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I. INTRODUCTION

The Linus program at NRL has as its goal the design and

demonstration of a fusion reactor utilizing compressional. plasma
E l  2)heating by an imploding liquid metal liner. ‘ Use of a liquid

(rather than solid ) liner makes possible controlled repetitive

implosions, in which most of the energy required to drive the liner

is recoverable. This reduces the required value of Q, the ratio of

the thermonuclear yield to the driving energy supplied , and al so the

e f fe ctive di mensions and total  energy needed for the device, since

both scale as Q2.

One obvious problem in implementing the concept of plasma

compression by cylindrical liquid liners stems from the possibility

of Rayleigh—Taylor instabilities at radius r = R_ (t), the interface

between liner and plasma. When the liner slows and then rebounds,

there is an effective gravity g ff k pointing toward the center of
the device, i.e., from the liner toward the plasma. Interchange

instabilities localized near this surface can be expected to grow with
0 typical rates

v .1 (kg f f ~
1, (l~

where k is the wavenumber.

These modes can be stabilized , however, by means of liner

rotation~
25] 

Since viscosity is negligible (Reynolds numbers ~ 1O~
are typical for liquid alkali metals with scale sizes and im~plosion

velocities characteristic of current experimental configurations~ ,

angular momentum is conserved. Thus each annular lamella of fluid has

an az imuthal velocity v ~ l/R, so that the centrifugal acceleration

scales as R 3. The effective gravity now has the form

~eff - v2/R.

If the second term dominates at R R , Beff <O there and the Rayleigh-

Taylor modes are s tabilized. This stabilization mechanism has been

Note : Manuscript submitted February 22 , 1978.
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demonstrated exper imental ly using water l iners~~~ and shown to agree

with theoretical predictions.

Previous theoretical investigations of liner Rayleigh-Taylor

instability have used fairly realistic models of the liner motion

assuming the fluid to be incompressible. Nevertheless, non-zero

compressibility can play a significant role in the evolution of the

perturbations. If the growth time v~~ derived for an incompressible
fluid is shorter than the time required for sound to propagate a dis-

tance comparable to the wavelength, the growth rate should be reduced.

The criterion for compressibility to be important is thus approxima-.

tely k ~ g/c
2, where c is the sound speed in the liner (typically a

few km/sec in liquid metals ). For extreme ly short wavelengths, on

the other hand, the formula [Eq.. (1”] derived for an incompressible

basic state should be a good approximation.

In the Linus-O device~~
1 and in any larger device intended to

operate in a reactor regime, the liner undergoes significant compres-

sion. This is particularly true near the inner surface at turnaround.

Although such behavior has been studied in detail ~~~~~~~~~~~~~~ no

simple analytic mode l of the basic motion is available . A linear

stability analysis analogous to that of Barcilon, et al.,’~~
1 who

described the evolution of the perturbation amplitudes in terms of

integrals over the dynamic trajectories, is therefore out of the

question.

In this paper we adopt a simple (and consequently somewhat

unrealistic) model of the unperturbed liner motion in order to be able

to get exact solutions to the stability problem. This model, that of

isothermal self-similar contraction and expansion, was or iginally
derived by KorobeinikovC8l in an astrophysical context. In common

[o]
with a number of related models developed by Sedov and coworkers,

it yields a time-dependent nonlinear solution of the one-dimensional

ideal fluid equations, starting with the assumption that in Eulerian

variables the velocity u can be written in the form

u(r,t) rF(t). (~ )

2 
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The density p and pressure p are then determined as functions of

r2 and quanti t ies  derivable from F ( t ) .  In the case of the solut ion

found by Korobeinikov , P and p are connected by an isotherma l law

(speed of sound c c , independent of r and t). ‘Ibis is a good

approximation for the liquid metals in Linus devices , where the maxi-

mun pressure 
~max 

lO 1
~ dyne/cni’ 0.1 i~here p is the density at

zero pressure ’) , and consequent l y the correct ions to the lowest—order

equation of state,

p = c0
• ’ 

~p - ~~~~,

are unimportant.

The basic s t a t e  so determined describes a nonrota t ing  l iner.  Thus
we expec t to find instability in all cases. (If suf f icien t ly rapid
rotation were introduced to change the sign of g ff as defined in

Eq. ( : ‘ ) , stability would again be expected to occur.) The object of

the present work is to see in a simp le mode l how compressibilit y and

the t i me dependence of the unperturbed motion modify the characteris-

tic dispersion relation Eq. ~~~

A word should be said her~ about the meaning of stability as we

use the term. In anal yzing perturbations about time-vary ing basic

states, one in general finds non-exponential time dependence . We have

chosen to regard a system as unstable i f and onl y i f the asympto tic
development of the perturbed displacement ~ is f a s t e r  than the
asymptotic expansion of the system, i.e.,

u r n  I ~(t ) / R~ t) ~~ , ( 5~t-.
~~ 

—

where both ~ and R are associated with a particular fluid element.

