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ABSTRACT

An infinitely long, ring—stiffened, submerged, elastic cylinder

having uniformly spaced elastic bulkheads is the structure considered.

Loading is applied by a plane acoustic shock wave with front parallel

to the cylinder axis. Dynamic pressure in the fluid is resolved into

a free—field incident part and a scattered part. Structural response

and scattered pressure in the surrounding fluid are found using finite

element modeling of structure and fluid. Introduction of Fourier

• series makes the fluid region mathematically two-dimensional. A radia-

tion, or non—reflecting, condition at the outer boundary of the fluid

region is shown to give good results. A parametric study is made of

effects of shock pulse rise time and duration on structural response.

Results are presented as combinations of shock pressure and submergence

pressure just sufficient to induce structural failure.
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I. INTRODUCTION

This investigation is the third in a sequence of finite element

studies of fluid-structure interaction . The initial study was by

Atchison (1) and the second by Newton and Atchison (2]. The system con-

sidered , as in the earlier studies , is a submarine subjected to a shock

wave resulting from an underwater explosion. The submarine is modeled

as a ring-stiffened cylinder of infinite length with equally spaced

elastic bulkheads . The shock wave is a plane acoustic wave with front

parallel to the longitudinal axis of the cylinder. The structure—fluid

equations are coupled by terms resulting from dynamic interaction at

the interface boundary.

A. PRIOR STUDIES

It is shown by both authors in references El] and (2] that the three-

dimensional problem may be resolved into two-dimensional subproblezns ,

acoustic wave propagation and transient response of a submerged struc-

ture, using the finite element method.

Acoustic wave propagation and spatial fluid discretization are pre-

sented in (1]. The superposition theorem, which permits the rigid body

pressure distribution to be obtained from a two—dimensional analysis is

also presented in I lL .

A refined structural model is used in (2). In this paper, the cir-

cumfe rential variations of fluid pressures and structure displacements

are represented by Fourier expansions . Fluid pressures , structural de-

flections, shell and ring stresses are tabulated for each harmonic

th rough n—4. Extreme stresses resulting fran superposition of harmonic

8 
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contributions are given also. Two separate failure criteria are used

to determine critical combinations of submergence pressure and shock

pressure. The first of these utilizes limit analysis to evaluate combined

effects of longitudinal and axial stress in the shell wall at a bulk-

head. The second postulates that shell collapse will occur when the

von Mises yield condition is satisfied away from the bulkhead.

B. PRESENT STUDY

In the present study the need for a separate solution of the acous-

tic propagation is eliminated, thus effecting a significant reduction

in computation. This improvement is made by dealing separately with

the incident shock pressure — an entity which is unaffected by the pres-

ence of the structure. The remainder of the dynamic fluid pressure

(called the “scattered” pressure) is represented in the finite element

modeling of fluid— structure response. As in (2], the azimuthal varia-

tion of fluid pressure and structural displacement are represented by

trigonometric series so that the fluid region modeled is mathematically

two—dimensional.

A further improvement introduced here is the imposition of a radia-

tion boundary condition at the cylindric outer boundary of the fluid.

Although this condition is necessarily approximate, it is found to re-

duce significantly the effects of boundary reflections on structural

response.

A systematic study is made of the effects of shock pulse duration

and rise time on structural response. Results are presented in the form

of critical combinations of shock pressure and submergence pressure just

sufficient to induce structural failure.

I
- 
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II • WAVE PBOPAGATION

A. PRE~ ~URE RESOLUTION

A s - .  ~erged structure subjected to an underwater shock wave experi—

ences,at a given time, a total dynamic pressure which can be considered

to have three components

P P i + P R + P r (1)

where

p is the total dynamic pressure in the fluid ,

p~ is the pressure due to the incident wave, considering

the structure absent,

is the pressure due to the reflected wave, consider— 
-

ing no structural deflection,

~~ 
is the pressure radiated by the structure due to

structural deflection.

There are two useful combinations of these pressures for purposes

of analysis. Consider first

~rig~~~~i~~~~R 
(2)

where 
~‘rig represents the total dynamic pressure field with a rigid

structure. Next consider

~~~~~~~~~~~~ 
(3)

where p5 represents the scattered pressure, which includes both re-

flected and radiated parts.

10 
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Instead of considering the total dynamic pressure to be the sum of

p
rig 

and as in Cli and (2], the resolution

p = p . + p  (4)

will be used. This resolution has been employed widely in similar prob-

lems, e.g., by Mindlin and Bleich [3], Geers [4] and Everstine (5].

The discretized equations for the structure and fluid given in (11

and (2] are

M~~~+ K Ô L~~ (5)

~~~~ + D + H P L T
~~ (6)

where ~S is a column vector of structural nodal displacements and ~

is a column vector of fluid nodal pressures. M, K, 2’ D and N are sym-

metric coefficient matrices, L is a matrix describing coupling at the

structure—fluid interface, and p is the fluid density. Superior dots

denote time derivatives and superscript T denotes transposition.

