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I. INTRODUCTION

The Linus program at NRL has as its goal the design and
demonstration of a fusion reactor utilizinf compressional plasma
heating by an imploding liquid metal liner.l’el Use of a liquid
(rather than solid) liner makes possible controlled repetitive
implosions, in which most of the energy required to drive the liner
is recoverable. This reduces the required value of Q, the ratio of
the thermonuclear yield to the driving energy supplied, and also the
effective dimensions and total energy needed for the device, since
both scale as Q2.

One obvious problem in implementing the concept of plasma
compression by cylindrical liquid liners stems from the possibility
of Rayleigh-Taylor instabilities at radius r = R_(t), the interface

between liner and plasma. When the liner slows and then rebounds,

there is an effective gravity Bafr ~ ﬁ_ pointing toward the center of
the device, i.e., from the liner toward the plasma. Interchange

instabilities localized near this surface can be expected to grow with
typical rates

5 (1)

i (kgeff‘ :

where k 1s the wavenumber.
These modes can be stabilized, however, by means of liner

[2-5]

rotation. Since viscosity is negligible (Reynolds numbers 2 10°
are typical for liquid alkali metals with scale sizes and implosion
velocities characteristic of current experimental configurations),
angular momentum is conserved. Thus each annular lamella of fluid has
an azimuthal velocity v < 1/R, so that the centrifugal acceleration

scales as R™®., The effective gravity now has the form
Begf = R - v®/Rr. (2)
If the second term dominates at R = R_, g8 ..<O there and the Rayleigh-

Taylor modes are stabilized. This stabilization mechanism has been

Note: Manuscript submitted February 22, 1978.
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demonstrated experimentally using water liners and shown to agree
with theoretical predictions.

Previous theoretical investigations of liner Rayleigh=-Taylor
instability have used fairly realistic models of the liner motion
assuming the fluid to be incompressible. Nevertheless, non-zero
compressibility can play a significant role in the evolution of the

perturbations. If the growth time y~! derived for an incompressible
fluid is shorter than the time required for sound to propagate a dis-
tance comparable to the wavelength, the growth rate should be reduced.
The criterion for compressibility to be important is thus approxima-
tely k S g/c®, where ¢ is the sound speed in the liner (typically a
few km/sec in liquid metals). For extremely short wavelengths, on
the other hand, the formula [Eq. (1)] derived for an incompressible
basic state should be a good approximation.

(e]

operate in a reactor regime, the liner undergoes significant compres-

In the Linus-0 device and in any larger device intended to

sion. This is particularly true near the inner surface at turnaround.
Although such behavior has been studied in detail numerically, T no
simple analytic model of the basic motion is available. A linear
stability analysis analogous to that of Barcilon, et al.,[4] who
described the evolution of the perturbation amplitudes in terms of
integrals over the dynamic trajectories, is therefore out of the
question.

In this paper we adopt a simple (and consequently somewhat
unrealistic) model of the unperturbed liner motion in order to be able
to get exact solutions to the stability problem. This model, that of
isothermal self-similar contraction and expansion, was originally
derived by Kotobetnlkovtﬁ]

with a number of related models developed by Sedov and coworkers,

in an astrophysical context. In common

o)

it yields a time-dependent nonlinear solution of the one-dimensional
ideal fluid equations, starting with the assumption that in Eulerian

variables the velocity u can be written in the form

u(r,t) = rF(t). (3)
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The density p and pressure p are then determined as functions of
r° and quantities derivable from F(t). 1In the case of the solution
found by Korobeinikov, p and p are connected by an isothermal law
(speed of sound ¢ = c. > independent of r and t). This is a good
approximation for the liquid metals in Linus devices, where the maxi-
mun pressure p... .~ 101° dyne/cm” ~ 0.1 pc® (here D is the density at
zero pressure), and consequently the corrections to the lowest-order
equation of state,

p = coP (p = $\, (W)
are unimportant.

The basic state so determined describes a nonrotating liner. Thus
we expect to find instability in all cases. (If sufficiently rapid
rotation were introduced to change the sign of Bogg @S defined in
Eq. (2), stability would again be expected to occur.) The object of
the present work is to see in a simple model how compressibility and
the time dependence of the unperturbed motion modify the characteris-

tic dispersion relation Eq. (1).

