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is the average over depth of the speed of sound in the analogous isogradien
layer, and (2) when the angle of elevation of the ray in the isospeed
layer is the average of the entrance and exit angles of the equivalent ray
in the analogous isogradient layer. It is found that the second situation
leads to discrepancies in range and dep th which are always smaller than
those encountered in the f irs t, and in par ticular the discrepancies in
the first situation are orders of magnitude smaller than those in the sec-
ond for cases wherein the rays tend to vertex.
The importance of the Snell’s law invariant (cos O)/c(z) is pointed out.
Choosing an incorrect value for either the angle 0 or the actual speed of
sound c(z) at the receiver can lead to errors in localization of the
source which are unacceptably large for accurate trace—back in situations
where the ray is nearly horizontal over some part of its path.
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I. INTRODUCTION

Assume that an acoustical source initiates a signal at a known time and

that this signal is subsequently received by a directional array . If the

time of arrival of the signal at each hydrophone of the array is known ,

and the speed-of-sound profile of the water column is known , it is then

possible to determine the angle er of the arrival of the signal at the

array and trace the trajectory of the signal back over the relevant ray

path . With the time of flight known , the original position (range and

depth) of the acoustical source can then be estimated .

Of the various sources of error possible in implementing this process ,

this report is directed toward those arising from the fact that the speed-

of-sound profile used in calculating the ray path is modeled on the available

experimental data sampling the true profile.

If the water column is divided into horizontal layers, the speed-of-sound

profile in each of these layers can be approximated with some simple function

of depth which models the observed profile and allows rapid calculation of

the ray path and time of flight through that layer.

The simplest model would be a one-~parameter fit: the assumption of an

isospeed layer whose speed of sound c,~ is obtained from analysis of the data

within that layer. The ray path would be a straight line whose angle of

elevation would be determined by a layer-by-layer application of Snell’s Law

along the ray path . This model is suggested in Figure l.la.

A more sophisticated model would be a two-parameter fit: the assumption

of an isogradient layer whose speed of sound c(z )  is a linear function of

depth z ,

c( z) = c(z0
) + g(z - z )

1—1



c (~ )

(a) 1 parameter

(b) 2 parameter ( )

(c) constrained
2 parameter

Figure 1.1 Methods of Fitting Profiles
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where g is the gradient and z is some reference depth in the layer. Here,

the two parameters c(z ) and g would be obtained by fitting c(z) to the data

representing the observed profile within the layer. The ray path in this

case would be a circular arc of fixed radius within each layer. See Figure

l.lb , and notice in particular that the two parameter fit allows c to be

discontinuous across the top or bottom of a layer .

A commonly-encountered isogradient-layer model is the “constrained ” two

parameter fit (Fig. l.lc), for which the speed of sound is not allowed to

have discontinuities. A moment ’s thought reveals that this constraint must

reduce the accuracy of this model below that of the (unconstrained) two

parameter fit  of Figure l.lb .

Other models with more parameters can be postulated (corresponding to

fitting the data with power series in z of increasing order), but the

resulting ray paths become more complicated than usually desired .

Given that the experimental data are accurate , models with more parameters

would be better capable of reproducing the experimentally determined profile ,

at least until there are too many parameters for the number of data or until

whatever desired smoothing of the data is lost. Below these limits, however,

the two-parameter fit should produce a ray path which conforms more closely

to that in “real” profile than should the one-parameter fit. It is plausible

that this should also be true for the calculations of the time of flight

through the layers.

In this report we compare the predictions of the isogradient model with

those of two isospeed models. Our approach will be to take the isogradient

model as the reference and compare the predictions of two isospeed models

with those of the isogradient model . That i3ospeed model whose predictions

conform m~~e closely to the reference will be deemed the better of the two

1—3



with respect to locating the acoustical source . We also consider some

effects on accurate prediction arising from an incorrect value of either

the angle of arrival e or the speed of sound C
r 

at the array .

I- 4

_______________________________ ________________________________________________________- V - V - -— - -- S



I I .  FORMU LATION

Both isogradient-layer models and isospeed-layer models approximate

the true speed-of-sound profile for the purpose of tracing received

acoustical signals back to their apparent source .

What is known about a received signal for the situation considered

here is the time-of-flight of the signal from source to receiver and the

angle 0
r 
with which the signal impinges on the receiver. This angle,

together with prior information about the speed of soun d at the receiver,

Cr~ 
provides a specific value for the ray invariant (cos Or/Cr) which uniquely

labels the ray. It follows that comparison of isogradient and isospeed

models must be based on studying the different ray paths and travel times

resulting from tracing back a ray of specified invariant.

A. Isogradient Layer

Refer to Fig. 1(a). Let a ray enter an isogradient layer of thickness

~z at an angle of elevation 0 and leave the layer with an angle of eleva-

tion 0 + A0. The gradient g is defined so that positive-gradient water

has speed of sound c(z) increasing with increasing depth , and the speed of

sound at the bottom of the layer is c. It is useful to define a quantity

D = ~~ - A z  2.1

which is the fractional change of the speed of sound sc/c across the layer.

