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ABSTRACT

This paper is concerned with connectivity in
regular lattices and random mosaics , and makes two
major contributions. First, it presents a solution
to the hitherto unsolved problems of predicting the
expected numbers of connected components in square
and hexagonal lattices, using a one dimensional growth
approach that can also be used for some other lattices.
Second, it investigates the relationship between

• connectivity in regular lattices and random mosaics.
Experimental results are presented for both the cases.
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1. Introduction

In an earlier paper [1] we proposed mosaic models for images

and presented an outline of our intended approach towards de-

veloping well-defined procedures for the application of these

models in image modelling. Central to our scheme is the know-

ledge of the various features of the patterns generated by the

different models. Two examples of such features relate to the

properties of the connected components formed by identically

colored neighboring units (adjacent cells or bombed areas).

These features appear to be impor tant for the fol lowing reasons:

1) In analyzing an image we cannot isolate a single unit.

Consequently any known geometrical properties of the units [7]

provided by the various models may not be of much help. The

smallest available homogeneous , isolated region is a connected

component.

2) For the same fractional coverage of the pattern by the given

colors, different models are likely to provide patches having

different topological and geometrical propr~rties, such as con-

vexity,  elongatedness , dispersedness , etc. These properties

of the individual components seem to be crucial in texture

perception and have been included in most of the def ini tions of

texture [3].

3) The relative area of a component, or , alternatively , the

density of components, is a measure of the texture busyness.

This paper considers connectivity properties only for cell

structure models. The approach is divided into two major steps: —
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a) Obtain the desired properties for a regular lattice

that describes a regular graph which is the dual (in an ex-

pected sense , if necessary , as we shall see later) of the cell

structure tessellation under consideration.

b) Interpret the properties of the components in the

pattern generated by the model in terms of those pertaining to

their counterparts in a regular lattice.

Section 2 illustrates our approach to obtaining the various

desired properties for a regular square lattice . In Section 3

we obtain corresponding results for a regular hexagonal lattice.

Although our method is fairly general and can be used for

other lattices too, we wi ll consider only the square and hexa-

gonal lattices , for reasons that will be made clear later.

Section 4 relates the results for regular lattices to the

corresponding properties of the appropriate random mosaics.

Section 5 provides experimental results on the observed and

predicted expected numbers of components in square and hex-

agonal lattices, and the Poisson line and Occupancy mosaics.

In Section 6 we present some general comments on our method

and suggest some future projects.
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2. The Square Lattice

In this section w e  will discuss the problem of obtaining

various properties of the black connected components in a pattern

formed by color ing each point of a square grid black wi th

probability p, and white with probability q = 1-p.

2.1. Expected number of components (per m x m window)

This comparatively simple problem has interested theoretical

physicists for many years , but has not yet been solved [5]. Roach
• [5] provides two estimates of lower and upper bounds on the number

of components per m x m window . In one he considers certain fea-

tures of the immediate neighborhood of a black point, which are

not very common among the points belonging to a component, but

which occur for at least one point per component. The probability

that any arbitrary point has such a feature is readily computable .

Roach estimates the number of components by estimating the expected

number of points possessing such a feature. Since this, in general ,

is an overestimate , as remarked above , he successively refines the

estimates by counting the exceptions that make the estimates

erroneous.

In his second approach Roach considers the var ious configura-

tions of black points that can give rise to a single component.

The probability that a given point belongs to a given conf igura-

• tion is easy to compute. By considering the different shapes that

a component of size n can have , the probability that a black point

belongs to a component of size n can be computed. He estimates the

number of components by computing the lower and upper bounds on

the numbers of components of sizes 1 to 7. Dornb et al. [2] improve

Roach ’s bounds by considering the components of sizes 1 to 9.

~ 
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The validity of the above estimates is ultimately limited

by the increasingly intractable cOmbinatorics for the large-size

components. Since large components become more and more pre-

valent as p increases , the inaccuracies of the estimates become

increasingly pronounced , as shown in Fig. 1 [5].

The above approaches to component analysis are likely to be

relatively complex as compared to viewing the components as the

result of a growth process in two dimensions, which in turn

should be harder than if one could interpret the image as having

been produced by one dimensional growth. The combinatorial

complexity then gets divided and there is a better hope of either

deriving the explicit form of dependence , or , at least, confining

the intractability to fewer parameters which , if known , would pro-

vide the solution . These parameters can be empirically estimated.

