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ABSTRACT

This thesis is a comparative study of aircraft fatigue life calcula-
tions based upon crack propagation and upon cumulative damage. The
stress concentration factor, which supplies sufficient geometric infor-
mation for Miner's Law of cumulative damage, is found to not completely
specify the geometry for the crack propagation approach. Effects on
fatigue life of variations in initial crack length, plate width, hole size,
and hole geometry for the same stress concentration factor have been
investigated; also both ordered and random load histories were used
to compare the two approaches.

Complete FORTRAN computer program input documentation for the
IBM 360/67 system has been included as an appendix to enable this thesis
to serve as a user's manual for CRACK'S II, an Air Force crack prop-

agation program for aircraft fatigue damage.
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I. INTRODUCTION

Pre-existing flaws from fabrication operations, or flaws generated
in service, (cyclic loadings, nicks, dings, punctuies produced by pro-

jectiles, etc.) have a significant effect on the life of an aircraft. The 1

service life of an aircraft can be analyzed by calculating the total crack

growth which can be tolerated prior to the formation of a critical size
crack (maximum crack length at fracture under operational load). The
Air Force has developed an analytical tool which can predict this growth
under variable amplitude loading, leading to the critical crack length,
associated safe operating periods, and inspection intervals.

A computer program (Cracks II) has been developed (Ref. 1) to

facilitate calculation of the crack growth rate using various models
(Forman, Paris, etc.). The crack growth rate is affected by the ap-
plied stresses, as well as by the residual stresses remaining after the
application of a load. The residual compressive stresses lower the
magnitude of the next applied stress. For this reason, Cracks Il uses
a retardation model (either Willenborg or Wheeler models) to more
accurately predict aircraft service life.

The objectives of this thesis were to convert Cracks Il from the

IBM 7044/7094 Direct Coupled System (DCS) to the IBM 360/67 sys-

tem, compare Cracks II service life prediction methods and times to




Miners' Cumulative Damage (Ref. 2) methods, and to create a workable
method of predicting aircraft service life by analyzing cyclic loadings.
Several types of spectra, including random spectra, were used
in the life prediction method. It should be noted that during all cal-
culations the models were theoretical, not directly measurable or
observable; however, the models have been proven to be effective in
service life prediction in other analyses.
To confirm the validity and accuracy of Cracks Il on the IBM 360/67
computer, a sample problem (Ref. 1) was prepared and compared ex-
actly with a computer run sent from the Air Force Flight Dynamics

Laboratory, Wright Patterson Air Force Base, Dayton, Ohio.
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II. DESCRIPTION OF CRACKS II

A, CRACK PROPAGATION RATE MODELS
In the early 1960's, P.C. Paris (Ref. 3) determined that the rate
of crack propagation under cyclic loading is directly related to the

stress-intensity-factor range, O K ( AK:Kmax‘K Paris de-

min)'
veloped an exponential relationship by fitting experimental data in the
following form:
n
da = C (AK) (1)
dN
In 1967, Foreman, Kearney, and Engle published a paper (Ref. 4)

in which Paris' equation was modified to take into account the effects

of load ratio, R, and crack growth instability as K, in AKap-

proached K.. These modifications led to the following relationship:

da = . G LERI" )
N (1-R)K.- AK

Equation (2) is more commonly known as Forman's equation.

Other crack growth prediction models are options in Cracks II.
One known as Walker's Equation is available, but it is not as well
known as Forman's Equation and was not used in this thesis evaluation.
It has the form:

m
da = C[(1-R) K
dN

il ®)

Another model provides for a method of directly inputting tabular

data of the form:




_da Vs (8 K),
dN|§

This method could be used if experimental data were available.

Cracks II provides the capability of modeling load interaction
effects of crack growth retardation due to plasticity. Two models are
available, the Wheeler model (Ref. 5) and the Willenborg model (Ref. 6).
The Wheeler retardation model is used to modify any of the crack
growth models (Forman, Paris, etc.). Wheeler's model takes the
form:

»
ar=a,+&y Cpf(AK) (4)
where CPi is the retardation parameter.
a,.= total crack length after r load applications.
f( &Kj)= crack growth prediction method (eq(l), (2), or (3)), l
and (see Fig. 1),

R m
Cp (-E;-_la—) H a+Ry< ap (5)

where Ry extent of current yield zone.

ap-a = distance from crack tip to elastic-plastic interface.
m = shaping exponent.
The Willenborg retardation model does not operate directly on

glaq. as the Wheeler model does, instead it operates on QK in equations

(1), (2), and (3) (see Fig. 2). It takes the form:

Kap = o"ap ﬁ_a-: (6)
where O ap = G-Y _(i;La_a; (7
c
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5, = crack length at anytime following overload
0’; =  applied stress

a, = total affected crack length

€ = material constant

K,, = applied stress intensity factor

ap

In the analysis presented here, Forman's method, equation (2), and

the Willenborg retardation model, equation (6), were used.