A word should be said here about the meaning of stability as we
use the term. In analyzing perturbations about time-varying basic
states, one in general finds non-exponential time dependence. We have
chosen to regard a system as unstable if and only if the asymptotic
deve lopment of the perturbed displacement § is faster than the

asymptotic expansion of the system, i.e.,

lim | €(t) | / R(t) = =, (5)

L e -
where both § and R are associated with a particular fluid element.
This defini:ion does not preclude the possibility that in a '"stable"
system,l €(t) | / R(t) increases for a finite time.

The—paper is organized as follows. In Section II we obtain the
general Sedov similarity solution for an ideal fluid obeying an
adiabatic law, using the Lagrangian derivation previously described by
Keller.[ln] We then specialize to the isothermal case and discuss its

applicability to liner dynamics. In Section III we develop the theory
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of a linear perturbation about an arbitrary time-varying basic state,
again in Lagrangian variables. We apply this theory to the
Korobeinikov isothermal model discussed in Section II and investigate
the stability of flute modes (axial wavenumber kz = 0, azimuthal mode
number m # O). We show that the resulting problem can be completely
solved in terms of confluent hypergeometric functions. The only
modes which are unstable during both implosion and expansion phases
are associated with perturbations for which both the divergence and
curl of E vanish., (Most of the details of the calculations described
in Sections II and III are relegated to Appendices.) We conclude the

paper with a brief discussion of our results.

II. BASIC STATE

We start with the continuity, force and state equations in

Eulerian form:

%%+V'(p v) =0; (6)
o(g—.%+y_-‘7y_)+vp=0; (7)

We assume that the region within which Eqs. (6-8) hold is bounded by
two free surfaces, where an external pressure supplied by a massless
fluid balances p. Let the unperturbed motion of a fluid element, the
position of which is r_ at t=0, be given by R = g(ro,t). We can

then transform to Lagrangian variables, i.e., write the displacement,
density and radial velocity of the fluid element as functions of r,
and t. The similarity hypothesis becomes in Lagrangian variables
simply

R X f(t). (9)

We assume one-dimensional motion in the direction of symmetry, the

coordinate of which is denoted by R.




We find (Appendix A) that when Eq. (4) is assumed for Eq. (8) and we
introduce dimensionless variables, density being measured in units of
3, velocity in units of c and length in units of the density scale
length, then

ff =1, (10)

where we have taken f(0) = 1, E(o) = 0, and
D(ro,t) = (D/f) exp (-r°2/2) =1+ p(ro,t), (11)

where D is a constant. Equations ( 9-11) hold within the region
occupied by the liner, defined according to

<
¥ ®r Sy, (12)
By Eq. (9 ) the motion of the two surfaces is given by
R_ = R(r_,t) = r_ f; (13)

X, * R(r,,t) = T, & (14)

The similarity solution, Eqs. ( 9-11), should be viewed as a
convenient model, not an exact description of the motion of a real
liner. Nevertheless, we will show that there is a parameter regime
in which the model is entirely appropriate, namely, in the immediate
vicinity of the turning point reached by a thin liner compressing a
plasma or magnetic flux.

Figure 1 displays the behavior of f as a function of time.
Note that f(-t) = f(t), so that the trajectories described by the
similarity model are symmetric under reflection about t = O. This

(7]

Eqs. (6-9) self-consistently with an adiabatic gas payload and

contrast with the previously cited results determined by solving
vanishing external pressure. They indicated, among other things, that
the liner expands more slowly then it contracts, due to tamping by
the still-imploding outer layers. The latter effect is least

noticeable for small peak pressures, i e., when p = p-1 << 1, For the

it S et R




liner trajectory in our model to be consistent in the neighborhood
of the turning point with an adiabatic gas law for the plasma being k

compressed, viz.,
p =Gz /m )*V = Ca®Y, (15)
we must have
C£2Y~ (D/f) exp (-r_2/2) - 1. (16)
Here { is the maximum plasma pressure reached, expressed in the same

