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I. INTRODUCTION

Assume that an acoustical source initiates a signal at a known time and
that this signal is subsequently received by a directional array. If the
time of arrival of the signal at each hydrophone of the array is known,
and the speed-of-sound profile of the water column is known, it is then
possible to determine the angle er of the arrival of the signal at the
array and trace the trajectory of the signal back over the relevant ray
path. With the time of flight known, the original position (range and
depth) of the acoustical source can then be estimated.

Of the various sources of error possible in implementing this process,
this report is directed toward those arising from the fact that the speed-
of-sound profile used in calculating the ray path is modeled on the available
experimental data sampling the true profile.

If the water column is divided into horizontal layers, the speed-of-sound
profile in each of these layers can be approximated with some simple function
of depth which models the observed profile and allows rapid calculation of
the ray path and time of flight through that layer.

The simplest model would be a one-parameter fit: the assumption of an

isospeed layer whose speed of sound c, is obtained from analysis of the data
within that layer. The ray path would be a straight line whose angle of
elevation would be determined by a layer-by-layer application of Snell's Law
along the ray path. This model is suggested in Figure 1l.la.

A more sophisticated model would be a two-parameter fit: the assumption

of an isogradient layer whose speed of sound c(z) is a linear function of
depth z,

c(z) = c(zo) + glz - zo)




c(3)

(b) "2 parameter

Figure 1.1 Methods of Fitting Profiles
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where g is the gradient and z is some reference depth in the layer. Here,
the two parameters c(zo) and g would be obtained by fitting c(z) to the data
representing the observed profile within the layer. The ray path in this
case would be a circular arc of fixed radius within each layer. See Figure
1.1b, and notice in particular that the two parameter fit allows c to be
discontinuous across the top or bottom of a layer.

A commonly-encountered isogradient-layer model is the "constrained" two
parameter fit (Fig. l.lc), for which the speed of sound is not allowed to
have discontinuities. A moment's thought reveals that this constraint must
reduce the accuracy of this model below that of the (unconstrained) two
parameter fit of Figure 1l.lb.

Other models with more parameters can be postulated (corresponding to
fitting the data with power series in z of increasing order), but the
resulting ray paths become more complicated than usually desired.

Given that the experimental data are accurate, models with more parameters
would be better capable of reproducing the experimentally determined profile,
at least until there are too many parameters for the number of data or until
whatever desired smoothing of the data is lost. Below these limits, however,
the two-parameter fit should produce a ray path which conforms more closely
to that in "real" profile than should the one-parameter fit. It is plausible
that this should also be true for the calculations of the time of flight
through the layers.

In this report we compare the predictions of the isogradient model with
those of two isospeed models. Our approach will be to take the isogradient
model as the reference and compare the predictions of two isospeed models
with those of the isogradient model. That isospeed model whose predictions

conform more closely to the reference will be deemed the better of the two

——— - R T e D e —




with respect to locating the acoustical source. We also consider some
effects on accurate prediction arising from an incorrect value of either

the angle of arrival er or the speed of sound e, at the array.




II. FORMULATION

Both isogradient-layer models and isospeed-layer models approximate
the true speed-of-sound profile for the purpose of tracing received
acoustical signals back to their apparent source.

What is known about a received signal for the situation considered

here is the time-of-flight of the signal from source to receiver and the

angle er with which the signal impinges on the receiver. This angle,

together with prior information about the speed of sound at the receiver,

Cp provides a specific value for the ray invariant (cos 9r/cr) which uniquely

labels the ray. It follows that comparison of isogradient and isospeed
models must be based on studying the different ray paths and travel times

resulting from tracing back a ray of specified invariant.

A. Isogradient Layer

Refer to Fig. 1(a). Let a ray enter an isogradient layer of thickness
Az at an angle of elevation 6 and leave the layer with an angle of eleva-
tion 6 + Af. The gradient g is defined so that positive-gradient water
has speed of sound c(z) increasing with increasing depth, and the speed of

sound at the bottom of the layer is c. It is useful to define a quantity
D=£4 2.1

which is the fractional change of the speed of sound Ac/c across the layer.

Application of Snell's Law along the ray relates D and A6,

cos 8 _ cos (6 + 46) 2.2
c c (1 -D) 3
II-1
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(a) Isogradient Layer
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(b) Isospeed Layer

Figure 2.1
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Use of cos (8 + AB) = cos 6 cos A - sin ( sin A6, assuming that the
incremental angle of A8 is very small so that cos A8 and sin A6 can be
replaced by truncated power series in A6, and collection of like-order

terms gives

D = tan 6 46 +(1/2(a8)2 - (1/6)tan o (a0)3 - (1/24) (a0)* + ... 2.5

A6 << 1.,

Between entering and leaving the layer the range has increased by
A/Lg, and the time-of-flight has increased by Atg. Since the ray path is

a section of a circular arc, elementary analysis yields the known expressions

= ___(.:__ 1 = i
A"‘g TR [sin (6 + A8) - sin 8] 2.4
and
. c 1 + sin (68 + A6)
At:g'gzn [c(l-D) 1+ sin 6 ] Ham

In the first expression, Eq. 2.4, expansion of the first sine and use of

A8 << 1 results in the power series

an, = % [48 - (1/2)tan 6(88)2 - (1/6)(A8)3 +(1/24) tan & (a0)* +...] . 2.6
Now, use of Eqs. 2.1 and 2..3 yields the desired form

.1 -(1/2)tan 6 A8 - (1/6)(48)2 + (1/24)tan 6 (A8)3 + ...