This definition does not preclude the possibility that in a “stable”

system,~ ~ ( t )  I / R (t) increases for a finite t ime .

The paper is organ i zed as fol lows . In Section II we obtain  the
general Sedov s imi la r i ty  solut ion for an ideal f l u i d  obey ing an
adiabatic law, using the I,agrangian derivation previousl y described by

Keller) 1f h We then specialize to the isothermal  case and discuss It s
appl icabi l i ty  to liner dynamics. En Section III we develop the theory

- 
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of a linear perturbation about an arbitrary time-varying basic state ,

again in Lagrangian variables. We apply this theory to the

Korobeinikov isothermal model discussed in Section II and investigate

the stability of flute modes (axial wavenumber k5 0, azimuthal mode

number m ~ o) . We show that the resulting problem can be completely

solved in terms of confluent hypergeometric functions. The only

modes which are unstable during both implosion and expansion phases

are associated with perturbations for which both the divergence and

curl of ~ vanish. (Most of the details of the calculations described

in Sections II and III are relegated to Appendices.) We conclude the

paper with a brief discussion of our results.

II. BASIC STATE

We start with the continuity, force and state equations in

Eulerian form:

(6)

~ ~~~~~~~~~~~ + V p = 0; (7)

p P(p). (8) -
‘

We assume that the region within which Eqs. (6-8 ) hold is bounded by

two free surfaces, where an external pressure supplied by a mass less

fluid balances p. Let the unperturbed motion of a f lu id  element , the

position of which is at t—O, be given by R R(r0,t
’). We can

then transform to Lagrangian variables, i.e., write the displacement,

density and radial velocity of the fluid element as functions of r-o
and t. The similarity hypothesis becomes in Lagrangian variables

simply

(9)

We assume one-dimensional motion in the direction of symmetry, the

coordinate of which is denoted by R.

~ 
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We find (Appendix A) that when Eq. (~ ) is assumed for Eq. (8) and we

introduce dimensionless variables, density being measured in units of

velocity in units of c and length in units of the density scale

length, then

ff — 1, (10)

where we have taken f ( o )  1, ~(o) 0, and

p (r ,t) — (D/f) exp (-r
0
2/2) — 1 + p(r0,t), (11)

where D is a constant. Equations ( 9-11) hold within the region
occupied by the liner, defined according to

r � r � r .  (12)
- 0 +

By Eq. (9  ) the motion of the two surfaces is given by

R — R(r ,t) r f; (i~
)

R
÷ 

— R(r+,t) — r+ f. (lie)

The similarity solution, Eqs. ( 9-li”, should be viewed as a

convenient model, not an exact description of the motion of a real

liner. Nevertheless, we will show that there is a parameter regime

in which the model is entirely appropriate, namely, in the immediate

vicinity of the turning point reached by a thin liner compressing a

plasma or magnetic flux.

Figure 1 displays the behavior of f as a function of time.

Note that f(—t) — f(t’), so that the trajectories described by the

similarity model are symmetric under reflection about t 0. This

contrast with the previously cited resultst7l determined by solving

Eqs. (6-9) self-consistently with an adiabatic gas payload and
vanishing external pressure. They indicated, among other things, that

the liner expands more slowly then it contracts, due to tamping by

the still-imploding outer layers. The latter effect is least

noticeable for small peak pressures, i e., when p — p-l << 1. For the

5
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liner trajectory in our model to be consistent in the neighborhood

of the turning point with an adiabatic gas law for the plasma being

compressed, viz.,

p — C(rjR)2’1 = Cf 2V, ( 15)

we must have

Cf 2
~

’
~ 

(D/f) exp (-r 2/2) - 1. ( 16)

Here 
~ 

is the maximum plasma pressure reached, expressed in the same
A

units (Pc2) as the similarity solution itself. Using the earl y- t ime

approximation (p22) for f we find that

D = (C + I) exp (r 2/2) (17)

and

C — l/(2~—l). (l~~

For a mixture of plasma aid magnetic flux it has been shown [ h hl  
that

the pressure is well approximated by a law of the form (114) with an

effective value of V satisfying 5/3<V eff < 2, whence from (lE~)

l/1 4< C< 3 /7. (lC ~)

The strict applicability of the similarity solution as a model

for the liner motion is evidently limited by the fact that for suff i-

ciently large f the pressure becomes negative. This occurs first at

r — r+, and defines a restriction on the similarity factor to

f� f , wheremax

~max 
— (C + 1) exp [I(r 2 

- r~
2)]. (20)

For thick liners, i.e., when r+
2 

- r 2 > 2 ~~fl (l+C), Eq. (20) implies

~max < 1, which is inconsistent with Eq. (10). In the thin liner

limit, when r÷
2 

- r 2 << 1, the model can only be strictly appl ied

for times such that

f �  fmax~~~
C + 1, (21 )

6
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and only then if the external prea -re Ce satisfies

Ce~
t) — [C + l ’)/f~3 exp [*(r

2 
- r~

2)) — 1

~ (C + 1)/f - 1.

