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ABSTRACT

The advent of high tip~speed, high work, blading in the fan
stages of advanced gas turbine engines has led to the recogni-
tion of a new type of blading instability — unstalled super-

sonic flutter. As a result, a concerted effort to develop an

appropriate predictive mathematical model has taken place.

To determine the range of validity and to direct refinements
to the basic flow model, fundamental supersonic oscillating
cascade data are required. The experiment described herein

is directed at significantly extending the range of existing
supersonic cascade data to include translation mode oscilla-
tions. In particular, the fundamental time-variant transla-
tion mode aerodynamics are determined for the first time for

a classical airfoil cascade in a supersonic inlet flow field
over a range of interblade phase angles at a realistic reduced
frequency value. These unique experimental data are then
correlated with predictions obtained from an appropriate state-
of-the-art harmonically oscillating flat plate cascade aero-

dynamic analysis.

s White: Section jg |
ooe Btf Section m] i
WARNOUNCED 1
JSTIFICATION :
S .
DISTRIBUTION, AVAILADILITY copgs
LN 7T or SPECIAL ~

P 1




TABLE OF CONTENTS

PAGE :

ABSTRACT . . . . . . . . . . . . . . . . . o . . . . . i

NOMENCIATURE . . L . . . . . . - . . L] . . - . . . . . i i i

LIGT OF TABLES o ¢« o« o o s 8 0 & o o o & ® &« @ 8 3 s = iv
LIST OF FPIGURES '« ¢ s o o & & 5 ' & o & @ » & @ '@ v
ENTRODUCTION . & & « & s 5 % 5 & = ‘s % 3 & w & & a4 & @ 1
EXPERIMENTAL FACILITY . . ¢ ¢ o o o o o o ¢ o o o o & 5
AIRFOIL CASCADE AND INSTRUMENTATION . . « ¢ « ¢ « o & 8
TRANSLATION MODE DRIVE SYSTEM . . . . . . . . « « « 11
DATA ACQUISITION AND ANALYSIS . . .« & « ¢« ¢ o « o« o & 13
RESUELS , & wie, 6 e 1w o % @ 6w @, 0 ® e e e e 18
SUMMARY AND CONCLUSIONS . ¢ ¢ . « o o s ¢ o s o o o 22
REFERENCES ¢ ¢ ¢ +« o s o o & o v s s 5 5 o s o s s & » 24
ii




o R I e W6

R R R = - - R -

o <4 T

Xyr

NOMENCLATURE

airfoil chord

unsteady pressure coefficient (Cp = p/!mU2
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INTRODUCTION

The advent of high tip-speed, high work, blading in the fan
stages of modern gas turbine engines has led to the recogni-
tion of a new type of blading instability - supersonic un-
stalled flutter. 1In this region of instability, the incidence
angle is small and the tip region of the blade row is operating
in a supersonic relative flow field. The stresses encountered
during this type of flutter can be catastrophically large,
with all of the blade tip sections harmonically oscillating

at their natural frequencies with a constant interblade phase
angle. Both predominantly bending (translation) and torsional
modes of vibration have been observed. As this supersonic
unstalled flutter boundary crosses the compressor operating
line at high tip speeds, it imposes a definite design con-
straint on the high speed operation of the engine and, hence,

has been receiving a great deal of attention.

Unstalled supersonic flutter is fundamentally an inviscid
phenomena caused by the phase lag of the flow field relative
to the motion of the airfoils. As this type of flutter tends
to become more severe as the pressure ratio is lowered, the
generally used analytically model assumes an inviscid, essen-

tially supersonic flow with a subsonic axial component through




a differential radial height fan stage operating at a pres-
sure ratio of one. This differential fan stage is then
developed into a two-dimensional rectilinear cascade. The
cascade airfoils are assumed to be thin (most often zero
thickness flat plates) and executing small harmonic torsion
or translation mode oscillations. These assumptions lead to
mathematical simplifications which result in a linearized,
two-dimensional, constant coefficient (for the case of flat
plate cascades), partial differential equation for the per-
turbation velocity potential. Various solution techniques
have been and are currently being applied to this mathematical

model.