A
units (Pc®) as the similarity solution itself. Using the early-time
approximation (A22) for f we find that

D= (( +1) exp (r_2/2) (17) |
and
¢ = 1/(2y-1). (18)
(11]

For a mixture of plasma and magnetic flux it has been shown

that i
the pressure is well approximated by a law of the form (14) with an

effective value of Y satisfying 5/3<y < 2, whence from (18)
eff

/b < ¢ <3/T. (19)

The strict applicability of the similarity solution as a model
for the liner motion is evidently limited by the fact that for suffi-
ciently large f the pressure becomes negative. This occurs first at i
r=rx, and defines a restriction on the similarity factor to

<
f fmax’ where

(€ +1) exp [#(r 2 - r.2)]. (20)

fnax * +

For thick liners, i.e., when r ? - r ® > 20n (14), Eq. (20) implies

+

frax < 1» which is inconsistent with Eq. (10). In the thin liner
2

limit, when r ® - r_2 << 1, the model can only be strictly applied |

for times such that

f< fmax ~ME+1, (21)




and only then if the external pres. :re Ce satisfies

Celt) = [(C + 1)/£] exp [B(r 2 - £2)] -1
ML+ 1}E =1, (22)

In the remainder of this paper we will relax the
restrictions (19-22). Instead, we will concentrate on finding the
complete time evolution of perturbations about the basic state, in
the belief that their behavior will display the general
features displayed by more realistic models. Support for this is
provided by the result, established below, that the eigenfunctions
of the most unstable modes are sharply peaked at r = r_, i.e., far

from the outer layers where the similarity solution is unphysical.

ITII. PERTURBATIONS

From Appendix B, we fiand the equation in Lagrangian variables
for the perturbed displacement £:

L g.) (23)

1
_R.E‘*pf?.—-

$-%(p-i-gt
where the gradient operators on the right hand side are defined with
respect to the instantaneous unperturbed displacement R. At this
point we assume that E is independent of Z, the axial component of R.
As a result of this assumption, there is no fixed spatial scale in
the problem associated with a parallel wavenumber. Thus the gradient

operator V which appears on the right hand side of Eq. (23) can be

written
d 1 d
s & YRk W
1 )
“fletr te b9 (24)

We can then multiply Eq. (23) by fz, leaving an expression involving
only operations with respect to the Lagrangian position (the position
of t=0) and the azimuthal angle:




s.

FL=-V (V¥ E Q) +] (25)

In Eq. (24) and the remainder of Section III, we suppress the

subscript zero in T The initial conditions

£.(x) = £(x,0), (26)

io(g) = i(r,o‘ (27)

are arbitrary except that they must satisfy the boundary conditions

which hold at r = e 2

vV.g=0, (28)

a consequence of assuming that the external pressure is unperturbed
(Appendix B). The problem defined by Eqs. (25-28) can now be
completely solved.

We begin by rewriting Eq. (25) in the form

33

FLrr - VEmW-xa, (29)
where

c=V-E£ (%0)
and

W =

v x E. (31)

We can find equations for 0 and W by operating on (29) with diver-

gence and curl:

£°0 e Woad - g Vo Ep. Vo (32)
£2 9 = w. (33)

We first solve Eq. (33) for w. Knowing w, we can solve Eq. (32) for
O; using the results found for w and 0, we finally solve Eq. (29) for
€. The details of the analysis are presented in Appendix C. The

complete solution can be written in the form

~
QO

e N )




§(x,t) = ea(r,t) + el (r,t) +e v(r,t) + v,

where g :
im@f u_ drW ° (r)
a(r,e,t) =3 e r —MT- ;[on(o)
m,n rn
T
imw_(0) . imd_(0)
- TTI—-—] sn(t) + [On(o) - —“'T— Tn(t\s
n n
g - Wlr) :
+—un+1 i i gwn(O) f(t) +wn(o) g(t)z ;
r
im@ ey o drwn(r)
B(r,0,t) =T @ fmr " | T ; [cn(o)
m, n o rn

imw_(o) y im w_(0)
- —‘l——] sn(t) + [cn(o) - ——“——] Tn(t\2

un+1 un+1
r r
deW _(r)
1 -nf° A e
0; w +1 r I r pars drwn(r){
n » T,

;wn(o) £(t) +uf>n(o) g(t)E -

imé

(34)