In the remainder of this paper we will relax the

restrictions (l~)-2:’’). Instead, we will concentrate on finding the

complete time evolution of perturbations about the basic state, in

the belief that their behavior will display the general

features displayed by more realistic models. Suppor t for this is

provided by the result, established below, that the eigenfunctions

of the most unstable modes are sharply peaked at r = r , i.e., far
from the outer layers where the similarity solution is unphysical.

III. PERTURBATIONS

From Appendix B, we fi.id the equation in Lagrangian variables

for the perturbed displacement g:

where the gradient operators on the righ t hand side are defined with

respect to the instantaneous unperturbed disp lacement R. At this

point we assume that ~ is independen t of Z, the axial component of R.

As a result of this assumption, there is no fixed spatial scale in

the problem associated with a parallel wavenumber. Thus the gradient

operator V which appears on the righ t hand side of Eq .. (2~ ” can be

written

V _ !
r~~i + !gj  ~~

I l~~~
f !r~~~~~~ !e r~~~~~

1 (2ie~

We can then multiply Eq. \23 ) by f2, leaving an expression involving

only operations with respect to the Lagrangian position (the position

of e0 ” and the azinx~thal angle:

7
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In Eq. ~21~) and the remainder of Section I I I , we suppress the

subscript zero in r .  The initial conditions

= ~ ( !,o ’ , ~2~ )

= ~~~~~ (27)

are arbitrary except that they must satisfy the boundary conditions

which hold at r = r
+

V . = c , (28”

a consequence of assuming that the external pressure is unperturbed

(Appendix B’. The problem defined by Eqs. - 2~ -2~
) can now be

completely solved.

We begin by rewriting Eq. (2 1~ ) in the form

where

(30)

and

~~= V x ~~. ~3l ’)

We can find equations for ~ and w by operating on (29 ’) with diver-
gence and cur l :

f2 ~J = V2~ - - - V a + r - V x w; ~32)

f2~ j w

We first solve Eq. (3~
) f or W . Knowing w , we can solve Eq. ~~2) for

0; using the resu l t s  found for w and 0 , we finally solve Eq. ~2’~
) for -

~~~. The details of the analysi s are presented in Appendix C. The
complete solution can be written in the form

3
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~ (r,t) — e~~ (r ,t) + !8B ( r ,t) + e v(i ,t )  + V~, (3ie )

where r
imOl ~ ~ drW ’(r)

n r  n -— ~~~~ [r 
~~~ 

r~n
+
~ 

o~ (o)

imw (o) imW (o)
- 

~~~ 
] ~~~t + - 

~ +? ] T (t ’)~

13 (r)
+ 
~~~l ~W (O )  f ( t )  + 

~n~
0’) g(t) 

] 

; (35 )

rim8 drW (r)
= 

rn,n 
[im 

r n 

r2 
r~ n~

2 
— 

~

imw (o) 
. 

im~L (o)
- 

~~~~~~~~~ 

] 
~n 

( t )  + (o) - 
~~~~~~~ 

] T ( t )

r rdrw (r)
+ 
~~~~ 

— 

r + -

~~ 

drW (r)

f(t) + 
~~(o) 

g(t) ] ; (36 )

y(r,8,t) = E e im8 W ( r) ~v (o) f(t) + ~ç(o)~ (t) ; (37 )
m,n

and m

- E eim$ ) [A P ( t )  + Bq(t) ] (
~

)
+ [A~p~( t) + B~q~ ( t )]  (f:;:) m (38 )

Here W satisfiesn

W ” + (~1 - r) W ’ + 
~~n 

- 1 - ~~)w - 0 (~~‘~ )

9
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and

W (r ) = 0,n +

where ~~
. is an associated eigenvalue ;

0 ( t )  = ~~~~ 
d8e~~

mB drre~~~ /2 W ( r ~O ( r ,$ , t ) ;  (140’)

w~ ( t )  = ~~: 
dee~~

me r drre
_ r/2 W (r)e w(r e t); (141)

2TT r~ -
~

V ~~~~~~~ = ~~~ dee
_
~
me j~ drre t /2 W~~ r~ y ( r ,e , t ) ;  ( 142)

n 0 r

~ ~~~ ~n’ ~ 
~ f~t)]; (143)

T (t) = ~~~( t )  
~~ El — 

~~~~
, ~ ; ~n f(t)]; (1414 )

f(t)

g(t) = f (t’) : dse 5/2 ; (145)

0

P÷
(t) = 

~ 
[I (l~m), ~ ; ~71 f(t)1; (14()

= f(t) I [i4in, ~ ; ~z f(t)], ( 147 )

and A , B are constants. Here ~
‘ is the standard solut ion of the f i r s t

— — [~~~ i~kind (Kunune r funct ion ) of the confluent hypergeometric equation.