B. STRESS INTENSITY FACTOR

The basic parameter in fracture mechanics is the stress intensity
factor, K. For opening mode crack propagation analysis, the applied
crack tip stress intensity factor, Kl' must be less than the materials'
fracture toughness, Kc’ or fracture will occur. This applied crack tip
stress intensity factor, K,, is a function of geometry and loading type.
For a central crack in an infinite sheet, the stress intensity factor may
be written as follows:

K =0 \NTa (8)

Equation (8) takes different forms depending upon the geometry and
loading. In Cracks II tnese effects are treated as modifiers, or correc-
tions, to equation (8). Thus a more general form of equation (8) is:

K, =0d0¥a p (9)

where 9 is the correction factor (see part c). In the literature

some authors delete " from equations (8) and (9) altogether. For this

reason, both options are available in Cracks II.

A o
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The stress intensity factor range, A K, is defined as:

AK=K . -K..o (10)
thus equation (9) becomes:

AK= A0 Yz (11)

where A0 = g

max - 9 min
C. CORRECTION FACTORS
Equation (11) represents stress-intensity-factor ranges for a cen-

trally located crack in an infinite panel, where (5 is unity. For other

geometries P takes on different values. The ﬁ j available in Cracks II

are as follows:
BETA 1.0 = constant multiplier.
This provides the analyst with the capability to scale loads or modify
AK by a constant factor.
BETA 2.0 = Finite width tangent function.

This corrects for a finite width plate. The form of this correction is:

B, - \Jq%’- tan (T2) (12)
where b and a are shown in figure 3.
BETA 3.0 = tabular correction factor.
This permits the analyst to apply correction factors, which appear in
the literature as in figure 4, as discrete data. The form of this correc-
tion is:

P, =t e (13)
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An example would be a crack emanating from an elliptical hole (see

figure 5). i
BETA 4.0 = alternate tabular correction factor. .
This permits the analyst to restart the program with a different tabular
correction factor, if necessary.
BETA 5.0 = Bowie solution for one crack from a circular hole.
This is one of the most common correction factors used in aircraft
analysis due to numerous rivet holes, access holes, etc. The correc-

tion factor takes the form:

0.8733015 i
0.3245442 +a/, e : '

where a and b are shown in figure 6.

95 = 0.6762062 +

BETA 6.0 = Bowie solution for a double crack from a circular hole.

This correction factor takes the form:

0. 6805078
0.2771965 + aj,

where a and b are shown in figure 7.

P = 0.9438510 + (15)

It should be noted that for BETA 5.0 or BETA 6.0 that b does not
have to be a finite number. Ifb is‘ infinitely large then the factor
a/b—30. |

For various combinations of geometriés, BETA will become com-
binations of BETA (I). For example, if an analysis is to be made ona
crack emanating from a circular hole (BETA 5.0), see figure 6, ina
finite-width plate (BETA 2.0), BETA would be the product of BETA 2.0

and BETA 5.0. Therefore, in general,
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b= TP, (16)

This thesis is concerned with three of the corrections factors;

BETA 2.0, BETA 3.0, BETA 5.0 and combinations thereof.

D. INPUT DATA REQUIREMENTS
1. Label cards

The input requirements mentioned here are very general but
are specific for a few cases. For more detailed input/output instruc-
tions to Cracks II, see reference 1 and the appendix.

The input consists of sections of data, which are identified by
preceding label cards. These label cards are shown in Table I and
must be typed exactly as shown. In certain label cards there are var-
iables which take on different values depending on the option chosen.
These values are defined in reference 1 and the appendix.

The purpose of the labeled input is to facilitate the parametric
restart capability (discussed later). Each section is accessible indiv-
idually and may be changed without affecting any other parameters.
This is true even in the ANALYSIS section where changes in any of

the BETA cards do not affect the ones which remain unchanged. How-

ever, this is not true in the LOADS section. Any change in the LOADS
section results in complete redefinition of the mission segments.

While this does not necessarily redefine the sequence of application

BTR—

(SPECTRUM), it may cause redefinition of the mission sequence; i.e.,

the order of the cards within the SPECTRUM section.

23




TABLE I

TITLE - the card immediately following this card is a number
giving the number of cards in the title. The next
card(s) are the title of the output/input.

