) @
£=1 - )

and Dj is a residual influence matrix with the form

N

D, = 3 (RyyPrjp - BoyPojp + RyyPyy) 23)
L1

Since Eq. (21) is lincar in Aa,, it may be inverted. yielding the required correction to
the coefficients, a,. Thus, given a set of initial estimates for the independent constants,
determination of Aa; will result in corrected values of a, which will cause the computed
motion to more closely approach the experimental data. In the limit of no process or
measurement noise, iteration on a; will provide the best fit in the least squares sense
of the computed to the experimental motion.

Implied in this development are two important facts that can seriously disrupt or
destroy the convergence of a; to the "best” values. If measurement noise exists, the
definition of the residuals. Eq. (19), assumes that the dependent variables ¢, 0, and v
have the same relative uncertainty. For practical applications, the relative uncertainty of
the measurements ¢. 8, and ¥ may differ by as much as an order of magnitude. This
effect can be accounted for in the parametric influence coefficients by redefining Cj; as

N
' p..,P . P, ,P,. P..,P,.

C‘ij - E ( ]1.82 1j8 | 4:12 2ij} ¥ 3132 3]1) (24)

=1 % o0 %y

and Dj as

D (R 12 Pajg ReP 2y Rag Py

I e B (25)
=1\ g %3 % :
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where g¢. 04, and oy are the standard deviations of the relative uncertainty in the roll,
pitch, and yaw measurements, n.spectwcly (sece Ref. 17). Also implied in Eq. (18) is the
assumption that the coefficients (a;) used to generate ¢g,, 0¢,, and yQ, are close to
the best values. If a significant difference exists between the initial value of the coefficients
and the actual or best values, the expahsions as given in Eq. (18) are not valid and will
result in divergence of the corrections, Aa;, or convergence on invalid solutions. The
closeness of the initial values of the coefficients to the best values for correct convergence
is a function of the character of the motion fitted.

As stated previously, in the absence of measurement or process noise, correct
application of the differential corrections method will yield parameters with no relative
error. In the presence of these noise sources, however. bias may be introduced into the
converged parameters. According to Ref. 18, for statistically random measurement noise
in the data, it may be shown that the root-mean-square (RMS) deviation between the
experimental data and converged solution is given by

E( g 035 F k2 ‘,0'0 l “ U) (26)

3N -1 - N _+1

L =

with the corresponding RMS error in each of the coefficients, 6a;, equal to

bu, = r':\lf (27

where B, represents the diagonal components of the i;wer'se matrix of G;. Equations (26)
and (27) provide mathematically rigorous estimates of the measurement-noise-generated
RMS deviation in the coefficients and solution. They do not. however, give reliable
estimates of the RMS deviation or error for measurement noise that is not statistically
random. noise which may result when data time samples are too small, or for process
noise caused by inappropriate aerodynamic modeling.

The differential corrections method just presented requires the value of each of the
partial derivatives, as illustrated in Eq. (18), at each time point. Previous users of the
differential corrections method such as Eikenberry (Ref. 2) relied on the use of analytic
solutions for the angular motion to generate the required partial derivatives. Since the
equations of motion as used here are highly nonlinear and cannot be solved in closed
form, the values of the influence coefficients (3¢/0a;, 00/0a;, and 9y/da;) are determined
by numerically integrating a set of parametric differential equations. These equations are
derived by differentiating the governing equations of motion with respect to each
parameter, a,. and inverting the order of differentiation. Performing the indicated operations
on Eq. (6) results in the following:
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Bli= My + 0P cos 8 + &Py cos § = 0 Py, sin 9
+ My tan @ + M, Py sec?g + (2 - R (P, + ¢P,y) tan 6 sin 0
+# (2 - R JOP,. sin 0 (0 - sec?0) . RGP, 1an 6
+ Rg:’a["zi tan 0 + Ro_'bf)Pgi sec? @
Py = My, - 20 -R) §Py; sin 0 cos 6 ~ (1 - R 7P,y (1 = 2sin® @) (28)

- RILP-“ cos 6 - Réﬁ’si cos @ Rq.h.,[/l’2l sin 8

i53i = My, sec 8 + MZ |3‘2i tan @ sec ¢ + (2 — R) tan @ (uﬁl.’2| ¢ 0.|53i)
+ (2 - R !ZI.GP2i sec2 @ + Ré [.’“ scc @ + R0 tan @ sec 0 Py,
+ R <;5152i sec
A A Fa
oM, oM, oM,
where M;; = ——, My; = — and M3; = — are evaluated in a similar manner through
0a; 0a; 0a;

the moment expansions. The above equations are second order and, thus, require two
boundary conditions for the evaluation of each influchce coefficient. These are obtained
from the boundary conditions on the angular motion given by

${0) = ay _q

& (0)

=N 4
0(0) = ay _3

) (29)
600) = ay _,
w(0) = aN__,
$(0) = ay

If one differentiates the boundary conditions given in Eq. (29). the boundary conditions
on the governing equations for the influence coefficients may be derived.

20 .
s
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PLO) = 8y 5,
PO = 8y 4,
P5;(0) = aNc-s.i 30)
Py; (0 = Oy 2.1

P3;il0) = 8y _y,,

By, (0)

]
=7
4

Here §;, is the Kroneker-Delta function with 8, = 1 for i = j and 8, = 0 for i #j.
In order to utilize the differential corrections method to extract aerodynamic coefficients
of interest, one must solve the governing angular ;notion equations and parametric
differential equations simultaneously. With the angular motion and influence coefficient
solutions determined for a given set of initial coefficient values, corrections to the
coefficients are evaluated through Eq. (21). For example, if there are thirty cocfficients
to be identified [which include, generally. both the boundary conditions, Eq. (20), and
the aerodynamic coefficients, Eq. (16)], a maximum of 186 differential equations must
be solved simultaneously.

40 DESCRIPTION OF COMPUTER PROGRAM

The computer program as described here extracts aerodynamic coefficients from 3DOF
data defined by the measured yaw. pitch, and roll angles as a function of time. The code
is based on the Chapman-Kirk technique as detailed in Section 3.0. Both symmetric and
asymmetric versions of the program have been developed and are listed in Tables 1 and
2.

The symmetric version is written in double precision Fortran IV for use on the IBM
370/165 computer. In the form listed here, core requirements are 164 K bytes using the
G compiler. As many as 30 coefficients may be extracted from 3DOF data with actual
computation time proportioned o 7 as shown in Eq. (31).

T o= n(z\'c + Dt ‘At 31)

max’

Here n is the number of iterations, N. is the total number of constants varied, tpy,x
is the total integration time, and At is the integration time interval.

The program is written in a logical sequence so that changes in internal program
structure such as alteration of the functional form of the moment coefficient expansions
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can be made easily. A flow chart showing the important logic and branching points is
provided in Fig. 4. Table 3 contains a brief description of each of the subroutines employed
in the code.

The asymmetric version of the code is functionally the same as the symmetric version.
Only the core requirements, coefficient arrays in the main program, and subroutines directly
involving the kinematic or dynamic equations for the 3DOF motion are altered. Core
requirement for the asymmetric program is 266 K bytes when the G compiler is used.
In addition, up to 72 coefficients can be extracted from 3DOF data using this version.

In both programs, integration of the kinematic, dynamic, and parametric differential
equations is performed with a fourth-order Runge-Kutta, fixed time step scheme. The
coefficients to be extracted from the data are reiterated as outlined in Section 3.2 until
convergence is achieved. Convergence is assumed when consecutive iterations yield a change
in the probable error of the fit less than a specified error bound.

4.1 INPUT

The input information necessary to execute either version of the coefficient extraction
program is very similar. The actual 3DOF experimental data to be analyzed is input to
both programs through a direct access input file. Data are stored in this file in 1,003
word records, in which the first three words define the data group number, data block
number, and data type indicator, in that order, and are integers. The data type indicator
defines the variable being accessed and may take on values from one to four corresponding
to arrays of time, ¢ versus time, 8 versus time, and { versus time, respectively, all of
which are single precision variables.

The initial values of the coefficients and the parameters providing branching
instructions and body and flow-field information are input using namelist statements. No
default value is provided in the program for required variables not defined in the initial
namelist statement. The namelist input format was used to provide versatility in
constructing sequential runs by updating prior information. Table 4 gives the namelist
variables, their meaning, and their nominal values needed f6r execution of either the
symmetric or asymmetric coefficient extraction program.

4.2 OUTPUT

QOutput variables as used in both the symmetric and asymmetric programs are similar
and are compatible with input variable definitions. Only portions of the output data from
a typical run which are not self explanatory will be discussed.
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During normal data reduction using either program, each iteration of the parameters
(aerodynamic coefficients and boundary conditions) is listed with the corresponding change
in the parameter (DELTA CON) according to the theory of Section 3.2. The variables
defined as the new and old probable error are the previous and present values of the
RMS deviation between the experimental data and converged solution, respectively, as
defined in Eq. (26). The sum of the residuals is defined "as follows:

N
Sum of Residuals = ‘ZI R%z/aé + “%1/’05 + Rgl/ol’zb (32)

The iterations are continued until convergence of the solution, as discussed in Section
4.0, is achieved or until the input value of the maximum number of iterations is reached.
The final values of the parameters are then listed along with corresponding values of the
RMS error in each coefficient as defined in Eqs. (26) and (27). A comparison of the
fit of the theoretical solution (denoted by FIT) to the experimental data (denoted by
EXP) is also shown. The theoretically generated solution of ¢ and 6 (denoted by PSI and
THETA, respectively) and the difference between the theoretical and experimental values of
Y and 0 (Y - ¥, =PSI-PSIM, 8 -6, =THETA - THETAM) are stored for later use as data
for graphical output.

5.0 RESULTS OF VALIDATION TESTS

Verification of the improved parameter identification technique as presented in
Sections 3.0 and 4.0 requires, in addition to checks on the program using
computer-generated motion, an assessment of the measurement and process noise inherent
in the gas bearing and in typical tunnel test data. This is necessary since the "best”
coefficients, as produced by output error methods such as the one discussed here, are
directly influenced by the cumulative effects of modeling errors and measurement noise.
Thus, this section addresses three areas concerned with validation of the improved
coefficient extraction technique: numerically-generated 3DOF motion, including Gaussian
noise, is employed to simulate measurement noise effects on the probable error in extracted
coefficients; a bench test is used to assess the accuracy of the 3DOF measurement system;
and 3DOF data taken in Tunnel A are used to indicate some of the capabilities of the
parameter identification technique.

51 COMPUTER-GENERATED MOTION

In order to arrive at the final form of the aerodynamic coefficients as given in Eq.
(14) for the asymmetric and Eq. (16) for the symmetric analysis, the a and § coefficients

were linearly combined with the q and r rate coefficients, respectively. This was a direct
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result of similarity of the t-.l, q and [;, r relations [(see Eqgs. (4) and (10)] in terms of
the Euler angles. In order to verify this hypothesis, 3DOF motion was generated both
with and without noise with the a and 6 coefficients included. The initial conditions and
parameters employed to specify the motion are listed below.

S = 0.390 ft2, I, = 0.0372 slugs-ft2, I = 0.244 slugs-ft2

Cma = -0.236 l/rad, Cpq = -1.762 1/rad, Cy; = -0.881 1/rad
¢ = O, éo = 641 deg/sec, 0, = 5.18 deg, 050 = -26.356 degfsec
Vo = -2.589 deg, JJO = -7.77 deg/sec

U, = 4,774 ftfsec, q_ = 150.4 lbf/ft?

The symmetric version of the parameter identification program was used to extract the
variables listed above from the generated data. The parameters Cy, 4 and Cum & were both
extracted with nominal values of -1.74 per radian and -0.90 per radian, respectively, and
RMS deviations of *0.05 per radian. This deviation is a measure of the character of data
fitted and the numerical accuracy of the program. Gaussian noise with one standard
deviation equal to 0.01 deg was then added to the generated values of ¢, #, and . With
noise added, C,q and Cp, were both extracted from the data and yielded values of
-5.87 per radian and 3.2 per radian, respectively, with RMS deviations of + 18 per radian.
The noise added is representative of the levels of measurement noise inherent in the 3DOF
measurement system. Moreover, the motion examined contained only linear aerodynamics.
This should have resulted in the smallest RMS deviations of the extracted coefficients

as influenced by modeling. Thus, based on the results of this example, it is not feasible
to separate the effects of Cpq and Cpa from typical 3DOF measurements where 1-¢

measurement errors are 0.01 deg or higher.

The definitions of @ and B can also play a role in the extraction of the "best"
coefficients for a given set of 3DOF measurements. In Tobak's developments, Ref. 14
a and 8 were defined as

“oao Pt (33)
Much of the past work, however, has employed @ and § in terms of the angle of attack
and sideslip leading to,

-1 w
a4y, = tan o’ Bu

tan

=]

(34)
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Written in terms of the Euler angles in the aeroballistic axis system, ay, 8, may be related
to a,, B,, resulting in

2
a, = a, 1o+ 1 % ...
cas 1) 6 cosalrll

1 I B
Ba = By ﬂ“?ﬂ+]

(35)

Thus, for small values of 8 and ¥, a, = ay and f; = By. Over a large number of cycles
of data, the cumulative effect of these small differences will appear as higher order terms
in the coefficient expansions [compare Eqgs. (35) and (16), for example]. Both definitions
of @ and B as given in Eqgs. (33) and (34) have been incorporated in the parameter
identification programs as developed here. Comparisons of generated data using the two
definitions of @ and § were made which cqnfirmed the results derived from Eq. (35).

The accuracy and validity of generated 3DOF motion from the programs as listed in
Tables 1 and 2 were examined through comparison with results from an existing 6DOF
code, Ref. 19. Calculations were made using the 6DOF code and the asymmetric program
as described in this report for two sets of initial body and flow-field conditions as listed
below.

CHECK CASE 1|
S = 0.3898 ft2, d = 0.7038 ft
I, = I, = 0.2444 slugs-ft2, 1y = 0.03723 slugs ft2, 1I,, = 0
U_ = 4,774 ft/sec, q_ = 364.66 Ibf/ft2
Cma = -Cpnp = -0.2355 1/rad, Cpq = Cy; = -2.6434 1/rad

Cep, = -0.00745 1/rad,

0, = 5.18 deg, Y, = -2.589 deg, ¢o = 0, p, = 641.7 deg/sec

q, = -26.356 degfsec, r, = -7.735 deg/sec
CHECK CASE 11
S =1.228 fi2, d = 1.25 ft

I, = I, = 700 slugs-ft2. I, = 20 slugs-ft2, I, = -100 slugs-ft2
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c
|

= 1,500 ft/sec, q_ = 675 lbf/ft2

Cma = -Cng = 16.7132 1/rad

<D
)
]

5 deg, Yo = 5 deg, ¢p =0, P = Qo =T, =0

Typical results of the calculations are shown below and indicate excellent agreement
between the two codes in the computed values of ¢, 0, and .

Results: Check Case 1

t, 0, lp, ¢3

sec deg deg deg
Present 3DOF Code 30 -4.270 0.702 -23.798
6DOF Code (Ref. 19) 30 -4.2704 0.7001 -23.762

Results: Check Case 11

t, 9. 'pg ¢’

sec deg deg deg
Present 3DOF Code 19.90 -0.429 5.388 25.766
6DOF Code (Ref. 19) 19.90 -0.4289 5.3883 25.7659

To attain the best possible coefficients from 3DOF data with measurement noise,
the quantity and character of the data sampled are of fundamental importance. A less
than optimum data sample will yield extracted coefficients with high RMS deviations or,
in some cases, lack of convergence of the solutions. The extraction of optimum coefficients
was studied using the generated motion as discussed previously with 0.05-deg, 1-0 Gaussian
noise added to the data and Cp; = 0, Cq = -2.64 per radian where ¢ is one-standard
deviation. Table 5 shows the results of this study where the RMS deviation in percent
of Cnq is shown as a function of the number of data points per cycle of data and the
total number of cycles of data analyzed. From this table it may be generally concluded
that accuracy in the extracted value of Cy 4 is improved faster by increasing the data
sample size than by increasing the number of points per cycle. This same trend and the
rate of improvement of the extracted parameter was also found to hold true for Cp,,
and, moreover, for the nonlinear expansions of Cy, and Cpq [see Eq. (16)].

The effect of the magnitude of the measurement noise on the extracted coefficients
was examined by generating noisy 3DOF data for the same conditions as previously used
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but with Cpas2 = 5.81/rad3, Cpnq = 4.0 per radian, and Cpqs2 = 98.5/rad3. The
symmetric version of the parameter identification program was used and yielded the results
shown in Table 6. Here the extracted parameters and their RMS deviation are shown
as a function of the measurement noise added to the generated values of ¢, 8, and Y.
The generated data analyzed contained 40 cycles of data with 20 points per cycle. Initial
parameter estimates were set at Cp,, = -0.2 per radian and Cnq = Cmqs2 = Cmas?
= 0. Typical plots of calculated 6 and { values versus time for a measurement noise
level of o = 0.05 deg are shown in Fig. 5. Residuals showing the difference between
the generated data with noise and the calculated values of § and ¥ and graphs indicating
the fit of the computed solution to the generated data are also provided.

Two important conclusions may be drawn from the magnitude and variation of the
RMS deviation of each of the coefficients in Table 6. It is apparent that the magnitude
of the RMS deviation is approximately a linear function of the measurement noise Jevel
denoted by o. In addition, the magnitude of the deviation appears to be a good estimate
of the actual error in the values of the extracted coefficients. This result is, in fact,
verification of those statements made in Section 3.2 concerning the theoretical meaning
of 8a; [Eq. (27)].

5.2 BENCH TEST DATA

The previous section discussed the effects of measurement noise on the extracted
coefficients. The noise source considered was Gaussian and random in nature.

When 3DOF motion including Gaussian noise is viewed in the frequency plane, the
noise contributes no distinct frequencies or regions of high spectral density. In most cases,
however, the effect of modeling noise on the extracted coefficients is more pronounced
than the effect of measurement noise. Most modeling sources occur over finite spectrums
with median frequencies occuring near aerodynamic frequencies of interest. Moreover, in
such regions modeling noise may have high power levels which may be the same order
of magnitude as noise caused purely by aerodynamics. Thus, a critical assessment of the
important modeling errors present in typical 3DOF data must be made to gain the optimum
capabilities of the improved parameter identification technique.

Some of the important categories of modeling noise are 1) incorrect aerodynamic
modeling of the specific configuration, 2) modeling errors introduced through the effects
of tunnel flow nonuniformities, and 3) errors associated with nonlinearities and coupling
effects caused by the gas bearing. This section will consider modeling errors due to the
gas bearing only.
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The VKF sphericul gas beuring as described in Ref. 1 provides a nearly frictionless
pivot in roll, pitch and yaw, and thus is ideal for 3DOF motion simulation. Model
oscillations of up to 10 deg in the combined pitch, yaw plane and unlimited roll orientation
are possible using this mechanism. Figs. 6 and 7 are photographs of the gas bearing
assembly. Details of the balance mechanism and the angular measurement system are shown
in Fig. 8. Pitch and yaw angular displacements arc measured using an eccentric as shown
in Fig. 7 positioned on the outer race of the bearing and two pairs of orthogonal E-cores
fixed on the bearing instrument ring. Motion in pitch or yaw causes a change in the
distance between the cccentric and the E-core surfaces. The accompanying change of the
reluctance of the E-cores provides an analog signal proportional to angular displacement.
The measurement of roll position is made using light-emitting diodes and alternating
reflective and nonreflective lines affixed to the eccentric as shown in Figs. 7 and 8.

The measurement of angular position in pitch and yaw using the gas bearing is affected
by two sources of error. During calibration, adjustments to the bearing arc made so that
the E-core output varies approximately linearly with the actual angular displacement.
Calibration factors arc then established for both the pitch and yaw measurcments using
a linear least squares curve fit. Although this approach provides a very simple and fast
technique for reducing raw data into angular displacements, it can introduce error into
the resulting measurements. Nonlincarities on the order of 0.02 deg or less for pitch and
yaw measurements of up to *5 deg are typical for bearing calibration. For pitch or yaw
measurements approaching 8 deg, the nonlincarity generally increases in magnitude,
reaching values as high as 0.1 deg.

An additional source of error is the interaction of roll position on the pitch and
yaw measurcments. This effect is most probably a result of the machining tolerances of
the eccentric and the alignment of the E-cores and has been found to change following
reassembly of the bearing. A systematic investigation of this interaction effect was
conducted to provide the variation of the measured pitch and yaw angle with roll position.
Some typical results of this investigation are shown in Figs. 9 through 12. Data were
taken of the variation in ¥ and @ as a function of ¢ and the total angle in the vertical
plane for sting roll positions in 15-dcg increments. Accuracy of the measurements is within
$0.01 deg in 0 and y. The sting roll position, £, and total angle of attack, 8, are related
to the Euler angles for ¢ = 0 as follows:

= \jsinzl,.'lr ¢ t.oszy’; sin? @ (36)
tan @ = __Siny (37
cos ty sinf
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Figs. 9 through 12 reveal some important facts concerning the roll interaction effect upon
6 and ¢ measurements. With reference to these figures, the magnitude of the correction
approaches 0.1 deg for practically all combinations of & and £. In addition, there is
significant variation of the correction as a function of ¢ with no apparent symmetry about
particular sting roll positions. If the interaction was caused by imperfections in the eccentric
only, symmetry should have appeared as evidenced by matching corrections as a function
of ¢ in 90-degree sting roll positions (compare Figs. '9, 11, and 12). Apparently the E-core,
bearing alignment, and eccentric imperfections all play a major part in the lack of symmetry
of the roll interaction effect.

In addition to the modeling or process noise resulting from the roll interaction effect
and from the methods used for bearing calibration, process noise due to bearing moments
can also be present in typical 3DOF data. These bearing moments are small and highly
nonlinear and vary with the bearing gas pressure. A special pendulum designed for the
gas bearing was used to study nonlinear bearing moments and their effect on 3DOF motion.
Assuming that no aerodynamic moments act on the pendulum, the only moment caused
by the pendulum is that resulting from the cg displacement from the vertical axis as
depicted in Fig. 13, Then. in the aeroballistic system, it may be shown that

lﬁv = -Wgcost sinf
' (38)
A
M, = -W¢sinyg

where 2 is the distance between the bearing pivot point and the pendulum center of mass
and W is the pendulum weight. Comparison of Eq. (38) with Egs. (9) and (16) yields
a; = -WR/q_Sd. Geometric properties of the pendulum and assumed conditions for data
analysis are listed below.

Weight = 10.38 Ibf, I, = 0.0305 slugs-ft?
1, = I, = 0.04747 slugs-ft2, ® = 0,058 ft
S = 0.3975 ft2, d = 0.7092 ft

U, = 1 ftfsec, q_ = 0.5 Ibf/ft2

Experimental ¢, 6, and ¥ data were taken using the configuration as shuwi n Fig.
13 for variations in the bearing pressure, total angle of attack of the pendulum, and roll
rate. For low bearing pressure equal to 100 psi, analysis of the 3DOF data resulted in
excellent fit of the linear moment distribution as given in Eq. (38). Typical plots of the
resulting solution and the residuals in both 8 and y are shown in Fig. 14. Analysis was
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performed employing the symmetric version of the coefficient extraction code, Table 1,
yielding an equivalent C;, ., of -3.70 1/rad. With reference to Fig. 14, all residuals are of the
same level as measurement errors caused by the roll interaction effect discussed earlier.
In addition, a small rolling-moment coefficient, Cg, = -0.79 x 104 1/rad, was extracted
from the data.

As the bearing pressure was increased, the resulting 3DOF motion became highly
nonlinear. Large differences in the equivalent Cp, , for small compared to moderate angles
of attack were detected. The extracted values of the equivalent C,,, for the moderate
and small angles of attack were -3.79 1/rad and -1.32 1/rad, respectively. The corresponding
roll moment coefficient increased from -0.000079 1/rad for moderate angles to -0.00121
1/rad for small angles. Thus, as bearing pressure is increased from 100 to 400 psi, the
bearing-induced roll torque increases by an order of magnitude from -1.1 x 105 ft-Ibf
to -1.7 x 104 ft-Ibf.

Figures 15 and 16 show the fit of the computed solution to the experimental data
for a bearing pressure of 400 psi at moderate and small angles of attack, respectively.
The moderate angle-of-attack data exhibited large deviations from motion produced by
the moments as given in Eq. (38). This is evident when the magnitude and character
of the residuals as given in Fig. 15 are compared to those for low bearing pressure, Fig.
14. The results of the small angle-of-attack data, Fig. 16, indicate good agreement between
the data and the computed solution based on the moment expressions as given in Eq.
(38); however, the magnitude of the equivalent C,, , is a factor of three smaller than the
expected value,

Thus, for normal operation of the gas bearing at bearing pressures of 400 psi, nonlinear
moments, near ¥ and @ equal to zero, mduced by the bearing are present in typical 3DOF
data with magnitudes proportional to M = 0.330 a ft-Ibf and M, = -0.330 B fl-Ibf. As
bearing pressure is decreased from 400 psi, nonlinear bearing-induced moments are
substantially reduced. For a Mach number 4 test environment with q_ = 460 psf and
a slightly blunted sphere-cone with reference dimensions of d = 0.7 ft and S = 0.35 ft2,
the contribution of the bearing-induced moment at 400 psi operating pressure is on the
order of 1 percent of the model aerodynamic pitching-moment coefficient with Cne=-0.22
1/rad.