Ar Az. 25
€ tan 0 +(1/2)86 -(1/6) tan 0 (48)2 -(1/24) (28)3 + ....
To cast Eq. 2.5 into a useful form, separate it into
. 1 + sin (8 + A8) cos (6 + A8)
Atg—g{!in[ T ]-1’.;'1[—————(:ose 1%}, 2.8
I1-3
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expand the arguments in power series in A8, and then make use of
Ln (1 + x) = x -(1/2)x% + (1/3)x3 -@/4)x"* + ... 2.9

which is valid for lxl < 1. Combination of these steps and use of trigo-
nometric identities to simplify the coefficients in the resulting power

series culminates in

ik 1 tan 6 2 1 + sin? 3
Atg o | e td +(1/2)—-—Cos 5 (48) +(1/6)-——cos 2 (a8)3 + ...]. 2.10

B. Isospeed Layer

Refer to Fig. 1(b) and now consider the properties of a ray traversing
a layer in which the speed of sound <, is constant over its thickness Az.

<(Recall that for both models the same value of the ray invariant must be
used. Thus, we assume that @os elj/cr has exactly the same value for the
straight-line ray in the isospeed layer as for the circular arc in the iso-
gradient layer. As we have formulated the problem here, this is equivalent
to relating c, to both the speed of sound c at the bottom of the isogradient
layer and the gradient g found within that layer.)

If the angle of elevation is 6 + d6 for the ray in the isospeed layer,
then the circular arc in the isogradient layer will possess the same slope
at that depth for which the speed of sound c(z) is equal to c, This provides

the relation

c, = cl - %—dz) 2.11

where dz is measured from the bottom of the layer. Use of the convenient

quantity

I1-4




h =24z 2.12
c

and application of Snell's Law yields

cos & _ cos (6 + do)
= R 2.13

from which we extract the expression
h = tan 6 do +(1/2)(de)2 - (1/6)tan & (de)3 -(1/24)(de)"* + ... 2.14

in the same way as Eq. 2.3 was obtained.

As an aid in understanding the significance of h, notice that if h = 0,
the two rays have the same slope at the bottoms of the layers, and if
h = D/2, the rays have the same slope at the middles of the layers. For
this latter condition, the straight ray is traveling as if it were in an
isospeed layer possessing speed of sound c(l - D/2), which is the average
over depth of the speed of sound in the isogradient layer. Notice that,
as defined above, h must always be less than or equal to D.

It is elementary to obtain the increment in range Anv and the time-of-

flight Atv for the ray in the isospeed layer:

1 - tan 6 tan d6

Adv = cot (6 + dO) Az = s e Az 2.15
and
18, = e e RS
II-S
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Use of Eq. 2.13 and the definition of D allows the time-of-flight to be

written in the form

cos (6 + de)

e sin (8 + d8) . 2.17

e w b
At D
v
Performing the same kind of manipulations as before (expansion into power
series in the incremental angle, use of Snell's Law, use of Eq. 2.3, and

so forth) allows Eqs. 2.15 and 2.17 to be rewritten in the forms

mm - 1-tan6de -(1/3)tan 6 (d6)3 + ....
tan 6 + do +(1/3)(de)3 + ....

Az 2.18

and

% sin 8 [1'+ (cot @ - tan ®) d8 - 2(d8)2 -(2/3(cot 6 - tan 0)(de)3 Eoanl

2.19

C. Ratios of Incremental Ranges and Times

We are concerned with the differences between incremental ranges and times-

of-flight for ray paths with equal ray invariants in the isogradient and iso-

speed layers. Investigation of these small differences will reveal techniques
to minimize the discrepancies between the range and time results of t'2 two
models.

For the ratio of the incremental ranges, direct combination of Eqs. 2.7

and 2.18 yields

II-6




Yy _ 1 - tanede - (1/3)tan6(d0)? + ...
A)"g tand + do + (1/3)(d6)3 + ..
» tand +(1/2)40 -(2/3)tan 6[(1/2)88]2 - (1/(1/)ae)3 + ...  2.20

1 - tane[(1/2) 48] -(2/3)[(1/2) 2612 +(1/3)tanel(1/2)26)3 + ...
For the ratio of travel times, combine Eqs. 2.10 and 2.19 and then use

Eq. 2.3 (the series representation for D) to obtain

Aty . tan6ae[l +(1/2)tan8Ae + (1/6) (sec?s + tan26) (48)2 + ...]

8%y taneae +(1/2) (40)2 - (1/6)tan6 (46)3 - (1/24) (a8)* + ...

22l

x[ 1+ (cotd - tan®) de - 2(de)2 + ...].
Study of these two ratios reveals that they depend very strongly on the
angle of elevation 8 of the ray.