(36)

¥(r,0,6) =L o W (r) ;vn(o) £(t) + ‘«n(o)g(t)s i 37)

m,n

and m

é(r,0,t) = % e )[A_p_(t) + B_q_(t)] (i)

m r

m
+ [Ap, (t) +B.gq(t)] (:—+)

Here wn satisfies

(38)

(%9)

R e




and
wn(ri) = 0,

where L is an associated eigenvalue;
an r

> i p
o (t) = %T_I dee-ime JP drre-r /2 wn(r>°(r:e:t); (k0)
r
emn r, 2
wn(t) = %F g d6e~1m° gldrre- h?wn(r)gz-g\r,e,t3; (k1)
em 5
vn(t\ - éﬁ g dee-irne { drre-r_/ewn\r\v(r,e,t); (42)
s (t) =8 [-&u, & ;mf(t)]; (43)
T(t)=E(e) d(F-2u, 2 ;0mee)]; (bb)
f(t\ 2
g(t) = f£(t) f dse-sh/g; (4s)
0
p,(t) = & [& (1Fm), 3; fn £(1)]; (46)
q,(t) = £(t) & [Fdm, 3; 00 £(¢e)], (47)

and A+, B+ are constants, Here ¢ is the standard solution of the first
kind Txuﬁ;er function) of the confluent hypergeometric equationglilh]
All of the quantities defined in Eqs. (40-47) except g depend on m,
but the mode number label has been suppressed to streamline the
notation.

To investigate stability, we consider the implosion and
expansion phases separately. First we note that f, Sn and P, are even
functions of t, while g, Tn and q, are odd. Solutions of pure even

(odd) parity are symmetric (antis;mmetric) about t=0. A linear

10
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combination, e.g., Q[Eq.(CSlﬂ of the two can be chosen such that

the solution is a monotonically increasing function of time f
asymptotically for both t ® - ® and t = + ©,

We consider first the outward motion starting at t=0. From the
asymptotic formula (C54) we see that the only time dependence in
Eq. (34) which grows faster than f(t) is that in p_(t) and q_(t).
[In Appendix D we show that this statement is true for all t > O,
not just asymptotically.] While € could be small or even vanish at i
t=0, owing to cancellation among the various terms in the solution,

so that the perturbations could grow over some finite time interval,

the relative amplitude of the perturbations vanishes as t = ® except
for modes which have finite A_ or B_ in Eq. (38). These are
evidently incompressible irrotational modes localized at the inner
surface.

From Eq. (C54), p_/f and q_/f both grow as (@1f\mﬁ?as N n ’
For t close to zero, Eq. (C25) says that the perturbations grow
exponentially with growth rate v = (m-l\i, in agreement with the
result 4] for Rayleigh-Taylor instability in an incompressible liner.

Now we turn to the question of the .stability of the inward
motion. We ask under what circumstances all of the components of

€/f can have smaller values at some t < O than they attain at turn-

cmn e eaer ey s—————

around. We are thus led to seek solutions which damp with increasing
-t, i.e., with increasing f. Evidently they must have w(0) = = (0)
and Q(O) = =-¥(0) and must contain the functions p_ and q_ only in the
combination Q, defined in Eq. (C51). The fastest growing modes are
those with all constant coefficients set to zero except those multi-
plying S_ and T . According to Eqs. (C26-27) and (CSk), these grow

3 4 bn f m+é+§(§-§2
as (0n f) 2", or using Eq. (C24), as (vif) . Clearly
the amplification increases with both n and m. These modes are very
different from the familiar Rayleigh-Taylor instability. They
represent overstable internal waves, and are entirely due to the

presence of compressibility.

11




If we look for modes which are unstable both before and after |
turnaround, we see that the only ones are those with Y=w =0 =0 N

and time dependence proportional to Q(t). Figure 2 compares the

behavior of Qm for m = 1 and 10 with that of f.