We now describe a specific approach involving empirical

estimation of a single parameter.

Consider a white M x N image . Let each point of the first

row be colored black with probability p and white with proba-

bility q = 1-p. The row now consists of a sequence of runs of

• black and white points. Any of these runs can have length be-

tween 1 and N. Let E(r) denote the expected number of runs of

length r in a row. We shall first compute E(r).

A run of length r will occur if there are r consecutive

black points , with the first and the rth points having a white

neighbor. (Note that if a row-end is included in the run then

the latter restriction is clearly unnecessary). We consider• I two cases :

- — • _~~~~~~~~~ • • • ~~~~~~~~~~~~~~~~~ • • ~~~~~~~• • —.- 
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Case (i) 0 < r < N

It is clear that a run of length r can occupy one of

(N-r+l) positions in the row. In all but two of these positions ,

the run must be surrounded by two white points , while in the

remaining two positions it need have a white neighbor only on

the interior end . Since each point is black with probability

p, and white with probabliity q, we have

r 2 rE(r) = (N-r-l) p q + 2 p q

Case (ii) r = N

The entire row should be black . Clearly

E(N)=pN

Thus, the expected number of runs of length r per row is

t (N-r-l) prq2 + 2 prq 0 < r < N
E(r) =~~ Np r = N

As a result of coloring the first row, therefore , there

are an expected number of E(r) potential components originating

in the first row. We now start coloring the following rows.

When the 1th row is considered each of its E(r) runs may be of

one of two types:

1) It may be isolated from all of the runs in the (j_1)St row ,

i.e. none of the points in the run may be a neighbor of a black

point in the (i_1) St rowSuch a run may be the origin of a new

component. Alternatively ,

2) It may touch k , where k > 1, runs in the (j _ 1) St row , which

may belong to £~ di f f e ren t hitherto isolated components,

< k. Each such run thus merges ~ currently distinct com-

ponents into one .



Since each point is independently colored , the probability

that a run of length r in the ~th row does not overlap with any

run in the (j_1)5t row is simply ~~~~~~~. 
• We will now compute the

expected number of runs that a given run of length r overlaps.

Each of the overlapping runs can be uniquely labelled by

its left end. The probability that a point is a left end is

the same as the probability that it is black and its left neigh-

bor is white , which is qp. Since any point can be a left end

independently of all the other points , the expected number of

left ends among r points is given by rqp.

In order to compute how many runs a run of length r over-

laps, note first that the point directly below the left end of

the run does not have to be a left end. Since its left neighbor

has no neighbor among the points in the run , its color is

immaterial. Thus, the expected number of runs that a given

run of length r overlaps is (r-l)qp + p .

One or more of these overlapping runs may belong to the

same component. Moreover , the runs belonging to the same com-

ponent need not be adjacent. It is this characteristic of the

growth that makes the influence of the next row on the status

cf connectedness depend upon the entire past (all the previous

rows). However, this single, relatively simple characteristic

of the pattern embodies the entire combinatorial complexity

which manifests itself in many ways in other representations .

Given this parameter , the process that determines the number

of connected components becomes Markov of order 1.

_ _ _ _ _ _ _  _ _ _ _ _ _ _ _  ~~~~ - —--~~ -
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Let T (-r ) be the expected number of currently distinct

~~mponents reaching the (j_1)
St row , whose runs are overlapped

by a run of length r in the ~~~ row.. Then the increment in the

number of components as a result of the addition of a single

row , I~ , is given by
N

= £ (Expected number of runs of Length r) [Pr (a run of
r=l

length r is isolated) + Pr (a run of length r is not

isolated) (1 - T ( r ) ) ] .

We have divided the runs into two categories - isolated

and nonisolated - for the following reason. T(r) is an expected

value and adds further to the variance of the final results.