A semi-infinite cascade with a subsonic leading edge locus

(1) (2)

was considered by Verdon and Caruthers using finite

(3) with the

difference techniques and by Brix and Platzer
method of characteristics. Nagashima and Whitehead(4)
presented a third approach involving dipole distributions
while Yates(s) developed another linearized characteristics
approach. These solutions are all in good agreement with
each other. As a semi-infinite cascade is involved in these
analyses, it is assumed therein that the asymptotic values
for the unsteady pressure distributions and aerodynamic
forces and moments obtained by computing the flow past a

sufficient number of blades are representative of the infin-

ite cascade.




(6)

Using Laplace transform techniques Kurosaka obtained a

solution for an infinite cascade valid for low reduced

frequency values and has recently extended these results to

(7) (8)

higher reduced frequencies . Sisto and Ni using the
(9)

(10)

time-marching technique and Verdon and McCune , Verdon

(11) (12)

Goldstein , and Adamczyk and Goldstein , also have con-

sidered the infinite cascade in supersonic flow with a sub-

sonic axial component.

To determine the range of validity and direct refinements
to the basic flow model, fundamental supersonic, harmonically

oscillating aerodynamic cascade data are required. Such data

have been obtained in the torsion mode for a single airfoil(l3),

a classical airfoil cascade(l4)

(15)

, and an MCA (multiple-circular-

arc) airfoil cascade

The current effort reported herein is directed at significantly
extending the range of the above described supersonic cascade
data by developing the necessary new experimental techniques
and then obtaining relevant translation mode cascade data. 1In
particular, the fundamental time-variant translation mode
aerodynamics are determined for the first time for a classical

airfoil cascade in a supersonic inlet flow field. The reduced




frequency value for this experiment is representative of that

noted for bending flutter in rotors. All of the unsteady

aerodynamic data are correlated with predictions obtained
from a state-of~the-art harmonically oscillating flat plate

cascade analysis.




EXPERIMENTAL FACILITY

The Detroit Diesel Allison rectilinear cascade facility,

shown in Figure 1, was conceived and built as a research

tool to evaluate the aerodynamic and aeroelastic characteris-
tics of compressor and turbine blade sections. The facility
is a continuous flow, non-return, pressure-vacuum type wind
tunnel with the test section evacuated by means of two primary
steam ejectors. Up to 10 lbm/sec of filtered, dried, and

temperature-controlled air may be used.

The test section configuration used in this investigation

is shown in Figure 2. As can be seen, the entrance flow to
the test section is generated by fixed nozzle blocks yielding
a Mach number of 1.30. The orientation of a wedge with
respect to this nozzle exit flow specifies the test section
Mach number, i.e., the shock or expansion wave generated by

the wedge determines the cascade inlet conditions.

To aid in the establishment of the cascade inlet periodicity,
bleed chambers are provided on the lower nozzle block, as
indicated. Adjustment of the bleed rate through these
chambers allows the inlet flow field to the rear (bottom)
portion of the cascade to be affected. The inlet flow field

to the front (upper) portion of the cascade is affected only

1 RN g




by the wedge position, with the first passage controlled to
some extent by the splitter position. The build-up of the
boundary layer in this first passage can produce area ratios
such that this passage cannot be started. Hence, suction is
provided along the front portion of the splitter to remove

the boundary layer and start this first passage.

Active cascade inlet sidewall boundary layer control is also
provided to assure the two-dimensionality of the cascade flow
field. This is accomplished with the suction strip seen in
Figure 3. It contains five discrete regions yet still per-
mits the schlieren system to be utilized to view the cascade

wave system.

Disturbances generated at the lower endwall run downstream of
the cascade in the supersonic flow regime and thus can have
no influence on the cascade performance. The upper endwall
of the tunnel, on the other hand, is crucial in that it can
influence the whole flow field downstream of the cascade

and prevent the formation of a periodic exit flow field.