Considering first the incident pressure only, a time—dependent column

vector f is added to correct for the unsatisfied boundary condition 
• -

at the fluid—structure interface. It is required that

(7)

Considering next the scatter ed pressure, it is required that

(8)

11
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The equation for the structure (5) becomes

(9)

Therefore , equations (7), (8) and (9) are the new equations for the coin—

plete elasto-hydrodynamic problem formulated by Atchison (1] and Newton

and Atchison (21.

Rather than use equation (7) to find f , the relation between the in—

cident pressure and the flu id particle veloc ity normal to the boundary

may be used.

Consider a plane wave traveling in the negative x—direction. The

free-field incident pressure is given by

p~ = g(x + Ct) (10)

where c is the acoustic velocity of propagation. Fig. 1 represents

— the wave front. - 
-‘

p1

- x+ct

Fig. 1. Wave front.

Applying Newton’s second law to a flu id particle , it can be shown

that the fluid acceleration is given by

. i p
i ,

V . ~~~T~_ h 1 ~~~~~ (11)

12
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However

. 
api

p~~= -~~— = g ’c

Therefore, in (11)

~
‘ = —

~~~~
.i,

i 
(12)

Formula (12) gives the relation between the incident pressure and the

fluid particle velocity. The complete problem now is reduced to solv-

ing the set of linear equations given by (8) and (9) using the result

established by equation (12).

Fourier representations are employed in deriving the discretized

counterparts of equations (8) and (9) for each pressure harmonic and

displacement harmonic. Because both the structure and the fluid region

are axisymmetric, there is no interharmonic coupling.

• Therefore, for the structure displacement, let

- : d = d  cos nO (13)
—n

and, for the fluid pressure, let

£ ;cos ne (14)

where n—0,l,2,... and summation with respect to n is implied.

For each Fourier order n there is a separate pair of equations (8)

and (9) governing the corresponding pair 
~ 

and of displacement

and pressure vectors . The coefficient matrices of these equations are

order-dependent. Formulas for these matrices are given in Appendix A.

B. RADIATION BOUNDARY CONDITION

Finite element modeling of infini te regions always requires some

strategins to avoid significant errors due to substitution of a finite

13
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region. In most static problems and some steady-state dynamic problems

it suffices to place the boundaries “far enough” from the region of

interest. This scheme is also applicable to the present problem featur-

ing wave propagation in the fluid. Here the requirement of “far enough”

is satisfied if waves traveling from structure to outer boundary and

back to the structure arrive after the occurrence of maximum stresses in

the structure. Meeting this requirement led, in the present applica-

tion, to a finite element model in which over 80 percent of the degrees

of freedom represent fluid pressures .

An alternate means for simulating an infinite region utilizes a

radiation, or non—reflecting, condition at the outer boundaries. Such

a condition was first proposed by Zienkiewicz and Newton (61 in a form

which is exact for plane waves normally incident upon the boundary.

Chenault successfully employed the condition in a study of two—dimensional

added mass and damping [7]. Dean constructed and successfully denonstra-

ted an extension to spherically spreading waves [8]. For both plane

and spherical waves the corresponding non—reflecting conditions are

exact, but no such result is possible for two—dimensional (cylindric)

spreading. Despite the necessity for approximation, Bai constructed and

used a radiation condition for two dimensions (9]. An extension of Bai’s

scheme is developed in the section entitled “Two—Dimensional Analysis”.

C. ONE-DIMENSIONAL ANALYSIS

A one—dimensional analysis using the new pressure resolution has been

done in order to compare new results with those previously obtained by

Atchison (13 .

The region considered is a semi—infinite fluid str ip of unit cross

sectional area . Through this region a shock wave of known shape is

14 
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propagating. The semi-infinite strip is modeled with a one degree of

freedom structure at one end and the radiation boundary condition is

applied at the other end.

The results obtained were compared with those obtained by using

CSl~W (continuous system modeling program) . Good agreement was found.

Accordingly, the Houbolt - integration method (10] , the linear element ,and

the restrictions for node spacing and time step as used in (1] and (2]

were found to give excellent results when used with the new pressure

resolution.

D. TWO—DIMENS IONAL ANALYSIS

1. Boundary Conditions

A non—reflecting or radiation boundary condition is presented

and used with this fluid—structure investigation.

If it is wished to let a plane wave traveling in the positive x—

direction pass out of the region being investigated, the condition re-

quired is

(15)

-
~ In dealing with two-dimensional problems, the axisymmetric ap-

proximation proposed by Bai [9] is adapted. The (scattered) pressure

distribution for a wave moving in the positive r—direction is assumed to

be described by

-1/2p — r g (r—ct)cos nO (16)
S fl

where, as before, there is summation with respect to index n.

L. 15
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The boundary condition imposes a requirement on the normal deri-

vative of the pressure at the boundary. The partial derivative is cal—

culated from equation (16) as

1 3/2 1/2
— — ~~- r g~ (r-ct) cos nO + r g’(r—ct) cos nO (17)

Also

—1/2p5 — .~-~ —- = r g’(r—ct) cos nO (—c)

or 
~s —1/2
— = - r g~ (r—ct) cos nO

Therefore, equation (17) may be rewritten as

ap p p
H — — j - j - — -

~
- (18)

This formula will be introduced as the radiation boundary condition for

the solution of the interaction problem. Data concerning the usefulness

• - of this approximation are given in the section titled Results.

2. Fourier Analysis

It is required , in order to solve equations (8) and (9), to know

both the incident pressure and the normal component of the fluid acce—