We would like to minimize this effect. Estimating the pro-

bability distribution of the number of components overlapping

a run of length r, however , becomes very cumbersome . Since

the probability of a run being isolated or not is easy to find ,

we confine the impact of T(r) only to the nonisolated runs , by

estimating and using its value only for such runs . Thus ,

N
= E E(r) [q r + (l_q r) (l—T(r))]
r=l

If C0 denotes the expected number of components in the

f irst row , then the expected number of components, C, in an

M x N image can be expressed as

C = C 0 + (M-l)~~

We can approximate C0 by the expected number of runs in a row .

Then,
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C0 = (N-l) qp + p

so that C = (N-i) qp + p + (M-l) t~

The aboVe estimate of C~ , howe’~•’r, is an overestimate and

should be refined , as we will see in Section 5.

2.2. Expected area of a component

When each point of the image is colored black with pro-

bability p, we have

Expected number of black points in the image = pMN.

We already know the expected number of components , C, in

the image. Therefore

Expected area of a component A =

2.3 .  Expected perimeter of a component

We will define the perimeter of a component as the number

of pairs of points a and b such that a is a black point belong-

ing to the component, and b is a white neighbor of a [6]. The

reason for using this definition will be made clear in Section 4.

We will first compute the total length of perimeter in

the image.

Clearly ,

Pr { A black point has j white neighbors } = (
~
) (l—p)~ p4~~

Then ,

Expected number of white neighbors of a black point

Expected contribution to the total perimeter due to a single

black point

( l — p)~ ~4 j  
= ~~ l— p)

The expected per imeter of a component, then , is given by

= ~~~~~~ P1 = AP1



~ _______

2 . 4 .  Expected dispersedness of a component

We can use the ratio of the square of the perimeter P

of a component to its area as a measure of its dispersedness

[6 ] .  We have obtained an expression for the expected per-

imeter of a component. Hence the expected dispersedness of

a component is given by

~,2 _ A 2P~
2 

— 2
- A - A P1

Experimental details and results using this estimate are

provided in Section 5.
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3. The Hexagonal Lattice

We would now like to obtain the properties of connected

components in a hexagonal lattice. A hexagonal lattice can be

viewed as a square lattice whose alternate rows of points have

been displaced horizontally by half the interpoint distance

(Fig. 2). The number of points per row of a given picture now

may be different if the picture has an odd number of columns.

A row, then, will have either of two lengths that differ by 1.

This will change the run statistics of the rows . Since there

are two kinds of rows , we can evaluate A for each kind , and

evaluate their contributions to the expected total number of

• components in the picture according to the numbers of the two

kinds of rows , which will  again d i f f e r  by 0 or 1, depending

on whether the image has an even or odd number of rows . For

a large image , however , these end effects may be ignored . We

will give expressions which take into account these effects.

3.1. Expected number of components

Let us assume %hat the even-numbered rows have been shifted

with respect to the odd-numbered rows. Let A0 and Ae denote

the value of A for odd and even numbered rows, respectively .

For a picture with N columns the expected number of runs

of length r in an odd numbered row is given by
Ni

E0 (r )  
={ 

~~ 

— r - l )  prq 2 + 2prq 0 ;

and the expected number of runs of length r in an even numbered

row is given by

Ee(r) f(~~~
_r_l)prq2 + 2prq 0 < r <

r = [~.j

• ~~~•.
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Unlike the square lattice case the probability that a

run in a hexagonal lattice row depends upon its location in

the row, and the type of the row. A row-interior run of

length r overlaps exactly r+l points in the previous row.

If the run includes one of the row ends it is connected to

r points in the previous row . A completely black row is

isolated if the previous row is white. Thus ,

1(r) E Pr (a run of lenght r is isolated)