The previous discussion has revealed the existence of pitch and yaw measurement

errors caused primarily by the roll interaction effect. In addition, there are errors present
in the roll position measurement. The accuracy with which roll position can be measured
is directly influenced by the number of alternating reflective and nonreflective lines on
the eccentric (see Figs. 7 and 8). Currently, a change in roll orientation is sensed every
two degrees by the digital system. Thus, for moderately high roll rates compared to the
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median frequency in the pitch-yaw plane, a roll uncertainty of *1 deg appears in the
data as approximately random noise. As the roll rate is decreased toward the median
pitch-yaw plane frequencies, the roll uncertainty appears less random and can introduce
significant errors in extracted coefficients depending on the duration of the data and the
character of the motion to be fitted.

53 TUNNEL A EXPERIMENTAL RESULTS

In Sections 5.1 and 5.2, errors associated with the gas bearing measurement system
were examined. The ability to extract correct aerodynamic coefficients (up to 0.1 deg
in pitch and yaw) in the presence of random measurement noise caused by the gas
bearing was shown to exist. Even though these errors are not random, successful
analysis of low bearing pressure bench test data indicates that these measurement errors
for linear systems may be treated as random measurement noise. The successful application
of the parameter identification method as developed here, however, also strongly depends
on the precise definition of process noise associated with tunnel flow nonuniformities.
Depending upon the exact form of these flow nonuniformities, extracted aerodynamic
parameters with large bias may result. In order to examine the ability of the present
method to extract "correct” aerodynamic coefficients from typical wind tunnel results,
3DOF data were taken in the AEDC-VKF Tunnel A at a Mach number and Reynolds
number of 4.02 and 3.6 million per foot, respectively.

Tunnel A is a continuous, closed-circuit, variable density wind tunnel with an
automatically driven flexible-plate-type nozzle and a 40- by 40-in. test section (Fig. 17).
The tunnel can be operated at Mach numbers from 1.5 to 6.0 at stagnation pressures
from 29 to 200 psia, respectively, and at stagnation temperatures up to 750°R
depending upon Mach number and pressure level. Minimum operating pressures range
from about one-tenth to one-twentieth of the maximum at each Mach number. The
tunnel is equipped with a model injection system which allows removal of the model
from the test section while the tunnel remains in operation.

The configurations tested were a 6.7-deg sharp and 6.7-deg spherically blunted cone
with mass and geometric properties as listed below (see Fig. 18).

d = 0.6667 ft, S = 0.3491 ft2
cg location = 12.00 in. from model base
sharp cone: Iy = 0.0301 slugs-ft2, I, = 0.2583 slugs-ft2, I, = 0.2565 slugs-ft2

sphere cone: Iy = 0.0304 slugs-ft?, I, = 0.2519 slugs-ft2, 1, = 0.2514 slugs-ft2,
d,/d = 0.2275 g
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These two configurations do not sufficiently challenge the analysis capabilities of the
asymmetric or symmetric program in terms of model aerodynamics. They do, however,
provide baseline data on bodies whose aerodynamics are known. This information may
be used to assess the influence of small tunnel flow-field nonuniformities on the sensitivity
of the coefficient extraction technique.

The data analyzed are shown in Figs. 19 and 20 where the variables ¢, 6, and ¢
are plotted against time. Figure 19 shows typical data for the sharp cone model.
Sphere-cone results are given in Fig. 20 with initial conditions similar to those for the
sharp cone. Comparison of 6 and ¥ versus time in Fig. 19 shows unexpected frequency
variations and damping effects normally not associated with motion of a sharp cone. For
the flow-field and body constraints listed above, analysis of the sharp cone data should
yield symmetric aerodynamic coefficients with

“Cng = Cma = -0.23 1/rad, Coz2 = -Cpgz2 = -1.13 1/rad?
Car = Cmq = -5.5 l/rad, Cep, = -0.0081 1/rad (Ref. 20)

Analysis of the data as given in Fig. 19 was made using the symmetric program assuming
linear aerodynamics and no flow-field-induced process noise. Analysis of 8.44 sec of the
data resulted in extracted coefficients with

Cma = -0.225 l/rad, Cpq = 6.0 1/rad
with RMS deviations in the coefficients of
E(Cp o) = 0.0003 1/rad, E(Cnq) = 0.23 1/rad

Comparison of the extracted with the corresponding expected value of each of the
coefficients reveals good agreement which is reflected in the size of the calculated RMS
deviations. However, examination of the residuals and the fit of the calculated solution
to the experimental data as shown in Fig. 21 does not substantiate the validity of these
coefficients.

Correct aerodynamic coefficients will not be extracted from the sharp cone data until
the process noise in the experimental data is properly modeled. Tunnel-fixed flow
nonuniformities arc the most probable source of the process noise causing the poor fit
of calculated and experimental data. Thus, as a first approximation in the modeling of
the process noise, tunnel-fixed stiffness and damping moments that may differ in both
the X, Y and X, Z planes are assumed as shown in Eq. (39).
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In the aeroballistic and body-fixed axis systems, the moments as given in Eq. (39) transform

to

M, = MyT sinyg cos@ - M 1 sin 6
My = MyT cos i (40)
lClz = My'l‘ sinyg sin@ + M_q cosf

!\']x = ]\Ilyrl- Si.n l/l coSs 0 - Mz'l' Sin 0
M, = Myp cosy cos ¢ + (M- sing sin6 + M, 1 cos 6) sing 41)
M, = -MyT cos i sin¢g + (!\'I)T singy sin® + M_q. cos ) cos¢

Thus, tunnel-fixed flow effects as described by Eq. (39) may be extracted from 3DOF
data using the symmetric or asymmetric programs by including the moment expansions
as given in Egs. (40) and (41), respectively. In the presence of other unknown process
noise, it is not possible to extract the coefficients t;, ta, t3, and t4 and the linear
aerodynamic damping and pitching-moment coefficients simultaneously from 3DOF data.
This is due to the overspecification of the linear stiffness and damping effects in the
moment expansions. This may be shown by considering the linear stiffness terms for
moments about the y axis in the body-axis system. A paralle] derivation may be shown
for the damping terms. If one substitutes Eq. (39) into Eq. (41), neglecting terms involving
sin ¢ sin 8, and uses the results of Eq. (14), Eq. (42) results, as follows:
C, =1 6 costy cosd + Ly & cos @ sin ¢

m

(42)

+ a; (sin& sin¢ + costy sin @ cos ) + ..

If one expands terms involving ¥ and 6 in Eq. (42) and rearranges, Eq. (42) reduces
to

C,=(t; + a,;) cosg - (tg + a,)) ¥sing + ... (43)

Examination of Eq. (43) shows that the coefficients ay 1, t;, and t3 for small angular
motion are not independent. Thus, only two of the three parameters (agm1, t1, and t3)
can be extracted from 3DOF data simultaneously. Attempts at extracting all three
coefficients will lead to divergence of the iteration scheme in the parameter extraction
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technique. As stated previously, similar constraints on the stiffness and damping coefficients
in ‘the aeroballistic axis system and on the damping coefficients in the body-fixed axis
system may be shown to apply.

In addition to the tunnel-fixed stiffness and damping effects, constant bias in the
measured pitch and yaw displacements may also be present. These can be caused by
imprecise alignment of the zero yaw/pitch axes with respect to the tunnel-fixed axis and/or
flow nonuniformities causing tunnel-fixed trim moments. This effect has been included
in the form of artificial flow angularity corrections in the pitch and yaw planes (61 and
V1, respectively).

The asymmetric parameter identification program presented in Table 2 was employed
to extract the tunnel-fixed process noise (as described above)-from—the sharp cone data
(Fig. 19). Results of the analysis are shown in Table 7. As indicated in the table, only
the tunnel-fixed process noise, I,x, Cg,, and the boundary conditions were allowed to
vary. Due to the constraints on the tunnel-fixed process noise, the model aerodynamics
were fixed at theoretical estimates given previously. The calculated solution, residuals, and
fit of the computed solution to the experimental data are shown in Figs. 22 and 23
for two data sample periods.

Analysis of the results presented in Table 7 indicates the existence of tunnel stiffness
effects in both the pitch and yaw planes. In addition, a small product of inertia was
extracted from the data. Tunnel-fixed damping effects were also extracted, indicating
decreasing magnitudes for increasing data sample intervals. This effect may be caused by
higher order coefficients in the tunnel-fixed damping terms. Examination of Fig. 22 shows
excellent fit of the computed to the experimental data with residuals in 8 and ¥ bounded
by +0.1 deg. The best fit of the experimental data to the calculated solution is bounded
by the measurement errors caused by the gas bearing as discussed in Section 5.2. Doubling
of the data sample interval as shown in Fig. 23 resulted in larger residuals with a dominate
frequency approximately the same as the fundamental frequency of the experimental data
(compare Flgs 23c and d with Figs. 19a and b, respectively). This is most probably an
effect of frequency mismatch caused by higher order terms not included in the tunnel
stiffness model, Eq. (39). Considering the results given in Table 7 and depicted in Figs.
22 and 23, the fit of the calculated 3DOF solution to the experimental sharp cone data
is significantly improved over that given in Fig. 21. Thus, tunnel-fixed process noise
governed by Eq. (39) and I,x appear to be valid contributions to the parameters to be
evaluated.,

In order to further evaluate the tunnel-fixed process noise and the ability of the
asymmetric program to extract model acrodynamics in the presence of this process noise,
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the sphere cone data as shown in Fig. 20 were analyzed. Using the asymmetric program,
aerodynamic moment coefficients and tunnel-fixed process noise were extracted from the
data as given in Fig. 20 and are shown in Table 8. Since model aerodynamic coefficients
were allowed to vary, one damping and one stiffness coefficient describing the tunnel-fixed
effects were held constant. Considering the RMS deviations and values of t, t3, t3, and
t4 as given in Table 7, the stiffness term, t; and damping term, t;, were assumed constant
and equal to 0.017 1/rad and O, respectively. Examination of Table 8 shows large variations
in the extracted aerodynamic coefficients for different data sample intervals. Moreover,
since the sphere cone is axially symmetric, the relationship given in Eq. (16) should hold.
As the data sample interval increases in Table 8, the extracted coefficients tend to become
less like those caused by an axisymmetric body. These effects are further illustrated by
comparison of the graphical results in Figs. 24, 25, and 26 which correspond to this table.
Thus, in addition to those sources of process noise described here, others must exist which
cause the significant disagreement in the generated solution and experimental data. Even
though the preceding analysis of the sphere cone data as given in Fig. 20 does not yield
acceptable extracted aerodynamic coefficients, it does indicate some problem areas
encountered in the analysis of 3DOF data taken in continuous wind tunnels as well as
concepts for establishing process noise models.

6.0 CONCLUDING REMARKS

The previous sections have presented the mathematical development of coefficient
extraction programs and practical application of the programs in continuous wind tunnel
flow fields. The programs developed here are based on the principals governing output
error methods. As such, extracted parameters are highly sensitive to measurement and
process noise. Thus, identification of sources of both process and measurement noise and
modeling of these effects were extensively examined.

Noise attributable to the gas bearing, tunnel flow nonuniformities, and inappropriate
aerodynamic modeling was catagorized as being the most important. Measurement noise
caused by the gas bearing was shown to confribute errors in ¢ and 6 measurements up
to +0.1 deg with the magnitude of these errors dependent upon the value of ¥, 8, and
¢ and the gas bearing pressure. In addition, small, bearing-induced moments were also
identified. Even though the magnitude of the bearing-induced emors can be large, it was
concluded that these errors for most situations could be modeled as random noise. This
allows for accurate parameter identification, assuming sufficiently large data samples and
no other noise sources.

In order to define the effects of process noise on the extracted coefficients, sharp
and spherically blunted cone data taken in Tunnel A were analyzed.
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It was shown that the process noise inherent in the sharp cone and sphere cone
data was large and could not be treated satisfactorily as linear, tunnel-fixed stiffness and
damping moments independent of the model configuration. In addition, this process noise
was of sufficient level to cause significant error in the extracted coefficients. The analysis
of the sharp cone and sphere cone data did provide, however, concepts for establishing
process noise models in similar situations. Further studics are planned on the definition
of process noise in Tunnel A and on the effects of these noise sources on extracted
aerodynamic coefficients. Also, more work is planned on the application methods of the
programs developed herein.
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Figure 1. Arbitrary body showing axis system for 3DOF
equation development.
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Figure 2. Plane-fixed coordinate system showing Euler angles and
velocity components relative to space-fixed system.

40



AEDC-TR-78-10

z'Vz

a. Symmetry operation for mirror symmetry
in X, z plane

y'*z

b. Symmetry operation for 90-deg rotational
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Figure 3. Physical description of symmetry operations on
axis systems.
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Figure 7. 3DOF balance photographs.

48



Light Reflective Transducer
(Roll Position Reset)

6p

A
ey Pitch "E" Core
Pitch "E" Core {Two, 180 deg Apart) —\ Roll Position Reset Bracket
{Two, 180 deg Apart) o Bearing Housing
Mounti
5um"3_| Bearing Core
. Filter
\
- {— = i)
Yaw "E" Core
(Two, 180 deq Apart)
2.900 Diam 7
4
' Gas Supply
y A \_ le
Counterweight Bumper
Bracket
Light Reflective Transducers Pttch-Yaw_/ All Dimensions in Inches
Eccentric
(Roll Position and Direction) Section A-A

Figure 8. 3DOF balance schematic.

01-84-H1-003V



o¢

-0)

THETA-THETA(PHI

0.10

+

m ‘ . ‘ .

p-00

00
DELTR=2

e

o0 N0~ %0-00 135.00 \qw/_zzrw’ .60 3ls, 360.00

.00

0 b0 .00
DELTR=0

l:35-00 : 0.00 2‘25- im-lm 3:15-00 ;50-@
PH]W

-

a. 0 correction versus ¢
Figure 9. Roll interaction effect for sting roll position £ = 0 deg.

e
°'l-
8
S 45.00
]
e
e
cl';..
% 4=5.m
2 DELYA=
(=]
2
sl
o 45.00 90.00 135.00  M0.00_A 32500  2/000—" 315.00  360.00
DELTA=4
o
sl

01-8£-H1-003V



IS
0.10

0.10

% 5260 90.00 135.00 180-00 225.00 270.00  315.00 360.00
2 DELTA=8
(=]
1]
ol
“bl oo .00 90-00 135.00 180.00 225.00 270.00 315.00 350.00
o
fr DELTR=6
o
e
2
8 . . . \ \ MO Ly
Sbloo \/ \s£.00 50.00 135.00 18000 225.00 270.00 315-00 360.00
DFLTR=4
=

=0)

o0~ 00 2600 14500 160.00 22500 270.00 315.00 360.00
DELTAR=2

-00

ey
[,

PS1-PSI(PHI

-0.10

b. Y correction versus ¢
Figure 9. Concluded.

01-84-41-003v



Ts

=0

THETA-THETA(PHI

s
Q."
8 + J/\ N /';/\#
oo 5.0/ 90.00 135.00 180 00 2000  31S.00  360.00
3 DELTA=
o
2
ol //\\
g ,\ ' \ . N,
“bfod 45.00 90.00 135.00 w “Zlmgd~ 315.00  360.00
3 DELTR=
o

Y

0.0
%})
{

&
8

X
84
1
-]

g
8

<. DELTA=4

- e

“loo N 90.00 135.00 1t 225.00 Wn.w
DELTA=2

)

?"

P00

00 : 90.00 195.00 ~1ap.00 257 %000 315.00 __ 3%0.00
600, PHIW

a. 0 correction versus ¢
Figure 10. Roll interaction effect for sting roll position 2 = 45 deg.

0l-84-"H1-0Q3V



€S

=01

0.10

|

DELTA=8

225.00 -2%‘95’\-335’.00 © 350.00

8 - R ,—f’///,——-\\’-\\\h
fﬂﬁfﬁ\mw oo

45.00 30.00

180.00 225.00

NN~

2186 ais.oo

315.00

DELTAR=2

=4
i
8 / \ . , N
%loo V5.0 90.00 135.00 180.00 225-00 270-00
DELTA=4
2
r;a-
00~ +#5.00 90.00 135.00 180-00 225,00 270.00 315.00 360.00

AN

P00

PSI-PS1(PHI

2.10

90.00 135.00 180.00
P G

275.00

270-00 315.00

b. i correction versus ¢
Figure 10. Concluded.

4
360.00

360-00

01-84-Y1-24d3v



123

=0)

THETA-THETA(PHI

P00

0.10

=1 /\
Sloo T 45. 80.00 135.00 WSW 000 315, 360.00
DELTA=8

o 4 + 4 tr—yr SN —+ ¢ —
o “blao . 90-00 135.00 \Pyu/\zﬁ.uo .00 1s, 360.00
=7 DELTA=6
e
?'.s.
g -
Do 5.0/ 30.00
S DELTR=4
e
sl
. /\/\’\/\’\ R
':'brun sy, %0.00 13500 Woag/ %500 W 360.00
DELTAR=2
el

Q._LV/*\_\ } T LY + 4
00 5. 90.00 135.00 __ 1Boweo— 725.00 \sw 30.00
PHI-DEG

DELTAR=0

-0.10

a. 0 correction versus ¢
Figure 11. Roll interaction effect for sting roll position 2 = 90 deg.

0l1-8£-H1-203v



$s

=0)

8 /’*"’T//K\\\\ . .

% 45.00 . 25.00 270.00 ~315.00
2. DELTA=8
o

e

ol

o0 45.00 sb.Wa.un 225.00 270.00 ~ ~315.00 °  360.00
DELTA=6

.0

PSI-PSI(PHI
-0.10

e
“bloo 45.00 90.00 —135-80"  180.00 225.00 270.00 315-00 360.00
2 DELTA=4
«Q
g , . , . * /V\/\ .
“loo ™ 45.00 90.00 135.00 180-00 225.00 27000 315.00 350.00
DELTAR=2
E/J_\/\\//\A/\/—/\
0 : 90.00 155.00 160.00 2%5.00 270.00 3is.00 260.00
PHI-DEG

DELTAR=0

b. y correction versus ¢
Figure 11. Concluded.

01-84-41-2403v



9¢

THETA-THETA(PHI=0)

~0.10
+

4

-0

3 4 + 3 aN " e d
X/ 0.0 13500 WQ.00 4+ 275.00 NZ0.00  315.00 — 360.00
DELTA=0 PH1-0EG

a. 0 correction versus ¢
Figure 12. Roll interaction effect for sting roll position {2 = 180 deg.

e
°‘--
8 ) VA 4 t + + 4
“hloo 45.00__0.00 Wmo.uo 225.00  270. 315.00  360.00
2. DELTR=8
[~]
e
g <> 4 4 /\\"'\ + 4
“bloo 45UOOW.00 22s.00  zi0. 315.00  360-00
2 DELTA=
o
=
gls..
g + A gy 4 /—/*\\ 4 4 \
. oo 45.00_~90.00 Mm 225.00 315.00  350.00
oy DELTAR=4
o
=]
é..
S. m + N " 3 d
%00 45.00  90.00 135.00\—180-08~"  225.00 %Q.00 315.00 350.00
DELTA=2
|

0l1-8,-H1-Da3v



LS

0.10

. /W )
o0~ 45.00 90.00 135.00  160.00  225.00  270.00  315.00  360.00
2 DELTA=8
o
a
é..
PR
% 45.100 50-00 135.00 180-00 225.00 270.00 315.00 350.00
2. . DELTAR=6
Qo
=4
? 3
- 8 : " 4 N PR M 4
“h|a 25200 50-00 135.00 180.00 225.00 270.00 215-00 360-00
S, DELTA=4
[=]
o
ol
8 * . . ALTTN
% 90-00 135.00 180.00 225.0C 270.00°  315.00 260.00
2. DELTA=2
(=]
=]
- 9t
og
Lo ~Ew 90.00 135.00 180.00  225.00 270.00  315.00 360.00
= | oELTR=0 PH1-DEG
]
|
[«

b.  correction versus ¢
Figure 12, Concluded.

0l-84-H1-043vV



AEDC-TR-78-10

X
Bearing
Center of 7
Rotation
Pendulum Mass
P ////Center
» Y
Pendulum Model
Force Due to Distributed
Weight of Pendulum
]
4- Pendulum Axis
of Symmetry
Sting

NN NN\ NONN

Figure 13. Schematic of bench test mechanism.

58



6S

8.00

4.00

6.00

2.00

.00

THETA CEG

-4 .00 -‘2 .00

-6.00

-.B .00

00

+
+

2.00

3.00 4.00 5-00 6-00

7.
TIME| SEC

a. Computed 0 versus time
Figure 14. Bench test results for 100-psi bearing pressure.

:
{
12.00

01-84-H1-0Q03V



09

PS1 DEG

8.00
1
4

~4.00
+

-6.00
+

b. Computed { versus time
Figure 14. Continued.

4
+
11.00

12.00

Ol-84-H1-2A3v



9

0.40 0.60 0.80

y ]

THETR RESIOUAL DEG
o

-0.20

-0.40
+

-0.80

N SN A WA
AL

c. Residual in @ versus time
Figure 14. Continued.

gL-8£-H1-0d3V



AEDC-TR-78-10

7.00

P
8
13
8
18
8
-12.
8
ArI-.
09°0 or-0 02°0 00'0-> 02 0- or°0- 09°0- 08°0-

930 WNQIS3Y ISd

62

d. Residual in { versus time

Figure 14. Continued.



€9

Calculated
O Experimental

4.00 6-00 -6.00

6.0
PSI

e. Fit of calculated solution to experimental data
in ¥, @ plane, time increment 0 to 3.16 sec

Figure 14. Continued.

a0
PSi

f. Fit of calculated solution to experimental data

in , 0 plane, time increment 3.16 to 6.36 sec

01-84-H1-2Q3v



¥9

Calculated
O Experimental

g. Fit of calculated solution to experimental data
in Y, 0 plane, time increment 6.36 to 8.6 sec
Figure 14. Concluded.

01-84-H1-003v



€9

—

200

ey

Ll

THETA
-4.00 -2.00

a. Computed 0 versus time
Figure 15. Bench test results for high angle of attack and 400-psi bearing pressure.

4
12-00

0l-8L-H1-043v



99

0 6.00 8.00

é.w

PSI DEG

-6.00

-§.00

2.
TIME

SEC

b. Computed { versus time
Figure 15. Continued.

—_
12.00

0L-8/-H1-0303V



L9

THETA RESIDUAL OEG

-0.40

2.00

5.0 s.00 7.00
TIME SEC

¢. Residual in 6 versus time
Figure 15. Continued.

—
12.00

01-84-H1-2A3vY



89

20

PS1 RESIDUAL DEG

-0.40

-0.60

}00

4.00

+ 500 700
S-00 IME SEC

d. Residual in J versus time
Figure 15. Continued.

4
9.00

11.00

12.00

0L-8L-H1-0a3av



69

e. Fit of calculated solution to experimental data
in Y, 8 plane, time increment 0 to 1.96 sec

Figure 15.

8.00
4

Concluded.

6.0
PSI1

f. Fit of calculated solution to experimental data
in ¥, 0 plane, time increment 7.96 to 9.96 sec

0L-8/-H1-230Q3v



0L

4.00

2.00
+

Wwiying 1-00 y 3.00 ~" 4.00 5.00 " 6.00 72 8.00 9.00 " 10.00 e 12.00 3.00
o A0 et o~
-

8

Fed

8

31

a. Computed 0 versus time

8

g

nT
03 r\ " e + b, + /.:\ + e N ac o, + /\. :
g"hm Wz.m Won\i.‘y a.oo\uﬁ% eﬁ\:y ll;"l»\‘.‘_"')v‘ﬁ ‘5\‘-'/'3"’“
£8

8

b. Computed | versus time
Figure 16. Bench test results for small angle of attack and 400-psi bearing pressure.

01-82-HL-003V



IL

0.40

-
*

-0.20

Py
\

THETA RESIDUAL OEG

0.40

-0.60
h
¢

c. Residual in 0 versus time

PS1 RESIDUAL DEG

d. Residual in { versus time
Figure 16. Continued.

12.

0t-84-41-04d3v



43

8_ 8
[ -] ]
8 8
Em" E"'"
I ——— (Calculated E
s| O Experimental g
8] 8)
~ ot
-6.00 —e.0 -2.00 2.00 e 500 6.0 ~6.0 200 %-ﬂbr P e 6200
PSi PSI
8 8
~1 *t
8 8
8 g
Qlﬂq. l.ﬂ--

e. Fit of calculated solution to experimental data
in ¥, 0 plane, time increment 0 to 2.76 sec

f. Fit of calculated solution to experimental data
in Y, 0 plane, time increment 11.16 to 1296 sec

Figure 16. Concluded.

01-84-H1-003V



AEDC-TR-78-10

WOZZUE FUEXIBUE PLATL -\

POINT OF MODEL ROTATiON MODEL SUPPORT INJECTIONRETRACTION SYSTEM
// PRESSURL RELICF PORTS
Ve 4

SAFETY DOOR / FAIRING DOOR

TRANSDUCER PACKAGE [ N I B Y

LI LI |
STILLING CHAMBER MOZZLE DiFFuSER AT

a. Tunnel assembly

b. Tunnel test section
Figure 17. Tunnel A.

73



AEDC-TR-78-10

0.510 R/F_{

3.998 -»»

a. Spherical nose

-—2.558

0.005 R ‘
10.89 ——— P>
Apex
b. Sharp nose
o 23.163 >

«————— 12.000 —————— )
6%42°

R

Pivot and CG Position

Note: All Dimensions in Inches

c. Aft body
Figure 18. Model schematic.

74



St

a.00

2.00

THETA DEG
oo.oo

-2-00

-4.00

-6.00

a. 0 versus time
Figure 19. Experimental 6.7-deg sharp cone data taken in Tunnel A at Mach
number 4.02 and 3.6 million per foot Reynolds number,

01-84-41-003V



9L

2.00

-0

PS1 DEG

-2.00

b.  versus time
Figure 19. Continued.