Application of Snell’s Law along the ray relates D and t~O ,

cos 0 
= 

cos (8 + ~0) 2 2
c c (l - D)

I I— ’



i -~~ C-4C C

(a) Isogradient Layer

t 
Jt~J. C,~r 

C

~~~~~~~~~~~~~~ 
c(~ ) c

~ Aide 
_ _ _ _ _ _ _  _ _ _ _

(b) Isospeed Layer

Figure 2.1
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Use of cos (8 + ~O) = cos 8 cos t~O - sin C~ ~in ~O , assuming that the

incremental angle of ~O is very small so that cos ~O and sin ~O can be

replaced by t runcated power series in AO , and collection of like-order

terms gives

D = tan e ~e + (l/2)(Ae)2 - (1/ 6) tan 0 (SO) ~ - (1/24) (SO) ~
‘ + ... 2.3

~0 << 1

Between entering and leaving the layer the range has increased by

and the time-of-flight has increased by ~tg. Since the ray path is

a section of a circular arc, elementary analysis yields the known expressions

= g ~ 
[sin (0 + ~O) - sin 0] 2.4

and

~ 
r c l + s i n (O +~~O)t

g 
— 

~~ ~ c(1 — D) 1 + sin o ‘ 2. 5

In the first expression , Eq. 2 .4 , expansion of the first sine and use of

~0 << 1 results in the power series

= [~ 0 - (1/2) tan 0 (~0) 
2 - (l/6)(~ 8) ~ + (1/24) tan 0 (~e)~ + . . .1 . 2.6

Now, use of Eqs. 2.1 and 2.3 yields the desired form

= 
1 - (l/2~ tan 0 t~O - 2 

+ (1/24) tan 0 (i~0) 
3 + ... t~z. 2.7g tan 0 + (1/2) t~e — (1/6) tan 0 (se) 2 — (1/24) (SO) ~ +

To cast Eq. 2.5 into a useful form, separate it into

= I Lit 
~ 

~ + ~~~~~ + 
~~~~~ ] - Lit f ‘~ °~~ + ~~ I } 2.8g g 1 + s i n O cos O

11-3
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expand the arguments in power series in ~0, and then make use of

Lii (1 + x) = x - (1/2)x2 + (l/3)x3 - (l/4)x~ + ... 2.9

which is valid for lx i < 1. Combination of these steps and use of trigo-

nometric identities to simplify the coefficients in the resulting power

series culminates in

~tg = [ 
~~ 0 ~~ 

+ (1/2) ~~~ (~0) 
2 

+ (1/6) 1 (he) 3 + . . . ] .  2 .10

B. Isospeed Layer

Refer to Fig. 1(b) and now consider the properties of a ray traversing

a layer in which the speed of sound c,~ is constant over its thickness t~z.

-(Recall that for both models the same value of the ray invariant must be

used. Thus, we assume that (cos 0
~
/Cr has exactly the same value for the

straight-line ray in the isospeed layer as for the circular arc in the iso-

gradient layer. As we have formulated the problem here, this is equivalent

to relating c ,~ to both the speed of sound c at the bottom of the isogradient

layer and the gradient g found within that layer.).

If the angle of elevation is 0 + do for the ray in the isospeed layer,

then the circular arc in the isogradient layer will possess the same slope

at that depth for which the speed of sound c(z) is equal to ci,. This provides

the relation

~~ = c(l - ~~- dz) 2.11

where dz is measured from the bottom of the layer. Use of the convenient

quantity

11-4



h = 2.12
C

and application of Snell’s Law yields

cos 0 
= 

cos (0 + dO) 2 13
c c (l - h )

from which we extract the expression

h = tan 0 dO + (l/f)(do)2 - (l/6)tan 0 (dO)3 — (l/24)(dO)~ + ... 2.14

in the same way as Eq. 2.3 was obtained.

As an aid in understanding the significance of h, notice that if h = 0,

the two rays have the same slope at the bottoms of the layers, and if

h = D/2 , the rays have the same slope at the middles of the layers. For

this latter condition , the straight ray is traveling as if it were in an

isospeed layer possessing speed of sound c(l - D/2), which is the average

over depth of the speed of sound in the isogradient layer. Notice that,

as defined above , h must always be less than or equal to D.

It is elementary to obtain the increment in range At~ and the time-of-

flight ~~~ for the ray in the isospeed layer:

= cot (8 + dO) ~z 2.15

and

At — 
1 AZ 216- v — 

C (1 - h) sin (8 + do)

h - S



Use of Eq. 2.13 and the definition of D allows the time-of-flight to be

written in the form

1 
= ~ 

cos (e + dO) sin (0 + dO) . 2.17

Performing the same kind of manipulations as before (exp ansion into power

series in the incremental angle, use of Snell’s Law, use of Eq. 2.3, and

so forth) allows Eqs. 2.15 and 2.17 to be rewritten in the forms

= 
1 - tan 0 dO - (l/3) tan a (do) 3 + 

~z 2.18
tan 0 + do + (l/3) (do) 3 +

and

= ~~
. sin 0 [1+ (cot 0 - tan 0) dO - 2(dO)2 - (2/3Xcot 0 - tan O)(dO)3 + . . .1.

2.19

C. Ratios of Incremental Ranges and Times

We are concerned with the differences between incremental ranges and times-

of-f light for ray paths with equal ray invariants in the isogradient and iso-

speed layers , Investigation of these smal l differences wiu reveal techniques

to minimize the discrepancies between the range and time results of t ’~ two

models.

For the ratio of the incremental ranges, direct combination of Eqs . 2.7

and 2.18 yields

11-6
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AlL 
1 - tanOdo - (1/3) tan 8 (do) 3 +

Afl•g tanO + do + (1/3) (do) 3 +

tan O + (l/2’)AO - (2/3)tan Oft l/ 2 ) Aoj 2 - (l/3’)[(l/2’) AO ] ~ + ... 2.20

1 - tan0~ 1/2) Ae) — (2/~)[(l/2) Ae) 2 + (1/3’) tanO~ l/2) A8~ 
3 +

For the ratio of travel times, combine Eqs. 2.10 and 2.19 and then use

Eq. 2.3 (the series representation for D) to obtain

tanOAO [l + (l/2) taneAO + (i/6) (sec2 o + tan2o)(A O)2 +

At tanOAO + (l/2)(AO)2 - (l/6)tane(Ae)3 -(l/24)(Ao)~ + 2.21

x [ 1 + (cot0 - tanO) dO - 2(do)2 + . . .]