= Pr ( the run is an interior run) qr+l +

Pr ( the run includes exactly one row end) qr +

Pr (the run consists of the entire row)~ 
q{
~~~~~~u~

f
r~~e}

Now , for 0 r < row length
Number of interior positions of

Pr (a run is a row-inter ior  run)  = a run in a row
Total number of possible positions
of a run in the row

Pr ( a run includes one row end) = 1—Pr (the run is a row-interior
run )

If 1 ( r)  and 1e~~~ 
denote the values of 1( r )  for the odd

and even numbered rows , respectively , it is clear that

i1~ 1 -r-l qr+l + 2 qr 0 < r < 
FN1

1 (r) =
~~ ~ -r+1 —r+1

• 
~ q i  r=

• and

-r-1 qr+l + 
N 

2 qr 0 < r
I ( r)  =.~ 

~
j -r+l -r+1

I~ q~1

_ _ _  _ _ _ _ _ _ _ _ _ _ _  . - . . . .
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The expected value of the increment in the number of corn—

ponents due to an odd numbered row isIN!
A = E E0(r) {I (r) +(1-10(r)) (l_T(r))}

and L71
A = E (r )  

{~I ( r )  -I-(l4 e (r) ) ( 1_T ( r) )}

The expected total number of components in the image with M

rows is then

C = C + I ~~~l A e + L ~ j _ J A

where C0 
E expected number of components in the f i r s t  row .

3.2. Expected area of a component

Expected number of black points in the image E B =

P[1~1 ~~~~~~ 
+ L~1 ~i]

Therefore ,

Expected ..~rea of a component A =

3.3. Expected perimeter of a component

Using the same notation as used for the square lattice

in Section 2.3, we have

p = (1-p) 3 p6~ i = 6(l-p) 
- •
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The expected perimeter of a component is given by

P = AP1

3.4. Expected dispersedness of a component

The expected dispersedness of a component is given by

2-r = AP1 

-——.-- -- •



4. Regular Lattice Patterns and Cell Structure Mosaics

4.1. Regular tessellations

Our motivation for the connectedness analysis of regular

lattice patterns is to deduce from it the corresponding results

for certain cell structure mosaics.

Defini t ion:

Let T be a tessellation of plane into cells. Let any two

cells be called neighbors if they share an edge . We will call

T a KV regular tessellation if each of its cells has exactly K

neighbors and exactly V cells meeting at each of its vertices.

Let Fp T  denote the probability distribution of the number

of connected components obtained as a result of coloring each of

the cells of T black with  probability p, and white with probabi-

bili ty 1-p.

Theorem:

If T1 and T2 are two KV regular tessellations , for any

positive integers K and V 1 then for any 0 ~ 
p �. 1 we have

Fp , T1 p, T 2

Proof:

We will view a connected component as the result of a growth

process. At any stage during the growth we label a component

by (a) its size S, i.e. the number of cells in it, and (b) the

number of unexamined (uncolored) neighbors of the component,

denoted by U. Clearly , in the beginning when the component has

only one cell , S = 1 and U = K.

-.
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At any step during the growth , the unexamined neighbors

of a component are colored one by one until one is colored black .

The size of the component then increases by 1 and the process

repeats. If at any step all of the U unexamined neighbors are

eventually colored white , the component cannot grow any further.

Thus the size of the component , or the number of steps taken

before the growth stops , depends on the lattice only through

the probability distribution of the number of unexamined neigh-

• bors at different steps in the growth .

Now , by definition , a KV regular tessellation describes a

completely regular graph [4). The dual graph of a KV regular

tessellation describes the connectedness among cells , and y by

~~finition of complete regularity , is also completely regular.

This means that the dual graphs of all Ky regular tessellations

are isomorphic to a single , representative completely regular

graph. Clearly, any two such graphs would result in identical

probability distributions of the number of unexamined neighbors

at different steps. Therefore the growth processes will be

identical in all KV regular tessellations . In particular the

probability distribution of the size of a connected component

• in any two XV regular tessellations T1 and T2 will be identical,

i.e.

Fp, T p, T2

This completes the proof.

By a straightforward application of Euler ’s polyhedral

formula it can be shown [4] that there exist only three repeti-

tive planar graph patterns , or mosaics ; and they can be formed
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by using triangles , quadrangles , or hexagons as the primitive

repeating pattern. The K and V values of the corresponding KV

regular tessellations , and their types,are given in Table 1.

Table 1

K V Resulting Tessellation

3 6 Triangular

4 4 Quadrangular

6 3 Hexagonal

4.2. Random mosaics

We now consider the connectedness problem for cell structure

random mosaic models. Some of these models have the property

that in the corresponding tessellations , the expected values of

K and V are the same for all the cells. For the Poisson line

and the occupancy models, these values are the same as those for

the quadrangular and hexagonal tessellations , respectively. One

may expect, therefore , that the growth processes in the above

tessellations and the corresponding mosaics would be similar in

characteristics. However , without having a complete mathematical

description of the growth processes , e.g. the probability dis-

tribution of the number of unexamined neighbors at various steps,

we cannot prove exactly which of the characteristics will

be identical for the twc~ processes. However , we may expect that