All of the quantities defined in Eqs. (140-147) except g depend on m,

but the mode number label has been suppressed to streamline the

notation.

To investigate stability, we consider the implosion and

expansion phases separately. First we note that f, S and are even

functions of t, while g, Tn and are odd. Solutions of pure even

(odd) parity are symmetric (antisymmetric) abou t t=0. A linear

10
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combination, e.g., Q IEq.(C51)] of the two can be chosen such that

the solution is a monotonically increasing function of t in~e

asymptotically for both t - and t — + ~~~.

We consider first the outward motion starting at t=0. From the

asymptotic formula ( C514) we see that the only time dependence in
Eq. (3 14) which grows faster than f(i ’) is that in p_ (t) and q (t).

[In Appendix D we show that this statement is true for all t > 0,

not just asymptotically.] While ~ could be small or even vanish at

t=0, owing to cancellation among the various terms in the solution,

so that the perturbations could grow over some finite time interval,

the relative amplitude of the perturbations vanishes as t ~~~ except

for modes which have f in i t e  A_ or B _ in Eq. (38). These are
evidently incompressible irrotational modes localized at the inner

surface .

Fr om E q. (C5 1e-), p_ / f  and q _ /f  both grow as ~~ f)
m/2as t

For t close to zero, Eq. (C25 ) says that the perturbations grow

exponentially with growth rate v = (m-l)~ , in agreement wi th the

resuit~~
1 for Ray leigh—Tay lor ins tabi l i ty  in an incompressible l iner .

Now we turn to the question of the stability of the inward

motion. We ask under what circumstances all of the components of

can have smaller values at some t < 0 than they attain at turn-

around. We are thus led to seek solutions which ~~~~ with increasing

-t, i.e., with increasing f. Evidently they must have L - o )  =

and ~1(O) = -v(O) and must contain the functions p and q_ only in the

combination Q, defined in Eq. (C5l). The fastest growing modes are

those with all constant coefficients set to zero except those multi-

plying S~ and T~. According to Eqs. (C26-27) and (C514 ’), these grow

2
j. ~n

as (~n f) , or using Eq. (C214), as ~~ 
f) . Clearly

the amplification increases with both n and m . These modes are very

different from the familiar Rayleigh-Taylor instability. They

represent overstable internal waves, and are entire ly due to the

presence of compressibility .

11
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If we look for modes which are unstable both before and after

turnaround , we see that the only ones are those with V w = C = 0

and time dependence proportional to Q ( t ’) .  Figure 2 compares the

behavior of Q
m for m 1 and 10 wi th that of f.

IV. CONCLUSION

Using Lagrangian coordinates throughou t, we have obtained

general formulations of the one-dimensional self-similar motion of

an ideal isentropic fluid (already in the literature~~
’
~~) and of the

development of infinitesimal perturbations around an arbitrary time-

dependent basic state (apparently new). The two are combined and

app l ied to a treatment of the Ray leigh-Taylor instability in a self-
similar f lu id  motion. When , as is true here for z-independent per-
turbations . the gradient operator acting on the perturbations is

homogeneous in r, we can separate the space and t ime dependence of

a great simplification. Thus the analysis presented here of

f lute pe r tu rba tions about a cylindrical self-similar motion is act-

uall y simple r than the corresponding slab problem , which involves the
perturbation wavelength. In fact, the spherical problem , which is

treated elsewhere,L151 can be solved for all modes without restriction

on the angular dependence ?~ ($,~p).

For liquid metal liners, the appropriate relation between

pressure and density is Eq. (4), the isothermal law. Carrying out

the analysis, we obtain the complete solution for ~ (r,t), Eq. (34).

One class of modes grows prior to t~irnaround and damps afterward.

These are internal compressional (sound ) waves, which are pumped up

by the liner contraction and relax again as the liner expands. The

only  modes which grow (relative to the liner rad ius) both before and
after turnaround are those which are incompressible and irrotational.

For sufficiently large mode numbers in, or times sufficiently close to

turnaround, the growth is exponential and identical to that found for
an incompressible medium, essen tially given by Eq. ~. l’). Otherwise
their time dependence, given by Eq. (C~ l), is nonexponential. Higher

mode numbers in (shorter wavelengths~ give rise to f a s t e r  growth , wi th

12



the amplification relative to the unperturbed liner radius scaling

asymptotically for large t as ~ ‘7~ f)
in (t~/~~T)m.