As an aid in the analysis to follow, notice that for all angles of
elevation Eq. 2.3 reveals that the term tan 6-A8 must always be of order
D or less, and Eq. 2.14 reveals that tan 6-d6 must similarly always be of
order h or less. On the other hand, the terms A®/tan 6) and dé/tan 6)can
be arbitrarily large or small, depending on whether 6 is small or large.
As a result, it will often be necessary to investigate these ratios for
large and small angles separately. The distinction between large and
small angles of elevation must be made on the basis of the relationships
between the angle of elevation 6 and D or h. It is seen for Eqs. 2.3 and
2.14 that when 6 is reduced until it becomes of order D% (in Eq. 2.3) or
of order h!E (in Eq. 2.14) then the incremental angles A6 and d6 become of
the same respective orders and the terms d6/fan 6) and #/&an 6) change from
being less than unity to being greater than unity. Since typical values
of D are of order 10™ %, it is clear that the two extremes of behavior
occur for angles 6 much less than or much greater than about 1°. Thus,

it is necessary to investigate the behaviors of Eqs. 2.20 and 2.21 for the

I1-7
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cases 0 << hg5 (since h is always less than or equal to D), and 6 >> D“.

In what follows, we must distinguish between measuring quantities in
terms of their orders in A® and d® and measuring quantities in terms of
their order in D. The notation we adopt to make this distinction is as
follows:

(1) If a term is of order (Ae)“ or (de)", it will be represented by
0(n).

(2) If a term is or order Dn, it will be represented by O(Dn), and
similarly for h.

The expansions in incremental angles will be convenient for mathematical
manipulations, but it must be remembered that it is expansion in orders of
D which will reveal the sizes of the discrepancies between ranges and times

for the two ray-tracing models.

D. Solutions for the Incremental Aggles

We have already obtained in Eqs. 2.3 and 2.14 expressions for D and h
in terms of the incremental angles A6 and dé and the angle of elevation 6.
Since D and h are constants for the layers, these expressions are implicit
solutions for the incremental angles in terms of 6 and D or h. These
expressions must be inverted to obtain the desired equations for A8 and
de.

If tan? @ >> p, the series expansions for D and h can be reverted directly
by means of the standard formula:

If

y=ax+a x2 # X * e P

I1-8




then
e 22 2 e 2at -a.8) P 2.23
Sl Bl 5 2 " Bglad 7. T sves s
1 a1 a1

D 1 D
A8 = - = e 2.24
tan 6 ztan36
and
2
A h 1 h
de = fon s - T T : 2.25
tan™ 6

where terms just through O(Dz) and O(hz) have been retained.

If tan?@ << h , expressions for A6 and dO can be obtained in the

following way: Use the small angle approximation tan 6 = 6 and express
the incremental angles as power series in 6 with undetermined coefficients.
Substitute these into Eqs. 2.3 and 2.14, collect terms of like order, and
equate to zero. This reveals that the assumed power series are valid and

evaluates the coefficients. The results through 0(2) are

Ao V2D %% e B 2.26
2 /2D
and
40 u T o B W i B s 2.27
2 /2h

These expressions are useful for the validation of some equations in the limit

6 - 0. Otherwise, they are of no practical importance.

II-9
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If A8 << 1, then 0(3) terms can be dropped in Eqs. 2.3 and 2.14 and

the resulting quadratic equations solved. We obtain

20 = vV tan2 @ + 2D - tan 8 2.28
and
d6 =V tanZ? 6 + 2h - tan 6 . 2.29

Note that for the situations studied here (D << 1), the condition A8 <<1
will be met for all 6. =<(It might appear that these approximate solutions
would be questionable when tan 6 gets large. However, it must be recalled
that tan 6:46 is always of 0(D) or less which means that the discarded 0(3)
term will always be 0(D) less than the 0(2) term in each of Eqs. 2.3 and
2.14 > While Eqs. 2.28 and 2.29 could be used for all angles, it will often
be more convenient to use the simpler forms given by Eqs. 2.24 and 2.25 for
large angles and Eqs. 2.28 and 2.29 otherwise.

This last case, being valid for all 6, allows evaluation of the errors
encountered in using the simpler approximations for large angles.

If we assume tan?6 >> D and expand Eq. 2.28 in a power series in D,
it is seen that Eq. 2.28 and Eq. 2.24 agree identically through 0(p?).
Numerical comparison of the two formulas for A6 reveals that they agree to
within 0.5% as long as tan26 > 10D, with the discrepancy decreasing for
larger angles.

If just the first term is retained in the series expansion of Eq. 2.24
then agreement with Eq. 2.28 is Within 0.5% under the restriction
tan29 > 100D; of greater significance for the discussion to follow, agreement

is within 5% for tan?@ > 10D.

II-10
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III. RAY PATH MATCHING

Two rather obvious approaches suggest themselves in attempting to
reduce the differences between ray paths and travel times in isogradient
and isospeed layers:

(A) Express the ratios obtained previously in terms of D and h
and then find a relationship between D and h which tends to reduce the
differences between range increments and between times of flight.

(B) Expand these ratios in terms of the incremental angles A8 and
dé and find a relationship between A6 and dé which tends to reduce the
differences between range increments and between times of flight.