the equal number of positive and negative variations in the

values of K and V for different cells in large Poisson line 

____.• — •—
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or occupancy model tessellations may cancel out, and the

expected area of a component in the mosaics may be the same

as the expected area of a component in the patterns based upon

the corresponding Ky regular tessellations. We then have the

following conjecture.

Conjecture:

Let T1 be a KV regular tessellation . Let T2 be a tessellation

each of whose cells has an expected number K of neighbors , and

an expected number V of cells meeting at each of its vertices.

Let Ii denote the patterns obtained by coloring the cells of

black with probability p, and white with probability 1-p.

Then the expected area of a black component in I~ is the same

as in I2~
Experimental observations on the expected number of com-

ponents in the square lattice, Poisson line , hexagonal lattice ,

and occupancy mosaics, are presented in Section 5.

In our current repertoire of cell structure models there

are none known to have tessellations corresponding to the

triangular tessellation. On the other hand , the Poisson line

and occupancy models , as mentioned earlier, do correspond to

the quadrangular and hexagonal tessellations. This is the reason

why , in Section 3, we carried out the connected component analysis

only for the latter two lattices. The triangular lattice analysis ,

if needed , can also be carried out along the same lines.

• 4.3. Estimation of patch properties

The analysis presented above predicts the expected number

of cells in a connected component , or a patch , in the mosaic.



The expected values of the properties of cells in some tessell-

ations are also known [71. We provide below the expressions

for the expected patch area and perimeter , in terms of the

corresponding properties of the connected components as obtained

above.

Expected patch area = (Expected size of a component) x

(Expected area of a cell)

The perimeter of a patch is formed from a sequence of cell

edges. None , some or all of the edges of a black cell could

belong to the perimeter of a patch . This requires that to

compute perimeter we must consider all the edges of a cell

that border a white neighbor. The definition of perimeter

that we chose for lattice components in Section 2 extends

meaningfully to patches in the above sense. We have

Expected patch perimeter = (Expected perimeter of a component) x

Expected cell perimeter
Expected number of sides of a cell

_ _
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5. Experimental Results

In this section we provide the details of the experiments

carried out on the regular lattices as well as on the random • •

mosaics. The predictions and verifications were made only for

the expected number of connected components in the image.

5.1. The regular square lattice

As pointed out in Section 2, we must estimate the parameter

T(r) for the lattice in order to be able to predict the expected

number of connected components in a given image. However , we

should note that for a finite size lattice the number of connected

components in the lattice would be influenced by the border. The

expected number would be overestimated due to the presence of

distinct components touching the border that could have merged

had the picture extended still further. Any estimate of T(r)

will , therefore , clearly , be a function of not only the length

r of the run, but also of where the run occurs relative to the

image border. To avoid this complexity we will restrict our

analysis only to the interior of the lattice where the border

effects have presumably died down (this assumption becomes less

and less true as the probability p of a point being black approaches

1).

To estimate T(r) we observed its values for all runs that

occured in a 100 x 100 window located at the center of a 500 x

500 image. Since the probability of a run being of length r

decreases monotonically with r(Oep<l), the observed number of

runs of length r also decreases with r. We estimated T(r) only

for those r<R such that

_ _ _ _ _  ~~~~~~~~~~ ~~~~~.



a) The number of nonisolated runs of length greater than

R is no more than 5% of the total number of nonisolated runs , and

b) T(r) is monotonic for r<R (this is to reduce sensitivity

to erratic fluctuations in the value of T(r) that might result

from unavailability of a sufficient number of long runs in the

chosen , finite window). For all the runs of length r>R , we

observe a cumulative mean value of T(r), denoted by T(R+l).

The above observations were made on ten different pictures

for p = .1 9, in steps of .1. For each value of p, the

number of connected components in the window was also observed .

Those pictures giving rise to extreme values of this number are

discarded , and the remaining eight are used to estimate T(r) ‘s.

The results are shown in Table 2.

The estimated values of T(r) were also used to predict the

expected number of components in a 100 x 100 image. As noted

in Section 2, the expression provided there for C0 is an over-

estimate of the true value of C0, since it estimates the number

of different components in a row by the number of runs in a row.

Similarly, the number of isolated runs in the initial row will

be an underestimate of the number of different components in the

row . However , if the picture has a large number of rows , the

influence of the errors in the two estimates on the number

of connected components in the image will decrease. In terms