EQUATION - .the card following this label card tells which crack
propagation method (Forman, Paris, etc.) is used.

MATERIAL - the card immediately following this label card usually
tells where the material constants come from but can
say anything you choose. The next card(s) list the
material constants of the particular material being
analyzed.

THRESHLD - the card following this card gives a threshold value
for the stress intensity factor.

LIMITS - the card following this card gives the initial crack
length, final crack length (usually omitted due to
large default option), initial cycle, and R cutoff
(R cutoff = 0. 8 in this thesis).

ANALYSIS - this label card alerts the program that certain
modifying cards are next. The ANALYSIS section
must end with an END card.

Note: The following three label cards are part of the

ANALYSIS section.

24
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SURFACE

RETARD

BETA

LOADS

Note:

MAX-MIN

TABLE I (cont'd)
This card indicates a surface flaw modifier, also on
this card are the material thickness, t, and the initial
surface half-crack length, C,.
This card tells which type of retardation model, if any,
will be used (Wheeler or Willenborg). Also, the card
will indicate either plane stress or plane strain.
This card indicates the geometry of the structure and
associated correction factor (i.e., finite width, cir-
cular hole, etc.)
This card alerts the program that the stresses are to
be inputted in one of three forms indicated by a
Lodlab card. The card immediately following the
LOADS card tells how many blocks of data are to
be run and also the Spectrum title (anything you
might choose). The LOADS section must end with
an END LOAD card.
The following three cards are part of the loads
section and are known as Lodlab cards and each
part of the following three sections must.contain
an END card.
This alerts the program that the following cards con-
tain load input in the form of maximum stresses and
minimum stresses. Each card contains one maxi-

mum stress and its associated minimum stress.

25
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TABLE I (cont'd)
MAX-MIN -  After the stresses have been inputted, an END card
(cont'd)
signifies input in this form has ceased. A mission
title can also be written on the MAX-MIN card itself,

if necessary.

R-DELTA - This card alerts the program that the following cards

contain load input in the form of the difference be-
tween the maximum stress and the minimum stress

(AT e Oy -

min) and the stress ratio, R,
(R = Opnin/ O max): A mission title can also be
written on the R-DELTA card itself. This part must
end with an END card.

MEAN-ALT - This card alerts the program that the following
cards contain load input in the form of the mean

stress and the alternating stress. A mission title

may be written on the MEAN-ALT card itself. This

part must end with an END card.
END LOAD - This card indicates the end of the LOADS section.
SPECTRUM - This card indicates that the flight profiles are to follow.
The card immediately following the SPECTRUM card
tells how many flights will be run. The next cards
will be the individual flight profiles. For example,

|

i

if there were 7 flights, one might want one pass on {
each flight except flight number 3. If a 4 is indicated 'r
|




SPECTRUM -

(cont'd)

RESTART

PRINT

END DATA

TABLE I (cont'd)

on flight 3, then 4 passes will be made on this flight
prior to going on to flighi 4, etc.
This card allows you to rerun the same program with
the only changes being the ones following the RESTART
card. This is true for every change except the BETA
card. In case of the BETA card, they would be treated
as in equation (16).
This card indicates the level of output generated; for
instance, crack length printed after each block or

AK, K. accumulated cycles, crack length
printed for each layer in the program, etc.
This card signifies the end of the input. If the
RESTART card is used, the END DATA card will be

used again.

27
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Certain sections of the input have default options within the
program. These default options provide va lues for certain key para-
meters, which enable the program to execute in certain instances when
sections of input are inadvertently omitted. There is no default for
the LOADS or SPECTRUM sections. These must always be present in
the basic data package. The default options correspond to a Forman
equation (eq. 2) formulation for 7075-T6 aluminum with no retardation.
The ANALYSIS section, if omitted, produces a stress intensity formu-
lation for a central crack in an infinite sheet. The default on the PRINT
section gives crack growth at the end of each block in the spectrum.

2. Random Data Input

In addition to the Lodlab card mentioned in Table I, a method
of generating random oriented stresses was used in Cracks II. This
method is a modification to the original program,

When randomized stresses are inputted into Cracks II, another
subroutine, RANDU, is used. This subroutine is a random number gen-
erator and is part of the subroutine library at the Naval Postgraduate
School. An additional program was written (Ref. 2) to convert the
random numbers into randomized stress input. This input is made
directly into the subroutine, INPUT, in Cracks II. The MAX-MIN
Lodlab card was used in conjunction with the input in order to have the
stresses in the form of maximum stresses and minimum stresses.