leration at the structure—fluid interface.

The pressure-time history of the cubic ramp-box wave used may be

represented as shown in Fig . 2, where tr is th. pulse rise time,

is the pulse duration and is the subsidence time.

For a given incident pressure wave , characterized by rise time,

pulse duration, subsid~~ce time, acoustic velocity and fluid density , it

is required to find Fourier components for th. incident pressure and

16
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p1

Fig. 2. Pressure—time history of a cubic ramp-box wave.

fluid acceleration at the shell surface using a chosen time step h.

These Fourier components are needed for as many time steps as are used

in solving the fluid-structure equations .

Basic parameters for the Fourier analysis are shown in Fig. 3.

I

I
Fig . 3. Parameters used in Fourier analysis.

17
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For the cubic wave front, pressure and pressure derivative formulas are

S derived by Atchison in El)

2 2 *(3~ — 2 ~~ )p , t < r

* 

(19)

* 2 
~ ~ < t < Ci + Td)

t < r

( 20)

0 ‘ 
tr ~ t ~~. 

(t -F Id)

where C = ~~— and p~ is the shock pressure. - -

The subsidence is described by the same kind of cubic transition

as the rise.

4 - 

Relations for the normal (perpendicular) component of the

fluid acceleration can be derived using equations (12) and (19). Thus

— C~~) cosO , t <

v~~= (21)

0 , T < t < ( r + T
d

)

- 
• 

Therefore, equations (19) and (21) are used as basic formulation

for the Fourier analysis.

Fourier components for the incident pressure and fluid accelera—

tion are calculated for each time step using 24 intervals over the

cylinder from 0 0° to 0 — 1800 . It is not necessary to include values

of 0 from 1800 to 3600 because of symmetry about 0 — 0° .

- 

18
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For the incident pressure coefficients

A0 w~ p~ N 24 (22)

J—O
n — 1,2 ,3 ,4

N
A - ~~~~~~~~ w~ p~ cos

where w — w — 1/2 and all other w — 1.
0 N J

For the fluid normal acceleration components

Bo =*~~~~ 
w~~~ N = 2 4  (23)

J O  
n—  1,2,3,4

B = w~ ~‘ cos nO~

Required values of p~ and ‘

~

‘ are found fron equations (19)

and (21).

New Fourier resolutions are required when any characteristic

time of the shock pulse is changed.

19
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III. STRUCTURAL RESPONSE j

A. STRUCTURAL ~DDEL

A refined model is used for the structure. A total of eight struc-

tural elements and 27 structural degrees of freedom per Fourier component

represent the final mesh and it is identical with the one utilized by

Newton and Atchison [2] .

As described in [2], the structure is a ring—stiffened elastic shell

of infinite length with elastic bulkheads at spacing 2L. Fig. 4 shows

a cross—section of the repeating length of structure and the associated

fluid region.

r0

Fig. 4. Region represented by finite element model .

It is assumed that the plane of a bulkhead , z—O , and the plane mid-

way between bulkheads , z—L , are planes of symmetry for the structure

and the response displacements.

As in reference (2] , the effects of the stiffening rings are in-

cluded by treating the shell as orthotropic. Stress calculations take

20
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into account the geometry of the rings . The effective shell thickness

in the circumferential direction includes a contribution by the rings.

The bulkheads furnish elastic restraint against radial displacement

of the shell. This is accomplished by treating the bulkhead as a

diaphragm of uniform thickness.

As developed in reference [2] a geometric stiffness matrix modifies

the structural stiffness. It considers the effects of the membrane

compressive stresses of the axisymmetric mode acting to amplify deflec—

tions in the higher harmonics (n>l) .

Further information concerning the structural model is given in

reference [21 . Details concerning application of Fourier series to

analysis of axisyimnetric shells are given by Grafton and Strome (11] .

B. FLUID ? DDEL

As indicated in Fig . 4 the length of the fluid region is one—half

- 
of the bulkhead spacing, its inner radius is the shell radius “a” , and

the outer radius is r
0

Rectangular elements having corner nodes and linear shape function

are used. Along the fluid—structure interface a fluid node is located

at each structural node.

The radiation boundary condition as developed previously is applied

at the outer radius r0. For the purpose of studying the effectiveness

of the radiation boundary condition, the same combination of pulse para-

meters and submergence pressure has been employed using a=5 meters and

a sequence of values of r
0 from 8.15 meters to 17.6 meters.

In finding critical combinations of shock and submergence pressure
1 

- 
to induce structural failure two different meshes are utilized. In each

21



case the fluid region has inner radius a = 5 meters and outer radius r

= 16.025 meters. The first mesh has 90 fluid elements and 120 fluid

nodes and each element has a thickness (radial) of 0.525 meters . The

second has 174 fluid elements and 225 fluid nodes with element thickness

0.2625 meters. The latter mesh is used when the rise time of the wave

front is small in order to meet the restriction given by Atchison [1] as

ci
s <~ —~~ (24)

where s is the node spacing. Two different time steps are employed

depending on the size of the mesh. For the finer mesh a time step of

0.1 milliseconds is used. For the coarser mesh the time step is 0.3

milliseconds.

C. SOLUTION TECIfi~IQUE

The solution process is very similar to the one used by Newton and

Atchison [2].

There is a separate solution for each of the five harmonics considered

(from n=0 to n=4). Once the solution for the first harmonic is completed,

the solution for the second starts and the other harmonics follow in

order.

Fourier components for the incident pressure and normal fluid

acceleration are introduced as input for each solution.

For any harmonic the procedure employed first advances ~ by one time

step using equation (9) . The value of at the forward step is obtained

by parabolic extrapolation. With 6 and 6 at the forward point, equa—

tion (8) is then used to make the forward step for 
~~~~~~
. - Successive