of the notation of Section 2 we compute C0 as fo llows:

C = 
(N-l)gp + p + (M-l)A

o M

= (Number of runs in the first row) + (M-l)AM
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The observed and the predicted expected numbers of compon-

ents in a 100 x 100 window are shown in Table 3. We may note

that the errors between the observed and the predicted values

remain much smaller than the differences between the lower and

the upper bounds shown in Fig. 1. However , the errors do in-

crease with increasing p. This may be expected in view of our

earlier remarks that given a fixed window , the number of corn—

ponents in it becomes more and more influenced by the border

effects as the value of p approaches 1. 
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5.2. The Poisson line mosaic

In Poisson line mosaics formed by digital straight lines

there is a nonzero probability of a small cell being lost due

to the finite thickness of the lines. In other words , what would

be a cell with small interior area and closely spaced borders

in a Poisson line mosaic in the Euclidean plane , may appear in

the digital mosaic as overlapping and/or neighboring digital

straight lines with no points belonging to the interior of the

cell. Such cells , if not properly taken care of , would change the

Connectedness properties of the digital Poisson line mosaic .

One way to reduce this effect is to decrease the probability

of a cell being very small. This can be achieved by using a

Poisson process of low intensity , i.e. having fewer straight l ines

per unit area of picture . However , this will also reduce the

number of cells per unit area , and thus , in order to have a

sufficiently large number of cells in the mosaic for any meaning-

ful conclusion about its expected connectedness properties ,

we will have to work with larger images .

At this stage we may point out that our aim is to investigate

the conjectured similarity of the connectedness properties of

the points in a square lattice and the cells in a Poisson line

mosaic. If we decide to do it by comparing the expected number

of connected components per m x m window in the interior of the

ii~tage to reduce border effects , we may have to use an inconven-

lently large Poisson line mosaic. However , if the conjecture

is true the border effects on the expected number of connected

components in a Poisson line mosaic of size M x M , having a

sufficiently large number of cells , say N , should be identical

V



to those in a x V’i~ square lattice pattern. Thus we may

only have to compare the observed number of connected components

in an M x M mosaic with that of an /N x /~ square lattice. This

is the approach that we have taken.

We generated a Poisson line tessellation of size 1000 x 1000 ,

using a Poisson process of an appropriate intensity so that the

number of cells in the resulting image was 100. This was done

to make the comparison with a square lattice easier. However , in

spite of the small number of cells , some of them were small

• enough , as a result of large cell area variance , to be lost on

account of the finite thickness of the digital lines . In order

to avoid the use of still larger size mosaics we chose to work

with the Euclidean plane version of the same mosaic. The cells

were colored by hand and the resulting number of components

counted on three independent sets of patterns , obtained from

the same tessellation . For the corresponding square lattice

connectivity results , we observed the number of connected com-

ponents on a set of ten 10 x 10 images. Both the mosaic as well

as the square lattice had 100 units (cells and points), so that

the results for the two cases did not need to be normalized for

scale.

• - The average observed number of connected components on the

10 images should provide an estimate of the expected number of

connected components in a 10 x 10 square lattice. If the con-

jecture is true this should also be the estimate of the expected

number of connected components in the mosaic .

L - - . - •  . ~~~~~~~~~~~~~~~~~ • •
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To test the validity of the conjecture , we must investigate

whether the average observed number of components in the mosaic

is significantly different from that for the corresponding square

lattice case. If this is so, then the hypothesis is false. If

not, then the data do not falsify the conjecture . In view of the

lack of any knowledge about the probability distribution of the

number of connected components in the mosaic , and the limited

amount of data, we have only computed the following measure of

the deviation of the average observed number of components in

the mosaic from the value predicted by the conjecture .

Let A Number of connected components in a 10 x 10 square

la ttice .

B Number of connected components in a mosaic consisting

of 100 cells.

X E Average value of X , for any X.

E Variance of X.

E Sample variance of X.

Then , ~ = 
I B 1~l is a normalized measure of the deviation of

the expected number of connected components in the mosaic from

that in the square lattice . Z
B 

should have a small value if

the conjecture is true .

Since we do not know 0~~, we will estimate it from the ob-

served sample var iance , s
~

. The formu la 
~B 

provides an

unbiased estimate of GB based upon n observations of B. Thble

4 lists the observed values and the computed measures of the

deviations. To be more conserva tive we could use the maximum like-

lihood estimate of 0B’ wh ich would increase the dev iations by a

f actor of j~~ . This evaluates to 1.25 for n = 3.
/n- 1