It might appear that these two approaches are equivalent. However,
we shall see that there will be distinct differences between the two
when the angle of elevation becomes small.

The two equations to be investigated are Eq. 2.20

My . 1 - tane de - (1/3)tane(de)3
Bre 1 -(1/2)tané 26 -(1/6) (26)2 +(1/24)tané (16)3 e
y tane +(1/2)48 -(1/6)tand (48)2 - (1/24) (48)3
tang + de +(1/3)(de)3
and Eq. 2.21
Aty . tand + (1 - tan2) de - 2 tan(de)2
Aty tand + (1/2)48 - (1/6)tan6 (48)2 g

2
X[1 +(1/2)tan0 a6 +(1/6) 1L 5108 (4qy2
cos<@
both of which are expressed here in slightly rearranged forms.

A. Matching Criterion in Terms of D and h

Because the expressions relating A8 and dé to D and h have different
forms depending on the values of the angle of elevation, it is necessary

to investigate each regime separately.

III-1
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(1) Assume tan?f >> D

For this case, retain terms just through 0(2) in Eq. 3.1, revert the
series in the denominator with the help of Eqs. 2.22 and 2.23, and
collect terms of like powers of the incremental angles. These operations

result in

A
A4

(1/2) a6 - de (48)2 | (d8)? A8 de
= 1+t 4 [(/4) + -Q/)————1-
Ay Sy cos28  sin2e sin%ecos?6 3.3

Substitution of the series expansions of the incremental angles in terms
of D and h (Eqs. 2.24 and 2.25) and collection of like-order terms in D

and h gives

e " D2 6h2 - D2 2Dh
=X & 1 «(HE=EN . G + - Eh .
g sin?e sin26 sin?etan?e sin“e 3.4

The first order term vanishes for h = D/2, and under this restriction the

ratio of incremental ranges becomes

%4 2
e - —— tan20 > 10D. 3.5
g tan20sin?6

The condition tan?¢ > 10D for the validity of Eq. 3.5 is the result of
retaining just through 0(2) in Eq. 3.3: When (46)2 and (d6)2? are calculated,
terms higher than 0(2) in the results must also be discarded, but this
corresponds to retaining just the first terms in Eqs. 2.24 and 2.25. Thus,
the term of 0(D?) in Eq. 3.5 is accurate only for values of tan 9 such that
the second terms in Eqs. 2.24 and 2.25 are negligible. As discussed in

the previous section (after Eq. 2.9), this requires tan2@ > 10D for the 0(2)

term to be accurate to about 10% of its value. Analogous manipulations for

III-2




the ratio of incremental times (Eq. 3.2) reveals that the first order

term also vanishes for h = D/2 and the ratio becomes

At 2
o sl p—2—(—— +%.2cos%),  tan2e > 10D. 3.6
v sin?6  tan2Z@

(2) All angles,and tan?6 << 1

If we represent the angle of elevation in terms of D,

tane = yD 3.7

where y is the variable, substitute into Eqs. 3.1 and 3.2,and express the

incremental angles by Eqs. 2.28 and 2.29, the ratios of incremental ranges

and times of flight become

A
. ¥ty e/ Ty -1 o)y 12~ D] 5.8

and

Aty Y1+ 1/y-yd(3 -3 1+ 1)y +2/y)
Aty /3 T+ 27y + 1) ~(1/3)yD(1 -V 1+ 27y + 1/y )

1 +(1/6)yd(1 -V 1 + 2]y + 2/y)

+(2/3) D)2 (1 - V1 + 2/y'+ 1/yzi ‘ 3.9

III-3




If we assume y >> 1, expansion of Eq. 3.8 yields

M

=1 - % (1/y? + D/y - D?/3) + 0(1/y3, D/y%, D?/y, D3) + ....
g

If we desire about 16% accuracy in the second term, then D/y and D2/3 can
be discarded if D/y < 1/(10 y2). This gives an upper limit to 6 such
that tan?e < 1/10. Analysis of Eq. 3.9 is similar and leads to about

the same upper limit on tan26. Thus, for angles satisfying this

inequality, Eqs. 3.8 and 3.9 can be simplified to

M _—
= =(1/7),tanZ8 + 2D + tand tan26 <1/10 3.10
g Y tan?e + D
and
At -
o= /a7 tan2e <1/10 . 3.13
£ v/ &g =

For the upper bound on 6 in Eqs. 3.10 and 3.11 to overlap the lower
bound on 6 in Eqs. 3.5 and 3.6, we must have 1/10 > 10D which requires
D <1072,

«If there is a range of angles such that 1/10 < tan?6 <10D, then the
full forms Eqs. 3.8 and 3.9 must be used if it is desired to estimate the
fractional error [1 - (Mv/Mg)] to better than about 10%. The condition
D ~ 102 would be virtually impossible to encounter when accurate ray
tracing is being done.)-

Some pertinent numerical comparisons are given in Table 3.1 for the
ratios of incremental ranges predicted by Eqs. 3.5 and 3.10. The fractional

errors are consistent within 20% for tan26 > 10D, within 10% for tan2e > 20D,

I11-4
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‘ h = D/2 =
—————— g
Eq. 3.5 Eq. 3.10
1 D2 1 v tan?8 + 2D + tané
tan26 1-5g ———— >
D tan20sin?9 Y tan26 + D
oF
0 - 1 - 2.95x 10
"
1 E 1 -3.41 x 10
-2
2 = 1 -1.44 x 10
5 . 1 - 3.50 x 10~°
=3 -3
10 1 =-1.25x10 1-1.04 x10
20 1 - 3.13 x 10°2 1 -2.84 x 1072
=5 -5
50 1 « 5,00 x 10 1 -4.81 x 10
-5 -5
100 1 -1.25 x 10 1-1.23x 10

Comparison of ratios of incremental ranges for the case
h = D/2 and the restriction tanze.f 1/10. [The ratios
of times-of-flight (Eqs. 3.5 and 3.10) deviate from

each other similarly.]