The shape of this upper endwall also uniquely determines

the cascade pressure ratio under started supersonic exit
operating conditions. The most crucial portion of the

upper endwall is in the early stage of compression. Here

the flow splitter provides the capability to both bleed and

—
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blow. The blowing capability, in conjunction with adjust-
ments of the exit plenum pressure and the angle of the tail-
board attached to the splitter, permits the setting of the
streamline shape in this region and thereby sets the throttle
condition to the first two channels of the cascade. The
remaining problem is to not allow the cascade shock expansion
system which impinges upon this tailboard to reflect back
into the cascade. This is accomplished by making this upper
tailboard porous with a 50% open area as well as having it
open to the exit plenum pressure. This effectively produces
a streamline representation of an infinite cascade at the
design pressure ratio, as established in the first passage

and results in a periodic exit flow field.




AIRFOIL CASCADE AND INSTRUMENTATION

The two-dimensional cascade utilized in this investigation
was comprised of five double-~trunnion airfoils, characterized
by a 3.00 in.(7.62 cm.) span, a 3.00 in. (7.62 cm.) chord,
and a 0.087 in. (0.220 cm.) maximum thickness at the 50 per-
cent chord location. The airfoil profile, indicated sche-

matically in Figure 4, consists of a flat suction surface

and a triangular pressure surface. The cascade physical

parameters are listed in Table I.

The proper steady-state aerodynamic performance instrumenta-
tion necessary to quantitatively describe the cascade flow
field was provided. Sidewall static pressure taps were used

to establish the cascade inlet and exit pressure distribu-
tions. This information together with schlieren flow visualiza-
tion were used to establish the steady-state periodicity of

the cascade.

To achieve realistic reduced frequency values, maintain a two-
dimensional airfecil mode shape, and also maximize the imparted
airfoil oscillatory amplitude for a given input driving power,
unique airfoils fabricated from graphite/epoxy composite
material were necessary. The airfoils were fabricated from a

combination of pre-impregnated Kevlar cloth and graphite mat
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injected with epoxy resin under pressure into a booking mold.
Cloth fiber orientation was controlled to meet prescribed
torsional and bending stress requirements while maintaining

a low density and a high modulus of elasticity.

Hollow steel trunnions were attached to the airfoils at mid-
chord. Cloth insertion and epoxy fill into the trunnions
provided adequate strength at the critical airfoil-trunnion
interface stress locations. Splines located on the trunnion

were used to mount the airfoils into the translational drive

system.

The fabrication of the airfoils from graphite/epoxy composite
material necessitated the use of nonconventional instrumenta-
tion techniques. In particular, to maintain the desired over-
all composite material properties with no degradation of the
airfoil surface contours, provisions for dynamic instrumenta-
tion were embedded in one airfoil during fabrication. This
involved molding the dynamic pressure transducer lead wires

into the airfoil as part of the lay-up and molding process.

The ends of the lead wires were then exposed and the transducers

attached. These flush-mounted Kulite LQ Series dynamic pres-
sure transducers were staggered across the span of the airfoil

on both the pressure and suction surfaces. Figure 5 shows a
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view of this unique dynamically instrumented airfoil. The

chordwise distribution of these transducers is identical on

i i

the airfoil pressure and suction surfaces, with their locations

presented in Table II, and also schematically depicted in

Figure 4.




TRANSLATION MODE DRIVE SYSTEM

A schematic of the translation mode drive system is presented

in Figure 6. Since translation is movement normal to the

chord, no bearing or other rigid axial restraint is necessary.

The airfoil is positioned with the two flexible mounts con-
sisting of a "squirrel cage" support which attaches to the
spline on the airfoil trunnion by indexing over six grooves
and attaching through a replaceable spring bar to a rigid
mount. The indexing tabs ensure torsional restraint with no
blade angle slippage. The airfoil trunnion splines are
positioned axially on these devices by a driver arm clamped
and piloted to the trunnion with an attached spacer tube

which nests over the indexing tabs of the squirrel cage.