Study of these two ratios reveals that they depend very strongly on the

angle of elevation 0 of the ray.

As an aid in the analysis to follow, notice that for all angles of

elevation Eq. 2.3 reveals that the term tan O-A O must always be of order

D or less , and Eq. 2.14 reveals that tan O~dO must similarly always be of

order ii or less. On the other hand, the terms AO/~an O)and dG/ (tan O)can

be arbitrarily large or small, depending on whether 0 is small or large.

As a result, it will often be necessary to investigate these ratios for

large and small angles separately. The distinction between large and

small angles of elevation must be made on the basis of the relationships

between the angle of elevation 0 and D or h. It is seen for Eqs. 2.3 and

2.14 that when 0 is reduced until it becomes of order D½ (in Eq. 2.3) or

of order h½ (in Eq. 2.14) then the incremental angles AO and dO become of

the same respective orders and the terms d0/~an 8) and th/~an a) change from

being less than unity to being greater than unity . Since typical values

of D are of order 10 ”, it is clear that the two extremes of behavior

occur for angles 0 much less than or much greater than about 1
0

. Thus ,

it is necessary to investigate the behaviors of Eqs . 2.20 and 2.21 for the

11-7



cases 0 << h½ (since h is always less than or equal to D), and 0 >> D½ .

In what follows, we must distinguish between measuring quantities in

terms of their orders in AO and do and measuring quantities in terms of

their order in D. The notation we adopt to make this distinction is as

follows:

(1) If a term is of order (AO)’~ or (dOf~, it will be represented by

0(n) .

(2) If a term is or order D’1, it will be represented by O(Dn), and

similarly for h.

The expansions in incremental angles will be convenient for mathematical

manipulations, but it must be remembered that it is expansion in orders of

- D which will reveal the sizes of the discrepancies between ranges and times

for the two ray-tracing models.

D. Solutior~s for the Incremental Ang~~~

We have already obtained in Eqs. 2.3 and 2.14 expressions for D and h

in terms of the incremental angles AO and do and the angle of elevation 0.

Since D and h are constants for the layers, these expressions are implicit

solutions for the incremental angles in terms of 0 and D or h. These

expressions must be inverted to obtain the desired equations for AO and

do.

If tan2 e >> D , the series expansions for D and h can be reverted directly

by means of the standard formula:

If

y = a
1
x + a

2
x

2 
+ a

3
x

3 
+ .... 2.22

11-8



then

a 2
x = 

~~~~
— y - 4 y2 + -4—. (2 a2 - a1a3) y3 + .... 2.23
1 a1 a1

This results in the expressions

2
= 

D 
- !. D 

+ 2.24tan O 2 tan3 O

and

do = - ~~ h
2 

+ 2.25
tan 0

where terms just through 0(D2) and o~~2) have been retained .

If tan29 << h , expressions for Ae and dO can be obtained in the

following way: Use the small angle approximation tan 0 0 and express

the incremental angles as power series in 0 with undetermined coefficients.

Substitute these into Eqs. 2.3 and 2.14, collect terms of like order, and

equate to zero. This reveals that the assumed power series are valid and

evaluates the coefficients. The results through 0(2) are

1 ~2 2.26
2~~~~~

and

dO = ~/—.~i~-’ — ~ + 
1 

02 — ... 2.27
2~~~~~

These expressions are useful for the validation of some equations in the limit

O 0. Otherwise , they are of no practical importance.

11-9
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If A8 << 1, then 0(3) terms can be dropped in Eqs. 2.3 and 2.14 and

the resulting quadratic equations solved. We obtain

/ tan~ 0 + 2D - tan 0 2.28

and

dO / tan2 0 + 2h - tan 0 . 2.29

Note that for the situations studied here CD << 1), the condition AG << 1

will be met for all 0. -(It might appear that these approximate solutions

would be questionable when tan 0 gets large. However, it must be recalled

that tan O•A O is always of 0(D) or less which means that the discarded 0(3)

term will always be 0(D) less than the 0(2) term in each of Eqs. 2.3 and

2.14.> While Eqs. 2.28 and 2.29 could be used for all angles, it will often

be more convenient to use the simp.ler forms given by Eqs . 2.24 and 2.25 for

large angles and Eqs. 2.28 and 2.29 otherwise.

This last case, being valid for all 0, allows evaluation of the errors

encountered in using the simpler approximations for large angles.

If we assume tan2O >> D and expand Eq. 2.28 in a power series in D,

it is seen that Eq. 2.28 and Eq. 2.24 agree identically through 0(D2).

Numerical comparison of the two formulas for AO reveals that they agree to

within 0.5% as long as tan2O > 1OD , with the discrepancy decreasing for

larger angles.

If just the first term is retained in the series expansion of Eq. 2.24

then agreement with Eq. 2.28 is within 0.5% under the restriction

tan 2 O > lOOD ; of greater significance for the discussion to follow , agreement

is within 5% for tan2O > lOD .

11—10
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I I I .  RAY PATH MATCHING

Two rather obvious approaches suggest themselves in attempting to

reduce the differences between ray paths and travel times in isogradient

and isospeed layers:

(A) Express the ratios obtained previously in terms of D and h

and then find a relationship between D and h which tends to reduce the

differences between range increments and between times of flight.

(B) Expand these ratios in terms of the incremental angles A0 and

dO and find a relationship between AO and dO which tends to reduce the

differences between range increments and between times of flight .

It might appear that these two approaches are equivalent. However,

we shall see that there will be distinct differences between the two

when the angle of elevation becomes small.

The two equations to be investigated are Eq. 2.20

1 - tanO dO - (l/3’)tanO (dO) 3

Mg 1 - (l/2)tane A0 — (1/6) (AO)2 +(l/24’)tanO (A$)3 3.1

x tan O + (1/2) A0 — (l/6’)tanO (A0)2 — (1/24) (AG ) ~
tan G + do +( 1/3)(dO) 3

and Eq. 2.21

tanO + (1 - tan2 0) do — 2 tanO(dG)2

At~ t anO + (1/2) Ao - (l/6’) tanB(A0 ) 2 
3.2

X [l + (l/2)tanO AO + (l/6) 1 + sin2O (A G)2]
cos20

both of which are expressed here in slightly rearranged forms .

A. Matching Criterion in Terms of D and h

Because the expressions relating AG and dO to D and h have different

forms depending on the values of the angle of elevation , it is necessary

to investigate each regime separately.

I I I — ’  
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(1) Assume tan2O >> D

For this case, retain terms just through 0(2) in Eq. 3.1, revert the

series in the denominator with the help of Eqs. 2.22 and 2.23, and

collect terms of like powers of the incremental angles. These operations

result in

~ 1 +(1/?)A0 - do 
+ [4/4’) CAB)2 + 

(do)2 
-(l/2~ 

AG do
Mg sinOcos0 cos2O sin20 sin20cos2O 3.3

Substitution of the series expansions of the incremental angles in terms

of D and h (Eqs. 2.24 and 2.25) and collection of like-order terms in D

and h gives

a 1 ÷ (1/2’)
D - 2h + cl/4~[ 

- 
D2 

+ 
6h2 - D2 

- 
2Dh

Mg sin2O sin20 sin2Otan2O sin 0

The first order term vanishes for h = D/2, and under this restriction the

ratio of incremental ranges becomes

AX 
1 D2— a 1 - .
~- , tan~O > 1OD . 3.5AX ~ 2 ~~2 

—g tan Osin O

The condition tan2 O > lOD for the validity of Eq. 3.5 is the result of

retaining just through 0(2) in Eq. 3.3: When (A0)2 and (do)2 are calculated ,

terms higher than 0(2) in the results must also be discarded , but this

corresponds to retaining just the first terms in Eqs . 2.24 and 2.25. Thus,

the term of 0(D2) in Eq. 3.5 is accurate only for values of tan 0 such that

the second terms in Eqs . 2.24 and 2.25 are negligible. As discussed in

the previous section (after Eq. 2.9), this requires tan2G > 1OD for the 0(2)

term to be accurate to about 10% of its value . Analogous manipulations for

111-2
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the ratio of incremental times (Eq. 3.2) reveals that the first order

term also vanishes for h = D/2 and the ratio becomes

At 2
a ~. + .~~~ D 1 

+ - 2 cos2O), tan2O > 1OD . 3.6
v sin2O tan2 0

(2) All angles~ and tan2 o << 1

If we represent the angle of elevation in terms of D,

tan2O = yD 3.7

where y is the variable, substitute into Eqs. 3.1 and 3.2,and express the

incremental angles by Eqs. 2.28 and 2.29, the ratios of incremental ranges

and times of flight become

AX ________  ________

. ..!~~~ !‘~~ 
1 + 2/Y + 1 

~ 
- yD(/ 1 + 1/>”- ~~ f +  2/y ’/2 - 1/2)] 3.8

Mg /1 + l / y ’

and

~~j /l + l /y ’- yD(3- 3 /l + l / y  + 2/y )
At
~ (l/2~([ 1 + 2/y~+ 1) - (1/3)yD(1 - ~/ 1 + 2/y ’ + l/y )

rl + (1/6) yD(l - / 1 + 2/y
e 
+ 2/y)

L~ 213 ’) yD 2 (1 - /~~ 2/ y +  1/y) .

111-3

____ -V
.5 . 5 . 5 -



If we assume y >> 1, expansion of Eq. 3.8 yields

= 1 - ~~
- (l/y~ + D/y - D2/3) + 0(1/y 3, D/y2, D2/y ,  D3) +

If we desire about 10% accuracy in the second term, then D/y and D2/3 can

be discarded if D/y < 1/tb y
2). This gives an upper limit to 0 such

that tan2O < 1/10. Analysis of Eq. 3.9 is simIlar and leads to about

the same upper limit on tan2O . Thus, for angles satisfying this

inequality, Eqs. 3.8 and 3.9 can be simplified to

~~~~ =(l/2)~ 
tan28 + 2D ’ + tanG tan 2 0 < 1/10 3.10

g t a n 0 + D

and

= (&Lv/AXg)~~ tan 2 O ..~ 1/10 . 3.11

For the upper bound on 0 in Eqs. 3.10 and 3.11 to overlap the lower

bound on 0 in Eqs. 3.5 and 3.6, we must have 1/10 > 1OD which requires

D <l0 2.

-(If there is a range of angles such that 1/10 < tan 2 O < lOD , then the

full forms Eqs. 3.8 and 3.9 must be used if it is desired to estimate the

fractional error [1 - (Mv/Mg)] to better than about 10%. The condition

D ‘~. 10 2 would be virtually impossible to encounter when accurate ray

tracing is being done.).