0L-84-41-0Q3V



AEDC-TR-78-10

c. ¢ versus time
Figure 19. Concluded.

=
00°0S€  00°0L2 00" 081 00°05 8.%. ﬂ..m..w- 00°081-  00°0cZ-  00-DS€-
L9

71



8L

4.00 8.00

2.00

G
a.co
=

TR D

THE
-2.00

a. 0 versus time

Figure 20. Experimental dn /d = 0.2275, 0, = 6.7-deg sphere cone data
taken in Tunnel A at Mach number 4.02 and 3.6 million per

foot Reynolds number,

0L-84-HL1-0Q3V



6L

4.00 6.00

2.00

PS1 CEG
0.00
(=]
o

~2.00

o

b.  versus time
Figure 20. Continued.

0L-84-H1-003v



08

270.00 380.00

180.00

90.00

-270.00

F

f "

7.0
TIME

SEC

c. ¢ versus time
Figure 20. Concluded.

01-8£-¥1-003V



I8

4.00 6.00

2.00

WAAAAAAN
Y A

THETA DEG
oo.nn

-2 00

-4.00

-6-00
¥

a. Computed 6 versus time
Figure 21. Graphical solution of sharp cone data given in Fig. 19 for a fit
interval of 8.44 sec with no tunnel-fixed process noise.

0L-8L-H1-0Q3Vv






10.00 11.00 12.00

U

U

27]o0

AEDC-TR-78-10

TIIME

0

5.00

3}00

b

1.00

0iog

or°0 020 00" 0- 0z 0- oo 050
030 YrCIS3Y YI3HL

83

08°0-

c. Residual in 0 versus time

Figure 21. Continued.



14

PS1 RESIDUAL DEG

0.40 0.60 0.60

0.20

p.oo

T

—_—

I}
B

2.00

-9.20

.00

-0.40

-0.60

-0.80
-——

.00

L°4J
.

L=l
e
=

Figure 21. Continued.

5.0p 7.bo

Sk

d. Residual in § versus time

11-00

12.00

01-8£-41-0Q3V



8

Calculated
E @) Experimental

3
t? 3
3
?-h
e. Fit of calculated solution to experimental data

in Y, 0 plane, time increment 0 to 0.98 sec
Figure 21. Continued.

THTA

-6.00
:
+

f. Fit of calculated solution to experimental data
in ¢, @ plane, time increment 0.98 to 1.98 sec

01-84-H1-DA3v



98

THTA

S‘.m

4.00

e—— Calculated

0 Experimental

8.00

THTAR

6.00
N
+

4.00

6.00 5.00 .00 400 00 600
o Psl PSI
|
g 8
t'ﬂ-- ?-.
8 8|
Pt %
g. Fit of calculated solution to experimental data h. Fit of calculated solution to experimental data

in ¢, 0 plane, time increment 1.98 to 2.98 sec
Figure 21. Continued.

in Y, 0 plane, time increment 2.98 to 3.98 sec

0L-8/-41-203v



L8

8.00
8.00

<ol ——— Calculated i
T @) Experimental =
2]

2.00 4.00 5.00

-é.OO -:4.00 4.00 6-00 -é.m -4-00
PSI PS]
g 8
3 8
g .8
7t -t
i. Fit of calculated solution to experimental data j- Fit of calculated solution to experimental data
in ¢, 0 plane, time increment 3.98 to 4.98 sec in ¢, 0 plane, time increment 4.98 to 5.98 sec

Figure 21. Continued.

01-84-H1-003v



88

8.00

THTA

4.00

8_
Calculated ms:__
O Experimental =

-4.00

-.s «00

8
?--

k. Fit of calculated solution to experimental data
in ¢, @ plane, time increment 5.98 to 6.98 sec

4.00 6-00 -6.00 -4.00 -2.00 z.00 4.00

PSI

-, 00

-6.00
h
+

-+

I. Fit of calculated solution to experimental data
in ¢, 0 plane, time increment 6.98 to 7.98 sec

Figure 21. Concluded.

00
PSI

01-84-H1-0Q3Vv



68

2.00

o8

4.00
—t

w

THETA D
-2.00

-4 -m
-
-

a. Computed 9 versus time b. Computed { versus time

Figure 22. Graphical solution of sharp cone data given in Fig. 19 for a
fit interval of 4.4 sec with fixed aerodynamics.

g
| I
[\ A A /\ 8
a0 o0 .m\/v \]m\ 5.00 O% 1. 2 3.40 doo {500
TIME SEC S TIME SEC
L8

01-84-H1-00d3V



06

THETA RESIDUAL DEG

=0.40

cl

Residual in 0 versus time

0.00

5.00
TIME SEC

PS] RESIOUAL DEG
-0.20

v

-0.40

Figure 22. Continued.

d. Residual in { versus time

5.00
TIME SEC

01-84-H41-003V



16

6.00
.
+

O

[
[
=
[==

Calculated
Experimental

-0.00
5
b

e. Fit of calculated solution to experimental data
in Y, 0 plane, time increment 0 to 0.98 sec

THTA

4.00

f. Fit of calculated solution to experimental data
in {, 0 plane, time increment 0.98 to 1.98 sec

Figure 22. Continued.

0L-84-H1-20d3V



6

8 8
(-] «
8 Calculated 8
gaf . st
T Experimental e
- -
8] 8
-6.00 im -‘sﬁ.oo -;l.m
PSl1

-

-6.00

g

?1

b

g. Fit of calculated solution to experimental data
in Y, 0 plane, time increment 1.98 to 2.98 sec

e 500
PS1

4|

?.

h. Fit of calculated solution to experimental data

in {, 0 plane, time in

Figure 22. Concluded.

crement 2.98 to 3.98 sec

0L-84-41-003Vv



£6

2.00 4.00 6.00
———— Y

G
=00

e
00 .

THETA C

-2.00

~4.00

a. Computed f versus time

4.00

2.00

12.00

3.3
5
~N

TIME SEC

PSI DEG

-2.00

b. Computed  versus time
Figure 23. Graphical solution of sharp cone data given in Fig. 19 for a
fit interval of 8.4 sec with fixed aerodynamics.

12.00

0L-8L-"L1-0d3av






g6

—— Calculated

e. Fit of calculated solution to experimental data

h

in Y, 0 plane, time increment 0 to 0.98 sec
Figure 23. Continued.

gl
O Experimental %"
8]
8
~
g\f.oo 6-00 -6-00 6-00
) Sl PSI

8
? b

f. Fit of calculated solution to experimental data
in Y, 8 plane, time increment 098 to 1.98 sec

0i-8L-HL-00d3V



96

THTA

4.00
+

8
o r
8
Calculated Tl
=
O Experimental .
8

g

9 he

g. Fit of calculated solution to experimental data
in §, 0 plane, time increment 1.98 to 2.98 sec

Figure 23.

h. Fit of calculated solution to experimental data
in ¥, 0 plane, time increment 298 to 398 sec

Continued.

01-8L4-HL-0Q03V



L6

Calculated
(@) Experimental

THTA

4,00
+

-4.00 4.00 a.00 5-00

6.00
PS1 PSl
8 8
g 8
l? b l.ﬂ 3
g 8
?dh ?u-
Fit of calculated solution to experimental data j. Fit of calculated solution o experimental data

in ¥, 6 plane, time increment 3.98 to 4.98 sec in {, 0 plane, time increment 4.98 to 5.98 sec

Figure 23. Continued.

0l-8L-HL1-2Q3V



86

THTA
6.00

4.00

8
ol
I Calculated 2]
Eo
O Experimental =
8'1-

-6.00 -4.00 2.00 a0 5.00 -5.00 -4.00 -2.00 2.00 a0 .00
PsI Psl
8 8
1t *t
g 8
?-- qh.
3 g
?-- ? b
k. Fit of calculated solution to experimental data 1. Fit of calculated solution to experimental data

in Y. 0 plane, time increment 5.98 to 6.98 sec

in y, 0 plane, time increment 6.98 to 7.98 sec
Figure 23. Concluded.

01-8L-H1-203V



66

2.00
—

—

—

W

a. Computed 0 versus time

. /\ /\ A : ! ’ ¥ 0 ) 2
5 \7 vsv s Two T em  sw 1000 1.0 12.00

THETA DEG
. J.m
—&

-4.00
L e

-6.00 o
f vt
P

4.00
-q

00

R
—— Y
———

e ———

I
o
N

PS1 DEG

-2.00

b. Computed  versus time
Figure 24. Graphical solution of sphere cone data given in Fig. 20 for a
fit interval of 5.16 sec.

01-84-41-0Q3avV



ool

080

AN

=0:00

_ A NNL
Vx.nov 2@ V:-MVU-@\,[ SO 5% Mg sEC

-0.20

THETAR RESIDUAL DEG

c. Residual in 6 versus time

0.40 -0.40

1200

7.00
TIME SEC

PSI RESIDUAL DEG

-0.40

-0.60

d. Residual in  versus time
Figure 24. Continued.

+
9.00

12.00

0L-84-H1-003V



101

s
=
p =
—

THTA

o Calculated
O Experimental

-y

-6.00 -4.00 4.00 6.00 5.00 -4.00 6-00
PS1 PSI
(-]
g 8
$ sl
e. Fit of calculated solution to experimental data f. Fit of calculated solution to experimental data

in Y, @ plane, time increment 0.68 to 1.38 sec

Figure 24. Continued.

in ¥, 0 plane, time increment 0 to 0.68 sec

01-8£-H1-2Q3v



(A1}

THTA

Calculated

4.00

0 Experimental 8

-6.00 B.00
PS1
8 8
'.1- T b
3l
g. Fit of calculated solution to experimental data h. Fit of calculated solution to experimental data
in {, 0 plane, time increment 1.38 to 2.08 sec in ¥, 0 plane, time increment 2.08 to 2.78 sec

Figure 24. Continued.

01-8L-H1-003V



£01

Calculated
(o} Experimental

8]
8 v 8
73 A L)
i. Fit of calculated solution to experimental data
« in ¥, 0 plane, time increment 2,78 to 3.48 sec a
=] > 9
(= e
&
o
\ . . . . o8] © . .
-4.00 .00 4.00 -4.00 -2.00 \oblo0o 2.00 4.00
° PS1 ol of* PSI
o
h o
8 8
j. Fit of calculated solution to experimental data k. Fit of calculated solution to experimental data

in ¢, 0 plane, time increment 3.48 to 4.38 sec in J, 0 plane, time increment 4.38 to 5.16 sec

Figure 24. Concluded.

01-84-41-04G3v






AAAAAA

VvvaMV




" Y \s u

........



LOI

0.40

0.60 0.80
4

’ N

0-20

PSI RESIDURL DEG
o0.00

-0.20

-0.40
+

d. Residual in  versus time
Figure 25. Continued.

01-8£-H1-243Vv



801

O

e. Fit of calculated solution to experimental data
in Y, 0 plane, time increment 0 to 0.68 sec

@
Calculated E

Experimental

6.00
PSl

f. Fit of calculated solution to experimental data
in Y, 0 plane, time increment 0.68 to 1.38 sec

Figure 25. Continued.

01-84-41-0Q3V



601

ot —— Calculated E‘f
s O  Experimental .3
8 8l

5.00
PSI
g 8
?J. 1.9..
g. Fit of calculated solution to experimental data h. Fit of calculated solution to experimental data
in Y, 0 plane, time increment 1.38 to 2.08 sec in , 8 plane, time increment 2.08 to 2.78 sec

Figure 25. Continued.

0i-84-H1-043v



0l1

THTA

4.00

-4.00

4

6-00
;
{

THTA

Calculated
9] Experimental
6-00 -6.00
PSl

i. Fit of calculated solution to experimental data
in Y, 0 plane, time increment . 2.78 to 3.48 sec

Figure 25. Continued.

-4.00

2l

00
PS1

j. Fitof calculated solution to experimental data
in ¥, 0 plane, time increment 3.48 to 4.18 sec

01-84-H1-003V



{1l

g 8
g To
= Calculated "
8 O Experimental 8
.00 ~e.00 2.00 .00 5,00 -6.00 -4.00 2.0 00 T8.00
PSI PSI

19.-

k. Fit of calculated solution to experimental data
in Y, 0 plane, time increment 4.18 to 4.88 sec

Figure 25.

wwa
.

I. Fit of calculated solution to experimental data
in ¥, 0 plane, time increment 4.88 to 5.58 sec

Continued.

01-84-4.1-0Q3av



(48!

g
.
a
b =
=
8 O
24
-6.00 -4.00 -2.00 2.00 4.00 §.00
PS1

L'+ 2
[

m. Fit of calculated solution to experimental data
in Y, 0 plane, time increment 5.58 to 6.28 sec

THTA

Calculated
Experimental

4.00
:

-6.00 -4 00 -2.00

8
lfu

n. Fit of calculated solution to experimental data
in ¥, 9 plane, time increment 6.28 to 6.98 sec

Figure 25. Continued.

01-84-€1-2Q3V



€11

THTA
THTA

Calculated
@] Experimental

2.00 4.00
+ .

o
00
PO,

-6.00 -4.00 4.00 5.00 -6.00 -4.00 -2.0 “bloo 4O 2.00 4.00 6.00
PSI )

00
-4.00

0. Fit of calculated solution to experimental data p. Fit of calculated solution to experimental data
in ¢, 0 plane, time increment 6.98 to 7.68 sec in ¢, 0 plane, time increment 7.68 to 8.28 sec

Figure 25. Concluded.

01-84-H1-243V



vl

2.00

:{\OAA“‘]M\{\/\A/\A/\AAAAg

5.0

THETA DEG
-2.00

-&.00
+

-6.00
+

~8.00
N
»

[ TR Vs

a. Computed 0 versus time
Figure 26. Graphical solution of sphere cone data given in Fig. 20 for a
fit interval of 11.98 sec.

243v



AAAA AAAAAAAAA

°1°£vavvvvwvv

-
°5
&



. 600 7.0 od | ] 1040
st \/"‘ W

R~







811l

— (Calculated
O Experimental

a
[
p =
—

w0 6.00 -6.00
PS1

e. Fit of calculated solution to experimental data
in ¥, 0 plane, time increment O to 0.68 sec

Figure 26. Continued.
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Figure 26. Continued.
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Figure 26.

I. Fit of calculated solution to experimental data
in ¥, 0 plane, time increment 7.98 to 8.68 sec
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Table 1. Fortran Listing: Symmetric Parameter Extraction Program

ANGLES

VARNER VERSION 1 FEB. 1977

COMPUTES AERO COEFFICIENTS FOR AXIALLY SYMMETRIC BODY
AEROBALLISTIC AXIS SYSTEMyAEROOYNAMIC SYMMETRY

EXACT 3 DOF EQUATIONS UTILIZED

IMPLICIT REAL®8(A=H,0-2)

REAL®8 IXy1YoMPRM, IPRM

REAL®8 ALIST(30)

REAL®8 CARD(10)

REAL®4 TS(1000)yPHIS(1000) +THTAS(1000)+PSIS(1000)
DIMENSION AUX{69186)4Y(186) 4DERY(186) ¢WXX(30) 9 ACON(30)+CT(30+31)
1oWX(30) s AACON{30) oCC(30+60)

EXTERNAL FCT.DRKGS
COMMON/MEAS/PHIM(1000) s THTAM(1000) +PSIM(1000)
COMMON/SOL/T(1000) sPHI(1000) ¢ THTAC1000)+PS1{1000)
COMMON/COEF /CON{30) ¢ CCONE30) ¢y NCyNCONI(30)
COMMON/MATRIX/C(30+60) +RESSUMSIGPH] +SIGTHASIGPSI
COMMON/CUNST/RAT10+MPRMe IPRMg Ay TANGLE

EQUIVALENCE (AUXI(1)+CT(1)) o (CC(1)sC()))o

1 (PHIS(1)oPHI (1)) o (THTAS{L) o THTA(L) ) o (PSIS(1)oPSI (1))

DATA ALIST/'CMA *,'CMQ *9 *CMAD "9 ICMPA 0y *CMAD®NZ ¢,
*1CMQD®#2 9 1CMQB##2 ¢, 'CMRAB *9 'CMQD 'yoCLO *+'CLPD te
*ICMPAD#®2ty*CLP 1y 'CLPDw##2 14 DUMMY ' 9 'OUMMY Y9 IDUMMY ty

*1DUYMMY 13tCNR TUN t4'CMQ TUN *o'CMA TUN '4°CNB TUN "2 'FLOANG Tty
S1FLOANG P9 'PHTI(0) "4'PHIOOT o 'THTA(Q) ' *THTADOT *4'PSI(O) ¢,
*1psiDOT ¢/
NAMELIST/NAM/NSWTCHoNTOToNCoNITERsDTMINeBOUNDsAREAIDIAsIXeIYIRO9 Uy
1AACON JNCONINSESWHeSPHI+STHTA9SPSI +AMPHI 9y AMTHTA+AMPS]
2SAMPLE yNUELTA» JUPDAT » INLCONs IANGLE yDTGEN
3+1GPNO ¢ IBLKNO 9 IRCGEN9SIGPHI ¢ SIGTHA+SIGPSIsNSTARTSIRCSTR

100 FORMAT(1H1920Xs'8nnsasse INPUT DATA #0ensddsi,/,
11X "GROUP NUMBER =1415,5Xs'BLLOCK NUMBER =2'y[Sy/»
19X "TIME 9 bOX o 'PSI'o10Xs ' THETA'910Xe 'PH[9//)

101 FORMAT(7F10,0)

102 FORMAT(SXy&(E13,601X))

103 FORMAT(S5X+sA8+2Xs2(E13,6¢5X))

106 FORMAT(/+1X4s?ITERATION NO'»[Se/919Xe *CONY 913Xy *DELTA CONt)

105 FORMATI(///7910Xs *FINAL CONSTANTS AND PROBABLE ERROR'+¢10Xe/)

106 FORMAT(OXs'C(V91390)mV3E13,6¢5Xs0(t9EL13400")¥92X0A8)

107 FORMAT(1H1+S5Xe'DATA FIT COMPARISON?9//9s11Xs *TIME",
13Xe *PSI/FIT Xy "PSIZEXRP 93X s 'DEL PSI®s2Xe *THTA/FITY92Xe *THTA/EXP?
292X0'DEL THTA? 42Xy 'PHI/FIT 43X 'PHIZEXP*e3Xs*DEL PHI® /)

108 FORMAT(S5XeF10.699F10.,3) *

109 FORMAT (lXet#®ee CONVERGENCE CRITERIA NOT SATISFIED AFTER'+I4,
11X *ITERATIONS #wens)

110 FORMAT(1Hl9lX9*SUM OF RESIDUALS?*+E13.695Xs 'NEW PROBABLE ERROR =1,
1E13064¢5X9'0LD PROBABLE ERROR ='43E13.6)

111 FORMAT(TF10.4)

112 FORMAT(1XoTO('41) /41Xyt #40aunnn ERROR #HU4S20884810,/,]1X,
L*NO OF CONSTANTS ALLOWED TO VARY EXCEEDS TOTAL NO OF DATA POINTS
EUSED Yo /9l XeT0('97))
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Table 1. Continued

200 FORMAT(1Xe30("®9) o' AERODYNAMIC COEFFICIENT EXTRACTION BY CHAPMAN
IKIRK METHOD *930(*#%)4///91Xe*NSWTCH =t9IS5s%( =209 NORMAL DATA REDV
2CTION®y/217Xe*=1le IDOF OATA GENERATEDs NO ITERATION'e/,
317xe22¢ 3DOF DATA GENERATED AND STORED ON 7S PACK)'"s/s1Xs'IUPDAYT
6=, [S,0(30y INITIAL GUESSES NOT UPDATED FOR FOLLOWING SHOT'+/»
517xs*NE Uy INITIAL GUESSES UPDATED)*)

201 FORMAT(//91Xe 'PARAMETERS ®#%4a#888,/9]1Xy'NO OF POINTS (N) =?4]Sy
1'TOTAL NO VARIABLES (NC) =2',IS¢SXe'TOTAL NO ITERATIONS (NITER)=v,
2ISy/+1 X+ *INTEGRATION STEP SIZE(DT)=?"9EB.2¢5X9 *CONVERGENCE BOUND ON
3 ITERATION (BOUND) =" 3EB¢29//¢1Xy?BO0Y ®sanosdai,/,] X, AREA =37,
4F 1000 'FTa829,5X9DIA 3 9F 1069 FT 9/l Xo?IX 3'4F12,79'SLUGS=FT#a2
SVeSXe V1Y BV9F 12479 'SLUGS=FTau2?)

202 FORMAT(/91X9'FREE STREAM #42886880,/91X9 "OENSITY (RO) 3'9El4.7
1'SLUGS/FTR#39,SxXet =09F 10489 'FT/SECt4//91Xe'COEFFICIENTS #onasae)

203 FORMAT(1A9YACON(toI39?) S'sEL3e69 ' (*eABr ") ' 9SXe"'NCON(?]I3¢1)mt,y]12)

301 FORMAT(1M1)

302 FORMAT(1Xs*JANGLE s%,15+7(20s ALPA AND BETA IN TERMS OF VELOCITY R
1ATIOSy?e/s1TXe*NE 0s ALPA AND BETA IN TERMS OF aNGLE OF ATTACK AND
3 SIDESLIP)'/+lXe*INLCON ='41S,0(=m 0y INITIAL CONDITIONS EVALUATED
4 FROM DATAV'e/9lTX9'NE 09 INPUT VALUES USED) M)

303 FORMAT(1X¢'BEGINNING RECORD NUMBER =?,15)

401 FORMAT(10A8)

402 FORMAT(1Xs10A8)

404 FORMAT(lAs'aw® INPUT CARD IMAGES #wet,//)

406 FORMAT(1H]})

407 FORMAT(1Xe' NOTE =« t'4]10A8)

502 FORMAT (1Xe069('®?) g/e1Xy?'®®e» 3JDOF GENERATED DATA STORED BEGINNING
20N RECORD NUMBER* ¢ I592Xe ' 00anv,/,]1Xe *UNDER IGPNO =304 15+2Xs
3t AND IBLKNQ =9,159/91Xe'IImleT0s/elXe?IIu2ePHITe/91lXs
GrIIa3sTHTAY g /ol Xo 12k ePSIte/elXeb69(2%1))

WRITE(06+404)
405 READ(059401+END=403) CARD
WRITE(06+402) CARD
GO TO 40S
403 REWIND S5
READ (05+401) CARD
WRITE(06+406)
DEFINE FILE 0T(1140+4016+L»1IREC)

INITIALIZATION

NPRINT=0
IPRINT=(
998 READ (0S9NAMyEND=999)
NanTOT
WRITE(06+301)
WRITE(D69200)NSWTCHs IUPDAT -
WRITE(06+302) IANGLE INLCON
WRITE(06+407)CARD
WRITE(0690201)NTOToNCoNITER/DTMIN9BOUNDyAREASDIAsIXs1Y
WRITE(06+202)R0OyU
DO 204 1=]1sNC
ACON(1)=AACON(I)
204 WRITE(069203) I9sACONCI)9ALIST(I)oIoNCONII)
FI = 3,1415920+0
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Table 1. Continued

A= PI/I“O.D‘O
1F (NSWTCH) 89807

DATA INPUT

CONTINUE

T(1)=20,040

DO 10 Is2¢NTOT

T(I) =T (Il=1)+DTGEN

PHIM(])20,D40

THTAM(I) 30,00

PSIM(I)=0,0¢0

PHIM(1)30,0+0

THTAM{1)2a0.,0¢0

PSIM(1)30,00

Go T0 9

CONT INUE

IRECE]

READCO7'IREC) IGPT»IBLKy 11 TS

IF (IGPNONELIGPT) 60 TC 500

1F (IBLKNE.IBLKNO} GG TO 500
IF(IT.NEs1) GO TO 500
READ(07*1REC) IGPNOs IBLKNO+ 11 4PHIS
READ (07* IREC) IGPNO+IBLKNOoII+ THTAS
READ (07t IREC) IGPNO»IBLKNO+I114PSIS

DATA ALTERATION

D0 504 I=mlyNTOT

T{I)aTS(I)

PHRIM(I)sPHIS(])

THTAM(I)3THTAS(])

PSIM(I)=PSIS(])
IF(NPRINT.EQ.!GPNO.AND.IPRINT.EO-IBLKNO) GO TO 4
wRITE(06+100) IGPNO» IBLKNO

IRCTMPSIREC=4

WRITE(069303) IRCTMP

LOOP=0

NLOOP=]

00 & I=]+NTOT
HRITE(O&.IOZ)TII!oPSIMll)vTHTAMIi!oPHIM(I)
LOOPaLO0P+]

KLOOP=NLOOP#50

IF(LOOP.LT KLOOP) GO TO 4

NLOOPaNLUQOP» )

WRITE(06+100) IGPNO+ IBLKNO

CONTINUE

NPRINTs]1GPNO

IPRINT=IBLKNO

CALL PART (SAMPLE ¢NDELTA¢NsNTOTINSTART)

1F (NSESWH.EQ.1)CALL NOISE(SPHIoSTHTA'SPSI'AMPHI'AHTHTAvAMPSI'
LINsSAMPLE +NOELTASNTOT)

1F (INLCON.EQ,0) CALL ICS(ACON)

DO 46 I=lsN

PSIM(]) = PSIM(LI)®*A
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Table 1. Continued