Translational excitation forces to each blade are supplied
through the drive arm from the computer controlled electro-
magnets. Driving mechanisms are located on each airfoil
trunnion so that proper excitation of the two-dimensional
translational motion of the airfoil can be accomplished.
Modification of the spring bars and/or mass control of the
driver arm can be used for minor frequency adjustments of

individual blades.

11
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The double-trunnion airfoils and spring bar assemblies are
mounted in plexiglas windows, thereby permitting schlieren
flow visualization, and this complete assembly then installed
in the test section, as seen in Figure 7. The computer con-

trolled electromagnets excite the translation mode drive

system at the airfoil-drive system natural frequency, thereby
imparting the desired translation mode oscillation to the
airfoil cascade at precisely controlled interblade phase

angle values(16'17). Strain gages mounted on the spring bar

assemblies exhibit excellent sensitivity to the translational
airfoil oscillations, and allow the measured strain gage

signals to be converted to translational amplitudes.




DATA ACQUISITION AND ANALYSIS

With the tunnel in operation and the steady-~state cascade
periodicity properly established, as determined by the side-
wall static pressure taps and the schlieren flow visualiza-
tion, the computer controlled translation mode drive system

is made operational. This results in controlled harmonic
oscillations of the airfoil cascade at a prescribed frequency
and interblade phase angle value. The resulting time-variant
spring bar mounted strain gage and airfoil surface pressure
transducer signals are digitized at rates to 100,000 points
per second by a l6-channel analog-digital converter and multi-
plexer system, and stored on a magnetic disk. These digitized
data are analyzed on-line to determine the fundamental aero-
dynamic characteristics of the unsteady phenomena. The
parameters of interest include the amplitude of the airfoil
motion and the pressure disturbance, the frequency, the
interblade phase angle, and the phase difference between the
unsteady pressures and the airfoil motion as characterized

by the strain gage signal on the dynamically instrumented
airfoil, i.e., the aerodynamic phase lag data is referenced

to the motion of the dynamically instrumented center airfoil

in the cascade.

. " =P P A
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The amplitude of the airfoil motion and the pressure distur-
bance are determined by fitting a second order least square
function to the data, differentiating it, and evaluating the

maximum. The pressure disturbance amplitude is then non- |

dimensionalized into an unsteady pressure coefficient, Cp,

as defined in Equation 1:

(1)

where p is the measured unsteady pressure amplitude, p is
the fluid density, U is the inlet velocity, Yy is the ratio
of specific heats, Pg is the inlet static pressure, and h/C

is the ratio of the translational amplitude to the airfoil

chord.

The frequency of the time-dependent data is determined through |
the autocorrelation function. This function describes the L
dependence on the values of the data at one time, xi, on q

The normalized auto-

the values at another time, Xi+r'

correlation function, er, is defined in series form as

1 N-x 1 N

. g z = §J X X;r=0,1,2 ... M 2

Ryr = Wt o1 xixi+r/N '11 Wy W o i
= i=




where:

Xy = X(1i At)

r = lag number

N = total number of dynamic data points
m = number of lags.

The lag time, At, is inversely proportional to the rate at
which the data is digitized. A typical autocorrelogram of
the digitized data exhibits the features of a sine wave plus
random noise. A second order least square function is fit to
the data in the second positive peak of the autocorrelogram.
The inverse of the time at which this least square function
is.a maximum is equal to the frequency, £, of the time-

dependent data.

The phase difference of the pressure disturbance along the
airfoil chord in relation to the airfoil motion is calculated
through the cross-correlation function. This function, for
two sets of data, xi' Yi' describes the dependence of the
values of one set of data on the other. The normalized

cross-correlation function, R

xyr’ is defined as:

N-r

h o /
R [ .- X.Y.
Xyr N-r & i7i+r
- i=1
D)
N x.Yir = - WM, voe =1,0,1, s (3)

fmy . *
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where the variables are defined analogous to those in Equa-

tion (2).