This, however, is not binding. Either of the Lodlab cards could have

28
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been used. If any of the other Lodlab cards are used, the program
must be rewritten in the subroutine, INPUT.

A comment card was inserted in the subroutine, INPUT, to
indicate exactly where the RANDU section is to be placed and what other
cards are to be removed. The change in the LOADS section of the input
data is simply that there are no cards containing stresses following the
Lodlab card, MAX-MIN. The card following the MAX-MIN card will be

an END card rather than the maximum and minimum stresses.

29




III. CRACK GROWTH CALCULATION

A. METHOD

The analysis conducted here uses Forman's equation, equation (2),
and the Willenborg retardation model, equation (6). The analysis con-
sisted of using wing station (WS) 32 on A-7 aircraft with a known stress
concentration factor, KT’ equal to 2.72. The 100% limit load factor is
29, 800 psi at WS 32.

Table II gives the load spectrum used and is a repeat from refer-
ence 2 and MIL-STD-8866. Table III reduces the 42,006 loads of
Table II by a factor of 10 to 4,201 loads. This means that 4,201 cycles

corresponds to 100 hours of flight time.

Also listed in Table IIl are the maximum and minimum stresses. i
The maximum stresses are generated by multiplying the limit load, LL,
by the per cent of maximum limit load. In general:
max stress = LL X (per cent of max LL)
For example, the first entry is as follows:
.35 X 29,800 = 10,430
The minimum stresses in Table IIIl are generated by taking 11% of
the maximum limit load. This corresponds to 1-g flight. !
As the stresses listed in Table IIl are maximum and minimum |
stresses, they are used in conjunction with Lodlab card MAX-MIN

in the LOADS section of Cracks II.

30




Per cent of maximum (positive)
Limit Load factor

35
45
55
65
75
85
95
105
115

125

TABLE II

31

Number of times per thousand hours that
load factor is experienced

Number of cycles that
load factor occurs

17, 000
9,500
6,500
4,500
2,500
1,360

440
150
40

16




TABLE III

Number of times per hundred hours that
load factor is experienced

Per cent of maximum Number of cycles Maximum stress Minimum stress

Limit Load factor per 100 hours (psi) (psi)
a5 1, 700 10, 430 3,278
45 950 13,410 3,278
55 650 16,390 3,278
65 450 19,370 3,278
75 250 22,350 3,278
85 136 25,330 3,278
95 44 28,310 3,278

105 15 31,290 3,278
115 4 34,270 3,278
125 2 37,250 3,278
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The stress spectrum of Table III was run in 4 different variations.

They are Hi-Lo, Lo-Hi, Hi-Lo-Hi and random. The results of ran-
domizing the input agreed very closely with the Hi-Lo spectrum; there-
fore, the Hi-Lo spectrum was used in subsequent computer runs to
minimize computer time.

Current USAF methods of service life prediction start with an
initial crack length, ap, of 0.05 inches. While this is quite a large
initial crack to assume, it does have merit for factor of safety reasons.
ﬁ The method used here is simply to use the stresses in Table III and
run enough cycles to failure. The crack length growth takes the form: 1

I

a, =ag+ Z £ (DK (17)
i=

where &y * crack length after r loads.
a = initial crack length.
£( AKi) = Forman's equation with the Willenborg retardation model.
r = number of loads applied (4,201 loads = 100 hours flight

time).
There are 3 main ways a material fails. One is that O K exceeds

(I-R)Kc in equation (2), another is that the crack length exceeds the

plate width, b, and the last is that the applied stress intensity factor

exceeds the material fracture toughness value. |

B. RESULTS

From reference 7 we have a way to relate the stress concentration

factor, KT, to the plate width and hole radius. That is:

33




3
Kp = e——— 18
T r/p+l i

where r and b are defined in figure 6.

For a stress concentration factor, Ky = 2,72, this corresponds to
an r/b ratio of 0.1. This means that regardless of the actual plate
width, b, and hole radius, r, the stress concentration factor, KT, will
always be equal to 2.72 just as long as the ratio, r/b remains 0.1. In
cumulative damage theory as used in reference 2, when K is specified,
the fatigue life is determined, whereas with crack propagation theory
this is not the case.

Table IV lists the number of cycles to failure (or flight hours to
failure) for various plate widths and hole radii, keeping KT =2.72 (r/b
=0.1). Table IV starts with an initial crack length a of 0.05 inches
(standard USAF methods).

Table V lists the number of cycles to failure (or flight hours) for

various plate widths and hole radii, again keeping Kp = 2.72 (r/b = 0.1).