THTAM(I) 3 THTAM(]) @A

PHIM(I) 3 PHIM(I)e®A

CONTINUE

NSUM=Q

D0 12 IalyNC

CCON(I)=0,De0

DO 11 Isl,NC

IF(NCONI(])+EQel) CCON(I)=m].De0
IF(NCON(])«EQsl) NSUM=NSUM*]1
SUM = NSUM

DEFINE PARAMETERS AND TRANSFORM COEFFICIENTS IN SUB REG

QINF = RO® (Us®2)/2,De0
RATIO = IX/1Y

IPRM = [Y/(QINF®*AREA®DIA)
MPRM = [PRM#2.De0eU/DI1A
CALL REGLACON)

XNaN

rHECK=3,0¢0#XN=SUM
IF(CHECK+LE.0,D¢0) GO TO 997
NT=NC+]

E=QeD+0

NR=0

INTEGRATION

CONTINUE

CALL INTGRL(FCTeDRKGS+N+ERRORsAUX+YsDERY sDTMIN)
IF (NSWTCH,GT,0) GO TO &7

IF (NSUM«EGe0) GO TO 47

CHECK FOR CONVERGENCE

NRaNR+}
E1sUSQRT (RESSUM/ (3.D¢0#XN=SUM))
RESSUM=DSQRT (RESSUM)
WRITE(069110)RESSUMeELGE

IF (DABS(E]1=E)=BOUND) 36¢36421

IF (NR=NITER) 22+22+36

NTRIG=0

CONTINUE

IF (NSUMeEQ.1) GO TO 33

E=El

CONTKHACT C MATRIX = REMOVE ZERO ROWS AND COLUMNS

DO 23 I=lNC

DO 23 J=1NT
CT(LlsJ}=C(fed)

LL=0

DO 90 I=1lsNC

IF((I+LL) «GT.NC) GO TO 90
IF (NCONCIOLL) 91991993
LLslL e+l
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Table 1. Continued

GO To 92
93 L=iL+]
DO 94 K=]lyNT
94 C(leK)aCT (LK)
90 CONTINUE
LLa0
LMeNSUM
DO 80 I=]+NC
82 IF((I+LL)+«GT.NC) GO TO 80
IF (NCON(I<LL))B81+8]1,83
8) LLs=LL+1
60 Y0 82
83 LaLlel
00 84 K=loLM
84 CTU(KyI)=C(KeL)
80 CONTINUE
DO 85 ]Is=l,LM
85 CT(IeLM*1)RC(INT)
LsNSUM
LLaNSUMe ]}
00 71 I=l,lL
DO 71 J=l,L
Tl CiIvJ)=CT(14J)

MATRIX INVERSION OF C

o000

IF INTRIG) 40+27¢40

27 CALL INVICTsLeLLoWXsCC)
GO TO &l

40 CALL INV(CTeLoLsWXsCC)

41 DO 32 Is1lyNC
ClIsLL)®0,0+0
WX(1)=CT(Is])

32 WXX{1)=a0.0D+0
LM=0

EXPAND C INVERSE TO INCLUDE ZERO ROWS AND COLUMNS

OO0

00 31 I=]lyNC
IF(NCON(]))28+28+30
28 LMalM=]
60 T0 31
30 I1TalMse]
ClI+LL)SCT(IToLL)
WXX(I)swX(IT)
31 CONTINUE
G0 TO 34

SOLVE FOR CORRECTION TO COEFFICIENTS

OO0

33 DO 35 [=14NC
IF(NCON(1)=1)39+49,49

49 CUIsNT)=C(I«NTI/C(Is])
WXX(1}2leDe0/C(Ie])
G0 TO 35
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Table 1. Continued

C(I+NT)=0,D00
WXX(1)30eDe0

CONT INUE

LLaNT

IF(NTRIG.EQe1) GO TO 42
WRITE(06+104)NR

DO 60 I=1lyNC
WXX{[)sClIsLL)

TRANSFORM COEFFICIENTS AND CORRECTIONS IN SUB REGOUT

CALL REGOUT (ACONsWXX)

DO 50 I=1eNC
WRITE(OS9103)ALIST(I)+ACONII) o WXX(I)
00 43 IslsNC

CON(I)sSCON(TI)*C (I LL)

GO T0 20

CONT INUE

NTRI1G=]

GO TO 38

CONTINUE

CUMPUTE PROBABLE ERROR IN COEFFICIENTS

DO 44 I=)].NC

WXX (1) =E)*DSQRT (DABS(WXX(1)))
CALL REGOUT(ACON+WXX)
WRITE(06+105)
IF(NR.GT<NITERIWRITE (069 109)NR
DO 45 Is=]yNC

WRITE(069106) J9ACONCI) oWXX(I)oALIST(I)
WRITE(06+107)

LOOP=(

NLOOP=])

IREC=IRCGEN

DTTEMP=T (2)=T (1)

DO 48 I=1,N

TTaT(])

Z1 = pSI(I)/A

22 ® PSIM(I)/A

Z3 = THTA(I)/A

Z4 ® THTAM(I)/ZA

25 = PHILI) /A

16 = PHIM(I) /A

210%21=22

211223=24

212%25-26
WRITE(069)108)TV0eZ10Z2+2Z1002342692Z11925+264212
THTAS (1) =23

PSIS(l)={]

IS(I)=TT

PHIS(])=25

IF (NSWTCH,NE,0}) GO TO 597
1s(l)=z10

PHIS(1)=Z]11
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Table 1. Continued

CONTINUE

LOOP=00Pe¢]}

KLOOP=aNLOOP®50

IF (LOOP«LTKLOOP) GO TO 48
NLOOPaNLOOP+]
WRITE(06+107)

CONTINUE

IF (NSWTCHeNE.0) GO TO 599

COMPARISON OF FIT DATA AND EXPERIMENT STORED

IREC=IRCSTR

IF (IRCSTR o GE  IRCGEN=3,AND+ IRCSTR.LE+IRCGEN+3) GO TO 596
WRITE{06+598)NSWTCHsIRCSTR9JGPNOy IBLKNOsOTTEMP
FORMAT (1H1 91X9 'NSWTCH ='9I5¢/91Xs *3D0F DATA STORED BEGINNING AT RE
1CORD 0,1592Xe "UNDER IGPNQ =1,15,2X9*AND IBLKNO 8941S¢/91Xy '1I35,TH
ZTA"/olXo'l!=6oTHTA‘THTAH'oI'lXo'II-7'PSl'0/'1X|'II'BoPSI-PSIM'o
3lolg|'DT Vg FToede2X9 *SECY 9 1H])

IIs

WRITE(OT*IREC) IGPNO» IBLKNOsI1+ THTAS

116

WRITE(O7YIREC) IGPNO, IBLKNCo I1oPHIS

I1a7

WRITECOT'IREC) IGPNO+IBLKNOs11+PSIS

I11a8

WRITE(OTYIREC) IGPNOyIBLKNO»I1eTS

CONTINUE

IF (INSWTCH.NE.2) GO TO 501

300F GENERATED SOLUTION STORED

wRIIE(oeosozx!RCGEN.IGPNO.IBLKNO
1=

WRITE (OTYIREC) IGPNOyIBLEKNOeII«TS
I1s2
HRI;ECOT'IRECIIGPNO-IBLKNO-II.PHIS
{l=
WRITE(OTYIREC) IGPNO+ IBLKNO+I] e THTAS
11=¢
WRITE(OT'IREC) IGPNQs IBLKNOsII4PSIS
CONTINUE

60 To 996

WRITE (06+112)

CONT INUE

IF(LIUPDAT.EQ,0) GO TO 998

00 995 I=]sNC

AACON(I)=ACON(I)

60 TO 998

CONTINUE

STOP

END

SUBROUTINE DRKGS (XI9Y+DERYsNDIMeFCToAUXsDT9NDT)
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Table 1. Continued

IMPLICIT REAL®8(A=H,0=2)

DIMENSION Y(1)+DERY (1) +AUX{691)

X=xl

DO 5 J=leNDT

DO 1 IslsNDIM
1 AUX(6eI)aY(])

CALL FCT(XsYo¢DERY)

DO 2 IslsNDIM

AUX()oI)=DERY(])
2 Y{I)mAUX{691)¢.5D¢0%DT®AUX()¢1)

XTEMPaX*o50e0%DT

CALL FCT{(XTEMPsYsDERY)

DO 3 Is=)lsNDIM

AUX(2,1)8DERY(])
I Y(I)=mAUX(6e1)+oSDe0®DTEAUX{2,4])

CALL FCT(XTEMP+Y+DERY}

DO & IslsNDIM

AUX(3¢1)=DERY(])
& Y(I)=AUX{691)*DT®AUX(3+])

XsX*DT

CALL FCT(XeYoDERY)

00 5 Is]lsNDIM

AUX (&9 ])BOERY(]) .
S Y(I)sAUX (6 1) *DT® (AUX (Lo l) ¢ (AUX(2+]) ¢AUX(3¢]))*2,D00

1eAUX(&4]1))/764,D%0

RETURN

END

SUBROUTINE FCT(TeX9DERX)

IMPLICIT REAL®B8(A=Hy0=Z)

REAL®8 MXQIXoeMYOIIMZOI MLl oM24M3¢MAGeMPRM, IPRM
UIMENSION X{(1)+DERX (1))
COMMON/COEF/CON(30) +CCON(30) s NCoNCON(30)
COMMON/CUNST/RATIO«MPRMe IPRM¢ Ao K

PSl=x(5)

THTA=X({3)

PHI=X (1)

PSIP=X(6)

THTAP=X (&)

PHIP=X(2)

CALL TEMP(PSIeTHTAYPHIsPSIPoTHTAPsPHIP¢0,0¢040,0¢0,0,D¢0,0,0%0+
10eD*0e0ot)e0yK)

CALL MBAR(MXOIXeMYOIsMZOI9PSIoTHTASPHI+PSIPsTHTAP PHIP)
DERX (1) = PM1P

DERX(2) = MXOIX ¢ PSIP®THTAP*DCOS(THTA)*MZOI®DTAN(THTA)
10(2¢D¢0=RATIO)*PSIP*THTAP*DTAN(THTA) #DSIN(THTA)
2*RATIO*PHIP*THTAP#DTANI{THTA)

DERX(3) 3 THTAP

DERX(4) = MYQOl =(].D+0=RATIO) *(PSIP*#2)% (DSIN(THTA)*DCOS(THTA))
1=RATIO*PHIP#PSIP#DCOS(THTA)

DERX(5) = PSIP

DERX(6) = MZOI/D0COS(THTA)*(2,D¢0=RATIOQ)*PSIP=*THTAP®
IDTAN(THTA) o RATIO®PHIP#*THTAP/DCOS(THTA)
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Table 1. Continued

NEQE (NC*1)*6

DO 5 IsT«NEQ

DERX(13)=u,De0

DO 10 I=1lyNC

IF (NCON(I) «EQe0) GO TO 10

DERX(6+1) =3 X(6eNCel)

DERX (2#NC+6¢[) = X{34NC+6¢])

DERX(4®NCebeI} = X{5#NCe6+1l)

Pl = X(6*])

P2 = X(2%NCeb6+1])

P3 3 X(4%NCe6+1)

P1P= X(NCeb&e])

P2P3 X (3®*NCeb¢])

PIPE X (S5*NCe6+]1)

CaLbL TEMP (PSIyTHTASPHI sPSIPsTHTAP+PHIPsPLoP29PI9sP1P¢P2P P3P ¢K)

CALL MBARA (Ml 9M29M34PSIsTHTAIPHIsPSIP s THTAPsPHIPIP1+P24P3+sPLIP+P2Py
1P3Ps 1)

DERX(64NCe 1) sM]l ¢ THTAP*PIP*DCOS (THTA) o+PSIP*PZ2P*DCOS (THTA)
1=PSIPRTHTAP#P2#0SIN(THTA) ¢ MI®DTAN(THTA)
2MZOLeP2/7 (DCOS(THTA) #22) ¢ (2,D+0=-RATIO)*DTAN(THTA}#
IDSIN(THTA) ® (THTAP®P3P PSIP#P2P) ¢ (2,D+0=RATIO) *PSIP*THTAP
4eP28DSINITHTAI #(1.D¢0¢1.0+0/(DCOS(THTAY##2) )¢
SRATIO® (PLP#THTAP*DTAN{THTA) +PHIP*P2P#DTAN(THTA)
6+PHIPSTHTAP®P2/ (DCOS(THTA) ##2))

DERX (693¥NCo[) BM2e (1,D¢0=RATIO) *2,D*0*PSIP*PIP*DSIN(THTA)
1°0C0S (THTA) = (1 0%0=RATIO) #P2% (] ,D40=2,D+0*{DSIN(THTA)0#2))®
2PSIP%%2 = RATIO®(PLP*PSIP#DCOS (THTA) ¢PHIP®*P3P&#DCOS (THTA)
3=PHIP*PSIP#P2#DSIN(THTA))

DERX(&+SONC+])=M3/DCOS (THTA) +MZO1#P2#DTAN(THTA) 70COS(THTA)
14(2«De0=RATIO) ®DTAN(THTA) ® (PSIP*P2PsTHTAP®P3IP) »
2(2.0¢0=RATIO0) *PSIP*THTAP®P2/DCOS(THTA) %42 »
3RATIO®*PLP*THTAP/DCOS(THTA) *RAT10# (PHIP#THTAPSP2®DTAN(THTA)
4/0COS (THTA) *+PHIP#*P2P/DCOS (THTA) )

CONTINUE

RE TURN

END

SUHROUTINE PART (SAMPLE ¢NDELTAWNsNTOTyNSTART)

IMPLICIT REAL®8 (A=He0=2)
COMMON/MEAS/PHIM{1000) ¢ THTAM{1000) yPSIM{1000)
COMMON/SOL/T(1000) oPHICL000)+ THTA(L1000)+PSI(1000)
00 13 13Z2¢NTOT

IF(T(I)eNE«0.D*0) NTEMP=I

CONTINUE

TMAX=T (NTEMP)

00 11 IsNSTARTINTOT

Ju(I=])*NDELTA#1

IF{J«GTNTEMP) GO TO 11
RATIOS(T(J)=T(NSTART))/TMAX
IF(RATI0GT.SAMPLE) GO TO 11

N=1

T(I)=T(J)

PHIM(I)sSPHIM(J}
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Table 1. Continued

THTAM(])sTHTAM(J)

PSIM(I)=PSIM(J)

CONTINUE

NaNe 1=NSTART

DO 12 Im]leN

JE]*NSTART=]

T(I) =T (J)

PHIM(I)SPHIM(J}

THTAM(I)sTHTAM(J)

PSIM(I)aPSIM(J)

Nl=Ns]

IF (NTOT+LTeN]l) GO TO 14

V0 1S I=N)eNTOT

T(I1)30,D0

CONT]INUE

WRITE(06910) SAMPLE+NDELTAWNSTART¢NoT{1)oTIN)
FORMAT(1HlsiXetoene DATA BLOCK ALTERED ®###t,/,]1X, 'SAMPLE 2%
1FTeGe/91 A9 "NDELTA 209150/ s1Xe*'NSTART =*%¢ IS0/l X9 "N =315+ /y
ClXetT(1) = VoFTo@eSXe?'TIN) = V4F T84/
I1Xe28(00"))

RETURN

END

FUNCTION DUM(I+J)

IMPLICIT REAL®8(A=Hs0=2)
OUM=Q,D+D

IF(I.EQeJy) DUM=],D+0
RETURN

END

SUBROUTINE ICS(ACON)

IMPLICIT REAL*8 (A=H,0-2)

DIMENSION ACON(30)
COMMON/MEAS/PHIM(1000) ¢ THTAM(1000) +PSIM(1000)
COMMON/SOL/T(1000) s PHI(1000)sTHTA(1000) »PSI(1000)
DT=aT(2)=T(1)

PHI10=PHIM{1)

THTAQ=THTAM(1)

PSIO=PSIM(L)

ACON(25)=PHIO

ACON(27)3THTAO

ACON(29)=PS10

ACON(26)2(PHIM(2)=PH]IO) /0T
ACON(28) 3 (THTAM(2)=THTAQ) /DY
ACON(30)s(PSIM(2)=PS]0) /DT

RETURN

END

SUBROUTINE INV(CeNCoNCS1eWXXeCC)
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3000

10

20

30

126
130

134
150

135

136
160

140
145
170
200
205

210
2590

300
350
400
420

45¢

500

Table 1. Continued

IMPLICIT REAL*8(A=Hy0=2)
DIMENSION C(30+31) oWXX(30)+PIVOT(2)+CC(30+60)
FORMAT(/10Xs*DET 1S EQUAL TO ZERO')
NCT=aNC#*2

NCP1=NCe]

00 10 IslyeNC

00 10 JsleNC
CCtlon}uC(Io)

D0 20 IaleNC

DO 20 JsNCP1oNCT
CC(leJ)30,D¢0

DO 30 I=1l4NC
CC(IyNC*I)=]1,D+0

DO 205 I3]l4NC
PIVOT(1)8CC(Io])

DO 200 K3]leNC
PIVOT(2)3CC(KeI)

IF(K=I) 13541304140

DO 150 Jul+NCT
IF(PIVOT(1)) 134+210,+134
CC(Ke J)SCC(Iod)/PIVOT (1)
CONTINUE

G0 10 20v

00 160 Js]+NCT
IF(PIVOT(1)) 13691609136
CCIKsJIBCC (Ko J)=CCII s JI*PIVOT (2} /PIVOT(])
CONTINUE

G0 TO 200

DO 170 J=1sNCT
IF(PIVOT(2)) 145+1709145
CCIKyJ)mCC(KyJ) /PIVOT(2)=CC(1sJ)
CONTINUE

CONTINUE

CONTINUE

G0 TO 250

WRITE (6¢3000)

DO 300 Is=]l«NC

DO 300 Jsl«NC
CtI»J)}sCC(]IeJoNC)
NCS=NCS1

1F (NCS=NC)}500+500,+400

00 420 1=1lsNC
wXx(I)sC(IsNCS)
C(IsNCS)=0.,De0

DO 450 Is1yNC

DO 450 Js1loNC
C(IsNCS)SC(IoNCS)C(IyJ)®*WXAX{D)
NCSSNCS=1

60 TO 350

CONTINUE

RETURN

END

SUBROUTINE NOISE (SPHI+STHTA,SPSIoAMPHIsAMTHTA4AMPSI 9N
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Table 1. Continued

LSAMPLE ¢ NDELTANTOT)

THIS SUBROUTINE ADDS GAUSSIAN NOISE TO DATA
IMPLICIT REAL®8{A=Hy0=Z)
COMMON/MEAS/PHIM(1000) s THTAM(1000) oPSIM(1000)
COMMON/SOL/T(1000) +PHI{1000) ¢ THTA(L1000) »PSIC1000}
WRITE(065100)SPSIySTHTA9SPHI AMPSI »AMTHTAsAMPHI SN
CALL TIME(IYEARISEC)
IF (ISEC=1000) 59546
ISEC=]SEC=-1000
G0 TO 7
S IXa{ISEC*IYEAR) #24]
IvslXe2
IZ=lXes
SIGIPHa0 D0
SIG2PH30.D+0
S1GIPH=0.0+0
SIG1TH=0.0¢0
S1G2TH=0.0+0
SIGITHE0.040
SIGIPS=0.0¢0
SIGEPS=0.0+0
SIG3PS=0.De¢D
TOTPHI=0.D*0
TOTTHA=O.D*0
TOTPSI=0.D*0
LOOP=]
NLOOP=]
DO 10 I=lN
CALL GAUSS(IXsSPHI+AMPHI +VPHI)
CALL GAUSS{IYsSTHTAJAMTHTASVTHTA)}
CALL GAUSS(IZySPSI+AMPSIsVPSI)
PHIM(L)3PHIM(I) ¢VPH]
THTAM(])STHTAM(I)+VTHTA
PSIM(I)SPSIM(I) +VvPS]
TOTPHISTUTPHI +VPHI
TOTTHASTOTTHASVTHTA
TOTPSI=TOTPSI+VPS]
PaDABS (VPH])
Q=DABS (VTHTA)
Ra3DABS (VPSI)
IF(P4LT«SPHI)ISIGIPH=SIGIPHe] ,D*0
IF (PoGEeSPH]I cANDeP LT +2e0¢08SPHI)SIG2PH=S[G2PH*]1,D¢0
IF(P.GE«2,090%SPHIsANDoP+LE43.D¢09SPHI)SIG3IPHaSIGIPMe] D90
IF(QeLT«STHTA)SIGITH2SIGITHe1,D¢0
IF(QeGEeSTHTACAND QLT e2.0+0%STHTA)SIG2THaAS1G2TH*].D+0
IF{Q.GE e2eD*0*STHTALAND ¢ QeLE43sD¢0#STHTA)SIGITHESIGITH1,D+0
IF(RaLT«SPSIISIGIPS3SIGIPS*],D+0
IF(R.GEeSPSIANDsR.LT,2.04085P51)51G2PS=51G2PS+1.0+0
IF(R.GEe24D*0%SPSIeANDeRsLEI,D*02SPS]I)SIGIPS2SIGIPS¢]l.D*0
10 CONTINUE
WRITE(069103)TOTPSI«TOTTHASTOTPHI+SIGIPSeSIGLITHeSIGIPH,
1S1G2PSeSIG2THsSIG2PHSIG3PS+SIG3ITHISIG3PH
100 FORMAT(lHlelXet®ee GAUSSIAN NOISE ADDED ##e#9,/,]1X,
1'ONE STANDARD DEVIATION = PS] 3?,F10,6¢5Xs'THETA x19F]0,6¢5Xs

o~
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Table 1. Continued

2'PHI B99F10.69791Xe"CONSTANT BIAS = PSI 5'9F104695Xs

3'THETA 299F10¢695X9'PH] 3'9F10+6+/01Xs*TOTAL NO OF TIME POINTS USE

4D IN FIT (N)=',15)

FORMAT (1M191Xs *SUM OF NOISE ADDED*¢/+6Xs'PSI?y6Xe*THTA s TXe 'PHI Y,
1/91X93F10e39/741%s *NOISE CONTRIBUTION WITHIN ONE SIGMA'+e/+s

26X o 'PSIV o6 Xy *THTA 4 TX s 'PHI "0/ 91Xs3F10e30//0

31X+ NOISE CONTRIBUTION BETWEEN ONE SIGMA AND TWO SIGMA'e/s
46X ¢ 'PSTIT 96Xy *THTAY g TXe *PHI"9/91X03F10439//91 Xy *NOISE CONTRIBUTION
SBETWEEN TWO SIGMA AND THREE SIGMA®¢/+6Xe'PSI?e6Xs ' THTAY9TXs 'PHI?,

6/91%X93F10.3)
RE TURN
END

SUBROUTINE RANDUCIXs1YeYPL)

IMPLICIT REAL®*8(A=MHy0-2)
1valx#65539

IF(IY)S50696
IYslye2l47483647¢]
YPLE]Y
YPLEYPL®:46566]130=9
RETURN

END

SUBROUTINE GAUSS(IXsSeAMeV)

IMPLICIT REAL®8(A=Hy0=Z}
Az eDe 0

DO S0 I=l,48

CALL RANDU(IXeIYsY)
IXxaly

AspeY

VE (A=24.D¢0)/2.D¢0
Vay#SeAM

RETURN

END

SUBROUTINE INTGRL{FCT+DRKGSyN+ERRORsAUX+YsDERY+DTMIN)

IMPLICIT REAL®B(A=Hy0=2)

DIMENSION AUX(641)9Y(1)9DERY(])
COMMON/MEAS/PHIM{1000) ¢ THTAM{1000) +PSIM(1000)
COMMON/SOL /T (1000) ¢PHI(L000)THTA{1000)+PSI(1000)
COMMON/COEF/CON(30) ¢CCON{30) ¢+ NCyNCON(30)
COMMON/MATRIX/C(30+60) yRESSUMySPHL »STHASPS]
AR6.28318531D¢0

NL=NC=5

00 10 I=1,46

Y(1)aCONINLeI=]1)

D0 11 IsmleNC

Y(6¢1)aDUM(NLs1)

DO 11 J®ie5
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Table 1. Continued

Y{(6+JENC+])=DUM(NL*Jy])}

NEQ3(NC+1) %6

ONEQ=NEQ

NL=NCe]

K=]

PHI(K)=Y (}])

THTA(K) =Y (3)

PSI1(K)=Y(5)

THTA(K)}STHTA(K) «CON(23)
PSI{K)=PSI(K)+CON(24)
OPHI=PHIM(K) =PHI (K)
IF(DPHI «GTo {(A/2,000)) PHI(K)2PHI(K) ¢A

IF (OPH] eLTe {(=A724D*0)) PHI(K)=PH] (K)=A
DO 19 IslyNC

Y(6¢28NCo])myY (6028NCe]) sDUM (235 1)
Y{6¢40NC+])unyY (6048NCe]) *DUM (245 1)
CONTINUE

DO 12 I=leNC

DO 12 J=lyNC
ClloJ)uY(64])#Y (64J) /SPHINED o Y(6428NC+I)RY (6429NC+)) /STHASR?
1 Y{Oe4BNCoL)®Y (GeaaNCeJ) /SPS] a2
C(lsJ)nClIsJ)®CCON(]I)*CCON(Y)

DO 17 JaleNC .
CLlJINL) S(PHIM(K)}=PHI(K) ) *Y(6+¢J) /SPHI®S2 ¢ {THTAM(K)=THTA(K))*®
1Y(6+28NC*+J) /STHA®S2 o (PSIM(K)=PSI(K))®*Y{6¢4#NC+J)/SPS]ne2
C(JoNL)BC(JoNL)*CCON(J)