As in the frequency calculation, a second order least square
function is fit to the data in the first positive peak of
the cross-correlogram. The time, tp, at which this least
square function is a maximum is analytically determined.

The phase difference, in degrees, is calculated as
6 =t f 360 (4)
P

where f is the frequency calculated for the airfoil motion

from the strain gage data, utilizing Equation (2).

Two sources of phase relation discrepancy are inherent in
the electronic data acquisition system and correlation com-
putation. The analog-digital (A/D) converter-multiplexer
unit does not permit data to be digitized simultaneously on
all channels. Consequently, an inherent phase shift is
introduced into the physical data when the cross-correlation
function operates on the raw digitized data. This phase
shift, for the sinusoidal data in this experiment, is
directly proportional to the "cut rate" of the multiplexer,

as shown in Equation (5):

6_ = fx(xy - Kx) 360/Ra (5)

s

16
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where Bs is the AD phase shift inherent in the computation

B Ty PP e T

between channels Ky and Kx' representing the respective data,
Yi and xi. The frequency, fx' corresponds to the disturbance
in channel Kx’ and Ra is the rate at which the data were being

digitized.

Prior to acquiring data the electronic data acquisition

system is calibrated for phase shift, ea, using the A/D con-
verter and the computation described in the foregoing.

Therefore, the phase difference of the pressure disturbance
along the airfoil surface in relation to the airfoil motion

is

8 g =9 =8 ., (6)

This computational procedure results in a valid on-line data
analysis system and provides the experimentalist with mean-
ingful information with which to make judicious decisions
during the test. All analyzed results are stored on a

magnetic disk for further examination.
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RESULTS

The procedure followed in this experiment included first ob-
taining a periodic steady-state cascade flow field, as
determined from the schlieren flow visualization and the
sidewall static pressures immediately upstream of the lead-
ing edge of each airfoil in the cascade. Figure 8 presents
a schlieren photograph which typifies the periodic steady-
state cascade flow field established at the inlet Mach number
of 1.40 and a cascade static pressure ratio to unity. As
indicated, the bow shock intersects the suction surface of
the adjacent airfoil near the trailing edge, with both the
reflection of this shock and the trailing edge wake shock
from the adjacent airfoil intersecting the pressure surface
near mid-chord. A comparison of this overall cascade steady
flow field, as characterized by the location of the shock
waves, with that predicted by the analysis of reference 18,
is presented in Figure 9. As can be seen, the correlation
between the experimentally determined shock waves and those
indicated by the predicted constant pressure lines is quite

good.

With the steady-state periodicity established and the cascade
performance determined, the airfoil cascade was harmonically

oscillated in a translation mode at a reduced frequency value
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equal to 0.41. Specified interblade phase angles were in-
vestigated and at selected points, the cascade static pressure
ratio increased from the nominal 1.00:1 to 1.30:1. Funda-
mental time-variant data were then obtained and analyzed.

In addition, data obtained as part of the Independent Rescarch
and Development Program are also included herein to yield i
definitive data trend information., These unique translation
mode data were then correlated with predictions obtained from
the current state-of-the-art cascade analysis of reference 2.
This analysis assumes small perturbations which are generated
by oscillating zero thickness flat plate cascaded airfoils in
a uniform inviscid steady flow field and includes the effect

of variable blade-to-blade amplitude of oscillation, accom-

plished through input of the measured amplitudes into the

analysis.

These unique chordwise pressure and suction surface translation

mode data together with the corresponding predictions are

presented herein in the form of an aerodynamic phase lag as
referenced to the motion of the instrumented airfoil (the

center airfoil in the cascade), and the unsteady pressure

e P

coefficient, Cp. These results for interblade phase angles
between - 180° and + 3° at a cascade static pressure ratio
equal to 1.00:1 are presented in Figures 10 through 14 and
for interblade phase angles between - 180° and + 45° at a

1.30:1 static pressure ratio in Figures 15 through 19.