Table 3.1
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and within 1% for tanZe > 100D. Similar calculations, not shown, for the
ratios of incremental times reveal comparable, but slightly better, agree-
ment between Eqs. 3.6 and 3.11 at each value of (ta.nze)/D.

For very small angles the fractional deviations are quite significant:
From Eqs. 3.10 and 3.11, if the ray is horizontal at the bottom of the
isogradient layer then the ratio of incremental ranges approaches w2
and the ratio of travel times becomes ¥ 2. Thus, while the matching
criterion h = D/2 yields very satisfactory agreement for the incremental

ranges and times at large angles of elevation, agreement becomes extremely

poor for angles approaching grazing.

B. Matching Criterion in Terms of A6 and dé

Direct examination of Eq. 3.1 shows that if we set d6 = A®8/2, all terms
of 0(1) in numerator and denominator become identical. Now, return to the
fundamental definitions of o and Ang: Combination of Eqs. 2.4 and 2.15

with d6 = A8/2 yields

A
¥ o cos6 1 gaz
Ang tan(® + A6/2) sin(® + A8) - sinf ¢

Use of Eqs. 2.1 and 2.2 results in

M'v _ cos(8 + A8/2) cosb - cos(B + A8) 3.12
Ang sin(6 + A8/2) sin(® + AB) - sind

Now,

sin(® + A®) - sin® = 2 sin(A8/2)cos(0 + 46/2)

III-6




d

and
cos® - cos(® + AB) = 2 sin(A6/2)sin(® + A8/2).

Substitution of these into Eq. 3.12 shows that

a
v
= 1 3.13

for all angles of elevation. (It is worth pointing out that this can also

be seen from geometry: In the layer the straight-line ray of angle of

elevation 6 + A8/2 is tangent to the circular arc, subtending angle A8,

at its midpoint, and is therefore parallel to the chord of the arc.)
Direct examination of Eq. 3.2 shows that the criterion d6 = A8/2

similarly causes terms through 0(1) to vanish. Substitution of this

choice and simplification yields

8ty tano +(1/2)40 +(1/12)tand (tan20 - 1) (49)2

At 3.14
v tan® +(1/2)Ae -(1/6)tan6 (A6)2
Examination of the limit tan?e >> D reveals
At
e = 1 +(1/12) (tan%e + 1) (48)? , tan2e > 10D 3.15
v
where the restriction tan2e > 10D follows as before. Use of Eq. 2.24
allows the above expression to be stated in terms of D,
At D2
e = 1 +(1/12) i tan2e > 10D . 3.16
v sin26

At the other extreme, under the restriction tan?e << 1, Eq. 3.14 assumes

the approximate form

I11- 7




>
ot

2
Eg-= 1 +(1/6)tan6 z—t-a(J—Alg—)“—'A? > ta.n26 : 1/10 . S.17
\'s

To express Eq. 3.17 in terms of D, use of Eq. 2.28 gives

at ¥ e e 2
=1 +0/6)tane L A8+ 2D - tand)® o0 g0, 3.18
v / tanZ0 + 2D + tans

In the range 10D < tan?6 < 1/10 where both Eqs. 3.16 and 3.18 are valid,
Eq. 3.18 reduces to
At D2

= 1+0/12) : 10D < tan26 < 1/10. 3.19
t 2
v tan<6

Within the approximation tan2e << 1, for which tan® = sins, Eqs. 3.18 and
3.16 are thus equivalent. Comparison of Eqs. 3.16 and 3.19 reveals that
the fractional error between travel times are consistent within 10% if

[1 - (tan®/sin®)?] <1/10. This yields the upper limit on tan26 stated in
Eqs. 3.17 - 3.19.

Table 3.2 presents some values of Eqs. 3.16 and 3.18 as functions of
(tan26)/D. Notice that Atg/Atv exhibits a maximum. Analysis of Eq. 3.18
reveals that it occurs for (tanzq)/D = 1/4 and has value Atg/AtV =1+ D/24.
For D = 2 x 10™* the maximum value of the ratio of travel times is thus
1 + 8.33 x 108, This is in clear contrast with the results of the case

h = D/2 for which the ratio has maximum value v 2 at 6 = 0.