RESSUM 3 ((PHIM(K)=PHI (K))/SPHI)®#2 ¢ ((THTAM(K)=THTA(K))/STHA) se2
1o ((PSIM(K)=PSI(K))/SPS])®w2

DO 13 K=24N

XlaT(Ke]l)

DTEST(K) =T (K=1)

DT=sDTE

NDT=])

IF(DTMIN.GE.DTE) GO TO 18

NDTSDTE/UTMIN

UT=NDT

DT=0TE/ODT

CONT INUE

CALL DRKGS(X1+YoDERY+NEQoFCTeAUX9DT+NDT)
IF{Y(1)eLEe (=A))Y(1)mY(]l)®A
IF(Y{(1)«GE«A)Y(1l)mY(]1)~A

PHI (K)3Y(])

THTA(K) =Y (3)

PSI (K)=Y(5)

THTAIK)STHTA (K} +CON(23)
PSI(K)=PSI(K)+CON(24)

DPHI=PHIM(K)=PHI (K) ,

IF (OPHI «L.Te (=A/2.D¢0)) PHI(K)=PH]I (K)=A
IF(OPHI «GT o (A724D20)) PHI(K)ZPHI(K)*A
DO 20 I=1l4NC
Y(6428NCe])mY(6+428NCo1)+DUM(23,1)
Y(644oNCo]) Y (6448NCe]1)*DUM (24, 1)

CONT INUE

DO 15 I=]lyNC

00 15 Js]l«NC

137



AEDC-TR-78-10

0Oo0n

Table 1. Continued

ClIsJ)mY(6])%Y(60J)/SPHIRE2 & Y (6424NC+)®Y(6+29NCeJ) /STHARRZ

1+ Y{6+4¥NCo])RY (6+48NCJ) /SPSI®82 ¢ C(1eJ)

15 CLI+J)=C(1eJ)*CCON(]I)*CCON()

00 16 JalsNC
C(JNL) 2 (PHIM(K) =PHI(K) ) *Y (6¢J) /SPHI##2 +(THTAM(K)=THTA(K))*®

1Y(6+24NC+J) /STHA®#2 o (PSIM(K)=PSI(K))®#Y (6¢44NCe+J)/SPSI®#2+C(JoNL)
16 C(JoNL)SC(JoNLI*CCON(J)
RESSUM 3 ((PHIM(K)=PHI(K})/SPH])##2 ¢ ((THTAM(K}=THTA(K))/STHA)#a2

1+ ((PSIMIK)=PSI(K))/SPS]}%#2 + RESSUM

13 CONTINUE

RETURN
END

SUBROUTINE TEMP(PSIoTHTAsPHI+PSIPsTHTAPsPHIPsPLeP2eP3¢P1PyP2P+P3Py

1K)

IMPLICIT REAL®*8(A=H,0=2)
REAL®*8 MAG

COMMON/TCOEF1/SPNeAsBsMAGsQAIRA+AD9BDyALPASBTASALPAPBTAPsDLTAZ,Py

1Q9ReSMAGYDLTA

COMMON/CQEF /7CON(30) +CCON(30) ¢ NCyNCON{30)
SPN=PLP=RSIP*PZ2*0CQS{THTA) =PIP*DSIN(THTA)
An=P3I4DSIN(PSI)®DSIN(THTA) *+P2%DCOS(PSI )} *DCOS{THTA)
B8==P3#DCOS (PSI)

MAGS 2,0+0% (P2*DSIN(THTA) *DCOS(PSI}

1+ P3¢ DEOS(THTA)'DSIN(PSI))'DCOS(PSI)'DCOS(THTA)

QA = P2 )

RA = P3P*DCOS(THTA) =PSIP*P28DSIN(THTA)
AD==P3IP*DSIN(PSI)*DSIN(THTA)=PR2# (PSIP*DSINIPSI)*DCOS(THTA)
1+THTAP®DCOS (PSI)*DSIN(THTA) ) =P3# (PSIP#DCOS (PSI) *OSIN(THTA)

2¢THTAP#DSIN(PSI)*DCOS{THTA})+P2P# DCOS(PS1}*DCOS(THTA)

BOa= PIPYDCOS(PS]I) +PSIP*PISDSIN(PSI)

ALPA = OCOS(PSI) # DSIN(THTA)

BTA ==DSIN(PSI)

ALPAP = <pPSIPDSIN(PSI)®OSIN(THTA) «THTAP*DCOS(PSI)*DCOS(THTA)
BTAP = =PS1P#DCOS(PSI)

OLTAZ = (DCOS{(PSI)®DSINITHTA))®#2 & (DSIN(PS]I))®e2
P = PHIP = PSIP ® DSIN(THTA)

Q = THTAP

R = PSIP?DCOS(THTA)

IF (K4sEQe0) GO TO 10

ALPA3THTA

BTARDATAN(=DTAN(PSI)/DCOS(THTA))

Asp2
Ba=(P3/(DCOS(PSI}#n2)+DTANI(PSII*DTANI(THTA} #P2)®
1(DCOS(BTA)®#2) /OCOS(THTA)

DLTA2=ALPARR2+BTA®R2

MAG=2,D+0% (ALPA®A+BTA*B)

10 CONTINUE

DLTA=DSQRT (OLTA2)
SMAG'O.D.O .
IF(OLTA2.EQ.0.,D+0) GO TO 9
SMAGSMAG/ (2,D*0*DLTA)

9 CONTINUE
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ADw(0,.De0
BD’O.D‘O
ALPAPR(] D¢ 0
B8TAP=Q,D+0
RETURN

END

SUBROUTINE REGOUT (ACONsWXX)

IMPLICIT REAL®8(A=Hy0=2)
REAL®*8 MPRMs IPRM

DIMENSION ACONI(30) oWAX{30)
COMMON/COEF/CON(30) yCCON(30) s NCoNCON(30)
COMMON/CONST/RATIOsMPRMs 1PRMy A9 TANGLE
Cl = IPRM/MPRM

DO 10 I=i1422

ACON(]I) = MPRM®CON(I)
WXX(I) = MPRM®WXX(I)
ACON(1) = ACON(1)#C]
ACON{3)13aCON{3) (]

ACON(S) = ACONI(S)+(C]

WXX{l) = WAX(]l) * C}
wXX(3)awxx (3)#C]

WXX(5) 8 WXX(5) eC]
ACON(2]1)=ACON(21)*C})
ACON(22)sACON{22) *C]
wxXx{21)swxx(2lr«C}l
wxx(22)swWwxx(22)+C}
ACON(10)=ACON(10) #C1®RATIO
ACON(11)3ACON(1]1) *RATIO
ACON(13) = ACON(13) & RATIO
ACON(14) 3 ACON(14) ® RATIO
WXX(10)=wWXX(10)*C1#RATIO
WXX(11)3wWXX{11)®RATIO
WXX(13) = WXX(13) #* RATIO
WXX(14) = wWXX(14) ® RATIO
DO 1) 1=234+30
WXX(I)sWAX(I)/A

ACON(]I) = CON(I)ZA

RETURN

END

SUBROUTINE REG{ACON)

IMPLICIT REAL®8(A=H:0=2)

REAL®*8 MPRM¢ IPRM

DIMENSION ACON(30)
COMMON/COEF /CON(30) ¢CCON(30) 4 NCoNCON(30)
COMMON/CONST/RATIOsMPRMs [PRMy A+ IANGLE
0O 10 Is3}y22

CON(I) = ACON(1}/MPRM

Conil) = ACONI(1)/IPRM
CON(3)aACON(3)/IPRM
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CON(S5) = ACON{(S)/IPRM
CON{(10)®=ACON{10)/ (IPRM*RATIOD)
CON(11)=CON(11)/RATIO
CON(13) = CONI]13)/RATIO
COn(l4) = CON(14)/RATIO
CON(21)=ACON(21)/IPRM
CON{22)sACON(22)/1PRM
D0 11 I=23,30

CON(I) = ACON(I)®A
RETURN

END

SUBROUTINE MBARA(M1yM2sM3¢PSI+THTA9PH] +PSIPsTHTAPIPHIP,
1P1sP2sPeP1PyP2P+P3IPyJ)

IMPLICIT REAL®8(A=Hy0~2)

REAL®8 MloM29eMIsMAGIMYTeMZT oMYTPeMZTPyMYTE ' MZTE
COMMON/TCOEF1/SPNyAsByMAGYQAsRAAD9BD+ALPA+BTAS
1ALPAPBTAPsDLTA2sP+QsReSMAG,DLTA
COMMON/COEF/CON(30) +CCON(30) yNCoNCON(30)
COMMON/CONST/RATIONZ1922¢2Z3414

M1=SPN® (CON(13) +CON{]14) ®DLTA2) *P*(DUM(13v4J)
1+DUM{149¢J)*DLTA2 « CONL16)*MAG)

M1sSMLeDUM(109J) *SPNECON(L1)®DLTA*»PHDUM{11+J)*D L TASP#®CONI(1]1) *SMAG
TEMP] = CON{1) + CON(S)*DLTAZ

TEMP2 = UUM{19sJ)*DUM(SeJ)®DLTA2 ¢ CON(S5)*MAG
TEMP3Y 3 CON(2)+CON(6) ®DLTA2=CON(T)*BTA®®2
TEMP3Z 3 CON(2) * CON(6)*DLTAZ = CON(T)RALPA®«2
TEMP4Y = DUM(29J) ¢DUM{ 61 J) *DLTA2 ¢+ CON(O) #*MAG
1=DUM{TJ) *BTA®®2=2 ,Des0*BTA®CON(7) *B

TEMP4Z 3 DUM(29sJ) ¢ DUM(6+JI®DLTA2 ¢ CON(6)*MAG
1=DUM(ToJ) #ALPA®®2 = 2,Ds0%ALPASCON(T) #A
TEMP]=TEMP1+CON(3)*DLTA

TEMPZaTENP24DUM{3+J) *DLTA+CON(J) *SMAG
TEMP3IYRTEMPIY+CON(9) *DLTA
TEMP3IZsTEMP3IZ+CON(9)®DLTA

TEMP4YSTEMP4Y*DUM(99J) *OLTA+CON(9) #*SMAG
TEMP4ZsTEMP42+¢DUM(94J) *OLTACON(9) #*SMAG

TEMPSY = CON(3)+CON(9)*OLTA2=CON(10)#BTA®»2
TEMPSZ 8 CON(3) ¢ CON(9)*DLTA2 « CON(10)*ALPA®#»2
TEMPEY = DUM{3¢J)*DUM(99J) *DLTA2 + CON(9) *MAG
1=DUM{109J) *BTA®®2 = 2,D+0%CON(10)*BTA*B

TEMP6Z = DUM(3+J) *DUM(99J) *DLTAZ2 ¢ CON(9) #*MAG
1=DUM{10sJ) #ALPA##2 « 2,D+0%CON(]10) YALPA®A

TEMPT = CON(4)+CON(12)*DLTAZ

TEMP8 = OUM{4+J)*DUM(12+J) *DLTAZ2 ¢ CON(12) *MAG
M2 = ASTEMP] ¢ ALPASTEMPZ ¢ QA®TEMPIY ¢ QeTEMP4Y
1¢DUM (89 J) *R*ALPABTA+CON(B) # (RA®ALPA®BTA+R®ASHTA
2oRSALPA®D) ¢AD*TEMPSY ¢ ALPAP®TEMPGEY
3*DUM(119J) ®BTAP*ALPA®RTA ¢ CON(11)*(BD®ALPA*BTA*BTAPSA®BTA
4+BTAPSALPA®B) ¢+ SPN®*BTA STEMPT + B®P*TEMPT
SepeBTA *TEMPS

M3s=Bo*TEMPl=BTA*TEMP2+RA®TEMPIZ « RUTEMP4Z

1eOUM (B J)#QeALPA®BTA+CON(B) * (QA®ALPA#BTAQ*A*BTA
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Table 1. Concluded

2+QeALPA*E)=BD*TEMPS5Z ~ BTAPTEMPG6Z
3=DUMI119J) ®ALPAP®ALPASBTA=CON(11)*(AD®ALPA®BTA+ALPAPSA®BTA
4+ALPAPSALPA®E) s SPN*ALPA®TEMPT ¢ A®PSTEMPT?
S5¢PSALPA®TEMPS

MYTECON(2]1) #THTA

MYTEMYTSCON(20) ®* THTAP

MZT=CON(22) *PSI

MZTSMZT+CON(19) *PSIP

MYTPaDUM (219 J) *THTASCON(2]1) #P2
MYTPaMYTP+DUM(20+J) ®*THTAP+CON (20) *P2P
MZTP=0UM (224 J) *PSI+CON(22) *P3

MZTP=MZTPeDUM(199J) *PSIP+CON(19) #P3P

MYTE= (DUM(21+J) *THTASCON(21) #P2) /RATIO

MYTE=MYTE s (DUM{204J) #THTAP+CON{20) *P2P) /RATIO

MZTE= (DUM(224J) *PSI+CON(22) *P3) /RATIO

MZTE=MZTE ¢ (DUM(195sJ) #PSIP+CON(19) #*P3P) /RATIO
M1aM]eMYTE®DSIN(PSI)9DCOS(THTA) ¢+MYT#(P3#DCOS (PSI) #DCOS(THTA)
1 =P2oDSIN(PSI)®DSIN(THTA))}/RATIO
2 =MITE*DSIN(THTA)=MZT*P2%DCOS(THTA) /RATIO
M2aM2+MYTP*0COS (PSI) =MYT®*PISDSIN(PSI)

M3aM3+MYTPHDSIN (PSI)SDSIN(THTA) +MYT® (P3ISDCOS(PSI) SDSINITHTA)
1 +p24DSIN(PS])*DCOS(THTA))
2 SMITPSOCOS(THTA)=MZT#P2%DSIN(THTA)

RETURN

END

SUBROUTINE MBAR({MXOIXsMYOIsMZOIsPSIsTHTAsPHIePSIPsTHTAPyPHIR)

IMPLICIT REAL*8(A=Hy0<2)

REAL*8 MAQIXsMYOIoMZOIsMAGIMYT¢MZT

COMMON/TCOEF1/SPNsAsBsMAGsQAsRA¢ADIBDsALPA+'BTAVALPAP+BTAPSDLTA2,
1PsQeRsSMAGYDLTA

COMMON/COEF/CON(30) +CCON{30) yNCoyNCON(30)

COMMON/CUNST/RATIO0rZ1022923914

MXOIXs P9 (CON(13)+CON(14)%DLTA2)

MYQl = ALPA® (CON(1)+CON(S)*DLTA2) *Q® (CON(2) *CON(6) *DLTA2
1=CON(7)%3TA®%2) ¢+CON(B) *R®ALPA*BTA+ALPAP* (CON(I)
2CON(9)#DLTAZ=CON(10)*BTA®%2) oCONI(1]1) *BTAP®ALPASHTA
3+P#BTA % (CON(4)+CONI12)*DLTA2)

MZOI = <8TA®(CON(L)+CON(S)I*DLTA2) +R®{CON(2}+CON{6)*DLTA2
1=CON(7)®ALPA®®2) +CON(B8)*QSALPA*BTA=BTAP* (CON(3) *
2CON(9)*DLTAZ = CON(10)*ALPA®®2)«CON(]1]1)*ALPAPSALPA®BTA
J+PRALPA® (CON{4)+CON{12)*DLTA2)

MXOIX=MXOIXeCON(10) +PoCON(]11)®DLTA

MYDLlaMYQOleALPA®CON(3) *OLTA+Q*CON{9) *DLTA

MZOI=MZOI=BTA®CON(3)DLTA+R®*CON(S)*DLTA

MYTSCON(2]1)*THTA

MYTEMYT¢CON(20)*THTAP

MZT=CON(22) *PS]

MZTSMZTeCON(19)#PS]P

MXOIXHHXle0(MYT.DSIN(PSI).DCOS(THTQ)-MZT'DSIN(THTA))/RATIO

MYQI=MYQOI +MYT#0COS(PSI)

MZOL1=MZOIeMYT®DSIN(PSI) ®*DSIN(THTA) +MZT#DCOS(THTA)

RETURN
END
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AOOOOOOOO0

100

101
102
103
104
105
1006
107

Table 2. Fortran Listing: Asymmetric Parameter Extraction Program

ANGLES

VARNER VERSION 1 APR, 1977

COMPUTES AEROQ COEFFICIENTS FOR MIRROR SYMMETRY BODY
BODY AXIS SYSTEMs AERODYNAMIC ASYMMETRY

EXACT 3 u0F EQUATIONS UTILIZED

IMPLICIT REAL®*B(A=Hy0=2)

REAL®8 IXeIY9IZoIZXoJIXoJYsdZs1XPeIYPyIZPyIMX]1sMX29MYLsMY2eMZ]1M2Z2
REAL*8 ALISTI(72}

REAL®8 CARD(10)

REAL%4 TS(1000)9yPHIS{1000) ¢ THTAS(1000}sPSIS(1000)

DIMENSION AUX( S+438)9Y(438) yDERY (438) oWAX(72) 9ACON(T2)+CT(T2+73)
JoWX (72) 9AACON(T2) ¢+ CC(T20144)

EXTERNAL FCT,DRKGS

COMMON/MEAS/PHIM(1000) 9 THTAM({1000) ¢PSIM{1000)

COMMON/SOL/T(1000) ¢PHIC1000)+THTA(1000)4PSI(1000)
COMMON/COEF/CON(T2) »CCONLT2) yNCoNCON(T2)
COMMON/MATRIX/C (72+73) ¢RESSUMsSIGPHL»SIGTHAy SIGPSI
COMMON/CONST/JX ¢ JY ¢ JZ9 IXPo 1YPo I1ZPs IANGLE » IXe 1Y 12
COMMON/CONST2/MX]1 yMX29MY Lo MY2eMZ19MZ29A

EQUIVALENCE (AUX(1)9CT (1)) 0 tY(1)sCT(2191)) 9 (DERY(1)9sCT(2629))
1(CC(1)+C(1))
2 o IPHIS (1) oPHI(1)) o (THTASCL) o THTA(L) ) o (PSIS(1)oPSI(]1}))
DATA ALIST/'CM O To'CM A Y 'CM MA Y9tCM A2 Yo'CM A MA
1tCM A3 YotCM A2 MA','CM MB 1,9CM B2 ToICM B2 MBYo'CM A MB ¢,
2'CM MAB "9'CM A2 MB'o'CM MAB A*,?CM A B2 *»'CM MA B2'+'CMQ O te
I3'CMQ A 1oICMQ MA  1,9CMQ A2 1,°CMQ A MA'4I'CMQ MB 'o'CMQ B2 ¢ty
4'CMQ A MEY,CMQ MAB ','CMR B 1,/CMP B TyICN O 14°CN B 'y
SYCN A B '»*'CN MA B *9*CN B3 $o'CN A2 B "4ICN B MB t9'CN B MAB!,
6'CNR O *9?'CNR A totCNR MA '9'CNR A2 '9'CNR MB *4'CNR B2 1y
7'CNR A MAT,'CNR A MB'+*CNR MAB *y*'CNQ B Y9'CNP A 'e'CL O te
8tCL A 1o0CL B PoCL A B ',fCL MA B *'CL B MB ,.°CL P LX)
GICLP MA '"9tCLP MB "o 'CLP A2 14'CLP B2 ' 'DUMMY t 5 YDUMMY Ty
*rIzZX Y5 'CNR TUN 94'CMQ TUN t49CMA TUN ?9?'CNB TUN ?¢'FLOANG T?y
SIFLOANG Py tPHI(0) V9 *THTA(O) t9'PSILO) *e'P (D) '91Q(0) Ty
IR (0) v
NAMELIST/N‘M/NSHTCHvNTOT'NC’NITERODTHIN!BOUND.AREAODIA'IX’IY'ROQUO
IAACONONCON!NSES“HQSPHI'stHTAOSPSI.AMPHI'AMTHTA.AMPS"
2SAMPLE ¢ NDELTAe IUPDATs1Z91ZX s IANGLE » INLCON9sOTGEN

3¢ IGPNO ¢ IBLKNO 9 IRCGENoSIGPH] ySIGTHA s SIGPSI+NSTART IRCSTR

FORMAT (1H]1 220Xy '#ussened INPUT DATA #ensstadat,/,

11X "GROUP NUMBER ®?4I595Xs 'BLOCK NUMBER =¥y 15¢/

19Xe "TIME? 310X s "PSI*910Xe'THETA s 10Xe?*PHI+//)

FORMAT(7F10.0)

FORMAT(S<o4{EL13,691X)) .

FORMAT (S5X92(AB892K92(EL134695X)))

FORMAT (/91 XoVITERATION NO'91S¢/42(21X9 *CON* 911 Xe'DELTA CON'))
FORMAT(2(11X,*FINAL CONSTANTS AND PROBABLE ERROR',10X)+/)

FORMAT (2(5XstClt91399)3"9EL13:6¢5Xe?("9E13e69") *92X9AB))
FORMAT (1H1 ¢5X9 tDATA FIT COMPARISON'9s//¢1lXs 'TIME?,

13X e "PSI/FIT43X,'PSI/EXPY93Xe'DEL PSIV92Xe "THTA/FITV2Xe*THTA/EXP?
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Table 2. Continued

242X9'DEL THTAY92X9 'PHI/FIT®y3Xe *PHIZEXPY 93Xy *DEL PHI»/)

108 FORMAT(SXsF1046e9F10,.3)

109 FORMAT (lXe'®amae CONVERGENCE CRITERIA NOT SATISFIED AFTER'y 14,
11Xe*ITERATIONS #ssuv)

110 FORMAT(LHlelXs*SUM OF RESIDUALS*+EL13,.6¢5Xs'NEW PROBABLE ERROR=?,
1E13¢645X9'0OLD PRUBABLE ERROR ®'9E13,6)

111 FORMAT(4F10,4)

112 FORMAT(LXs70('9?) /41Xy ?8000s0ns ERROR #%s8n0aa81,/,]1X,
1*NO OF CONSTANTS ALLOWED TO VARY EXCEEDS TOTAL NO OF DATA POINTS
CUSEDt ¢ /91lXeT70(20))

200 FORMAT(1X430(?®r),* AEROUYNAMIC COEFFICIENT EXTRACTION BY CHAPMAN
IKIRK METHOD *930(0#0) o/ o1Xs'NSWTCH 374159 ( =0¢y NORMAL DATA REDU
SCTION'o/41TXetsle IDOF DATA GENERATEDs NO ITERATION®e/»
317Xst=29 3ID0F DATA GENERATED AND STORED ON 7S PACK) *4/¢1Xs'IUPDAT
4=9,15,0 {20y INITIAL GUESSES NOT UPDATED FOR FOLLOWING SHOT'e/s
SITxe*NE 0y INITIAL GUESSES UPDATED) ')

302 FORMAT(1Xy'JANGLE =v4]I59*(=0s ALPA AND BETA IN TERMS OF VELOCITY R
LATIOSe"9/917Xe*NE Oy ALPA AND BETA IN TERMS OF ANGLE OF ATTACK AND
3 SIDESLIP)'9/e)lXe"INLCON =?,]S,0(a 0, INITIAL CONDITIONS EVALUATED
4 FROM DATA'y/+17TXs*NE Q¢ INPUT VALUES USED)?)