~~~—• -•- ~~~~~~~~‘-~:.
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However , for both the estimates of 0B the normalized

deviations remain small , and thus , the data do not disprove

the conjecture.

5.3 The regular hexagonal lattice

As in the square lattice case we require an estimate

of T ( r )  in order to predict the expected number of com-

ponents in a given pattern. It is clear from the topology

of the lattice (Fig. 2) that we need an image with 500

rows and 1000 columns in order to work with the same

amount of data as in a 500x500 square lattice . The values

of T(r) were observed for a 100 row by 200 column window at

the center of the 500xl000 image. For the reasons explained

in Section 5.1, the values of T(r) were obtained only for

r ~ R . For all r > R , a cum ulative mean value of T(r) was

used, denoted by T(R+l).

Due to high computational costs the estimates were

obtained from only seven different images , for each of the

values of p = .l,...,.9, in steps of .1. The number of

connected components in the window was also obtained in each

case, and the data from those pictures having the extreme

numbers of components was not used in estimating T(r)’s.

Table 5 shows the results. In accordance with the analysis

of Section 3, these values of T(r) were then used to predict

the expected number of components in a 100x200 image. The

predicted and the observed values of the expected number

of components, and their normalized differences , are shown

in Table 6. 
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5.4 The occupancy mosaic

We generated three occupancy mosaics ha’~ing l0~ c~lls

each, by using 100 nuclei for each tessellation. On

account of the obvious differences in the nature of the

underlying geometrical processes, the thickness of the

digital lines in a digital occupancy mosaic is less likely

to cause loss of cells than it was in the case of the

Poisson line mosaic. The smaller cell area variance allows

a larger number of cells in an image of given size. For

this reason, an image size of 2l8x2l8 was found sufficient

to accommodate 100 cells. The component counting was done

automatically on the three mosaics obtained from three

different tessellations. (Due to the large-size Euclidean

mosaics in the Poisson line case, and the involved manual

work, we used the same tessellation to obtain three differ-

ent mosaics in Section 5.2.) The results are shown in

Table 7. The deviations, in general, remain small.

5.5 General remarks

Before closing this section we would like to present

some analytical comments on the results of the experiments.

First, it would be desirable to obtain the estimates of

T(r) from larger images and more observations than we con-

sidered. Although the accuracy of the estimates will

alway s su ’fer from lack of data due to the limiting be-

hav ior of the patterns for p = 1, by using increasingly

larger images and numbers of observations, we could improve

_ _ _ _ _ _ _ _
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the estimates for increasing values of p. This is true

because we are estimating only the values of T(r), and

not the nature of its dependence on p. The size of the

data in our experiments was restricted by the associated

computational costs. Because of the greater connectivity

of the hexagona l lattice (occupancy mosaic) as compared to

the square lattice (Poisson line mosaic) the above re-

marks have more serious implications for the former. For

the same amount of insensitivity of an in ter ior window to

the border as in the square lattice case , we need a larger

image. In our observations the values of T(r) exhibited

great variability for large values of p, and this was

greater for the hexagonal lattice than for the square

lattice. This may explain why the corresponding predic-

tions are poorer.