ITI-8
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At
de = A8/2 J-Atv
Eq. 3.16 Eq. 3.18
2 2 ST —. 2 |
tan?e 1 4l D 1+%tane(/tane+2D tang)? |
sin28 Y tan2e + 2D + tan®
0 - 1+0
0.01 . 1+1.91 x102D
0.02 : 1+2.47x10°20D
0.05 5 1 +3.29 x 1072 D
0.1 L 1+ 3.83 x 102D
0.2 - 1+4.14x10%D
0.5 g 1+3.93x10°2D
-2
1 A 1+3.27x10°%D
=3 -3
10 1+8.33x10°0D 1+7.25 x10°°D
<3 -3
20 1+4.17x10°° D 1+3.88x10°°0D
-3 -3
50 1+1.67x10°D 1+1.62x10°°D
-4 -4
100 1+8.33x10%D 1+8.21x10%D

Comparisons of ratios of incremental times-of-flight

for the case d6 = A8/2 and the restriction tanze‘: 1/10.
The ratio of incremental ranges is exactly unity for all
angles. N

Table 3.2
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IV. TRACE-BACK ERRORS

Given the time-of-flight of the received signal, the value of the ray
invariant over the path it has travelled, and the speed of sound profile,
the received signal can be traced back to its apparent source. In this
section we will treat the isogradient-layer model of the profile as our
reference, and compare the discrepancies in range and depth of the apparent
location of the source between isogradient-layer models and isospeed-layer
models for the two matching criteria h = D/2 and d6 = A8/2.

Let us define the quantity

A

vi
A )

gi

4.1

M. =M . - M . =0 . (1~
i gi vi gi
which is the discrepancy between the incremental ranges obtained in the ith

isospeed and isogradient layers, and the similar quantity for the difference

between the times-of-flight through ‘each of these layers,

(8]

by = Grog = AR % Aot = U 3
The right hand side of each of these equations expresses A, or At, in terms
of the ratios obtained in Section III.

Examination of Figures 4.1(a) and 4.1(b) reveals that the altitude excess
AZ and range deficit AR for the source position from trace-back in isospeed
layers (compared to that for trace-back in isogradient layers) are

f

AZ = g sin ef i£1 Ati 4.3
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Range

>R

Source at
position

isospeed layer model

isogradient layer model

2 F
a
2!
By
Y
E

AZ

AR

receiver at depth Z0

(a)

Source at apparent position
(RL, Z%)

1

a3

(AL

!

-

r‘AR—H

Source at true position
(RgsZ)

= Zf - Z% = altitude excess (depth deficit)
= Rf - R% = range deficit
(®)
Figure 4.1
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and

AR =
i

Il ™M Hy

A, - cot 0. AZ 4.4
1 i f
where s and ef are the speed of sound and angle of elevation of the ray
in the last isospeed layer.
Since we have usually expressed Anvi/Angi and Atgi/AtVi in the form
[1 + (correction term)i] where the correction term is found to reasonably
high accuracy, we can in what follows relax the rigor maintained up to this

point, since we are concerned more with the approximate sizes of AR and AZ

rather than their precise values.

A. Trace-Back Error Formulas

(1) The Case h = D/2.

(a) Calculation of Ani:
2 i :
For tan“® > 10D, we find Advi/Angi from Eq. 3.5, and Angi Az cotd,
from Eqs. 3.5 and 2.15. For tanzei < 1/10, the ratio comes from Eq. 3.10, we
can replace tan(-)i by its argument ei with negligible error, and Angi comes

from combination of Eqs. 2.15 and 2.29, Aagi £ 2 8z, /(/ e% +2D; + 0,).

Putting these together gives

[ 1 D2
§-—-———3——-——— Az, if tan29i 3_100i
tan36.sin2e, =
i i
My = S
2 1 & 2
( - ) Az, if tan?e, <1/10.
\_ 1% ez + 2Di + 0 % BE + D1 1
4.5
Iv-3
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(b) Calculation of Ati:

For tanzei > 10D;, the ratio is found from Eq. 3.6 and At , £
Az./(c;sin®;) results from Eq. 2.16. For tanzei_: 1/10, Eq. 3.11 yields
the ratio and since angles are small tanei can be replaced with ei;

Eqs. 2.16 and 2.29 similarly yield Atvi = Azi/(ci/—gg_:_BZ). Thus we have

2
i 1

sin39, tan?0,
i i

+-% - 2 cos?0.)Az. if tan2e, > 10D.

i i - R |

cfAti=

( ——2, = . Jaz, if tanzei <1/10
/e§+zoi+ei /e§i+Di'

4.6

where simplification has been achieved by the additional approximation
< = s for all i. (For the values of c typicaliy found in sea water, this

approximation is goocd to within a couple per cent.)

(2) The Case do = A8/2.

We have seen that Anvi/Angi is identically unity for all ei,
M, =0 all g, . 4.7
i i

Analysis for Ati proceeds as in the previous case except that Egs.