t iterations are performed using the latest values of and 6 on the right

• hand sides of equations (9) and (8). 
4
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Detailed information about this solution technique is given in refer-

ence [2].

D. MODEL PARAMETERS

The following parameters are used for structural response calcula-

tions.

Shell radius a : 5 meters

Distance between bulkheads 16 meters

Shell thickness : 0.05 meters

Circumferential average thickness : 0.07 meters

Bulkhead thickness : 0.02 meters

Structural material : Steel

Yield stress for steel : 700 Megapascals

• Shell flexural rigidity ratio DO/DZ 100

Shell twisting rididity-ratio DOz /Dz : 0.5

E • FAILURE CRITERIA

Failure criteria used by Newton and Atchison are employed. The

following excerpt from reference [2] defines the basis.

The largest calculated elastic stresses are found to be
in the shell at the bulkhead. These stresses result from
superposition of longitudinal bending and axial membrane
compression. Since yielding at this location would not pre-
cipitate shell collapse, combinations of bending moment and
axial force corresponding to failure are based on limit
analysis (full  yielding through thickness - part compression,
remainder tension) .

• A different situation exists at appreciable distances
from the bulkhead. Here it is postulated that yielding will
induce shell collapse. At such locations an effective uni—
axial stress a is calculated using the von Mises yield condi— —

tion. Failure is deemed to occur when the utilization ratio
R — a/a reaches unity.
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IV. RESULTS

A. INTRODUCTION

Results reported here concern two separate investigations. The first

of these is a limited examination of the effectiveness of the radiation

boundary condition. The second, and principal , study is a systematic

examination of the effects of shock pulse rise time and duration on

structural fai lure.

B. EFFECTIVENESS OF RADIATION BOUNDARY

The effectiveness of the radiation boundary condition is examined

by repeated solutions of the same problem using successive reductions in

the outsic~e radius r0 of the fluid reg ion. Table I gives the correspond-

ing utilization ratios for both failure modes. The first line of the

table provides the comparison standard, since the extreme values of the

utilization ratios occur at 15.6 milliseconds and the time for an

acoustic wave to travel from shell to the outer boundary and back is 18

milliseconds. The second line Cr0 
= 16.025 meters) also represents ~

case where the outer boundary is “far enough” from the shell so that

the utilization ratios are unaltered. Succeeding radius reductions

do affect the utilization ratios, but even for the smallest region (r0

= 8.15 meters) the ratios change by less than 3 percent. The accompany-

ing reduction in the number of fluid nodes is dramatic. In reducing

from — 16.025 meters to r
0 

— 8.15 meters , the number of fluid nodes

goes from 120 to 45. 

~~~~~~ 
-— -

~~~~~~~~~



TABLE I. Effect of Radiation Boundary Placement on Utilization Ratios

OUTSIDE RADIUS TRAVEL TINE RELATIVE UTILIZATION RATIOS
(METERS) (MS) LIMIT ANALYSIS VON MISES

17.6 18.0 1.000 1.000

16.025 15.8 1.000 1.000

14.45 13.5 1.000 0.998
12.875 11.2 0.997 0.997

11.3 9.0 0.988 0.976

9. 725 6.8 0.999 0.974

8.15 4.5 0.995 0.971

Notes:
1. Shell radius: a = 5 meters.
2. Cubic ramp-step wave with ctr/a = 0.97.
3. Submergence pressure = 4.0 Megapascals,