201 FORMAT( /+1Xs"PARAMETERS ®®aeennt,/4]1Xs'NO OF POINTS (N) =?9,15,
1'TOTAL NO VARIABLES (NC) =39,I5¢5Xe*TOTAL NO ITERATIONS (NITER)=v,
215¢/91%Xs VINTEGRATION STEP SIZE(DT)=",EB.2+5X+s YCONVERGENCE BOUND ON
3 ITERATIN (BOUND)I =Y 4EBe20//91Xy tBODY #80208880,/,1XoAREA at,
4F 10069 'FTRa204SX9'DIA = oF1l0e6s'FT ' 1/701Xe?IX =2 ¢F 12,79 'SLUGS=FT##2
SVeSAe VLY B0 oF12.Te'SLUGS=FTH#27,/31Xe"IZ SV'4F12,T+"'SLUGS=FTO#®21,
6SKe PIZX S14F 12479 *SLUGS=FT#821)

202 FORMAT(/s1Xs '"FREE STREAM #0sseunae?,/ 1X¢'DENSITY (RO) ='Elée7»
1'SLUGS/F T®#30,5Xs?U mt9Fl0.44'FT/SEC*s/ +1Xe"COEFFICIENTS #ewnnuy)

203 FORMAT(1X92(YACON("9I39") =t 4E13,642Xe"(?9ABe") "¢SXs INCON(?913»
1') =v,12+45X))

301 FORMAT(1H])

303 FORMAT(1Xs*'BEGINNING RECORD NUMBER =1%,15)

401 FORMAT(10A8)

402 FORMAT(12910A8)

404 FORMAT(LXs60(%®9),* INPUT CARD IMAGES '¢40('%0),//)

406 FORMAT(1H])

407 FORMAT{1X+'NOTE = ¢,]10A8)

502 FORMAT(1Xe69(*®0) ,/,1X,t0ess 3IDOF GENERATED DATA STORED BEGINNING
20N RECORU NUMBER'15¢2Xs Vouuuv,/9]1Xe "UNDER IGPNO ='y1592Xs
3' AND IBLKNO 20 JSe/¢lXo?IInleT0e/s1Xe?1132sPHIYe/s1Xs
A'II334THTAY o /0lXo? 1 ImagPSIVy/s1Xe69(00))

WRITE(06+404) -
405 READ (059401 +END=403) CARD
WRITE(06+402)CARD
GO TO 405
403 REWIND S
READ(05+401)CARD
WRITE(06+406)
DEFINE FILE 07(1140040159L+IREC)

INITIALIZATION

IPRINT=0
NPRINT=0
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Table 2. Continued

998 READ(0S+NAMENDa999)

AACON(60)=]IZX

NaNTOT

WRITE(06+301)

WRITE(06+200)NSWTCHy IUPDAT

WRITE(06+302) IANGLEINLCON

WRITE(06+407)CARD

WRITE(06+201)NTOToNCyNITER9DTMIN,BOUND s AREAIDIAIXs1Ye12Z,12X

WRITE(06+202)RO.U

NCO2sNC/2

DO 204 IsleNCO2

ITesleNCO2

ACON(IT)SAACONLIT)

ACON(T)SAACONI(]}
206 WRITE(06+203) I+ACON{I) sALIST{I) o1oNCON(I)oIToACON(IT),

LALIST(IT)»IToNCONIIT)

Pl 8 3,141592D¢0

A = PI/180.,040

IF (NSWTCH) 84847

DATA INPUT

o0n0n

7 CONTINUE
T{1)=20,0%0
DO 10 I=2¢NTOT
T¢{I1)aT(1=1)¢DTGEN
PHIM(I)a),De0
THTAM(])3040+0

10 PSIM(1)30,De0
PHIM(1)30,D¢0
THYAM(1)30.040
PSIM(1)30,D+0
60 To 9

8 CONTINUE
IRECs]

500 READ(O7'IREC)IGPTIBLKsIIeTS

IF {LIGPNONE.IGPT} GO TO 500
IF (IBLK.NE<IBLKNO) GO TO 500
IF(IL.NE+1} GO TO S00
READ(O7'IREC) IGPNO» IBLKNO» 114PHIS
READ(O7'IREC) IGPNOs IBLKNOs 11+ THTAS
READ(OT7'IREC) IGPNO+ IBLKNO+I11,PSIS

DATA ALTERATION

[ X2X32l

D0 504 I=)oNTOT
T(1)sTS(])
PHIM(T)sPHIS(I)
THTAM{(I)sTHTAS (]}
504 PSIM{I)=PSIS(I)
IF (NPRINT.EQ, EGPNO+AND« IPRINT.EQ,IBLKNO) GO TO 4
WRITE{06+100) IGPNQ» IBLKNO
JIRCTMPEIREC=4
WRITE(06+303) IRCTMP
LOOP=0
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Table 2. Continued

NLOOP=)

D0 & Is=]eNTOT
WRITE(069102)T(I)yPSIM(I) ¢ THTAM(I) oPHIMI(I)
LOOP=_00re]

KLOOP=NLUQP#S0

IF (LOOP+LT.KLOOP) GO TO ¢
NLOOPsNLUOP+]

WRITE(06+100) IGPNO,IBLKNO

CONTINUE

NPRINT=IGPNO

IPRINT=IBLKNO

CALL PART(SAMPLE JNDELTAsNsNTOT4NSTART)
IF (NSESWH,EQ.1)CALL NOISE(SPHIsSTHTASPSIsAMPH]+sAMTHTA+AMPS]»
INeSAMPLE yNDELTANTOT)

IF (INLCONJEG,0) CALL ICS(ACON)

D0 46 I=leN

PSIM(I) = PSIM(II)=A

THTAM(L) = THTAM(])®A

PHIM{I} = PHIM(I)®A

CONTINUE

NSuM=D

DO 1] I=1sNC

IF(NCON(I) sEQel) NSUMzNSUMe]

SUM = NSUM

DEF INE PARAMETERS AND TRANSFORM COEFFICIENTS IN SuB8 REG

00 12 IsisNC
CCON(T)=NCON(I)
QINF = RO# (Use2) /2,040
JX=IZX/1X
JysIlzxs1y
JZalzxs12
IXPa(1Z=lY)/1IX
IYPa(IX=12)/1Y
12Ps(lY=IX)/12
SQATTaDIA/ (2.,De0%Y)
SQTEQINF*AREA®DIA
MX1=SQT/1IX
MX2ZMX]1%SQTT

MY | ®SQT/ 1Y

MY2=MY] #5QTT
MZ13SQT/12Z
MZ23MZ1*SQTT

CALL REG(ACON)
XN=N
CHECK=3,U¢0#XN=SUM
IF (CHECKJLE.0,D+0) GO TO 997
NT=NC+]

E=0eD+0

NR=0

CONTINUE
JX2CON(6U) Z7IX
JYaCON(60)/7]1Y
JZ3CON(6U) /12
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Table 2. Continued

INTEGRATION

o000

CALL INTGRL (FCT+sDRKGSsNsERRORsAUX9sYsDERYsDTMIN)
IF (NSWTCH.GT.0) GO TO 47

IF (NSUM«EQ.0) GO TO 47

NR=NRe 1

CHECK FOR CONVERGENCE

OO0

E1sDSQRT (RESSUM/ (3 .Ds 0 #XN=SUM} }
RESSUMaDSQRY (RESSUM)
WRITE(064110)RESSUMsE]L GE
1F (DABS (E1=E) =BOUND) 36+36+2]
21 IF(NR=NITER)22+22+36
22 NTRIG=0
38 CONTINUE
IF (NSUMJEQ.]1l) GO TO 33
E=El

CONTRACT C MATRIX = REMOVE ZERO ROWS AND COLUMNS

a0no0n

DO 23 1sl¢NC
DO 23 Jsl¢NT
23 CT(1oJ)=C(Is))
LL=0
00 90 I®lyNC
92 IF({1+LL).,GT,NC) GO TO 90
IF (NCON(IeLL) 191991993
91 Lis=Liel
G0 TOo 92
93 LuLLel
DO 94 Ks]oNT
94 CLIeK)aCT (LK)
90 CONTINUE
LL=0
LMsNSUM
DO 80 IsleNC
82 IF(11I+LL)«GBT,NC) GO TO 80
IF (NCON{L1oLL))B1+8]1+83
81 LisLLel
GO TO 82
83 LsLL+]
DO 86 K=u],LM
84 CT(KyI1)BC(KyL)
80 CONTINUE
00 85 I=leLM
85 CT(IsLMe1)BC(IoNT)
LsNSUM
LLsNSUMe ]
D0 71 Is=lsl f
Do 71 Jslel
71 C(leN)uCT (1)

c MATRIX INVERSION OF C
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Table 2. Continued

IF(NTRIG)&0,27+40

CALL INV(CToeLeLLoWXeCC)
GO TO &l

CALL INV(CTeLsLeWXsCC)
DO 32 Is)eNC
C(IsLL)®O0,De0

WX(I)=CT (1)
WXX{1)50.0¢0

LM=0

EXPAND C INVERSE TO INCLUDE ZERO ROWS AND COLUMNS

D0 31 I=],NC
IF(NCON{1))28+28+30
LMaiM=]

GO To 31

ITslMe]
C{IoLL)SCT(ITHLL)
WXX(I)sWX(IT)
CONTINUE

GO TO 34

SOLVE FOR CORRECTION TO COEFFICIENTS

00 35 IsleNC
IF(NCON(I)=1)39¢69,49
C{IsNT)IBC(LlNT)/C(1,1)
wXX(I)=leDe0/C(Ioe])

GO YO 35
C(IoNT)®0,De0
WXX(1)20eDe0

CONTINUE

LL=aNT

IF(NTRIG+EQ.1) GO TO 42
WRITE(06+104)NR

DO 60 I=l,yNC
wWxx{l)sC{I,LL)

TRANSFORM COEFFICIENTS AND CORRECTIONS IN SuB REGOUT

CALL REGOUT(ACONsWXX)
D0 50 I=l.NCO2
ITaleNCO2
HRITE(OGQIOB)ALIST(I)oACON(l)onxtl)oALlST(IT)'ACON(IT)oHXX(IT)
DO 43 [s=]4NC
CONCI)SCON(I)*C(IyLL)
GO TO 20

CONTINUE

NTRIG=]

G0 TO 238

CONTINUE

CUMPUTE PROBABLE ERROR IN COEFFICIENTS

147



AEDC-TR-78-10
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&4

45
47

597

48

598

Table 2. Continued

DO &4 1s1,NC
wXX{(I)=EL1*DSGRT (DABS{(WXX(I)))
CALL REGOUT (ACONsWXX)
WRITE(069105)

IF(NR.GT .NITER)WRITE(06+109)NR
DO 45 I=]1,NCO2

IT=1leNCO2

WRITE(069106) LoACON(I) oWXX(I)9oALIST(I)oIToACONCIT) oWXX(IT)
LoALIST(IT)

WRITE(06+107)

LOOP=0

NLOOP=]

IREC=IRCGEN

DTTEMPaT (2)=T(])

DO 48 I=]l.N

TTaT(I)

21 = PSI(I)/A

2 PSIM(I)/A

Z3 THTA(I) /A

24 THTAM(I) /A

25 PHI(I)/A

26 PHIM(I) /A

210321=-22

211373=24

212%25=26
WRITE(OG6+108)TTeZ19Z2+Z10923:2Z49211925+26¢2Z12
THTAS(I)®Z3

PS1Sil)sl]

TS(I) =TT

PHIS(I)3ZS

IF (NSWTCH,NE,.O) GO TO 597
TS(I)=nZ10

PHIS(I)=l1]

CONTINUE

LOQP=LO0P+]

KLOOP=NLOQOP#*50
IF(LOOPLT.KLOOP} GO TO 48
NLOOP=NLOQP+)
WRITE(06+107)

CONTINUE

IF {NSWTCH,NE.O0) GO TQ 599

COMPARISON OF FIT DATA AND EXPERIMENT STORED

IREC=IRCSTR

IF (IRCSTR¢GE, IRCGEN=3,AND« IRCSTR.LE+IRCGEN®3) GO TO 599

WRITE (06+598)NSWTCHy IRCSTR» IGPNO+ IBLKNO+DTTEMP
FORMAT (1H] o1 Xs * NSWTYCH 3?4315, /01%X¢"3DOF DATA STORED BEGINNING AT RE
1CORD 1515¢2X, *UNDER IGPNQ =0,15,2Xe"AND IBLKNO =2t,]S,/91Xe?1[a5,TH
2TA /91X 1169 THTA=THTAM o /91X e 'T118TePSI'9/91Xe?11n8,PSI=PSIMY,
3/791%0'DT 8T oFTe412Xe*SECYs 1H])

I11s5

WRITE(OT'IREC) IGPNO,IBLKNOs I+ THTAS

Ilab

WRITE(OT'IREC) 1GPNO ¢ IBLKNO#II4PHIS
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Table 2. Continued

11=7
WRITE(OT7*IREC) IGPNO, IBLKNOsI1+PSIS
II=8

WRITE(O7'IREC) IGPNQyIBLKNOsII»TS
CONTINUE

IF (NSWTCH.NE,2) GO TO 501

3DOF GENERATED SOLUTION STORED

WRITE(06+502) IRCGEN IGPNOy IBLKNOD
11al

WRITE(O7*IREC) IGPNO+IBLKNOsI10TS
1122

WRITE(O7*IREC) IGPNOIRLKNOyI1:PHIS
11=3

WRITE(O7*IREC) IGPNO»IBLKNOs 11+ THTAS
IIné

WRITE(OT'IREC) IGPNO+IBLKNO»I1+PSIS
CONTINUE

GO TOo 996

WRITE(06+:112)

CONTINUE

IF(IUPDAT.EQ,0) GO TO 998

D0 995 I=]lyNC

AACONCI)SACONI(I)

IZXSAACON{60)

G0 T0 998

CONT INUE

SToP

ENOD

SURROUTINE NOISE(SPHI+STHTAsSPSIsAMPHI9AMTHTA)AMPS]I oNy

LSAMPLE+NDELTA#NTOT)

THIS SUBROUTINE ADDS GAUSSIAN NOISE TO DATA
IMPLICIT REAL®8 (A=He0=Z)
COMMON/MEAS/PHIM(1000) s THTAM(1000) +PSIM(1000)
COMMON/SOL/T(1000) ¢PHI(1000) +THTA{1000)PSI(1000)
WRITE(069100)SPSIeSTHTAsSPHI ¢AMPS] s AMTHTAYAMPH] oN
CALL TIME(IYEARsISEC)

IF{1SEC=1000) S+5+6

ISEC=ISEC=1000

60 TOo 7

IXs(ISEC*IYEAR) 24}

Ivyalxe2

1Z=lxe+4

SIG1PH=0.0+0

SIGEPHa0.D*0

SIGIPH=0.D+0

SIG1TH=0.0+0

SIG2TH=0.D*0

SIG3TH=0.0+0

SIG1PS=20.D040

SIGE2PS=U.D+0

149

AEDC-TR-78-10



AEDC-TR-78-10

Table 2. Continued

S1G3PSa0,D+0

TOTPHI=0.0+0

TOTTHA=O O+ 0

TOTPSIs0.De0

LOOP=]

NLOOP=}

D0 10 IslyN

CALL GAUSS (IXeSPHI sAMPHI»VPH])

CALL GAUSS(IYsSTHYA9AMTHTASVTHTA)

CALL GAUSS(1Z+SPSI+AMPSIoVPSI)

PHIM(I)aPHIM(]I) *VPHI]

THTAM(1)STHTAM(]1) ¢VTHTA

PSIM(I)=PSIM(I) »VPS]

TOTPHISTOTPHI¢VPH]

TOTTHASTOTTHACVTHTA

TOTPSI=sTOTPSI+VPSI

P=DABS (VPHI)

Q=DABS (VTHTA)

R=DABS(VPSI)

IF(PaLToeSPHI)SIGIPHaSIGLPH*] D0
IF(PaGE-SPHI-lND-P-LT.Z-D‘O'SPHIISIGZPHHSIGZPH01oDOO
IFIP-GE-Z.DOO‘SPHI.IND.P-LE.3QDOO‘SPHI)SIG3PH'SIG3PH01.DOO
IF(GeLT«STHTA)SIGITHaSIGITHe]l D40

IF {QeBGESTHTACAND o Qe Te2eD¢0#STHTA)SIG2THSSIG2TH+1,D¢0
IF‘QoGE-Z.DOO'STHTAolNDcGoLE.3.D0O'STHTAISIG3TH'5103TH01-D°0
IF(R.LT«SPSI)SIGIPSaSIGIPS+1,D+0
IF(RoGEoSPSI.AND-R-LT-?-D’O‘SPSI)SIGZPSISIGZPS‘I-DOO
IF(“oGEoZ-D‘O'SPSIoANDoRoLEo3-000'SPSI,SIG3PSISIG3PSOI.000

10 CONTINUE

WRITE(069103) TOTPSI«TOTTHA+TOTPHI +SIGIPSsSIGITHeSIGIPH,
151G2PS+SIG2THeSIG2PHeSI63IPSySIG3ITHeSIGIPH

100 FORMAT (1HlolX9e ?ene GAUSSIAN NOISE ADDED LA AL YZI LY
1'ONE STANDARD DEVIATION = PSI ®49F10.6¢5Xs "THETA u*sFL0.695Xs
2'PH] =94F10.69/91Xs 'CONSTANT BIAS = PSI 3 yFl0.605X
3ITHETA 399F10e695Xs 'PH]I 399F10.69/51Xe*TOTAL NO OF TIME POINTS USE
4D IN FIT (N)=?415)

103 FORMAT(1HLs1Xe?SUM OF NOISE ADDED®¢/96Xs'PSI*96Xs*THTA 9 TXe *PHLY,
1-91%93F10e39/791Xe *NCISE CONTRIBUTION WITHIN ONE SIGMA'3/»
26X 9 *PSI' 96Xy ' THTA® 9 TX9 'PHI® 4 /91X93F10439//¢
31X, "NOISE CONTRIBUTION BETWEEN ONE SIGMA AND TWO SIGMA'+/»
46X "PST 96Xs P THTA? ¢ TXo 'PHI9/e1Xe3F1003¢//91Xe 'NOISE CONTRIBUTION
SBETWEEN TWD SIGMA AND THREE SIGMAY 9 /96X e *PSIVo6Xe *THTA 9 TX o 'PHI Y,
6/91%X93F10,3)

RETURN
END

SUBROUTINE RANDU(IXs1YsYPL)

IMPLICIT REAL®8(A=H;0=~2)
1YsIX®65539
IF(1Y)506046

S IvelYe214T7483647¢]

6 YPL_®lY
YPLEYPLY,4656613D=9
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RETURN
END

SUBROUTINE GAUSS(IXeSsAMsV)

IMPLICIT REAL®8 (A=Hy0=2)
A0 eDe0

00 50 I=l,48

CALL RANDUC(IXeIYsY)
IXalv

Ampey

Va{A=24,000)/2.0+0

VY ®SeAM

RETURN

END

SUBROUTINE ICS(ACON)

IMPLICIT REAL®8 (A=Hy0=1)
DIMENSION ACONLT72)
COMMON/MEAS/PHIM(1000) » THTAM(1000) +PSIM(1000)
COMMON/SOL/T(1000) yPHI{1000) + THTA(LO00) »PSI (1000)
OTaT(2)=T(1)
PHIO=PHIM(])

THTAOSTHTAM(L}
PS10=PSIM(])
PHIP = (PHIM{2)<-PHIO0)/DT
THTAP = (THTAM(2)=THTAO) /70T
PSIP=(PSIM(2)=-PSI0) /DT
ACON(T70)aPHIP-PSIP®*DSIN(THTAQ)
ACON(T1)3THTAP*0COS (PHIO) +PSIP*DCOS(THTAQ) *DSIN(PHIO)
ACON(72)sPSIP*DCOS(THTAQ) *DCOS (PHIO)=THTAP®DSIN(PHIO)
ACON(6T)=PHIO
ACON(68)STHTAOD
ACON(69)3PS10
RETURN
END

SUBROUTINE PART (SAMPLENDELTA«NyNTOTsNSTART)

IMPLICIT REAL®8 (A=Hy0=2)
COMMUN/MEAS/PHIM(1000) ¢ THTAM(1000) +PSIM(1000)
COMMON/SOL/T(1000) oPHI(1000) s THTACL1000)+PSI(1000)
DO 13 I=24NTOT

IF(T(I)eNE40,D*0) NTEMPa]

CONTINUE

TMAKsT (NTEMP)

DO 11 I=NSTARTeNTOT

Ja(I=1)*NDELTA®]

IF (JGT«NTEMP) GO TO 11
RATIO={T(J)aT(NSTART))/TMAX
IF(RATIOGTSAMPLE) GO TO 11
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15
14
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Nal

Ti1)=T(J)

PHIM(I)aPHIM(J)

THTAM(1)STHTAM(J)

PSIM(I)=PSIM(J)

CONTINUE

NuNe¢ ]l «NSTART

DO 12 IslgN

JEI*NSTART=]

T =T ()

PHIM(T)3PHIM(J)

THTAM(I)=THTAM(J)

PSIM{I)=PSIM{J}

N]laNe}

IF (NTOT.LT.N1) GO TO 14

DO 15 IaN]eNTOT

T(1)=0,0+0

CONTINUE

HRITE(06!10’SANPLE'NDELTA'NST&RT!N'T(1’!T‘N)
FORMAT (1M1l e1Xe t#»#s DATA BLOCK ALTERED ##880,/4]1Xy 'SAMPLE ='y
1FTo%9/7¢1X%9 "NDELTA =99159/+1Xe 'NSTART =13 5e/01Xs'N 3¢5,/
ZIXeIT(L) ® 14FTo4eSNetTIN) = 1 oFT7eb0/y '
J1Xe28 (000}

RETURN

END

SUBROUTINE ORKGS(XI+YeDERYINDIMsFCTsAUXsOT9NOT)

IMPLICIT REAL®B(A=H0=2)
DIMENSION Y(1)sDERY (1) sAUX{ Se])
xaxl

DO S J=mlsNDT

DO 1 I=leNDIM

AUX(Se3)aY(])

CALL FCT(XeY4DERY)

D0 2 I=l+NDIM

AUX(1¢1)SDERY(])
Y(])=AUX(59])¢.5D«02DT®AUX(1,1)
RTEMPeX*¢50+0%0T

CALL FCT(XTEMP+Y+DERY)

DO 3 IalsNDIM

AUX(2+1)SDERY (1)

Y(I)®AUX(S59[) *e5De0*DT®AUX(2:1)
CALL FCT(XTEMP¢YsDERY)

DO & IslsNDIM

AUX (3, 1)SDERY(])
Y(I)mAUX(SeI)*DT#AUX (3, 1)
Xaxe¢DT

CALL FCT{(X»Y+DERY)

DO 5 IslsNDIM

AUX (4, 1)SDERY ()
Y(I)SAUX(Se1)oDT#® (AUX (L9 1) *(AUX(2¢1) ¢AUK(I91})®#2,D¢0
1¢AUR (4410 ) /76,040

RETURN
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250

300
350
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END

FUNCTION DUM(1.J)

IMPLICIT REAL®B(A=H»0=2)
DUM=Q D0

IF(1.€EQev) DUM=]D*0
RETURN

END

SUBROUTINE INV(CoNCeNCS1eWXX+CC)
IMPLICIT REAL®8(A<Hy0-2)

DIMENSION C(T72¢73) o WXX(72)sPIVOT(2)9CC(T201644)

FORMAT(710Xe *DET IS EQUAL TO ZERO")
NCTENC#2

NCPl=NCe+]

D0 10 I=lsNC

00 10 JUsl«NC
CCtIsJ)=2C(le)

00 20 I=1¢NC

D0 20 JsNCPloNCT
CC(lsJ13U,De0

DO 30 1s1l,4NC
CC(LeNC+]1)s]),D*0

D0 205 I=lsNC
PIVOT(1)3CC(Is1)

DO 200 K=alyNC
PIVOTI(2)3CCi{Ks 1)

IF{K=]) 1359130+¢140

DO 150 JsS1leNCT
IF(PIVOT(1)) 134+210,136
CC(Kyu)sCC(T o J)/7PIVOT(])
CONTY INUE

GO0 TO 200

D0 160 J=]l¢NCT
IF(PIVOT(1)) 136+160+136
CC(KeJ)SCCIKoJ)=CC(T+J)*PIVOT(2) 7PIVOT(])
CONTINUE

G0 T0 200

00 170 JaluNCT
IF(PIVOT(2)) 145+170,145
CCUK JISCCIKWJ)ZPIVOT(2)=CClI e
CONT INUE

CONTINUE

CONTINUE

GO To 25v

WRITE (6+3000)

DO 300 I=]eNC

00 300 JsleNC
C(Is)aCC(leJeNC)
NCSaNCS1

IF (NCS=NC)500+500+400
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400 DO 420 13]+NC
wXX (1)=C(I+NCS)
420 C(IsNCS)300e0
DO 450 I=1sNC
DO 450 J=leNC
450 C(IsNCS)ISCIINCS)eC(1sJ)*WXXID)

NCSaNCS=1
GO0 TO 350
500 CONTINUE
RETURN
END
¢
SUBROUTINE INTGRL (FCToDRKGSeN+ERRORsAUXsYsDERYsDTMIN)
c

IMPLICIT REAL®B8(A=Hy0=1)
DIMENSION AUX( Sel)eY(1)eDERY(])
COMMON/MEAS/PHIM{1000) ¢ THTAM{1000) +PSIM(1000)
COMMDN/SOL/T(IOOO}0PHI{10003oTHTAllOOO)oPSI(lOOO!
COMMON/CUOEF/CON(T2) +CCONLT2) ¢« NCoNCON(T2)
COM"ONIMATRIXIC(72073lQRESSUMISPHIOSTHQOSPSI
An6.28318531D+0
NLaNC=5
00 10 Ial,é
10 Y{I)SCON(NL+I=1)
D0 11 IsieNC
Y(6*I)sDUM(NLsI)
00 11 JsleS
11 Y(6+JONC*I)aDUMINL*J» 1)
NEQ3 (NCe* 1) *6
ONEGaNEQ
NL=NCel
K=}l
PHI(K)=aY (1)
THTA(K)BY (2)
PSI(K)=Y(3)
THTA(K)STHTA(K) ¢CON(65)
PSI(K)=PS]T(K)eCON(66)
OPHI=PHIM(K) «PH] (K)
IF (OPHIsLT o (=A/72:0¢0)) PHI(K)=PH]I (K)=A
IF(DPHI«GTe(A/72.D¢0)) PHI(K)=PHI(K) A
D0 19 I=1,NC
Y (6*NCeI) mY (64NCeI) oDUM(65s1)
Y(6¢29NCeI)3Y (6¢2%NC+1)+DUM(66,4])
19 CONTINUE
UO 12 I31NC
D0 12 JmleNC
ClIvJImY(6eI)#Y(6ey)/SPHINEZ » Y{6eNCeI)*Y (6¢NCoJ) /STHARS2
le Y(642®NCol) Y (6+2%NCeJ) /SPS]#s2
12 C(1+J)=C(1sJ)®CCON(])#CCON(Y)
00 17 JslNC
C(JONL) R (PHIM(K) =PHI (K) ) ®Y (6eJ) /SPH]»#2 * {THTAM(K) =THTA(K) ) ®
1Y(6*NCeJ) /STHA®S2 o (PSIM(K)=PSI(K))#Y (6+28NCe+J) /SPSIna2
17 CC(JsNL)=C(JsNL)*CCON(J)
RESSUM 3 ((PHIM(K)=PHI(K))/SPH])##2 o ((THTAM(K) =THTA(K) ) /STHA) #a2
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1+ ((PSIM(K)=PSI(K))/SPS])ee?