This is similar to results obtained in magnetohydrodynaniic

treatments of the stability of static equilibriajl2l There it is

generally found that the fastest-growing perturbations are those

which are incompressible, since compression reduces the free energy

available for producing magnetic fie ld deformation and fluid motion.

It is also interesting to compare our result with the well_knownl l6l

solution to the problem of the Rayleigh-Taylor instability of a

stationary isothermal exponentially stratified medium supported from

below by another medium of much lower density, where it is found

that the growth rates are given exactly by Eq. (1). This conclusion,

which may appear surprising in light of our arguments (Section i)

that compressibility can reduce growth rates when k ~ g/c 2 , f inds an
explanation when reached by the techniques of Section II.

Equation (28) states that at free surfaces the medium deforms

without compression. Since in a static exponentially stratified

medium the eigenfunctions vary exponential ly in the direction norma l

to the boundary, condition (28) holds everywhere if it holds on the

boundaries. In effect, it is propagated inward from the surfaces.

In the problem treated here, the radial dependence of the perturba-

tions is not exponential, but the unstable modes are essentially

localized at the inner surface. Hence we should expect to find

V . = 0, even though the mode l allows compressible motion.

l~
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APPENDIX A. SELF-SIMILAR SOLUTIONS OF THE
IDEAL FLUID EQUATIONS

When we introduce Lagrangian variables, Eq. (6) can be

integrated at once to yie1d~~
2l

p (r ,o)
p(r ,t) — t v~~(~~,t ) I  (Al)

while Eq. (7) becomes

R _ I V p _  -~~~~~~V ~

(V r)A (V_R)
A

- -  ~
~ d~ jV~~ o~~ o ~ P dp ‘

(A2 )

where dots denote derivatives with respect to t and the superscript A

denotes the adjoint. Here we have made use of

V r . V R - I , (A3 )

where I is the unit dyadic. Hence J
Vp — [v !0(R,t)] • V p —

(V R) A
(V R) ’ . V p  = lv°;1 . V p .  (A14)

These expressions simplify greatly for the cases of planar, cylindri-
cal and spherical symmetry, viz.,

pdr — pdR ; (AS )

2lTp r dr — 2IIPRdR; (Ps)

41’Yp r 2dr — 4rrpr2dR. (A7)

15 
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Equations (A5-7) can be summarized in the single relation

p (r,t) — p(r0,O) 
(
~2) (

~
--) , (A8)

where the dimensionality V = 1, 2, 3, respectively.
When we introduce the similarity assumption Eq. (9), Eq. (A8)

reduces to

p = p~,f~
’ (A9)

Moreover, if we specialize Eq. (8) to an adiabatic law

~ [, V 1~ (Aio~
A A

where p, P and V are constants, then

— ~4(2y_i  = f 
~
(Po)

’
~~
’ 

(All~

and one can write (A2 ) in the form

d ~ A
r f  - 

~~ ~~—~ n (p/p ) —

- f 

V-i 

~ ~~~-2n (p~/~ ), (Al2)

or if v~~~l,

-- V (v-i)+l ~ 2 
A 

A V~i— — - ô(r~~/~ ~~~~~ ‘ (A13 )

where

A A
c2 — p/p (Al4)

and £2 > 0 is a separation constant. If V l  (the case of interest in

the present work), Eq. (Al3 ) is replaced by

ff — c2/L2 = - c2 b(r Z/2) ~ (o~,/~ ). (Al5)

16
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Note that by assuming a positive separation constant, we have
effective ly chosen case III (in the notation of ref. 9), in which all
fluid particle trajectories pass through a minimum displacement at
the same time (when ~ — o). This instant we denote by t—O .
Equ ation ( A15 ) thus yields

b(r ~ /2) 
— - (A16)

and 
-

f — 1/f , - (A17)

where we have adopted units such that

(Al8)

The solution of (Al6) is

— D exp (-r0
2/2), (A19 )

where D is a constant. E quation ( Al7 ) can be integrated once to
yie ld

k —  (22n f)1, ( A2o )

whence 
2 2

t — ds e /2 
— ds e5 /2 

(A21 )
0 0

For early times t << 1,

f ( t )  ~ 1 + 1 t~~. (A22)

Integrating (A2 1) by parts repeatedly , we find

e
~2f2_i e~

2l~2_i 
~t —  + + .  . .