The time-variant suction surface data are seen to generally
exhibit very good correlation with the predictions. The
aerodynamic phase lag and unsteady pressure coefficient

data are both nearly constant in the chordwise direction,
with the theory predicting an approximate 60° greater lag
than characteristic of the data. As the effects of increased
cascade static pressure ratio are largely taken up in the
trailing edge wave system, only the trailing edge of the
suction surface should be affected. Indeed this is the case,
as evidenced through comparison of the 1.00:1 and 1.30:1
pressure ratio suction surface data at corresponding inter-
blade phase angle values, e.g. Figures 10 and 16, 13 and 18,
and 14 and 19. As seen from these figures, only the suction
surface phase lag and dynamic pressure coefficient data near
to the trailing edge are affected as the pressure ratio is
increased. However, the 1.00:1 suction surface phase lag
data appears much more regular in the chordwise direction

than does the corresponding 1.30:1 data.

The time-variant pressure surface data also generally exhibit
very good correlation with the theoretical predictions.
Both the aerodynamic phase lag and dynamic pressure coeffi-

cient data and prediction remain nearly constant in the

R M_,_L.M”""’
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chordwise direction between the leading edge and the mid-~

chord region shock wave intersection location on this surface.
The theory predicts this intersection location to be at
approximately 70% of the chord, with the 1.00:1 pressure
ratio data indicating the presence of a shock in the region
between the 60% and 75% chord transducer locations. Com~
parison of the 1.00:1 and the 1.30:1 pressure ratio data
indicates that the effect of increasing the back pressure

is to move the shock intersection location forward on the
pressure surface such that at the higher pressure ratio it

lies between the 40% and 60% chord transducer locations.

An interesting trend can also be noted in the aerodynamic
phase lag data-theory correlation on the pressure surface in
the region between the leading edge and the shock inter-
section for both values of the pressure ratio which were
investigated. 1In particular, in this region, as the inter-
blade phase angle is decreased and attains larger negative
values, the phase lag data decreases as compared to the predic-
tion, with the best data-theory correlation obtained at a 0°

interblade phase angle value.




SUMMARY AND CONCLUSIONS

An unsteady cascade experiment directed at providing funda-
mental translation mode aerodynamic data for the first time
has been described. This data was obtained at a realistic
value of the reduced frequency and is necessary for the
verification and/or direction of refinements to the basic
analytical model of unstalled flutter in fans and compressors.
In particular, a unique dynamically instrumented classical
airfoil cascade fabricated from graphite/epoxy composite
material was investigated at an inlet Mach number of 1.40
over a range of interblade phase angles for two levels of
aerodynamic loading. This time-variant data was then
correlated with corresponding predictions obtained from a

state-of-the-art unsteady cascade analysis.

The data generally exhibited very good correlation with the
prediction on both the pressure and suction surfaces. The
predicted suction surface phase lag was increased on the

order of 60° as compared to the data, although in excellent
agreement trendwise. Also, the mid-chord region pressure
surface shock wave intersection location was in general agree-
ment with the prediction for the lower pressure ratio data,

but not for the higher pressure ratio as the theory does not
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include the effect of back pressure. Also, in the region
between the leading edge and the mid-chord region shock
intersection location on the pressure surface, decreasing
the interblade phase angle toward large negative values
resulted in decreasing values of the phase lag data as
compared to the prediction, with the best correlation ob-

tained at the 0° interblade phase angle value.
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3.00 IN. (7.62 CM.)
1.231

61.5°

(1.07 RADIANS)
0.029
3.317° (0.058 RADIANS)

3.317° (0.058 RADIANS)

0.0026

TABLE I. CASCADE PHYSICAL PARAMETERS
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TABLE II.
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SURFACE DYNAMIC PRESSURE TRANSDUCERS
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COMPARISON OF EXPERIMENTAL AND PREDICTED

OVERALL CASCADE FLOW FIELD

FIGURE 9,
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