shock pressure = 4.5 Megapascals.
4. All maxima occur between 14.3 and 15.7 milliseconds after onset.
5. Travel time is time for acoustic wave to travel from shell to

outer radius and back to shell (c = 1.4 meter/millisecond).

TABLE II. Effect of Fixed Outer Boundary Placement on
Utilization Ratios

OUTSIDE RADIUS TRAVEL TIME RELATIVE UTILIZATION RATIOS
(METERS ) (MS) LIMIT ANALYSIS VON MISES

17.6 18.0 1.000 1.000

9.725 6.8 0.993 0.949

8.15 4.5 0.992 0.947

Notes: Notes for Table I apply here.

25

L~ . --- • - -—

~~~~~~~~~~~

--



Table II exhibits the effect of reducing the outer radius of the

region without imposing the radiation condition at that boundary. It

is apparent that the resulting degradation of accuracy is more severe

than with the radiation condition.

C. INFLUE~CE OF PULSE RISE TIME AND DURATION ON STRUCTURE FAILURE

Considered here is the principal application of the improved analy-

sis techniques introduced in this thesis. In reference (2) results

were obtained for structural response to a cubic ramp—step shock wave.

A single rise time ct r/a — 0.97 was considered and the duration was

effectively infinite. A large family of cubic ramp—box pulses is

treated here. The rise time and effective duration T -
~~~ 

tr+td +

4 TS are systematically varied. (Note that the impulse of the shock

pulse is p*T. See Fig . 5.)

p1

T

~ ~~~~~~~~~ 
~~~~~~~~ ~~~

.l t7; 
~~1

Fig. 5. Effective pulse duration T.

The pulse durations studied here are cT/a - 2 ,4 , and 8. For each

duration, four separate rise times: ctr/a — 0.1,0.2 ,0.4 , and 0.8 are

considered. In every instance the fluid region extends from a — 5

meters to r0 — 16.025 meters . For all combinations with Ctr/& > 0.1 a

26
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fluid mesh with 90 fluid elements and 120 fluid nodes is used (“ coarse TM

mesh) . The thickness (radial) of each element is 0.525 meters. With

this mesh a time step h a 0.3 millisecond is used and the subsidence

time is cT
5
/a = 0.2. For the rise time ctr/a 0.1 a “fine” mesh is

introduced with 174 fluid elements, 225 fluid nodes and a 0.2625 meter

element thickness. With this mesh a time step h — 0.1 millisecond is

used and the subsidence time is reduced to cT5/a 0.1.

For both meshes there are eight shell elements with lengths varying

from 0.5 meters near the bulkhead to 2.0 meters midway between bulkheads.

The number of structural degrees of freedom is 27 for each harmonic.

Along the fluid—structure interface there is a fluid node coinciding

with each structural node.

Results are presented graphically in the form of failure boundaries

on the submergence pressure versus shock pressure plane in Figs. 6

through 17. Numerical results used to define these boundaries are tabu-

• lated in Appendix B.

Fig. 7 presents two sets of failure boundaries for cT
~
/a 0.2,

cT/a a 2. For each boundary the narrow line is found using the fine

mesh and the wide line is obtained from the coarse mesh.

When the effective pulse duration is small (cT/a — 2 ) ,  changes in

pulse rise time affect considerably the failure boundary. Increase in

effective pulse duration (cT/a > 4) produces failure boundaries that are

not sensitive to changes in rise time. In fact , for cT/a — 8 the same •

values are obtained for all rise times greater than ct/a — 0.1. It is

considered that the small difference observed for ct/a — 0.1 is largely

due to the mesh change. For durations greater than cT/a — 4 results

approach those of Fig. 16, regardless of rise time. These results are

27
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based on ct
r/a = 0.97 and cT/a — °°, the pulse parameters used by Newton

and Atchison [2). The boundaries found here agree closely with those

of reference (2), but it is noted that labels on ordinate and abscissa

have been mistakenly interchanged on Fig. 10 of (2].

-

• 20 

_ _

5. -



-— -- 5 .- - .  .— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 
-

• 
- 

- 12 I

10 ~ Limit analysis
— — — von -Mises

%1a2

w~~ 6 -
‘JO.

!
U)

‘2 -  —

0 1 I I
0 2 4 6 8 10 12

SHOCK PRESSURE
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Fig. 6. Failure boundaries for . — -
~~ 0.1, — 2.
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Fig. 7. Failure boundaries for .~L 0.2 , — 2.
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Fig. 8. Failure boundaries for —i- — 0.4 , — 2.
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Fig . 9. Failure boundaries for a 0.8, — 2.
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Fig. 10. Failure boundaries for —~~ - — 0.1, — 4.
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Fig. 11. Failure boundaries for —
~~~~~ — 0.2 , — 4.
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Fig. 14. Failure boundaries for —
~~~~~ — 0.] , 8.

37

—~~~~~~~ • _  . • •_