1! + f=1 +
~~~

f + . . . . (A23)
~!2IZ f (2Bn f)U

17
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To lowest ord .r , then , for t ~~ 1

f ( t )  — t t [1 + 0 (~~)] . ( P214)

~rom (A9) ,

P — O~,/f f~~ exp (-r0
2/2) (P25)

and

p — p-i — f 1 exp (-r 2/ 2) - 1. (P26)

Finally, the radial velocity becomes

u - r
0~ 

- r0 (2 9n f )1 . (P27)

- ~~~~r :. ~ -~~~ -



APPENDIX B. DERIVATION OF THE PERTURBED

EQUATION OF !4~TION

Consider the equations of motion in Lagrangian form,

Eqs. (Al-2). Let R(~~,,t) denote the unperturbed motion of a fluid

element whose location is at t—O. Hence

p (~ ,t) R — - V
R p0, (Bl)

where p
~ and p0 

are the unperturbed density and pressure, and

p (r ,o)
p (R,t) = ° ° . (B2 )

Iv R (r , t ) I
0 —

Let a perturbed motion be defined by

r(~~,,t) = R(~~ ,t) + ~~~~~~~~~ (B3 )

Note that on taking the gradient of (B3) with respect to r at fixed
t one has

I = v ~~~+v ~~. (s4)

But by the chain rule

= V
R 

- (V ~) *

~~VR~~~
(V
R~~)~~~

V
R . (B5 )

Thus
• 

IVR rI - VR R + V R~~I

_ I 1 + V R I H I + V R i .  (B 6)

19 
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The integral of the perturbed continuity equation (the condition that

mass is conserved under the perturbation 63) reads
p (R ,t~

p(!,t) — ° — p~~R ,t )  + 0
1

(R ,t )
, (B7)

Iv~ I
where we use R t~~ identify a given Lagrangian fluid element.

Together (66 ) and (B7) yield

P - R ,t)
p
0

(R ,t) + ~~~~~~~ = 
~ ÷

°
~~~

~ p~~R ,t )  — o ( R ,t )  
~
‘R (88)

Hence the perturbed density is given by

p — - p V . ~~ tB’))

Now the linearized equation of mclt  ion can be written

-. -. Idp 1
+ P R  — - 

~R ~~~~~~~~~~ 

+ - V p

or

= 

~
‘o ~~~ 

+ - - . 
~~~~

= V
R ~R ~~~~~ ~‘) - 

~~~ 
+ V~~ ~~ ~ 

V

— 0~~~~~~ — 0 — —

~~~~~~~~~~~~~~~~~~

= . (0  - V
R 

[~ • V~ p ]  + . V
_
~ p

0

- (y
R 
. ~) V~ p0

- V
R [ 

~~~ 

. 
~~~~ ~)] - . 

~~ 
~ 

p - . j  V~ p0

(Bll)

20 
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If  we divide by 
~~~ 

and rewrite ( B l l ) , suppressing the subscripts

R and zero, there results

j-V  [.i~~~ v .  (o l)] + -~~ Vp~~~ V .  (°1)

- . 
V [~

.V ~
] 

- 
~~~~~~~~ 

. Vo Vp - .~ (V . ~~) Vp

(B12 )

Using (P25) and (P26) for P and p, we find

~~= v  
[~. v .  (Ps ) ]  ~~

- v - - ~~~~~~ + , (Bl3 )

the Lagrangian form of the perturbed equation of motion in the case

of an isothermal pressure law.

The boundary condition at a free surface associated with

Eq. (Bl2 ) is found from requiring that the pressure on the boundary

not change under the perturbations :

p ( R )  = %(B~
) + p~~. R )

= p (R )  - ~~ - p V  . (Bl4)

whence

(815)

21
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APPENDIX C. SOLUTION OF THE PERTURBATION EQUATION

The solution of Eqs. (2S-2~~ is facilitated by two circumstances:

the space and time dependence separate completely (in Lagrangian

variables ), and the solutions can be carried out in stages so that ~
is found “a piece at a time.” The first piece is the position

vor t ic i ty  w ,which sa t is f ies  Eq. (~~~~ ) , a homogeneous equation . One

solution is immediate, since from Eq. jo),

f ’ f = f. (Cl~

The o ther is then found to be
t

g(t) f ,
‘ 

~~~~~
- = f ,‘ ds e 5 / ’2

. (C2 )

We thus h ave

f(O) = I, = 0; (C~
)

g(O) 0, ~tO) — 1, (C~
4)

and so we can write the complete solution of (33 ) inc luding initial

cond i t i ons , in the form

W~~r , t~ = W ( r )  f(t) + t~~(r) g (t
’
~,

where ~~(r) = w(r,O). Evidently the spatial dependence of

u.~ is “frozen in” at t=O.

We now Fourier transform ~, u. and C in angle according to

~m (r ,t)  = d9 e~~
me 

~ t r , t ) , tc~
)

etc. [In what follows we will display the dependence on in in the

transformed quanti t ies  only where it is important.] If we now write

j ( r , t )  = e
r~~~

(r ,t
~ 

+ !~ ~ ( r , t )  + 
~~ 

V(r,t), tC7~

22



vs observe that , as a result of our assumption that the perturbations

are indepsndent of z, the radial component of (C5 ) yields

V(r,t) — y (r) f(t) + V (r) g(t~ . (CR)

Since V is comp letely determ ined and doe. not appear in the equations

governing 0. and 0 , we can omi t i t  from fu r the r  discussion.

Wri t ing w — . w , we note that

(CQ )

and
r • V x w — im w (d o)

After Fourier transforming , Eq. ~ r )  thus becomes

a - ~~ 
f(r~~~) 

- r - (i + 
~~~