DO 13 K=2,4N

XlsT {K=1)

DTE3AT(K}=T(K=1)

DTsDTE

NOT=}

IF(DTMINGE.DTE) GO TO 18

NDTSDTE/DTMIN

DTsNUT

OT=DTE/DT

CONTINUE

CALL ORKGS(XI+sYeDERYINEQsFCT9AUXsOToNOT)

IF(Y (1) eLEe (=A))Y(1)mY (1) A

IF{Y(1)eGEcAIY(1)mY(]1l)=A

PHI (K)aY (])

THTA(K) =Y (2)

PSI(K)=Y (J)

THTAIK)STHTA(K) +CON{6S)

PSI(K)aPS] (K)+CON(66)

DPHISPHIM(K) =PH] (K)

IF (DPHI«LTo(=A/2:D40)) PHI(K)SPH]I(K)=A

IF (DPHI «GTo (A/72.D¢0)) PHI(K)2PHI (K)*A

D0 20 I=1lyNC

Y(6ONCel)myY (6oNC*]I)oDUM{6Se])

Y{(6¢28NCo])aY(6628NC+]) ¢DUM(66,+1)

CONT INUE

00 15 I=]l¢NC

00 15 Js]lNC

ClIe1aY (6o])BY(6eJ) /SPHI®82 o Y (66NCeI)BY(6+NCeJ)/STHA®S2
1% Y(Gs29NC+1)*Y (6Ge28NC+J) /SPSI*#2 ¢ C(leJ)
ClIed)mC(IsJ)®CCONC(])®CCONI(J}

D0 16 Jsl,NC

CUJoNLI B (PHIMIK) =PHI (K) ) #Y (6+J) /SPHI®#2 + (THTAMI(K)}=THTAI(K))®
LY (6*NCeJ) /STHA##2 ¢ (PSIM(K)=PSI (K))#Y(6+2%NCeJ) /SPSI®#2 e C{JsNL)
C(JNL)ZC(JoeNL)*CCON ()

RESSUM 3 ((PHIM{K)=PHI(K))/SPHI)##2 o ((THTAM(K)=THTA(K))/STHA)#a2
l¢ ({(PSIMIK)=PSI(K))/SPS1)®®2 + RESSUM

CONTINUE

RETURN

END

SURROUTINE MBARA (M] 9M2eM3sPSIsTHTAsPHIWPsQrRsP1sP24P3
1 01+Q2+Q3eJ)

IMPLICIT REAL®B(A=Hy0=2)
REAL*8 MAGeM]lyM2eMIIMYPXIMYPZsMYTPIMZPRKeMZPY I MZTP»

1 MYTyMZToMXoMYgMYZyMZoMZY sMXP oMYPsMZP ¢ MYHZ ¢ MZHY
COMMON/TCOEF/AsBoMAGIALPASBTAsDLTAZ2+RMA s DMA ¢ RMB ¢+ DMB ¢ RMAB ¢ DMAB
COMMON/COEF/CON(72) o+ CCON(T2) +NCoyNCON(T2)
COMMON/CONST2/RX1sRX2+RY 1 eRY24RZ1sRZ2+AA
TEMPY1aCUN{(1T)+CON(18)®ALPASCON({19) *RMASCON(20) ®ALPA®S24CON(2]) #AL

1PASRMA+CON(22) *RMBeCON(23) *BTA®#2+CON(24) *ALPA®RMB+CON(25) *RMAB
TEMPY23DUM(1T79J) *DUM(189¢J) ®ALPA+CON(18) *A+0UM(199J) *RMA*CON(19) *DM

1A sDUM(204J) #ALPARR202,0+0%CON(20) ®ALPA®ACDUM(2] 9J) *ALPA®RMA
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+CON(21) * (ALPA®DMA+RMA®A) ¢DUM(22+J) *RMB+CON(22) *DMB
+DUM (235 J)*BTAR#242,D¢0#CON(23) *BTA®B+DUM (24 ¢J) *ALPA®RMB
+CUN(24) % (ALPA%DMB+RMB#*A) + DUM{25+J) *RMAB+CON(25) *DMAB
TEMPYSDUM(1+J) 4DUM(24J) *ALPA+CON(2) %A + DUM(39J)} *RMA+CON(3) *DMA
*DUM (49 J) #ALPA®#242,D+0%CON(4) SALPA®ACDUM(54J) *ALPA®RMA
+CON(S)® (ALPASDMA*RMA®A) ¢ DUM (6¢J) PALPAR®343,0005CON(6) *A
SALPA®E2 SDUM(T9J) *RMASALPARS24CON(T) # (DMARALPASS2
¢2.,D¢Q®ARALPASRMA) *DUM(B+J) *RMB ¢ CON(B) *DMB*DUM(99J) *
BTA®®2s 2,0¢09CON(9)*BTA®BoDUM(10¢J) *RMBEBTA#2
+CON(10)*(DMB*BTA®#2 + 2,D+0*BTA®RMB#B) +DUM(11+J) *ALPA®RMB
M2sTEMPY+ CON(11)® (ALPA®DMB+A®RMB) +DUM(12+J) *RMAB+CON(12) *DMAB
SDUM(139J) *RMBOALPA®®2¢CON(13) # (DMBHALPA®®2+2,D+0#ALPASA®RMB)
sDUM (149 J) *RMAB®ALPASCON(14) # (ALPA#DMAB*RMAB®A) ¢+DUM(15+J) *ALPA
SBTA*R2eCON(15) #{2,0¢0*ALPA*BTA*BsA*BTA®42) +DUM{16+J) *"RMA®BTARS
2 +CON(16)#(DMASBTA##2+2,D+*0%BTA®RMA%B)+ QG2*TEMPY] +Qe*TEMPY2
¢Q3#CON(26) *BTA*R *DUM(26,J) *BTA+R*CON(26) %8 +Q1*CON(27)%BTA
«P4DUM{274+J) ®BTA+P#CON(27) %8B
TEMPZ]1 = CON(36)*CON(IT7)%ALPA+CON(38) *RMASCON(39) SALPA##2+CON(40)*
RMB ¢CON(41)#BTA®#24CON(42) AL PA®RMA+CON(43) *ALPASRMB+CON(44) *RMAD
TEMPZ2sDUM (369J) ¢DUM(379J) ®ALPASCON(IT) *A+0UM(38+J) *RMA*CON (38) #DM
A +OUM(IFyJ)*ALPARR242,040%CON(39) ®*ALPA®A + DUM(40+J) *RMB
+CON(40) *DMB*DUM (41, J) ®BTA®®2 o 2,0+0%CON(4]))*BTA%B
+DUM (429 J) *ALPASRMA+CON(42) # (ALPA®DMA*RMA®A) +DUM (434 J)
SALPA®RMB+CON(43) ® (ALPA*DMB+RMB®A) +DUM (44 J) *RMAB
sCON(44) *DMAB
TEMPZaDUM{28+J) *+DUM(299J) *BTA+CON{29) #*B+DUM(309J) *ALPA®BTA
+CON(30) ® (ALPA®B*BTA®A) *DUM(3]19J) *RMA®BTA+CON{3] ) # (BTASDMA
+RMA®B) sDUM(329J) *BTA®#3+3,D+04CON(32) #B*BTAR#2
SDUM(339J) *BTA®ALPA®®2 ¢+ 2,De¢0%CON(33) *ALPA®BTA®A+CON(33)* 8
SALPA®®2 & DUM(34+J) *BTASRMB+CON (34) # (BTASDMB+RMB4B)
+DUM (354 J) *BTA*RMAB*CON (35) * (BTA*OMAB+RMAB*B)
M3a TEMPZe QI*TEMPZ]+R®TEMPZ2¢Q*BTA®DUM(45+J) ¢+CON{45)*{Q2*BTA
+Q%B) ¢ DUM(469J) 9PSALPA*CON(46) #(QL1*ALPAIP#A)
Mlz DUM(4TyJ) e DUM(4B,J) *ALPASCON(4B8) %A +DUM(49+J) *BTA+CON(49) 48
+DUM (509 J) SALPA®BTA*CON(50)# (A®BTA+ALPA®B) +DUM (5] +J) *RMA#BTA
+CON(51) *{BTASDMASRMA®B) +DUM(52,J) *BTA®RMB+CON (52)
#(BTA*DMB+RMB#B) + DUM(53,J) *P+CON(53)%Ql
THTAP=Q*DCOS (PHI) =R4DSIN(PHI)
PSIP= (R*DCOS (PH]I) «Q®*DSIN(PH]) ) /DCOS (THTA)
THTAPA=2Q2%DCOS (PHI ) =Q®P1*DSIN(PH])
=QI*DSIN(PHI) =R*P1*DCOS(PHI)
PSIPA=PSIP*DTAN(THTA) #P2¢ (Q3#DCOS (PHI) =R*P1*DSIN(PHI) »
Q2*DSIN{PH]) *+Q*P1#DCOS (PHI) ) /DCOS({THTA)
MYTP=DUM(634J) #THTA+CON(63) *P2
MYTPaMYTP+DUM(629J) *THTAP+CON(62) *THTAPA
MZTPEDUM{644¢J) #*PSL+CON(64) #*P3
MZTPEMZTP+DUM(61+J) *PSIP+CON(6]1)#PSIPA
MYTSCON{63) *THTA
MYTSMYT+CON(62) #*THTAP
MZTSCON{64) *pPSI
MZTSMZT*CON(61) *PSIP
MYPXsMYTP#RX1/RY]
MYPZsMYTP#RZ1/RY]
MZPAX=MZTP#*RX1/RZ1
MZPYsMZTPRRY]1/RZ]
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MXsMYT#DSIN(PSI) ®*DCOS{THTA) *RX1/RY1=MZTSDSIN(THTA) *RX1/RZ]
MY=MYT#DCOS(PS])

MYZ22MYSRZ1/RY]

MZsMYTEDSIN(PSI) *DSINI(THTA)*RZ1/RY1+MZT®DCOS (THTA)
MZYSMYTR®DSIN(PSI)*DSIN(THTA) «MZT#DCOS(THTA) *RY1/RZ]
MXPSMYPX*DSIN(PSI)*DCOS{THTA) +MYT* (P32DCOS(PSI) *OCOS(THTA) =

1 P2RDSINC(PSI)*DSIN(THTA) ) *RX1/RY]1=MZPX#DSIN(THTA)

2=MZT#p240COS (THTA) *RX1/RZ1
MYPSMYTP#0COS(PSI)=MYT#PI*DSIN(PSI)
MZPEMYPZ#DSIN(PS]I) #DSIN(THTA)»

1 MYT®(PI*DCOS(PS1)*DSIN({THTA)+P2#DSIN(PSI)*DCOS{THTA))

2 SRZ1/RY1+MZTP#DCOS(THTA)=MZT*P28DSINITHTA)
MYHZ=MYPZ#DCOS(PSI)=MYT#P3#*DSIN(PS]I) *RZ]1/RY]
MZHYaMYTPSDSIN(PSI) *DSIN(THTA) ¢

1 MYTo(PI*DCOSIPSI)*DSIN(THTA) +P2#DSIN(PSI)®*DCOS(THTA))

2 ¢MZPYSDCOS{THTA)=MZT#P2*DSIN(THTA) ®*RY1/RZ]

MlzM] eMXP
MZ2aMZ=P ]l *MYSDSIN(PHI) +MYP®DCOS(PHI)

1 eMZY*PL*0COSIPHI)*MZHY®DSIN (PHI)
MIaM3=MY 2P ] #DCOS (PH] ) =MYHZ2DSIN(PHI)

1 =MZep)*DSIN(PH]I) +MZP#*DCOS(PHI)

MizM]+Ql®* (CON(54) ®RMA+CON(SS5) ®SRMB+CON(56) ®*ALPA®®2.CON(57)*B8TA##2)

1 ¢P*(RMA®DUM (564 J) +DMA®CON(54) »RMB®*DUM (5549 J) +DMB*CON (55)

2 *DUM(S56+J) #ALPA®E262,D¢0%CON(56) SALPA®A

3 sDUM{ST+J)#BTA®S2+2,De0*CON(57) *BTA®B)

RETURN
END

SUBROUTINE MBAR(MXOIsMYOIsMZOIsPSIeTHTASPHIsPsQeR)

IMPLICIT REAL®B(A=Hy0=2)
REAL#*#8 MAQI ¢MYOI oMZOLIoMAGIMYT sMZT
COMMON/TCOEF /7AsBosMAGoALPASBTA+DLTAZ 9 RMA + DMA » RMB » DMB ¢ RMAB o DMAB
COMMON/COEF/CON(T2) ¢+ CCON{T2) +NCoNCON(T2)
COMMON/CONST2/RX1 +RX2eRY19RY29RZ19RZ24AA
MXOISCON(4T7) «CON(48) ®ALPASCON(49)®RTA
1 sCON(S0)*ALPA*BTA+*CON(S]) *RMA®*BTA
e *CON(52)*BTA*RMB+CON(53)*pP
3 PR (COM(54) #*RMASCON (55) *RMB+CON (56) *ALPA#R2+CON(ST) #RTARSD)
TEMPY=CON(17)e CON(18)®ALPA+CON(19)*RMA+CON(20) ®ALPAR®24CON(2]1)®
1l ALPA*RMA+CON(22) *RMB*CON (23) *BTA®#2+CON(24) *ALPA®RMB+CON(25) »
2RMAB
MYOI = CON(1)*CON(2)#ALPACON(3)*RMA+CON(4)SA|PABS24CON(S) *ALPA
1 SRMASCON(E) RALPA®®3eCON(T) *RMASALPA®®24CON(8) *RMB*CON(9)
2 #BTARR2+CON(]10) *RMB*BTA®#2 &+ CON(11)*ALPA®RME+CON{12) *RMAB «+
3 CON(13)*RMB®ALPAR®2+CON(14)#ALPAMRMABSCON(LS) ®ALPA®BTARSZ,
4 CON(16) ®RMA®BTA®#2 ¢ Q#TEMPY ¢ CON(26)®R*BTA*CON(27)*P*aTA
TEMPZaCON(36) «CON(37) #ALPA*CON(38) *RMA*CON(3I9) #ALPA®#2+¢CON(450) *RMD
1 SCON(4]1)*BTA®S2+CON(42) ®ALPA®RMASCON(43) *ALPA®RMB+CON(44) *RMAB
MZOL=CON(28) +CON(29) *BTA*CON (30) *ALPA®BTASCON(31)*BTA®RMA+CON(32)»
1BTA®®3+CON(II)*BTARALPA®®24CON(34) *BTA®RMB+CON(35) *BTA*RMAB
2 SR® [EMPZ2+CON(45)*Q*BTA+CON(46) *P*ALPA
THTAP=Q®*DCOS (PH]I ) =R*DSIN(PHI)
PSIP=(R*UCOS (PHI) ¢+Q®DSIN(PH]I) ) /DCOS(THTA)
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Table 2. Continued

MYTSCON(63) *THTA
MYTEMYTeCON(62) *THTAP
MZT=CON(64)#PS]
MZTaMZT+CON(61) *PSIP
MXOIaMXQOI+MYT#DSIN(PSI) #OCOS(THTA) #RX1/RY1=MZT®OSIN(THTA) #RX1/RZ1
MYQOI=MYOI eMYT®DCOS (PS1) *DCOS(PHI) + (MYT*OSIN(PSI} *DSIN(THTA) »
1 MZT*DCOS (THTA)*RY1/RZ1) ®*DSIN{PHI)

MZ01sMZOLl=MYT#DCOS (PSI)*DSIN(PHI)#RZ1/RY1 ¢ (MYTHDSIN(PS])#

1 DSIN(THTA)®RZ1/RY1eMZT®DCOS (THTA) ) *DCOS(PHI)

RETURN

END

SUBROUTINE TEMP{PSIsTHTAsPHIP14P29P3IsK)

IMPLICIT REAL®8(A=Hy0=2)

REAL®8 MAG

COMMON/TCOEF/AsBoMAG ALPA+BTA+DLTAZ29RMA+DMA9RMByOMByRMAB 9 DMAB
GAMA=DCOS (PST1)*DCOS(THTA)
BTA"DSIN(Psx).DCOS(PHI)ODCOS(PSI)'DS!N(THTI).DSIN(PHI)
ALPA'DSIN(PSI"DSIN|PHI)'DCOS(PSI).DSIN(THTA,.DCOS(PHI’
DLTAZu (DSIN(PSI)) ##24 (DCOS(PSI)*DSIN(THTA) ) #e2

A= (P3=P1#DSIN(THTA))*DCOS (PSI)*DSIN(PHI)+ (P1=PI*DSIN(THTA))
1 *DSIN(PSI}#DCOS{PH]) +P2#DCOS(PS1)*DCOS(THTA) *DCOS{PHI)

B3 (P1*DSINITHTA)=P3) *DCOS(PSI}*DCOS{PH]) + (P1l=PISDSIN(THTA))
1 *0SIN(PSI)*OSIN(PH]) +P2%DCOS (PSI)*DCOS{THTA) ®DSIN{PHI)
MAGEZ2,D*uU® (P29DCOS (PSI)*DSIN(THTA) +P3#DCOS(THTA) *DSIN(PSI))*
1 D0COS(PS1)*DCOS(THTA)
Gu=P3#DSIN(PSI)*DCOS (THTA) =P28DCOS (PSI)®*DSIN(THTA)

IF (KsEQeV) GO TO 10

AlsALPA

Bl=BTA

ALPA=DATAN(AL/GAMA)

BTASDATAN(B1/GAMA)

A= ((DCOS(ALPA))®®2) % (A=Al #G/GAMA) /GAMA

Be ((DCOS(BTA) ) *e2)# (B«Bl#*G/GAMA) /GAMA

DLTAZ=ALPA®®2 + BTA®#2

MAGS2,D*0% (ALPA®A+BTA®B)

CONTINUE

RMA=SDABS LALPA)

RMB=DABS (BTA)

RMAB=DABS (ALPA*BTA)

OMA=0,D*0

DMa=( ,D+0

DMAB=0,D*0

IF (ALPASNE+0.D¢0)DMASALPA®A/RMA

IF (ALPACNE +0oD*00oAND<BTASNE . 0,D¢0)DMAB = ALPAWBTA® (BTA®A+ALPA®A)
1/RMAB

IF(BTAJNE«0,0¢0)DMB=BTA®B/RMB

RETURN

END

SUBROUTINE FCT(TeXsDERX)
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Table 2. Continued

IMPLICIT REAL®8(A=Hy0=2)

REAL®8 MXQIoMYOI oMZOIL oMl oM29MIeUXeJY o JZeIXPe IYPsIZPeMPMy IPM
LolXolYelZ

DIMENSION X(1)+DERX(])
COMMON/COEF/CON(T2) ¢+ CCON(72) «NCoNCON(T72)
COMMON/CONST/JUXoJY o JZoIXPoIYPoIZPeKs IXe1Ysl2Z
PHI=X (1)

THTA=X(2)

PSI=X (3)

Pax{4)

Qax{(s)

Rax(6)

CALL TEMP(PSI+THTAPHI10:04040,D+0,0,D+04K)

CALL MBAR(MXOIsMYQI+MZOIsPSI+THTA+PHIP+QeR)

RJal (De0=JX*yZ

DERX (1)=P+DTAN(THTA) # {Q®DSIN(PHI) +R*DCOS (PHI))
DERX (2)3G#*DCOS(PHI) «R*DSINI(PHI)

DERX ()= (R*DCOS (PHI) *Q®*DSIN(PHI) ) 7DCOS(THTA)

DERX (4) 3 (MXOI*MZOIRJX=Q®R® (JZ2RJX+IXP)

1 P#Qe(],De0=]ZP)2JX)/RJ

DERX (S)ZMY(Ql= (PR82aR#82) # jYaR#PR]YP

DERX (6) 3 (MZOI*MX0I*JZ=P%Q#(1ZP=X*JZ)=

1 Q®PR®(1.D¢0¢IXP)®JZ)/RJ

NEQ3 (NC*1) %6

DO S 1I=7oNEQ

DERX (I)s30.D*0

DO 10 I=1lyNC

IF(NCON(I).EQ.0)GO TO 10

PilasX(6e])

P23X'(NC*G*])

P3sX (28NCeb+])

Ql=X (38NC+6e])

Q2nX (4%NCebe])

Q3sX (SONCebe])

CALL TEMP(PSIeTHTAWPHIsPLlsP24PI4K)

CALL MBARA(M] ¢M23MIyPSIsTHTAIPHI+PsQeRePLIP24P3

1 Q19Q2+Q3,1)

DERX (6¢1)uQ)+P2% (QRDSINI(PHI) +R*DCOS(PHI) ) 7/ (DCOS(THTA)} ) #82
1 ¢DTAN(THTA)®# (Q2*DSIN(PHI) +P1%Q*DCOS (PH])
2 +Q38DCOS(PHI)=PLo*R*DSIN{PKHI))

DERX (64NC+])=Q2%DCOS (PH] ) =P1#Q#DSINI(PH]) =QI*DSIN(PHI)
1 =Pl*ReDCOS (PH])

DERX (642¥*NC+[)=2(QI*DCOS(PHI)=Pl#R®DSIN(PHI) +Q2*DSIN(PHI)
1 +P1#QaDCOS(PHI))/DCOS(THTA) ¢+ {R®DCOS (PHI)
2 *QPDSIN(PHI))#*P2eDTAN(THTA) /DCOS(THTA)

DERA (6¢3¢NCoI)=(MleMIRYX=(JZ2RJXe [XP) # (Q®Q3*R*Q2)

1 0(1eDe0=1ZP)RJXx®(P®Q2+Q®Q]l))/RY

OERX (6¢4ONCe1)2M2=2,D¢0%JY® (P*Q]1=R*Q3) =

1 IYP®(R*Q]l+pP4Q3)

DERX (60SONCo1)=(MIM]8JZ=(1ZP=UX¥#JZ)® (P*Q2+Q*Q]})

1 =(l.De0e[XP)®JZ® (Q#Q3+R*Q2))/RJ

DERX (643*NCo 1) =DERX (643®NCe]) e ( (DERX (4)=Q®R) ®

1 2,0¢00CON(60)/7(IX®IZ)oMZ0LI/IXsP#Q®(]1,00=12P)/1IX)
2 *DUM(609]) /RJ

DERX (644 %NCo 1) SDERX (G+4*NC+] ) = (Po22=R442) *DUM(609]) /1Y
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Table 2. Continued

DERX (645%NC+1)2DERX (6+S®NCe1) ¢ { (DERX(6) +P*Q) ®
1 2,0402CON(60)/7(IX®]Z)oMXOL1/1Z=Q#R*(],D+0¢1IXP)/12)

2 *DUMI(60+1)/7RY
CONT INUE
RETURN
END

SUBROUTINE REGOUT (ACONsWXX)

IMPLICIT REAL%8(A=Hs0=2)

REAL®8 MX]1oMX29MY]lsMY29MZ1leMZ2
DIMENSION ACON(T2) oWAX{(T2)
COMMON/COEF/CON(T2) 4yCCONIT2) ¢4NCoNCON(T2)
COMMON/ZCONST2/MX1 oMX29MY ]l oMY2sM21sMZ229A

DO 10 I=l.16
ACON(I)=CON(I)/MY]
WXX([)=sWAX{])/MY]

DO 12 I=28+35
ACON(I)SCON(]1)/MZ]
WXX(I)sWXX{]1) /M2Z1

DO 14 I=47,52
ACON(I)aCON(I}/7MX])
WXX(I)swWXX{])/MX]

00 15 I3l7,27
ACON(I)=CON(I)/MY2
WXX(I)aWXX (L) /7MY2

D0 16 1236446
ACON(I)SCON(I)/MZ2
WXX(I)aWwXxx(l)/mz2

00 17 I®365,72
WXX([)aWxXX(I)/A
ACON(T)2CON(L)7A

DO 18 1353,57
wXX()=wWXK (1) /MX2
ACON(I)=CON(I) 7MX2
ACON (S8} =CON(58)
WXX(58)=2wXX(58)
ACON(59) sCON{59}
WXX{59)awkX (59)
ACON(60)3CON(60)
WXXL60)SWXX(60)
ACON(61)3CON(61)/MZ2
WXX(61)BWXX(6]1)/M22
ACON(63)=CON(63) /MY]
ACON(64)=CON(64)/M2])
WXX(63)=WXX(63) /MY]
WXX(66)BWXX(64) /M21
ACON(62)sCON(62) /MY2
WXX(62)aWXX (62) /MY2
RETURN

END

SUBROUTINE REG(ACON)
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Table 2. Concluded

IMPLICIT REAL®B(A=He0=2)

DIMENSION ACON(72)

REAL®8 MX1lyMX29MY]1oMY29MZ]lsMZ2
COMMON/COEF /CON(T2) s CCONI(T2) yNCoNCON(T2)
COMMON/CONST2/MX1 sMX2+MY]1 s MYZ2MZ]sMZ2,A
DO 10 I=le16

CON(I)=ACONC(]I) *MY]

D0 12 1228435

CON(I)SACON(I)*MZ]

DO 14 I=47,52

CON(I)=ACONCI) *MX]

DO 15 I=17.27

CON(I)=ACON{]1) ®*MY2

DO 16 1Im36y46

CONLI)=ACON(]I)®M22

DO 17 I=65.72

CON(I)=ACON(])*A

D0 18 1353:57

CONC(I)=SACON(])®*MX2

CON(58)=ACON(58)

CON(59)mACON(59)

CON(60)3ACON(60) 3
CONCO61)SACON(6]) *MZ2
CON{62)=ACON({62) *MY2
CON{(63)=ACON{63) #MY]
CON{64)=ACON{64)*M2Z]

RETURN

END
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Table 3. Subroutine Descriptions for Both Asymmetric and
Symmetric Programs

Name Description

NOISE Adds noise to generated 3DOF motion or to experi-

mental 3DOF motion data. Input values to the sub-
routine specify the standard deviation and bias to
be added to ¢m’ C v .

m

RANDU Random number generator.