~~~~~~~~~~~~~~ -~~-—~ _ _

12 I I I

Li mit analysis
10 —— — von -Mises

\ 
\
\ ~j~=0.2 0.4,0.8

LU

(flU)

=4
0.0U)
w < 600.
Z4

~~ 4 -

U)

2 —

I I I \~ I I00 2 4 6 8 10 12
SHOCK PRESSURE

(MEGAPASCALS)

Fig. 15. Failure boundaries for —i = 0.2 ,0.4 ,0.8; 2! — 8.
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V. CONCWS IONS

It is concluded that the separation of the total dynamic pressure

acting on a structure into incident and scattered pressures has im—

proved the analysis of the fluid-structure interaction problem investi-

gated in this thesis by avoiding the propagation solution. The results

obtained also confirm that the imposition of the radiation boundary

condition at the cylindric outer boundary affords a further improvement .

For a representative structure , the effects on failure of pulse rise

time and pulse duration have been established.
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APPENDIX A. FLUID COEFFICIENT MATRICES

1. Separation of fluid equations

The governing equation for the scattered pressure is

2~~~+ Dj+ H2 p LT 6 f  (8)

where 2 is the vector of nodal scattered pressures. It is assumed

that the (scattered) pressure p at a point (r , 0 , z) of the fluid is

given by

p — N p~ cos nO (Al)

where N. , a function of r and z , is the shape function associated

with fluid node i and p . is the nth Fourier component of pressure at

that node. Summation on indices i and n is implied.

This leads to a separate equation like equation 8 for each Fourier com-

ponent of vector £~ The typical equation may be written as

Q p + D  p + H  p P L
T 6 - f  (A2)

fl ~~~~I -n -
~~~ 

-
~~~ Th n n  m

where the suntuation convention does not apply. Equation A2 assumes that

Fourier resolution has also been applied to the structural nodal displace—

ments and that the normal displacement w of the shell is given by

w — N~ ’ sSi~ cos nO (A3)
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where N~ ’ , a function of z , is the shape function for structural

node i and is the nth Fourier component of displacement at this —

node . As in equation (Al ) the summation on i and n applies .

2. Formulas for matrix elements

Coefficient matrices are found by calculating contributions at the

element level and assembling by addition . Presented in this section

are the element—level contributions based on the convention that a lower -
~ 

-

case letter represents an element of the matrix denoted by the corre-

sponding capital letter . Thus, ~~~~ is the element in row i , column j ,

of matrix

In each of the following formulas a symbol c , the Neumann factor ,

appears . It is defined to have the value 1 for n—0 and the value 2 for

n any positive integer. In the two following formulas the integrations

with respect to r and z extend over the range for the individual fluid

element .

~ijn £::
2 If  Ni N~ r dr dz CM)

3N 3N 3N ~N 2
h . 271 

~~~~ 
(—.J:._J~+ ~~~~~~ f l — N  N ) r dr dz (AS )ijn C ~r ~r ~z ~z r2 ~

No summation on n is intended in equation (AS).

The following two formulas concern the boundary condition at the

structure-fluid interface (r— a) . The only fluid nodes having non-zero

contributions are those in contact with the shall. Integrations with

respect to z take place along a structural element and the matching

fluid element.
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2... a I N. ’ N . dz (A6)
1311 Cn 1. j

bjn 
~~~~ I N~~ dz (A7)

The component b~11 
, when multiplied by B~ as defined in equation (23),

gives the j th  component of vector — f

The final two formulas represent contributions due to the radiation

boundary condition applied at the outer boundary (r - r0) .  Integration

with respect to z is carried out along that boundary. Only fluid nodes

on that boundary are included

2lTr
d 0~~~~ N . N  dz (A8)ijn cc -

n

~~ ijn 
-
~~~~

— I N1 N~ 4z (A9)

The contributions Ah - are assembled into Hi3n —fl

F -
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APPENDIX B

NUMERI CAL RESULTS FOR FAILURE BOUNDARIES

I
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FAILURE BOUNDARY VALUES

C