Some pertinent numerical comparisons are given in Table 3.1 for the

ratios of incremental ranges predicted by Eqs. 3.5 and 3.10. The fractional

errors are consistent within 20% for tan2O > 1OD , within 10% for tan 2 O > 20D ,

111—4
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~~
h = D / 2 1

Eq. 3.5 Eq. 3.10

- 
1 D2 1 / tan2e + 2D~ + tan G

tan2esin2o 
2 ftan2e +

0 - 1 - 2 . 9 3  x 10
_ i

1 - 1 - 3.41 x lO
_2

2 - 1 - 1.44 x io
_2

5 - 1 - 3.50 x lci3

10 1 - 1.25 x b0~~ 1 - 1.04 x lO~~

20 1 - 3 . 1 3  x l0~~ 1 - 2.84 x 10~~

50 1 - 5.00 x lO~~ 1 - 4.81 x b0~~

100 1 - 1.25 x 10~~ 1 - 1.23 x 10~~

Comparison of ratios of incremental ranges for the case

h = D/2 and the restriction tan20 < 1/10. [The ratios

of times-of-flight (Eqs. 3.5 and 3.10) deviate from

each other similarly.]

Table 3.1
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and within 1% for tan20 > lOOD. Similar calculations, not shown , for the

ratios of incremental times reveal comparable, but slightly better, agree-

ment between Eqs. 3.6 and 3.11 at each value of (tan2~)/D.

For very small angles the fractional deviations are quite significant:

From Eqs. 3.10 and 3.11, if the ray is horizontal at the bottom of the

isogradient layer then the ratio of incremental ranges approaches l/f ~~
’

and the ratio of travel times becomes v9~’. Thus, while the matching

criterion h = D/2 yields very satisfactory agreement for the incremental

ranges and times at large angles of elevation, agreement becomes extremely

poor for angles approaching grazing.

B. Ma-~ching Criterion in Terms of AG and do

Direct examination of Eq. 3.1 shows that if we set dO = AO / 2 , all terms

of 0(1) in numerator and denominator become identical . Now, return to the

fundamental definitions of Mv and Mg: Combination of Eqs. 2.4 and 2.15

with do = A0/2 yields

= 
cosO 1

Mg tan(0 + AO/2) sin(0 + Ae) - sinG c

Use of Eqs. 2.1 and 2.2 results in

— cos(O + AG/2) cosO - cos(0 + AG) 3.12
Mg 

— 
sin(8 + Ae/2) sin(O + AG) - sinG

Now ,

sin(G + AO ) - sinG = 2 sin (AO/ 2)c o s ( .  + AG / 2)

111-6
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and

cosO - cos(0 + AB) = 2 sin (A0/2)sin( O + Ae/2).

Substitution of these into Eq. 3.12 shows that

AX
= 1 3.13

g

for all angles of elevation. (It is worth pointing out that this can also

be seen from geometry: In the layer the straight-line ray of angle of

elevation 0 + Ao/2 is tangent to the circular arc, subtending angle AO ,

at its midpoint, and is therefore parallel to the chord of the arc.)

Direct examination of Eq. 3.2 shows that the criterion do = A0/2

similarly causes terms through 0(1) to vanish. Substitution of this

choice and simplification yields

tanG + (l/2” A0 + (1/l2)tano (tan2o — l) (A G) 2 
3.14At tanO + (l/2 )Ao - (l/6)tane (AO) 2

Examination of the limit tan2 G >> D reveals

= 1 + (1/12) (tan 2G + 1) (AO ) 2 , tan 2 G > lOD 3.15

where the restriction tan2G > lOD follows as before. Use of Eq. 2.24

allows the above expression to be stated in terms of D,

= 1 +(l/ 12) D 2 
, tan2G > lOD . 3.16

v sin 2 G

At the other extreme, under the restriction tan2G << 1, Eq. 3.14 assumes

the approximate form

III-  7
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At 2
= 1 + (l/6’)tanG 2 tanO + ~~~ 

t~~~0 .< 1/10 . 3.17

To express Eq. 3.17 in terms of D, use of Eq. 2.28 gives

= 1 + (1/6)tane (/ tan2O + 2D’ - tanO) 2 
, tan 2 O < 1/ 10. 3.18

/ tan2 0 + 2D’ 
+ tan G —

In the range 1OD < tan2 O < 1/10 where both Eqs. 3.16 and 3.18 are valid ,

Eq. 3.18 reduces to

At 2
= 1 + (1/12) D 

, lOD < tan2G 1/10. 3.19
v tan29

Within the approximation tan 2 0 << 1, for which tan G sinG , Eqs. 3.18 and

3.16 are thus equivalent. Comparison of Eqs . 3.16 and 3.19 reveals that

the fractional error between travel times are consistent within 10% if

[1 - (tanG/sinO)2] < 1/10. This yields the upper limit on tan 2 G stated in

Eqs. 3.17 - 3.19.

Table 3.2 presents some values of Eqs. 3.16 and 3.18 as functions of

(tan2O)/D. Notice that Atg/Atv exhibits a maximum. Analysis of Eq. 3.18

reveals that it occurs for (tan2G)/D = 1/4 and has value Atg/Atv = 1 + D/24.

For D = 2 x lO~ ’ the maximum value of the ratio of travel times is thus

1 + 8.33 x lO~~. This is in clear contrast with the results of the case

h = D/ 2 for which the ratio has maximum value [Tat G = 0.