We have tested our conjecture assuming the border

effects to be the same in both the regular lattices and

the corresponding random mosaics. It may be reasonable to

expect that the number of border points (cells) determine

- . the magnitude of border influence , for a given size

lattice (mosaic). In the mosaics used in our experiments

the observed numbers of border cells were 41 for the

Poisson line mosaic , and 29, 30 and 33 for the occupancy

mosaics. (The corresponding regular lattices both have

36 border points.) It is difficult to judge the significance

• of these deviations and their effect on the number of con-

nected components. This further indicates the need for

- --
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large amounts of data in experiments of the kind we have

been concerned with here.
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6. Discussion and Related Projects

We have presented a one dimensional growth approach to the

analysis of lattice patterns. Although the method does not

yield closed form expressions for the properties of the connected

components, it uses empirical data that can be obtained and

tabulated , once and for all , for a given type of lattice. If

desired the data may be represented by a set of best-fitting

polynomials in p and r, and these polynomials may be used to

replace T(r) in the formulas to yield closed form expressions.

The resulting predictors do not then need any explicit spe’..~if i-
- 

cation of external , empirically observed data. The generality

of our approach stems from the fact that the lattices of interest

can often be laid out in the plane as a stack of rows of points

with specified connectivity rules among the points, which , in

general , may be different for different rows. The connected

component properties can then be derived by the row incremental

process as illustrated for the square and hexagonal lattices.

As we have seen, the errors in the predicted expected

number of components are larger for larger p ’s. However , we

may note that cases involving large p ’s may not be of great

interest, since whenever the region of interest in a cell

structure model occupies more than half the image area, we

can interchange the roles of objects and background , without

affecting the validity of the model. Hence we may need the

results obtained only for p~ .5, which are quite accurate.

The expected number of connected components in a given

image starts decreasing with increasing probability,  af ter

reaching a maximum . Intuitively this is so because the distinct

• - - 
-
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components start coalescing . It may be of interest to determine

if there exists a critical probability value 
~c be yond which

the entire set of black points begins to collapse rapidly into

a single giant component. This would also be the probability

at which the border effects start to become dominant.

We have measured the values of T(r) and verified the

predicted expected number of components for the given picture

and window sizes. For reasons mentioned in Section 5.5 , the

results will , in general , be biased due to border effects.

Unless we estimate the functional form of the dependence of

T(r) on p and on the picture size, this bias will always

exist, although it could be made smaller by increasing the

picture size. Since we do not know how the bias varies

with picture size, we cannot specify how to select the pic-

ture size so as to reduce it below a certain predetermined

value. Our choice of the picture and window sizes has been

ad hoc, and although for low values of p the chosen sizes

appear to be sufficient, it is not clear for what maximum

value of p the results obtained are within reasonable

tolerance and characterize only the lattices isvolved .

In view of the fact that there can exist at •most three

kinds of tessellations , as discussed in Section 4.1, the

connectedness analysis of the triangular , square and hexagonal

lattices, along with the conjecture of Section 4.2, should

be sufficient to predict the connectivity of a cell structure

mosaic based upon any conceivable model in terms of the

properties of the cells generated by that model. The amount

of variation in the connectivity properties would partly be

I
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due to the variances of the cell properties. For example ,

we may expect the patch properties in the~occQpancy

mosaics to possess smaller variances than in the Poisson

line mosaics, because of the larger variances of the cell

properties for the latter [ 7 ] .

The problems that we have had with small cells , while

proving the conjecture of Section 4 for the digital Poisson

line mosaics, do not have any serious implications in

terms of the applicability of the Poisson line model , since

in using the model for a given image, we are going to be

interested in the patches and not in the cells , which in any

case have no independent existence. The intensity of the

underlying Poisson process should be immaterial as long as

the patches remain large enough so as not to be signifi-

cantly distorted in shape due to the presence of an excessive

amount of border.

For both the lattices and the mosaics, we have con-

sidered patterns of only two colors, black and white. The

analysis , however , extends to patterns with any number of

colors , since the pattern formed by each of the colors on

the combined background of the rest is similar to the black-

white case. In fact, with a larger number of colors the

domainance of a single color may be less, and the corres-

ponding black-white patterns may all correspond to low

values of p. Consequently, there may not be any need to

interchange the roles of any two colors in order to avoid

the use of the less accurate connectedness resul ts for large
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values of p.

The approach described in this paper could also be

used for the connectedness analysis of a class of bombing

models We will investigate this problem in a later paper

I -
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