~~~

k ... 0.1

CT
-~ - 2

Number of flu Id elements : 174

LIMIT ANALYSIS

SHOCK PRESSURE S1.EMERGENCE PRES. MAXIMUM RATIO TNE MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCAL.S) (MILLISECONDS)

0.00 - 9.27 0.999

2.00 7.67 1.001 9.6

4.00 6.04 1.000 9.6

6.00 4.41 0.999 9.6

8.00 2.79 1.000 9.6

10.00 1.15 1.000 9.6

10.84 0.0 1.000 9.6

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) 

______________  

(MILL SECONDS)

0.00 10.20 1.001

2.00 8.28 0.999 10.2

4.00 5.64 1.001 10.2

6.00 1.84 1.000 1.0.2

6.70 0.0 1.000 10.2

r 
~~~~~~~~~~-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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FAILURE BOUNDARY VALUES

— r — 0.2

• CT _

Number of fluid elements : 90

LIMIT ANALYSIS

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) (MILLISECONDS)

0.00 9.27 0.999

2.00 7.71 1.000 9.6

4.00 6.13 1.000 9.6

6.00 4.55 1.000 9.6

8.00 2.96 1.000 9.6

10.00 1.37 1.000 9.6

10.74 0.00 0.999 9.6

SHOCK PRESSURE SUBMERGENCE PRES MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) 

______________  

(MILLISECONDS)

0.00 10.20 1.001

2.00 8.30 1.000 10.8

4.00 5.75 1.001 10.8

6.00 2.20 1.000 10.8

6.89 0.00 1.000 10.8
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FAILURE BOUNDARY VALUES

0.2

Number of fluid elements : 174

LIMI T ANALYSI S

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) (MILLISECONDS)

0.00 9.27 0.999

- 2.00 7.65 1.000 9.6

4.00 6.03 1.000 9.6

6.00 4.40 1.000 9.6

8.00 2. 76 1.000 9.6

10.00 1.12 1.000 9,6

10.84 0.00 1.000 9.6

SHOCK PRESSURE S EROENCE PRES MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) 

______________  

(MILLISECONDS)

0.00 10.20 1.001

2.00 8.29 1.000 10.2

4.00 5.65 1.000 10.2, 10.8

6.00 1.84 1.000 10.8

6.89 0.00 1.000 10.8

1



•1
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FAILURE BOUNDARY VALUES

• ~~i. 0.4

Number of fluid elements : 90

LIMIT ANALYSIS

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) (MILLISECONDS)

0.00 9.27 0.999

2.00 7.66 0.999 10.8

4.00 6.05 1.000 10.8

6.00 4.43 1.000 10.8

8.00 2.80 
- 

1.000 10.8

- 

10.00 1.04 1.000 10.8

10.44 0.00 1.000 10.8

SHOCK PRESSURE SUBMERGENCE PRES( MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) 

______________  

(MILLISECONDS)

0.00 10.20 1.001

2.00 8.26 1.000 10.8

4 , 00 5.63 1.000 10.8

6.00 2.14 1.000 10.8

6.86 0.00 1.000 10.8
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1

FAILURE BOUNDARY VALUES

0.8

• cT~~. 2

Number of fluid elements : 90

LIMIT ANALYSIS

SHOCK PRESSURE S ERGENCE PRES. MAXIMUM RATIO ‘~~~~~~~ MA~~MUM RATIO
(MEGAPASCALS) (MEGAPASCALS) (MILLISECONDS)

d - 0.00 9.27 0.999

2,00 7.63 1.001 12.0

4.00 5.96 1.000 12.0

6.00 4.30 1.000 12.0

8.00 2.48 1.000 12.0

10.00 0.00 1.002 12.0

~~~MI~~
CK PRESSURE SUBMERGENCE PRES MAXIMUM RATIO TIME MAXIMUM RATIO

~MEGAPASCALS) (MEGAPASCALS) 
_ _ _ _ _ _ _ _ _ _ _ _ _ _  

(MILLISECONDS)

0.00 10.20 1.001

2.00 8.17 1.000 12.0

4.00 5.50 1.000 12.0

6.00 1.86 
— 

1.001 12.0

6.76 0.00 0.999 12.0

1
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FAILURE BOUNDARY VALUES

Number of fluid elements : 174

LIMIT ANALYSIS

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALSI (MEGAPASCALS) (MILLISECONDS)

0.00 9.27 0_999 
_________________

- 

2.00 7.37 1.000 12.6

4.00 5.46 1.000 12.6

6.00 3. 55 1.000 12.6

8.00 1.26 1.000 12.6

8.38 0.00 1.000 12.6

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME V%X IMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) 

______________  

(MILLI SECONDS)

0.00 10.20 1.001 
________________ 

F

2.00 7.81 1.001 12.6

4,00 4.78 1.000 12.6, 13.2

6.00 0.78 1.003 13.2

6.08 0.00 1.000 13.2
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FAILURE BOUNDARY VALUES