111-8
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do = A O/ 2 1

Eq. 3.16 Eq. 3.18

tan 2 G 1 + 
D2 

~ + 
1 
~~~ 

(v’ tan20 + 2D ’ - t ame)2
12 sin28 6 

/ tan2O + 2D + tanG

0 - 1 + 0

0.01 - 1 + 1.91 x lO
_2 

D

0 . 0 2  - l+2 .47 x l0 2 D

0.05 - l+3.29 x 10 2 D

0.1 - l+3.83 x l0 2 D

0.2 - l + 4 . 1 4 x 1D 2 D

0.5 - l+3. 93 x l0 2 D

1 - l+3.27 x l0 2 D

10 l+8.33 x 10 3 D l+7.25 x l0 3 D

20 l+ 4 .l7 x l0 3 D l+3.88 x l0 3 D

50 1 + 1.67 x l0~~ D 1 + 1.62 x 10~~ D

100 1 + 8.33 x l0~~ D 1 + 8.21 x l0~~ D

Comparisons of ratios of incremental times-of-flight

for the case do = ~0/2 and the restriction tan2o < 1/10.

The ratio of incremental ranges is exactly unity for all

angles.

Table 3.2
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IV. TRACE-BACK ERRORS

Given the time-of-flight of the received signal, the value of the ray

invariant over the path it has travelled, and the speed of sound profile,

the received signal can be traced back to its apparent source. In this

section we will treat the isogradient-layer model of the profile as our

reference, and compare the discrepancies in range and depth of the apparent

location of the source between isogradient-layer models and isospeed-layer

models for the two matching criteria h = D/2 and dO = A0/ 2 .

Let us define the quantity

A X .
AX. = AX . - AX = AX .(l — 

Vi 4.1
1 gi. vi gi AXgj

which is the discrepancy between the incremental ranges obtained in the ith

isospeed and isogradient layers, and the similar quantity for the difference

between the times-of-flight through each of these layers,

At. = At . - At . = At .( —fl- —1) . 4 . 2
1 ~~]. vi. vi L~t .vi

The right hand side of each of these equations expresses AX1 or ~t1 
in terms

of the ratios obtained in Section III.

Examination of Figures 4.1(a) and 4.1(b) reveals that the altitude excess

AZ and range deficit AR for the source position from trace-back in isospeed

layers (compared to that for trace-back in isogradient layers) are

f
A Z = c  sin O .E  At.  4 .3f f i= 1 1

IV -1



Range

Source at
position
(1~ f1Zf )

isospeed layer model

isogradient layer model

AZ.
0L

4.,

rece iver at depth Z0

(a)

Source at apparent position
(Ri,, Z~,)

Sou~~e~~ t
)
true position

AZ = Zf - Z~. = altitude excess (depth deficit)

= Rf - Rj, = range def icit

(b)

Figure 4.1
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and

£
AR = E Ak. - cot 0 AZ 4.4£

where C
f 

and are the speed of sound and angle of elevation of the ray

in the last isospeed layer.

Since we have usually expressed AX /Afl. - and At - tAt . in the formvi gi gi vi.

[1 + (correction term)1] where the correction term is found to reasonably

high accuracy, we can in what follows relax the rigor maintained up to this

point , since we are concerned more with the approximate sizes of AR and AZ

rather than their precise values .

A. Trace-Back Error Formulas

(1) The Case h = D/2.

(a) Calculation of

For tan2 G > 1OD , we find Mvj/AXg1 from Eq. 3.5, and Mgi 
a Az 1cotG 1

from Eqs . 3.5 and 2.15. For tan 2 O
~ 

< 1/10, the ratio comes from Eq. 3.10, we

can replace tan G
~ 

by its argument 0. with negligible error, and Atgj comes

from combination of Eqs. 2.15 and 2.29, Mgi 
a 2 Az

~/ (/ O~ + 2D~ + of).

Putting these together gives

r D~I ~- A z. if tan2O. > lOD .8 .~~~ i 1—  i.
I tan O.sin 0.
I 1 1

AX. =
1

2 1 
~ ~~~ if tan2 G .  < 1/10 .

/ e~ + 2D.’ + 0. / G~ + D.’ 1
1 1 1 1 1

4.5
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(b) Calculation of At.:

For tan 2 O . > lOD . ,  the ratio is found from Eq. 3.6 and At1 —  1 vi

Az
~

/ (c
~

sinG 1) results from Eq. 2.16. For tan 2 G1 < 1/10, Eq. 3.11 yields

the ratio and since angles are small tan G
~ can be replaced with

Eqs. 2.16 and 2.29 similarly yield At~1 Az1/(c1
/ G~ + D). Thus we have

D2( 1 1 1 + - 2 cos2G.)Az. if tan2O. > lOD .8 . 3  2 3 1 i. i —
- sin G, tan G.

j 1 1

C 2~t.r 1

2 
— 

1 )A z .  if tan2G.  < 1/10
/ + 2D.~ + 0. ii G~ + D. 1 1 —

1 1 1 1 1

4.6

where simplification has been achieved by the additional approximation

c. C
f 

for all i. (For the values of c typically found in sea water, this

approximation is good to within a couple per cent.)

(2) The Case dO = Ae/2.

We have seen that Akyj/Mgj is identically unity for all

AX, = 0 all 0. . 4.7
1 1

Analysis for At. proceeds as in the previous case except that Eqs .

3.16 and 3.18 are used instead of Eqs. 3.6 and 3.11. The results are

D~I 1 
______ Az. if tan20. > 1OD .

1 ~~~~~~~ 
1.

C At. =f i

/ / 0~ + 2D. - ~~~1 
~~. 

1 1 J Az . if tan 2 8. < 1/10
~ ‘

~~~/ G ~~+ 2Dj’+ G .  J 1 1 —

IV-4 4.8
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The formulas for these cases h D/2 and dO = A8/2 are summarized

in Figure 4.2.
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f
AZ = sin O

f Cf 
E At.