3.16 and 3.18 are used instead of Eqs. 3.6 and 3.11. The results are

1 D2
Vi 2 Az, if tan28, > 10D,
sinde. - .
1
cfAti =
3

1 /63 + 2D, -6,

=0, Az, if tan?e, < 1/10

S | /‘Eg—:-isz + ei i b

IV-4 4.8
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The formulas for these cases h = D/2 and d6 = A8/2 are summarized

in Figure 4.2.




o

£
AZ = sin ef cf .X Ati
i=1
£
AR= § M, - cot 6, AZ
5 i f
i=]
h = D/2
2
1 By
g fz,
tan36.sin2e,
i a1
A, =
i
. - - )Az.
/ef+zoi+e. »’el?+Dl
D2
% 2 ( 1 + £ . 2 cos? ei)Azi
sinzei tan?6
cfAti =
A,
i
de = A8/2
A, = 0
i
2
i Vs
= .
sinde,
1
cfAt. =
4 2
1 v e% + ZDi' -0
= 8 Az.
o CEFEE -
Figure 4.2
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tan6, > 10D

ta.nzei 1/10 .

N

tan?6, > 10D

tan?0,
i

la

1/10

tanzei > 10D
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B. Analysis for a Sample Profile

Assume that the receiving array is at a depth of 210 m, the source is
at the surface, the speed of sound at the surface is 1.5 x 10° m/sec, Az

is 3 m for every layer, and D = 2 x 107"

for all layers. This corresponds
to a speed-of-sound profile which is nearly isogradient with g = 0.1/sec.
The depth deficits AZ and range deficits AR of the source location
were calculated for the two isospeed models as functions of the arrival
angle Gr at the array. The calculations used the approximate equations in
Figure 4.2. The results are presented in Table 4.3 and Figure 4.4.
For this sample profile, the condition tan?6 > 10 D is equivalent to
® > 2.6° and the condition tan?6 < 1/10 is equivalent to 6 < 17°. The
pair of equations for A&i and the pair for Ati thus overlap for 5° < 6 < 10°,
since for this range of arrival angles all angles encountered along the ray
paths lie between 5° and 14°. 1In this range of overlap, it is seen that the
predicted values of AZ and AR fro; the different equations for each of the
cases h = D/2 and d9 = AB/2 are in good agreement. The poorest agreement
occurs for AR in the case h = D/2. This results from the fact that for
tanzei > 10 D the expression for AR is the difference of two large nearly

equal quantities

£ £
AR = I Ar, - cos 6 L c_ At,
=1 1 it

each of which is correct to within a few percent. The disagreement can be
seen to be consistent with the approximations made in obtaining the large
angle equation for Ani. As Gf increases the discrepancies in AR decrease
rapidly because the two terms become more dissimilar. This imprecision in

AR does not occur for the range tanzei € 1/10 because in this case

Iv=-7




naminal
values h = D/2 de = Ag/2
o, 0¢ Re AZ AR AZ AR
0.0° 9.5° 2520 m 15 m 1.3 m 3.3x10*m -2,0x 10 *m
0.1 9.5 2490 11 0.93 5.3x 10" -3.2x 10 ¢
0.2 9.5 2470 8.2 0.68 6.0 x 10 * -3.6 x 10 °
0.5 9.5 2390 3.0 0.25 5.7 x 10 * -3.4 x 103
1.0 9.6 2270 0.69 5.7 x 10 2 3.7x 10 -2.2x 10
2.0 9.7 2040 9.8x 102 8.3x10° 1.9x10 * -1.1 x 103
-3 W S » -4
5.0 10.8 1520 6.4 x 1o_ 5.9 x 1o_ 5.7 x 10_ 3.0 x 10_
6.5x10° 9.9x10 * 5.9 x 10 3 -3.1x 10"
-y =5 -5 - -5
10.0 13.8 1000 7.0 x 10_. 8.5 x lO_ 1.9 10_ Tl X 10_
6.7x 10 * 1.8x10 * 2.0 x 10 % -8.0 x 10" S
20.0 22.1 550 4.9x10% 2.4x10° 5.7 x 10 ¢ -1.4 x 10 %
50.0 50.7 170 9.6 x 10’ 2.2x10°’ 1.2x 10 ¢ -9.7 x 10’
70.0 70.3 80 6.7x 107 -1.8x 10’ 7.9 x10 7 -2.8 x10 7
90.0 90.0 0 7.0 x 10’ 0 7.0 x 107 0

D=2 x 10"
Az = 3 m
Array depth = 210 m

Source at the surface

c(surface) = 1.5 x 10° m/sec

Range and depth deficits for the two isospeed layer models.

Table 4.3
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= M,
Cg Ati A i So that

£
AR = (1 - cos Of) iil Aﬂi

and the difference (1 - cos Sf) does not involve Ani or Ati.

Figure 4.4 reveals quite clearly that the use of the isospeed model
based on h = D/2 results in very large errors at the extreme ranges.
For the sample profile used here, it is seen that beyond ranges of 2000 m
the error in the apparent range of the source approaches 1 m and the error
in the apparent depth exceeds 1 m.

(It is to be noticed that the errors place the source too high and too
near. This is a result only of the model used for traceback, and must be
distinguished from other errors which may enhance, nullify, or reverse this

tendency.)




o

V. INITIALIZATION ERROR
A very important requirement for accurate localization of the source
is the correct value for the ray invariant. An error in this quantity

can arise from incorrect calculation of the angle of arrival er of the

sound at the center of the array and from error in the choise of the value
of the speed of sound cr at the center of the array.