)o  + tin w . (Cli)

Equation (Cli) is subject to the boundary condition (gi’ ), i.e.,

— 0(r ) — o (C12)

To solve (Cli) . consider first the homogeneous equation ohtsined

by sett ing w — 0. WritIng

o ( r ,t) — W(r) 5(t), (Ci~
)

we find

[!
~ 

(r~~~)~~~
r~~~~~ (i +~~~)w] w~ 

-

— — f : 5 s~~, (clh)

where i~ is a separation constant. The radia l  equation

(CL I ,)
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subject to

— 0, (Cl6 )

de termines an eigenvalue problem with solutions W corresponding to

a 1, 2 Wri t ing Eq. (C15) in the form

-L f- [r e~~
2hl2 + 

[~
_ i  - e~~~

’2 w — 0, (c17)

we see that

dr re~~
2 l’2 [(~~~~

)2 + (~ + 

~
) W

2]

- 

r >0, (C18 )
+

dr r e~~’/2 w2

so that the eigenfunctions are oscillatory. From classical Sturm-

Liouville theory, we know that the eigenfunctions W~(r) form a

complete orthonormalizable basis in the space of real functions on

( r , r+), with the orthogonality condition given by
r+ 2S dr re

_r /2 W ( r) W ,(r) — 6 , - (C19 )

The W ’s can be expressed in terms of confluent hypergeometric
i: 13]functions, viz.,

W~(r) — r~~ F [* (1 * m - 

~n~’ 
I ~ in ; I r’], (C20)

where F(a , c; x) is a solution of

x d2 F + (c  - x)  ~~ - a F = 0. (C2 l~

The ~‘s must in general be de termined numer ically. The most efficient

method is to utilize (ci8) as a variational principle and solve for

i~ by the Rayleigh-Ritz procedure. Given ~~, a linear combination of

2~



two independent solutions of (C2l) can be found which satisfies (Cl2~ .

The asymptotic forms of the standard solutions of the confluent

hypergeometric equation (C2l) in the limit a - for fixed x

are~ 
13]

-4
I(a,c; x) —‘ ii r(c) (4 cx - ax ) 2 exp (Ix)

cos [(2c - 14a) x]~ - 4 1
~c + ~ (C22 )

and

y (a,c; x) -* r(4 c-a + ~) x
4 - 2 exp (Ix)

. cos
t 
[(2c - 14a) + (a - I c + *) ~ ~~~. (c23)

Using these we can calculate the asymptotic behavior of the eigen-

values i~~, i.e., the 14KB approximation for ~~~
. The result is

— 2m + (
~

7, ( c214 )

n = 1, 2, . . ., where Ar = r
+ 

- r .  All but the first few eigen-

values are well approximated by (C214), and the approximation

improves as Ar 0.

The time dependence is given by

f2 S+~~~~S O  (c25)

Us ing ~n f as the new independen t var iab le , we can convert (C25 ) into
a confluent hypergeometric equation also. The result is

S(t) — F(- 4 p~ , 4; ~n f )  - f1 D_11 ( i) , (C26)

where D is a solution of the parabolic cylinder (Weber-Hermite )

equation. It is convenient to choose two independent solutions of

( c26 ) as

25
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S ( t )  — i(_ 
!i , ~~ f)~ (~~~7)

T ( t ) — ~~( t )  
i(I 

- , ~~; ~n f)~ 
( c28)

where ~ is the Kuniner function~~~~ associated with (c2 1). From this

choice it follows that

s(o) — 1, ~(o) — 0; ( C29 )

T(0) — 0, i~(0) — 1. (C3o)

We next seek a particular solution of the inhomogeneous equation

(Cli) in the form

a( r ,t) — E ~ (t) W (r). (C3l)
n It n

Using (C5) and Cl5), we find

f2 + - its [W
n(O) f(t) +~~.(o) g(t)]. (c32) •

The desired particular solution is thus simply

— 

~~~~ 
[W n (O) f + 

~~~~~ 
gi, ( c33)

and the complete solution, includ ing initial conditions, is

imw (0)
— - 

~~~~ 
] S (t )  +

im~~ (0)

[
~n
(0) - iJ.n+

l
~ ] T~(t) + ;ç:~:i: 

[m~(o) ( )

+w~(o) g( t) ] . ( C314)
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H Now we can find a particular solution of (29 ) in the form
- .!r 0. + ~~ 0, where

~ 
r drw ’(r) i m w  (0)

~ (r ,t) - E 
[r 

n 

r1 ~~~~ — 

[0 (0) - 
~~~~ 