1=1

£
E Alt . - cot 0 AZ

i=l ‘

h = D/2
I D~
1 1 Az. tan2O. > lOD

A/t
1 ~ 

8 tan 3O1:in
2 O . 1 

1 2I C _________ — 
________ )A z . tan 0. < 1/10 V

I Fi~~+2D~~÷ e . /o~~+D.
’ ‘

1 1 1 1 1

I 
D~ 1 

+ - 2 cos2 O.)AZ. tan 2 G . > 1OD8 sin 2 o~ tan 2 G~ ~ 1 1 1 —

Cf
At
1 

= -~~

AX . tan 2 O. < 1/10

dO = AO /2

0

( D~I ~~~~~ Az. tan2 G. > 1OD

cfAt1 

~ 12 sin3O1 

~ 2 

1 —

(/o~~+ 2D.’ - e .\

L 0
~ (

\/ G~ + 2D~ + ~:) 
Az1 tan2G. < 1/10

Figure 4 .2
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B. Analysis for a Sample Profile 
V

Ass~m~e that the receiving array is at a depth of 210 m , the source is

at the surface , the speed of sound at the surface is 1.5 x 1O 3 m/sec, As

is 3 m for every layer, and D 2 x l0~~ for all layers. This corresponds

to a speed-of-sound profile which is nearly isogradient with g 0.1/sec .

The depth deficits AZ and range deficits AR of the source location

were calculated for the two isospeed models as functions of the arrival

angle 0 at the array . The calculations used the approximate equations in

Figure 4.2. The results axe presented in Table 4.3 and Figure 4 .4 .

For this sample profile, the condition tan2 O > 10 D is equivalent to

o > 2.6° and the condition tan 2 G < 1/10 is equivalent to 0 < 17’. The

pair of equations for AX . and the pair for At. thus overlap for 5° < 0 < 10° ,

since for this range of arrival angles all angles encountered along the ray

paths lie between 5° and 14°. In this range of overlap, it is seen that the

predicted values of AZ and AR from the different equations for each of the

cases h = D/2 and dO = AO/2 are in good agreement. The poorest agreement

occurs for AR in the case h = D/2. This results from the fact that for

tan2 G .  > 10 D the expression for AR is the difference of two large nearly

equal quantities

f f
AR = E Ar . - cos 0~ Z c

i—i 1 1—].

each of which is correct to within a few percent. The disagreement can be

seen to be consistent with the approximations made in obtaining the large

angle equation for Ak.. As O
~ 

increases the discrepancies in AR decrease

rapidly because the two tenns become more dissimilar. This imprecision in

AR does not occur for the range tan20~ < 1/10 because in this case

P1—7
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z~~th~al
values h D/2 dO = AO/2

Of Rf AZ AR AZ AR

0.0° 9~~~50 2520 in 15 in 1.3 in 3.3 x 10 ’ in —2.0 x i0’
~ in

0.1 9.5 2490 11 0.93 5.3 x l0~~ —3.2 x i0~~

0.2 9.5 2470 8.2 0.68 6.0 x 10~~ —3.6 x i0~

0.5 9.5 2390 3.0 0.25 5.7 x 10 ’ —3.4 x i0’~

1.0 9.6 2270 0.69 5.7 x 10~~ 3.7 x 10 —2.2 x i0~~

2.0 9.7 2040 9.8 x 10 2 8.3 x 1.9 x 10~~ —1.1 x i0 3

5.0 10.8 1520 6.4 x ~~~ 5.9 x 10 ’ 5.7 x l0~~ —3.0 x lO~~
6.5 x i0~ 9.9 x 10~~ 5.9 x 10~~ —3.1 x i0~~

10.0 13.8 1000 7.0 x 10 ” 8.5 x i0 5 1.9 x i0~~ —7.7 x i0 5

6.7 x 10~~ 1.8 x 10~~ 2.0 x i0~~ —8.0 x i0~~

20.0 22.1 550 4.9 x 10~~ 2.4 x 5.7 x 10~~ —1.4 x i0~~

50.0 50.7 170 9.6 x 10~~ 2.2 x iO~~ 1.2 x i0 6 —9.7 x i0~~

70.0 70.3 80 6.7 x i0~~ —1.8 x 7.9 x i0 7 —2.8 x i0~”

90.0 90.0 0 7.0 x i0~~ 0 7.0 x i0~~ 0

D = 2 x

Az — 3 m

Array depth = 210 m

Source at the surface

cisurface) — 1.5 x iO~ rn/sec

Range and depth deficits for the two isospeed layer models.

Table 4.3
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C
f 

At~ AX1 5~~ that

f
AR= (l-cos8) E AX.f . 1

1.=1

and the difference (1 - cos 0 ) does not involve AX. or At..f 1 1

Figure 4.4 reveals quite clearly that the use of the isospeed model

based on h = D/2 results in very large errors at the extreme ranges .

For the sample profile used here, it is seen that beyond ranges of 2000 m

the error in the apparent range of the source approaches 1 m and the error

in the apparent depth exceeds 1 in.

(It is to be noticed that the errors place the source too high and too

near. This is a result only of the model used for traceback, and must be

distinguished from other errors which may enhance , nullify, or reverse this

tendency.)
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V. INITIALIZATION ERROR

A very important requirement for accurate localization of the source

is the correct value for the ray invariant. An error in this quantity

can arise from incorrect calculation of the angle of arrival 0r of the

sound at the center of the array and from error in the choise of the value

of the speed of sound Cr at the center of the array .