Since the ray invariant is cos Gr/ér it is clear that the effect of
an incorrect Gr'is indistinguishable from that of an incorrect c;. Choosing
the wrong value c; is equivalent to having the right c, but the wrong 6; if

c; and 6; are related by

Q

cos B' = -—f cos © 5L ‘
r ¢ r .

If this wrong ray is traced back in isogradient water, the error AL becomes

M =40 - M
g g

where Aﬂé is for the incorrectly chosen ray. Use of (2.4) results in

c, cos Gr
M= ———— {(sin 6 - sin Sr) 3 (sin 6' - sin 9;)}
g cos Sr r
9.2
Analogously, the timing error is
At = At - At!
g g
which, with (2.5) yields
. 1l + sin 6
Aemd pgplising — ) 5.3
g l + sin 6 1l + sin er




If we assume that the error in the speed of sound is very small, so that

(o}
_Z'"=1+€ eE<K1,
(o]

r
then manipulation of (5.1) reveals

cos B' = (1 + €) cos O
r r

and, with the help of Snell's Law,

'
cos §' coser_coser_i'_coser_f_r_cose
e - i L] b i
c c, c B el c, c
or
cos 6' = (1 + €) cos O .
Substitution into (5.2) and (5.3) yields
(o]
y r € €
A)L—gcose {sine -sine}
z r
and
iy 1 sin 1 B
i 1 + sin 0 1l + sin 6
g tan? 6 tan? er i -
V=2

= (1 +€) cos B

)

5.4

5.5




The resultant range and depth deficits are then

Az

(sin 6) c At

AR = M - cot 6 AZ

Since both At and At are proportional to £, we see that the errors in
locating the source are linear in the fractional error € in the speed
of sound c, at the depth of the center of the array. These equations

require € << tan?

6, but are reasonably accurate as long as
e/ (tan? 6) < 1/4.

As an example, let us assume that the array is at a depth of 210 m,
at which L 1521 m/sec, and that the speed of sound at the surface is
1500 m/sec. This isogradient water has g = 0.1/sec and the situation is
nearly equivalent to that analyzed in the preceding section. For a source
at the surface, the range and depth deficits encountered for an error of
0.15 m/s in the speed of sound at the array (C; = 1520.85 m/s) are pre-~
sented in Figure 5.1.

Notice that for this underestimate of €, the apparent location of the
source is significantly too deep at extreme ranges. For the sample pro-
file studied here, comparisons of these errors with those resulting from
the isospeed model for which h = D/2 reveals that an error in . of one

part in 10" is far more serious than those resulting from either of the

isospeed layer models for the speed of sound profile.




o ——

10

10

20

50

2270 - 13 m - 2.2
2040 - 5.8 - 1.0
1520 - 1.7 - 0.32
1000 - 0.56 - 0.14
550 - 0.15 - 0.060
170 - 0.014 - 0.018

c_= 1521

E

c' = 1520.85

X

g=0.1

Array depth = 210 m

Source at the surface

Approximate range and depth errors.

Table 5.1
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VI. RESULTS AND CONCLUSIONS

The analyses of the preceding sections reveal that:
(1) If an isogradient layer is modeled by an isospeed layer whose
speed of sound <, is the average over depth of the speed of sound c(z)

in the isogradient layer,

D
cv=<cg>=c(l-2) 6.1

the trajectory line and time of flight through the layer can be seriously
in error for rays whose angles of elevation are small.

(2) If in the isogradient layer the ray path has angle of elevation
® upon entrance to, and 6 + A6 upon exit from, the layer, then if the
straight line ray path in the isospeed layer has an angle of elevation of
© + (1/2) A8, the error in the trajectory (at entrance and exit) vanishes
identically and the error in time of flight remains very small for all
angles of elevation.

(3) A very small error in either Br or c can introduce serious errors
in localization of the source when the ray is nearly horizontal over some
portion of its path.

Thus, the usual method of basing isospeed-layer models of isogradient
layers on the average over depth of the speed of sound Gy = < cg > can
lead to serious errors in the localization of the source of the sound if
the ray becomes nearly horizontal anywhere on the path between source and
receiver. If, on the other hand, the angle of elevation of the ray in each
isospeed layer is required to be 6 + (1/2) A6, where 6 and 2 + AO are the
entrance and exit angles of the ray in the isogradient layer, then the
errors become acceptably small. It is worth noting that this approach can

be shown to be equivalent to requiring Cy for the isospeed layer to be

vi-1l




given by

3 1 0e)? | . B LR e
cv < cg >l 1 + 8 - ) 1 2 +_8 (A9) 6.2

It is our opinion that better than either of these choices is to represent
the "true" profile by isogradient layers for which the speed of sound is allowed
to be discontinuous across the boundaries of the layers. This method of approxi-
mating the profile was suggested in Figure 1.1(b). It is to be noticed that
this method should be more accurate than the more usually encountered con-
strained fit of Fiqure l.1l(c).

Finally, very small errors in the angle of elevation or speed of sound at
the receiver can introduce large errors in localizing the source if the ray
is nearly horizontal somewhere over its path. In particular, in positive-
gradient water the most important part of the speed-of-sound profile is that

closest to the bottom where the ray is most nearly horizontal.
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