This time the initial crack length, a_, has been varied.

ol

34

YCHONI et




TABLE IV
For KT =2.72

Plate half-width, b hole radius, r number of cycles to failure (flight hours)

T —
Srves

5 «5 4,201 100
4 .4 4,201 100
3 .3 12,603 300 i
2 .2 16, 804 400 ;f
1 .1 33,608 800 :i
0.5 .05 51,216 1,100 |
TABLE V
For Ky = 2.72 ;
Plate half-width, b hole radius, r initial crack number of cycles (flight ;
length, a, to failure hours)
5 D N ¢ 4,201 100
5 NG .05 4,201 100
5 .5 .03 4,201 100
5 oD . 005 8, 402 200
5 <D . 001 21,005 500
1 o | .1 25,206 600
1 il .05 33,608 800
1 il .03 37,942 903
1 ol . 005 46,211 1,100
1 e | .001 63,015 1,500
0.5 .05 o | 37, 809 900
0.5 .05 .05 51,216 1,600
0.5 .05 .03 84,041 2,000
0.5 .05 . 005 113, 448 2, 700
0.5 .05 .001 130, 145 3,098
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IV. DISCUSSION OF RESULTS

A, CIRCULAR HOLES

When analyzing Table IV it becomes apparent that the fatigue life
(cycles to failure) is anything but fixed when the stress concentration
factor, KT, is specified. Also from Table IV, the fatigue life increases
as the initial crack length, ag, decreases. This seems intuitively cor-
rect, but recall that the stress concentration factor is still 2. 72.

The cumulative damage theory used in reference 2 takes basically
the same form as equation (17). However, the damage is associated
with a specified stress concentration factor while the crack theory
yields many different fatigue lives for the same stress concentration
factor.

Cracks II uses a cumulative damage type of process in the form of
a growing crack, but it does not rely upon the techniques of damage
accumulation in the classic sense of Miner's Law as used in reference 2.

While the methods of reference 2 are viable with only a knowledge
of stress concentration factor, Cracks II cannot be used in the same
fashion i.e., by fixing the r/b ratio. A better way of using Cracks II
is to model the actual hardware geometry and use the initial crack
length, a,, of 0.05 inches (for factor of safety reasons) and keep the

plate widths and hole radii matched to existing values, (see Table VI).
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Plate half-width,

0.43

0.43

2.0

b

5

5

.05

. 001

.05

.001

TABLE VI
Circular holes

hole radius, initial crack Number of cycles to

r length, a, failure (flight hours)
LA | .05 46,211 1,100
ol . 001 75,618 1, 800

TABLE VII

Elliptical holes

S Number of cycles Flight hours
to failure to failure
L. 16 105,025 2,500
1.16 o oo
1.16 365, 487 8, 800
1.16 @ o
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B. ELLIPTICAL HOLES

The stress concentration factor for elliptical holes takes the form:

2a
Ko 5]+ (19)

T
n

where a, and b, are described in figure 5.

From figures 4 and 5 we have § = by/a,. Again, a stress con-

centration factor of 2. 72 is used, as in the circular holes. From this
we get S= 1.16. This value of S is used with figure 4 to obtain the
value of the correction factor, e . In this case BETA 3.0 is used for
tabular input directly into Cracks II (see Table 3 of the appendix).

We see from Table VII that the life increases significantly as the

value a_ is increased, holding S constant. This is intuitively correct,

n
since the local stress concentration at the crack would be higher if the
radius of curvature is smaller. The same reasoning applies when
comparing circular holes with elliptical holes. The fatigue life is larger
when dealing with elliptical holes for the same stress concentration

factor, because the radius of curvature at the crack is larger for the

cases studied.

C. USE OF CRACKS II TO SET INSPECTION INTERVALS
Subsequent use of Cracks II for service life prediction could be as

mentioned in part B of section IIlI. For example, from Table VI, the

number of cycles to failure is 46,211 (or 1, 100 hours), for an initial

crack length of 0.05 inches. This does not mean that the aircraft will fail
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after only 1, 100 hours of flight time. It means merely that, on certain
maintenance inspections (approximately every 1, 100 flight houts), WS 32
in the A-7 should be checked for a crack. If none appears, then it should

be checked again on a subsequent maintenance check, after another

1100 hours.
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V. RECOMMENDATIONS

The analysis here deals with random and ordered data. To further
substantiate the results, experimental data (flight test or laboratory)
should be used in Cracks Il and compared to known service lives. Data
on the F-14 and F-18 aircraft have been promised for the near future

from NAVAIRSYSCOM.
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Vi. APPENDIX - INPUT DATA FORMAT
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