GAUSS Gaussian noise evaluated.

ICS Computes approximate boundary conditions from the
input 3DOF data to be used in place of initial
guesses,

PART Alters data set to be used in extraction technique.

DRKGS Runge-Kutta fourth-order integration scheme for NDIM
simul taneous differential equations,

DUM Equivalent to the Kroneker-Delta function,

INV Provides solution to a set of simultaneous linear

equations, Also used to define inverse of a matrix,

INTGRL Calling subprogram for integration of parametric,
kinematic, and dynamic equations. Evaluates influ-
ence coefficlent matrix, residual influence matrix,
and total residual.

MBARA Defines the values of the partial derivatives of the
moment coefficients with respect to the parameters.

MBAR Defines the moment coefficients,

TEMP Defines variables required in moment coefficients
and derivatives of moments with respect to the
parameters.

FCT Values of derivatives as used in DRKGS.

REGOUT Conversion of parameters to output form.

REG Conversion of input parameters to internal code
dimensions.
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Table 4. Input Variable Definitions for Symmetric and
Asymmetric Programs

Programs for Namelist/NAM/

AE_lbc-Tﬁ-n-m

a. Namelist Input Common to Both Symmetric and Asymmetric

Namelist Input
Variable Type Values Meaning Units
NSWTCH Integer o, 1, 2 Switch indicating type of analysis: =
0, normal data reduction by Chapman—
Kirk method as outlined in Section 3.,2;
= 1, 3DOF data generated from initial
values of coefficients; = 2, 3DOF data
generated and stored on disk for later
analysis,
NTOT Integer 1,000 Maximum array size of input and output
variables: time, ¢, 9, ¥.
NC Integer 30 symmetric Maximum number of coefficients allowed
72 asymmetric to vary,
NITER Integer »1 Maximum number of iterations allowed to
reach a converged solution,
DIMIN Real >0 Integration time step (DTMIN must also
be less than or equal to the minimum
time step of the input data to be
analyzed),
BOUND Real »0 Convergence bound on iteration; conver-
gence is assumed when difference in RMS
. deviation [Eq. (26)] for two consecu-
tive iterations is less than or equal
’ ! to value of BOUND,
AREA ; Real >0 i Reference aerodynamic area. 22
DIA ! Real >0 ! Reference aerodynamic length. ft
IX ! Real >0 i Axial moment of inertia. slugs—!t2
IY i Real >0 Transverse moment of inertia in body- slugs—£t2
fixed y direction.
RO Real >0 Free-gtrean density, slugs/ft3
[i] Real >0 Free-stream velocity. ft/sec
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Table 4. Continued
a. Continued

Namelist Input '
Variable Type values Meaning Units
AACON Real (a1, 82,..., Initial values of parameters which in—
aNc-1, 8Nc) clude both aerodynamic coefficients
and boundary conditions on kinematic
and dynamic equations.?®
NCOON Integer (0 or } for Array of integers corresponding to
each aj) AACON, indicating which parameters are
allowed to change: = 0, parameter is
constant; = 1, parameter is varied,
NSESWH Integer Oor1l Switch allowing Gaussian noise to be
added to input data: = 1, nolse added;
= 0, no noise added,
SPHI Real »0 One standard deviation of Gaussian deg
noise added to the Euler angle ¢ for
NSESWH = 1.
STHA Real »0 One standard deviation of Gaussian deg
nolse added to the Euler angle & for
NSESWH = 1,
SPSI Real »0 One standard deviation of Gaussian deg
nolse added to the Euler angle v for
NSESWH - 1., )
AMPHI Real Constant bias in noise added to Euler deg
angle ¢ for NSESWH = 1,
AMTHA Real Conatant blas in noise added to Euler deg
angle 9 for NSESWH = 1,
AMPSI Real Constant bias in noise added to Euler deg
angle ¥ for NSESWH = 1,
SAMPLE Real >0 Fraction of data sample to be fitted.
<l
NDELTA Integer »1 Only every NDELTA points of SAMPLE
data are used in fit,
BSee Tables 4b and ¢ for definitions of AACON for symmetric and asymmetric versions,

N respectively.
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Table 4. Continued
a. Concluded

Namelist Ioput :
Variable Type ¥alues ¥eaning Units
IUPDAT Integer Oorl , Switch for update of initial values of
parameters: = 0, initial values not
updated for follewing shot; = 1,
initial values updated.
INLCON Integer O or #0 Switch defining conditions of input
data: = 0, initial conditions
[ evaluated from data; # 0, input values
! ! of initial conditicns used as given in
1 AACON.
: IANGLE Integer 0O or #0 Switch giving meaning of o and f: =
0, a and p in terms of velocity ratios;
¥ 0, o and B assumed in terms of angle
of attack and sildeslip.
DTGEN Real >0 | Tine step of generated 3DOF data. I sec
IGPNO Integer ) Group number of generated or input
data,
IBLKNO Integer Block number of generated or input
data,
IRCGEN Integer Beginning record number of stored,
generated 3DOF data for NSWICH = 2,
IRCSTR Integer Beginning record number of stored data i
for NSWTCH = 0 where IRCSTR < IRCGEN -
3 or IRCSTR > IRCGEN - 3,
SIGPHI Real >0 Relative uncertainty in ¢, deg
SIGTHA Real >0 Relative uncertainty in 3, deg
SIGPSI Real >0 Relative uncertainty in ¥. deg
NSTART Integer >l . Starting point of input to be fitted.
1Z Real >0 Transverse moment of inertia in body- slugs—ft2
fixed 2z direction (asymmetric program
only).
LIz Real 20 I Product of inertia for asymmetric slugs—ftz !
body with mirror symmetry about the
body~fixed xz plane (asymmetric
program only).
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Table 4. Continued
b. Namelist Input for AACON in Symmetric Program

P;:;Egﬁer Meaning Units egﬂslgiz Meaning Units
1 ECM/aa 1/rad 16 Extra
2 acn/a(%u—a 1/rad 17 Extra
P 2C /3{as) 1/rad? 18 | Extra
4 acm/a(g.%‘i 1/rad? 19° | ac, /2 g—ﬂ—) 1/rad
5 BCm/a(aSZ) ljr-ad3 20¢ a-cm/a g—u—) : 1/rad
2 -}
6 acmla(éfjﬂ—ﬂ) 1/rad’ 21° | ac /22| 1/rad
7 /3 Ez’-ﬁ—d 1/rad® 22° 20y/3 |1 1/vad
ropd 3
8 R ;ﬁm) 1/rad 2° | o deg
sd
9 aC, /2 (%E) 1/rad? 24° |4 deg
109 €0 25 | ¢(0) deg
11 aCnfa(%%g) llrad2 26 ¢(0) deg/sec
~2
12 acm/a(f’;—a—d 1/rad? 27 e{0) deg
13 acn/a(g%— 1/rad 28 | 8(0) deg/sec
14 aci/a(%ﬂ 1rad® | 29 |w(0) deg
15 Extra 30 +(0) deg/sec
bAs used here, 5 is defined as & = a2 + 32.

CThese coefficients define the effects of tunnel flow nonuniformities

on the body motion and are discussed in Section 5.3.

dTh1's coefficient is a roll torgue produced by the gas bearing and

is discussed in Section 5.2.
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Table 4. Continued
c. Namelist Input for AACON in Asymmetric Program

Parameter : . Namelist : .
Number Meaning Units Variable Meaning Units
-:xld 2
1 Co 19 acm/a(ﬂL-zu°° ) 1/rad
2
2 aC, /20 1/rad 20 3C,./2 (ﬂgu—d) 1/rad®
2 acm/a lal 1/rad 21 aCm/a (ﬂ-g—llj-d) 1/rad3
a2 2 . ,(a]8]d 2
3 €,/ b 1/rad 22 ncm/a( zum') 1/rad
5 ic f2ala| | 1/rad? 23 3cm/a(9%% 1/rad®
6 aC /20" 1/rad’ 24 aC, /2 (ﬂﬂz%’) 1/rad3
7 o, /a2 ol 1/rad 25 acm/a(- gﬁ,d) 1/rad®
3 SWHE 1/rad 26 acm/a(!j: 1/rad?
2 2 bed 2
9 acm/aﬁ 1/rad 27 acm/a(ZUm) 1/rad
2 3

10 acm/as lBl 1/rad 28 Cno
1 3¢, /3| 1/rad’ 29 aC, /o8 1/rad
1 3¢/ 2| 8| 1/rad? 30 3C,/ 2 1/rad?
13 3¢/ el 3] 1/rad® 31 b 3c /28]l 1/rad?
14 o, /3a]ag] 1/rad’ 32 | ac /368 1/rad3
15 3¢, /2082 1/rad’ 33 aC, /vae 1/rad>
i6 o /3eflal | 1/rad® 34 5C, /28 |8] 1/rad?
17 acm/a(gﬂ—w) 1/rad? 35 o /23] a8)| 1/rad3
18 3C /2 ﬂﬂ) 1/rad? 36 ac_sa[sd- 1/rad

m 2Uuu n 2Um
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Table 4. Concluded

¢. Concluded

P;::Irg::er Meaning Units Pg::lr;g:er Meaning Units
37 acn/a(;—;‘i) 1/rad? 55 aC,/2 (%%'1) 1/rad?
38 3C, /2 @%Iﬂ) 1/rad? 56 2C,/2 (P%ﬁi:) 1/rad’
39 2C, /2 (’ ;3“) 1/rad’ 57 3C,/a (f%zji) 1/rad’
40 acn/a(" 18 ") 1/rad® 58 Extra
a1 aC /2 ('"gﬁd) 1/rad’ 59 Extra
a2 aC /2 |2 “) 1/rad® 60 L, sTugs-ft2
43 3¢, /3 ’“23:’) 1/rad® 61°¢ ac"”(%ud_w)T 1/rad
a4 aC,/ é;ﬁ ") 1/rad® 62° acm/a(gﬁ) 1/rad
45 acn/a(%%% 1/rad? 63° 3/ 30T 1/rad
26 acn/a@;—“) 1/rad? 64 S 1/rad
a7 Coo 65 ar deg
48 ECEIB: 1/rad 66 by deg
49 aCE/aﬁ 1/rad 67 $(0} deg
50 aC, /20 1/rad® 68 3(0) deg
51 aC, /26 o 1/rad® 69 ¥(0) deg
52 aC, /28] g| 1/rad? 70 P(0) deg/sec
53 acg/a(éLﬂ) 1/rad 71 q(0) deg/sec
54 ac,l/a(PJZ-‘,jT‘i) 1/rad? 72 r(0) deg/sec
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Table 5. Effect of Number of Cycles and Number of Points per

Number
of Points
per Cycle

Cycle on C,; RMS Deviation in Percent of C,,

Number of Cycles !::)

]

31 7 10 15
7 67.0 21.2 10.9 1.0
15 46.0 14.6 8.2 5.4
30 31.3 10.9 5.9 3.8
60 22.0 7.8 4.9 0.5
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Coefficients and Their RMS Deviations

Table 6. Effect of Measurement Noise on Linear and Nonlinear

. 2 . 2 ) .
o Cna» F(Cma) Cmg., E(Cmq) . ors s | ECmas)s | Cmgs - h(Cmqg;).
deg 1/rad 1/rad 1/rad 1/rad 1/rad? 1/rad" 1/rad3 1/ra
0.01 ~0,2360 0.47 (10‘5) -4.,001 0.0017 5.8106 0,0008 98 .87 0.13
0.02 -0.2360 0.95 (10_5) —3.998 0,0033 5.8108 0.0016 97 .44 0.86
0.03 —-0.2360 0,14 (10'4) -4 .,004 0.0050 5_809 0.,0024 99 .59 1.29
0.04 —-0.,2360 0.18 (101 -1.994 0.0063 5.814 0.0031 97 .32 1.63
0.05 -0,2360 0,24 (10_4) —-4.007 0,0083 5.809 0.0041 99 .53 2.15
Note: E( ) denotes RMS devialion,
Table 7. Tabular Results of Sharp Cone Analysis Using the Asymmetric
Program for Fixed Model Aerodynamics
Tunnel-Fixed Process Noise [Eq. (38)]
| ;
bDamping Stiffness
1 (]
Data
Sum of
Sampled
, tq. ta, ty. ta, . Yrp, Residuals N
CQO sluﬁg—ftz 1/rad 1/rad 1/rad l/gad deg deg [Fa. (32)], Fl:rbo?7)
deg sec
Value —-0.57 (10_5) 0.0016 2.24 -1.69 0.0163 =0 ,0056 -0.134 0.152 0.0557 4.410
Devialion 0.4 (10'6) 0.0003 0.11 0.12 0,00016 0.00015 0.011 0.013
Value -0.10 (10_4) 0.0018 1.35 -0.45 0.0154 —0.0054 -0.118 0.159 0.1158 8.44
NDevialion 0.1 (10-6) 0.0003 .0.10 0,08 0.00011 0.00014 0.013 0.014
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Table 8. Tabular Results of Sphere Cone Analysis Using the Asymmetric
Program for Fixed Values of Cg, = -0.0027 1/rad, t; = 0.017
1/rad, tg = 0, 01' = 0, l,ll'r =0

cma' Cmala|’ CmaIBI’ CnB’ CnB|a|’ CnBIE,I’ mq’
1/rad l/rad2 1/rad2 1/rad 1/rad2 1/rad2 1/rad
Value -0.240 -1.87 -1.22 0.265 0.927 1.57 -=1.55
Deviation 0.005 0.11 0.16 0.005 0.17 0.09 0.64
Value -=0.189 -2.70 -2.02 0.269 0.801 1.53 1.25
Deviation 0.005 0.13 0.18 0.004 0.18 0.10 0.58
Value -0.172 -3 .06 -2,20 0.264 0,728 1.62 1.25
Deviation 0.004 0.12 0.19 0.002 0.19 0.10 0.50
Data
Sum of
Cnr’ Cﬂo sz’ t4’ t3’ Residuals Sampled
6 2 [Ea. (32)] (see
1/rad x 10 slugs—ft 1/rad 1/rad q'de ’ Fig. 18),
g sec
Value -4.54 3.5 0.0027 -3.65 -0.0016 0.0775 5.16
Deviation 0.63 0.39 0.0006 0.20 0.0004
Value -12.3 ~-1.2 0.0032 0.62 0.0026 0.130 8.32
Deviation 0.60 0.2 0.0006 0.20 0.0005
Value -14.47 -3.5 0.0028 2.72 0.0032 0.174 11.98
Deviation 0.57 0.09 0.0005 0.17 0.0005

01-8/-H41-20A3V
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APPENDIX A
MATHEMATICAL DEVELOPMENT: ASYMMETRIC VERSION

The parameter identification technique as developed in Section 3.0 considered the
3DOF motion of axially symmetric bodies. In order to provide thc greatest versatility
in the improved analysis technique as developed in this report, an analogous version
considering asymmetric bodies has been formulated. The asymmetric analysis considers
the 3DOF motion of bodies with mirror plane symmetry about the x, z plane (see Fig.
1). The governing equations as derived from Eqs. (1) and (2) in the body-fixed coordinate
system are

o= M, w M J, - pa(; = J 1) - o1 + 17) ],

q = |\_I‘ - (p? - r2L|‘v - rplg (A-1)
Ipo= My M~ aeU ), + 1)+ pal = 17) T,
where the following definitions have been used
Jy = 1,71, .- a, - I)/1,
I, = 1,4, =4, - I/,
), =1,./1, o=, = T/, (A-2)

—t
1]

1~ 1),

with My = M(/I,, My = My/I,, and M, = M,/L,.

The kinematic relations relating the Euler angles to the body-fixed angular rates are given

in Eq. (A-3).
d=1p-tnflqgsing - r cos o)
0 = qeosg — rsing (A-3)
o= (v cosc & q sin ) icos 0 |

Integration of Eqgs. (A-1) and (A-3) vyields the 3DOF angular motion solution for an
asymmetric body assuming that the moment expansions as functions of the Euler angles
and angular rates are given. For mirror symmetry about the x, z plane in the body-fixed
axis system, the moment coefficicnt expansions in terms of a and B as given in Egs.
(11) and (14) are utilized. The variables a and 8 are, however, re-evaluated in the body-fixed
axis system lcading to Eq. (A-4).
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B =_¥ = —singy cos¢ + cosy sin A sin ¢
loc
(A-4)
@ = % = sing singd + cosyr sin@ cos @
T G
o0

The parameter extraction method as discussed in Section 3.2 is applied in an analogous
manner to the asymmetric analysis. The parametric differential equations required to
evaluate the influence coefficients as used in Eq. (21) are derived from Eqs. (A-1) and
(A-3) and are shown in Eg. (A-5).

P Q); + Py sec? 0 (q singd + r cos &)

li ©
+ tan 6 (0y; sing + Py qeosg + Qg cos o

=P, r sin &)
}52i = Qg cosgd - Py gsing - Qg sing - P reosd
I":“ = (Q3i cos¢p — Pj.rsing 4 in sing + Py, q cos @) sec ()

+ (r cosg + qsing) P, tan @ sec @

‘]Ql' = My - Mgd, - U, + 1) (qQg - £ Qg (A-5)

- (] - l'l) .]x(szi + qQIl)
Qp = Mg; - J, 2pQy; - 20Qg) - 170Q; + pQy)
1Qy, = Mgy + MJ, — (15, - J,0) Oy + qQpy)
-1+ 1J,(qQ, - rQy)

where Py;, Py;, Paj, M;j, and My;, and Ms; are defined as before and Qp; = op/oa,,
Qi = 0q/0a;, Q3; = Or/da;. The initial conditions for the parametric, kinematic, and
dynamic equations as given in Egs. (A-1), (A-3), and (A-5) are listed below.

60 = ay _; plO) = ay _o

= 0 = ay
6(0) = ay _, q(0) N - (A-6)
Y (0) = ay -3 r{0) = ay_
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P”(O) =6N_-—5._ Qh(o) :6N,—2.i
Pgi(0) = 5Nc-4.i Q,,(0) = 5Nc—1,i (A-7)
P3l(0) = BNC—3.1 Q3l(0) = 'O‘Nc.l

Integration of the parametric and angular motion equations and evaluation of the
corrections to the paramecters, a;, are determined in a manner similar to that discussed
in Section 3.2 for the axially symmetric analysis.

In addition to the moment coefficients as given in Eq. (14) and the boundary
conditions, the product of inertia, I,, has also been included in the list of parameters,
aj, to be determined. This option was provided in order to circumvent the lack of simple
techniques for determining the product of inertia for asymmetric configurations. In Ref.
21, values of I,, as large as 6 percent of I, have been extracted successfully from generated
motion with measurement noise.
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aj

30, iy

Clo
Cep
Ceq
Ce,

Ces

NOMENCLATURE
Aerodynamic coefficients to be extracted, see Section 3.2

Taylor series expansion coefficients as used in Egs. (12), (14), and
(16) (i= 1, m, n)

Diagonal components of the inverse matrix of Cj;.

Taylor series expansion coefficients as used in Egs. (12), (14), and
(16)(i=1,m,n)

N. x N, matrix of influence coefficients, Eq. (24)
Rolling-moment coefficient, Eq. (7)

Trim roll torque coefficient, see Eq. (16)
aCg/o(dp/2U ), 1/rad

aCg/9(dq/2U), 1/rad

8Cg/a(dr/2U,), 1/rad

aCg/d(de/2U.), 1/rad

3Cg/a(dB/2U.), 1/rad

Pitching-moment coefficient, Eq. (7)

aCy, /o(dp/2U,), 1l/rad

d9Cp /9(dq/2U,), 1/rad

9Cp /3(dq82/2U,), 1/rad3

oCy, /0(drf2U,), l/rad

oC,, /0a, 1/rad

9Cy /3(da/2U,), 1/rad

3Cp, /8alal, 1/rad?
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€o
€1, €2

fios filsens
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9Cp, /oalBl, 1/rad?

oCp, /0ad?, 1/rad3

3Cm /3(dB/2U.), 1/rad
Yawing-moment coefficient, Eq. (7)
3C,/3(dp/2U), - 1/rad
3C,/d(dq/2U.), 1/rad
9Cy/o(dr/2U,), 1/rad

9C, fa(daf2U,), 1/rad

oC, /o8, 1/rad
3C,/3(dB/2U.), 1/rad

oC,/aBlal, 1/rad?
oC,/0g1B), 1/rad?

Taylor series expansion coefficients as used in Egs. (12), (14),
and (16) i = 1, m, n)

Residual influence matrix, Eq. (25)
Reference length (base diameter), ft
Coefficients as used in Eq. (16)
Nose diameter, ft

RMS deviation between experimental data and converged solution,
rad

Trim roll coefficient, see Eq. (16)
Proportionality constants relating @, q and §, r

Taylor series expansion coefficients as used in Egs. (12), (14),
and (16) i = 1, m, n)
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g3, g'4, 3'5
R

hx: hy: hz

Iyy or §y

M;;, Myj, Ms;

MX: My: Ml

Coefficients as used in Eq. (16)

Moment of momentum vector defined in Eq. (2)
Components of moment of momentum vector

Transverse moment of inertia for axially symmetric body, slugs-ft2
Dimensionless moment of inertia, Eq. (A-2)

Moment of inertia about x axis, Fig. 1, slugs-ft2

Product of inertia in x, y plane, Fig. 1, slugs-ft2

" Dimensionless moment of inertia, Eq. (A-2)

Moment of inertia about y axis, Fig. 1, slugs-ft2
Product of inertia in y, z plane, Fig. 1, slugs-ft2
Dimensionless moment of inertia, Eq. (A-2)
Product of inertia in x, z plane, Fig. 1, slugs-ft2
Moment of inertia about z axis, Fig. 1, slugs-ft2
Unit vectors along coordinate axis, Fig. 1

1 - 1),

Dimensionless product of inertia, Eq. (A-2)
Dimensionless product of inertia, Eq. (A-2)
Dimensionless product of inertia, Eq. (A-2)

Distance between bearing pivot point and mass center, see Fig.
13, ft

Moment vector acting at mass cg [see Eq. (1) and discussion]
Equal to M, /da;, dM,/da;, and 8M,/da;, respectively

Components of moment vector
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P1i, Pyj, P3j
Pyig, P2je, P3je
p

Qi1i, Q24 Qs;

Ri2 Rag, Rag
T

S

t

t1, 12, 13, 14
tmax

U

u

ug

AEDC-TR-78-10

A A fa
Equal to My/Ix, My/I, and M,/I, respectively, for the symmetric
program and My/Iy, My/ly, and M,/I,, respectively, for the
asymmetric program, lbf/slug-ft

Tunnelfixed moment, Eq. (38), ft-1bf

Tunnel-fixed moment, Eq. (38), ft-1bf

Total number of time points in fit

Total number of coefficients to be extracted

Number of iterations per case

Equal to 9¢/da;, 00/da;, and dy/da;, respectively

Value of Pyj, Py;, and Pj3;, respectively, at time point £
Roll velocity, deg/sec

Equal to 9p/da;, aq/0da;, or/da;, respectively

Pitch velocity, deg/sec

Dynamic pressure of free-stream, psfa

Dimensionless inertia ratio, I, /I

Residuals in ¢, 0, and ¥, respectively, at each time point £, deg
Yaw rate, deg/sec

Reference area (base area), ft2

Time, sec

Tunnel-fixed moment coefficients as defined in Eq. (38), 1/rad
Data sample time, sec

Free-stream velocity, ft/sec

Velocity along x axis, see Fig. 1, ftfsec

Residual in roll, deg
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v

N

fQ

= 8 8

Aai

At

Velocity along y axis, see Fig. 1, ft/sec

Residual in yaw, deg

Pendulum weight, 1bf

Velocity along z axis, see Fig. 1, ft/sec

Residual in pitch, deg

Tunnel-fixed axis, see Fig. 2

Body-fixed axis, see Fig. 1

Rotated axis system as defined in Fig. 3
Tunnel-fixed axis, see Fig. 2

Body-fixed axis, see Fig. 1

Tunnel-fixed axis, see Fig. 2

Body-fixed axis, see Fig. 1

Velocity ratio as given in Eq. (9) or Eq. (A-4)
Angle of attack as defined in Eq. (33), rad
Velocity ratio as used by Tobak, Eq. (32)
Velocity ratio as given in Eq. (9) or Eq. (A4)
Angle of attack as defined in Eq. (33), rad
Velocity ratio as used by Tobak, Eq. (32)
Corrections to the coefficients a;

Integration time interval, sec

Equal to va? + §2, rad

Kroneker Delta function
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LEN RMS deviation in extracted coefficient a;

0 Pitch angle, see Fig. 2

0. Cone semiangle

or Artificial tunnel-fixed flow angularity correction, pitch, deg
0% Calculated pitch angle at time point £, deg

020 Value of 08¢ for the given constants, a;, deg

Om @ Measured pitch angle at time point £, deg

o One standard deviation, Gaussian noise, deg

0p, G, O Standard deviation of relative uncertainty in ¢, 8, and ¥

measurement, respectively, deg

T Computer run time of codes, Eq. (31), sec
¢ Roll angle, deg

(]} Calculated roll angle at time point £, deg
(] Value of ¢g for the given constants, a;, deg
Oom e Measured roll angle at time point €, deg

V] Yaw angle, see Fig. 2, deg

YT Artificial tunnel-fixed flow angularity correction, yaw, deg
V] Calculated yaw angle at time point R, deg
Vo Value of Y@ for the given constants, a;, deg
YmQ Measured yaw angle at time point £, deg

Q Sting roll position as used in Eq. (36), deg
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Superscripts

N Coefficients in plane-fixed or aeroballistic axis system
d/dt

Subscript

o Initial value of coefficient
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