Since the ray invariant is con Or/Cr it is clear that the effect of

an incorrect 0 ’  is indistinguishable from that of an incorrect c ’ . Choosing

~the wrong value c ’ is equivalent to having the right C
r 

but the wrong G if

c and 0 are related by

C

cos o’ =4 cos O 5.1r C rr V

If this wrong ray is traced back in isogradient water, the error AX becomes

AX = AX - AX’g g

where is for the incorrectly chosen ray. Use of (2.4) results in

C cos Or - . r .
= t (sin 0 — sin 0 ) — , (sin 0’ — sin 0’)r cos O rg cos O r

5.2

Analogously, the timing error is

At = At - At ’g g

which , with (2.5)  yields

1+  sin 0’1 l + s i n O rAt = — Ln ( . . ) 5.3g l + s i n O ’  l+ sl fl O

V-l
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If we assume that the error in the speed of sound is very small , so that

C

C ’r

then manipnlation of (5.1) reveals

cos 0’ = (1 + c) cos 0r r

and , with the help of Snel].’s Law,

cos 0 ’ 
= 

~~~ 0’ cos 0 C cos 0 C
_ _ _ _  _ _ _ _  

r r r r cos O
~ 

—
~~~~~~ ~~ 

—

~~~~~~~~ ~~ 
~~~(l + E) cos O

r r r .  r r

or

cos 0’ (1 + ~) con 0

Substitution into (5.2) and (5.3) yields

Cr C 
— 

C 
5.4g cos O sin G sin Or r

and

sin 0
At~~ 

1
C (  

1 sin G 1 r
g tari2 0 1+sin O~~~~~~~ 0 l + s i n 0~~~ 

5.5
r

V-2
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The resultant range and depth deficits are then

AZ =(sin o) c At

AR = AX - cot 0 AZ

Since both At and AX are proportional to C , we see that the errors in

locating the source are linear in the fractional error C in the speed

of sound C at the depth of the center of the array. These equations

require C << tan2 0, but are reasonably accurate as long as

C/ (tan 2 0) < 1/4.

As an example, let us assume that the array is at a depth of 210 m ,

at which C
r 

= 1521 m/sec, and that the speed of sound at the surface is

1500 rn/sec. This isogradient water has g = 0.1/sec and the situation is

nearly equivalent to that analyzed in the preceding section. For a source

at the surface, the range and depth deficits encountered for an error of

0.15 rn/s in the speed of sound at the array (c = 1520.85 rn/s) are pre-

sented in Figure 5.1.

Notice that for this underestimate of Cr the apparent location of the

source is significantly too deep at extreme ranges. For the sample pro-

file studied here, comparisons of these errors with those resulting from

the isospeed model for which h = D/2 reveals that an error in C
r 
of one

part in 1O’ is far more serious than those resulting from either of the

isospeed layer models for the speed of sound profile.

V-3
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0 R AZ ARr

1° 2270 —13 m — 2.2 m

2 2040 — 5.8 — 1.0

5 1520 — 1.7 — 0.32

10 1000 — 0.56 — 0.14

20 550 — 0.15 — 0.060

50 170 — 0.014 — 0.018

c = 1521r

= 1520.85
r

g = 0.1

Array depth = 210 m

Source at the surface

Appr~ dmate range and depth errors .

Table 5.].
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VI. RESULTS AND CONCLUSIONS

The analyses of the preceding sections reveal that:

(1) If an isogradient layer is modeled by an isospeed layer whose

speed of sound C
v 
is the average over depth of the speed of sound c(z)

in the isogradient layer,

c = < c > = c (1. - ) 6.1v g 2

the trajectory line and time of flight through the layer can be seriously

in error for rays whose angles of elevation are small.

(2) If in the isogradient layer the ray path has angle of elevation

O upon entrance to, and 0 + AG upon exit from , the layer , then if the

straight line ray path in the isospeed layer has an angle of elevation of

O + (1/2) AG , the error in the trajectory (at entrance and exit) vanishes

identically and the error in time of flight remains very small for all

angles of elevation.

(3) A very small error in either 0r or C
r 
can introduce serious errors

in localization of the source when the ray is nearly horizontal over some

portion of its path.

Thus , the usual method of basing isospeed-layer models of isogradient

layers on the average over depth of the speed of sound C
v 

= < C
g 
> can

lead to serious errors in the localization of the source of the sound if

the ray becomes nearly horizontal anywhere on the path between source and

receiver. If, on the other hand, the angle of elevation of the ray in each

isospeed layer is required to be 0 + (1/2) AG , where 0 and 0 + AG are the

entrance and exit angles of the ray in the isogradient layer, then the

errors become acceptably small. It is worth noting that this approach can

be shown to be equivalent to requiring c,~ for the isospeed layer to be

VI-l

_ _ _ _ _  - - --~~~~~~~~~~~~~~~~~ --—— —.5— -- - -- .5 ~-— -V  - 5 -- - -



given by

C
v 

= < C
g >[i + 

~ 
(t~0)1~ 

] 
= ~ 

[ ~~ 

- + ~ (A O)
2] 

6.2

It is our opinion that better than either of these choices is to represent

the “true” profile by isogradient layers for which the speed of sound is allowed

to be discontinuous across the boundaries of the layers. This method of approxi-

mating the profile was suggested in Figure 1.1(b). It is to be noticed that

this method should be more accurate than the more usually encountered con—

strained fit of Figure 1.1(c).

Finally, very small errors in the angle of elevation or speed of sound at

the receiver can introduce large errors in localizing the source if the ray

is nearly horizontal somewhere over its path. In particular, in positive—

gradient water the most important part of the speed-of-sound profile is that

closest to the bottom where the ray is most nearly horizontal.
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