CT ..
cT _ 4

Number of fluid elements: 90

LIMIT ANALYSIS

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) (MILLISECONDS)

0.00 9.27 0.999 
________________

2.00 7.44 1.000 13.2

4.00 5.59 1.000 13.2

6.00 3.74 1.000 13.2

8.00 1.92 1.003 13.2

8.65 0.00 1.001 13.2

von-MIses

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) 

______________  

(MILLISECONDS)

0,00 10.20 1.001

2.00 7.90 1.001 13.2

4.00 4.90 1.000 13.2

6.00 0.90 1.000 13.2

6.35 0.00 1.000 13.2
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FAILURE BOUNDARY VALUES

0.4

cT . . 4

Number of fluid elements: 90

LIMIT ANALYSIS

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RAT IO
(MEGAPASCALS) (MEGAPASCALS) (MI LLISECONDS’I

0.00 9.27 0.999 
________________

2.00 7.44 1.000 13.2 , 14.4

4.00 5.60 1.000 13.2, 14.4

6.00 3.76 1.000 13.2, 14.4

8.00 1.92 1.001 13.2, 14.4

8.69 0.00 1.000 13.2 , 14.4

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) 

______________  

(MILLISECONDS)

0.00 10.20 1.000

2.00 7.90 1.000 13.2 , 14.4

4.00 4.94 1.001 14.4

6.00 0.90 1.001 14.4

6.35 0.00 1.000 14.4
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FAILURE BOUNDARY VALUES

CT ..

Number of fluid elements: 90

LIMIT ANALYSIS

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TiME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) (MILLISECONDS)

0.00 9.27 0.999

2.00 7.44 1.000 14.4

4.00 5,60 1.000 14.4 F
6.00 3.76 1.000 14.4

8.00 1.91 0.999 14.4

8.69 0.00 1.000 14.4

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) 

______________  

(MI LLISECONDS)

0.00 10.20 1.001

L 2.00 7.90 1.000 14.4

4.00 4.94 1.001 14.4

6.00 0.90 0.999 14.4

6.35 0.00 0.997 14.4
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FAILURE BOUNDARY VALUES
C~k._ 0 1

Number of fluid elements: 174

LIMIT ANALYSIS

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) (MILLISECONDS)

0.00 9.27 0.999 
_________________

2.00 7.37 1.000 12.6

4.00 5.46 1.000 12.6

6.00 3.55 1.000 12.6

8.00 1.26 1.000 12.6

8.38 0.00 1.000 12.6

von-Mises

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) 

______________  

(MILLISECONDS)

0.00 10.20 1.001 
_________________

2.00 7.81 1.001 12.6

4.00 4.78 1.000 12.6 , 13.2

6.00 0.78 1.003 13.2

6.08 0.00 1.000 13.2
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FAILURE BOUNDARY VALUES
!~L o.2 , 0.4 , 0.8

Number of fluid elements: 90

LIMIT ANALYSIS

• SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) (MILLIS ECONDS)

0.00 9.27 0.999 
________________

2.00 7.44 1.000 13.2

4.00 5.59 1.000 13.2

6.00 3.74 1.000 13.2

8.00 1.92 1.003 13.2

8.65 0.00 1.001 13.2

von- Mises

SHOCK PRESSURE SUBMERGENCE PRES . MAXIMUM RATIO TIME MAXIMUM RATIO
(MEGAPASCALS) (MEGAPASCALS) 

______________  

(MILL I SECONDS)

0.00 10.20 1.001 
________________

2.00 7.90 1.001 13.2

4.00 4.90 1.000 13.2

6.00 0.90 1.000 13.2

6.35 0.00 1.000 13.2
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FAILURE BOUNDARY VALUES
CTr . .
1 0.97

cT..0,,
•1

~~~~~~~~

Number of fluid elements~ 102

LIMIT ANALYSIS

SHOCK PRESSURE SUBMERGENCE PRES. MAXIMUM RATIO TIME MAXIMUM RATIO
- 

- (MEGAPASCALS) (MEGAPASCALS) (MILLISECONDS)

0.00 9.27 0.999 
_______________

2.00 7.45 1.000 14.4, 15.6

4.00 5.62 1.000 14.4, 15.6

6.00 3.75 1.000 14.4

8.00 1.95 1.000 14.4

8.70 0.00 0.998 14.4

von-Mises

SHOCK PRESSURE SUBMERGENCE PRES MAXIMUM RATIO 1~~~ MAXIMUM RATIO
(MEGAPASCALS ) (MEGAP ASCALS) (MILLISECONDS)

0.00 10.20 1.001 _________________

2.00 7.91 1.000 
- - 14.4

4.00 4.95 1.000 14.4

6.00 0.94 1.000 15.6
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