] S~~( t )

im~~ (0)1 W (r)
+ [a (o) - 

~~~~ 
j ~r~( t )  + — 

r

~w (o) f(t) +~~ (o) ~ ( t ) ~
] 

; (C35)

= E fin r ” 5 drw~(r) 

~ -

imw (0)1 . m w  (0)1

~~~~ ~ 
s~ ( t) + Ian (0) 

- 

~~~~~~~~~ 
j T (t)

~ drW (r) ( •
- -i 5 — — f l--—— / w ( o)  f( t) +~; (0) g(t)~ +n r3

dr rW~~(r) fr~(o) f(t) +~~~(o) 8(t )~J 
( c36)

If the arbitrary lower limits on the integrals are chosen so that

(~~+i) W ’ (r) = r
1 W(r ) 

[
~~+i + ; ( C37 )

r2 W
’ (r2) = - W (r ) ~~ - r 2] ; (C38)

W~
’ (r) — r W

n(r ), (C39)

then

W V x ~~ ( c140 )
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and

(C141)

Thus the general solution to (29) can be written

(C1i2)

where

V2 0 — 0. (C~ -3)

The mt~ component of 0 satisfies

1 -~~ (r 

~
) - ~m — 0, (C1~~)

whence

r, t) - ~~ (r- )t~ + 0~ 
m 

(C 1~5)

The time dependence is obtained by substituting ( C’i-5) in (C29) ,
whereupon the right hand side vanishes :

f2 ø
!fl _ (l~~~m)0

m _ O  (cZ~6)

This equation is of the same form as (C25) , so we can immediately
write down the solutions. For consistency with our previous choices ,
we set

p (-t ) — {[I(l~m), 4; ~n f), (C1~7)

q (t) — E l  ~~ 1st, ~~; ~n f]. (cl~8)

These satisfy

p± (0) — 1, ~~(0) — 0; (C I ~9)

q~(o) — 0, ~~(o) — 1. (c5o )
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For m—2k, ~~ reduces to ~ mul tiplied by a polynomial in 9~i f of order
k.

Since p and q both diverge the same way at large t, it is use-
ful to introduce in their place two new solutions which behave
asymptotically like !, the standard confluent hypergeometric function
of the second kind :

~j~~r(m+.i) q (t)P ( t )  
— p (t) 

~ r (m +*’ 
- 

(C5 1)
Q ( t )

For large argument we have

p (t) (~ f)
= *(in+l), ~ ; (C52 )

Q ( t )  (~n f )  ~~~~~~~~~~~ t . (C53 )

All the other asymptotic results we require follow from the general
formula

1 z a—c
~(a,c;z) 

~ N~iY e Z

as z~~~~~ . (C51~)
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*
APPENDIX D. A BOUND ON THE FUNCTIO!’~ S~, T~

Given ~ > 0, let U(t) and h(t) satisfy

f2 u + ~~ u = o  (Dl)

f2 h - h — O , (02)

where f is defined in Appendix A, and let

u(o) — h(o) — a > 0; (D3 )

~i(o) — ~t(o) — b > 0. (D4)

where a + b — 1. Then the following inequalities hold for 0 < t < ~~:

I U ( t ) I  ~ h(t) ‘~J~ f(t). (D5)

Proof: ( i )  Assume a—i , b—0 . Then h—f.  Denote the solution of (Dl )
with these initial conditions by U1. Define

c[u]_ 1~~~÷~j2 >o. (D6)

Since

* -2~U
2f

.G —  
~
3 <O~ (or)

we have

+ ~ pu2(o) + ~i(O)2, (o8)

or for U — U ,
1

U
1
2 < f2. (09)

Hence (D5 ) holds for case ( i ) ,

*
Proof supplied by Richard Beals .
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~1

( it )  Assume a—O, b—I. Then b-g, defined in Eq. ((2). Denote the

appropriate solution of (Dl) by U2. From (D8),

h12 
< u22(o) — I , (Dlo )

whence

tu2 I ~~t . (Dl i)

But from Eq. (C2),

t~~g <~~~ f, (Dl2)

which demonstrates (D5 ) for case (ii). The general result follows,

since for a > 0, b > 0,

lul — IaU 1 + b U l  � a I U 1I + b IU 2 I

~~ a f + b g — h � ~~~~ f .  (013 )
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Fig. 1 — Numerical solution of Eq. (10) for f(t) (solid curve), with first
order power series and asymptotic approximations [Eqs. (A22) and (A23),
upper and lower broken curves, respectively I shown for comparison .
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