IV, CONCLUSION

Using Lagrangian coordinates throughout, we have obtained
general formulations of the one-dimensional self-similar motion of
an ideal isentropic fluid (already in the literature[lol) and of the
development of infinitesimal perturbations around an arbitrary time-
dependent basic state (apparently new). The two are combined and

applied to a treatment of the Rayleigh-Taylor instability in a self-
similar fluid motion. When, as is true here for z-independent per-

turbations, the gradient operator acting on the perturbations is
homogeneous in r, we can separate the space and time dependence of
g€(r,t), a great simplification. Thus the analysis presented here of

flute perturbations about a cylindrical self-similar motion is act-

ually simpler than the corresponding slab problem, which involves the
perturbation wavelfngth. In fact, the spherical problem, which is
15]

treated elsewhere, can be solved for all modes without restriction
on the angular dependence Y?(e,w).

For liquid metal liners, the appropriate relation between
pressure and density is Eq. (4), the isothermal law. Carrying out
the analysis, we obtain the complete solution for §(r,t), Eq. (34).
One class of modes grows prior to turnaround and damps afterward.

These are internal compressional (sound) waves, which are pumped up

by the liner contraction and relax again as the liner expands. The
only modes which grow (relative to the liner radius) both before and
after turnaround are those which are incompressible and irrotational.
For sufficiently large mode numbers m, or times sufficiently close to
turnaround, the growth is exponential and identical to that found for
an incompressible medium, essentially given by Eq. (1). Otherwise
their time dependence, given by Eq. (C51), is nonexponential. Higher

mode numbers m (shorter wavelengths) give rise to faster growth, with

12




the amplification relative to the unperturbed liner radius scaling
asymptotically for large t as (¥ £)™ ~ (t\ﬁZFEBm.

This is similar to results obtained in magnetohydrodynamic
treatments of the stability of static eqvuilibria.[m-J There it is
generally found that the fastest-growing perturbations are those
which are incompressible, since compression reduces the free energy
available for producing magnetic field deformation and fluid motion.
It is also interesting to compare our result with the well-known[m-J
solution to the problem of the Rayleigh-Taylor instability of a
stationary isothermal exponentially stratified medium supported from
below by another medium of much lower density, where it is found
that the growth rates are given exactly by Eq. (1). This conclusion,
which may appear surprising in light of our arguments (Section I)
that compressibility can reduce growth rates when k S g/c®, finds an
explanation when reached by the techniques of Section II.

Equation (28) states that at free surfaces the medium deforms
without compression. Since in & static exponentially stratified
medium the eigenfunctions vary exponentially in the direction normal
to the boundary, condition (28) holds everywhere if it holds on the
boundaries. 1In effect, it is propagated inward from the surfaces.

In the problem treated here, the radial dependence of the perturba-
tions is not exponential, but the unstable modes are essentially
localized at the inner surface. Hence we should expect to find

V . E =0, even though the model allows compressible motion.

13
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APPENDIX A, SELF-SIMILAR SOLUTIONS OF THE
IDEAL FLUID EQUATIONS

When we introduce Lagrangian variables, Eq. (6) can be
integrated at once to yield[12]
o(x ,0)

p(r,,t) = TGZETE;TETT : (A1)

while Eq. (7) becomes

dp
A A
(V.r) (Vv R)
e Sl o R dp dp
p dp |v°g[ Yo P |v°5| Ve d p dp ’
(A2)

where dots denote derivatives with respect to t and the superscript A

denotes the adjoint. Here we have made use of

VE, - V" i, (43)

where I is the unit dyadic. Hence

Vp = [V (R,E)] * V0=
o (v r)A
(PRI « Vop "SRl " VP (AL)

These expressions simplify greatly for the cases of planar, cylindri-

cal and spherical symmetry, viz.,

podro = pdR; (AS)
2ﬂp°r°dr° = 2MpPRdR; (A6)
2 =
hnporo dr 4mor2dR. (AT)
15




Equations (A5-T) can be summarized in the single relation
v-1

r d i 5
p(x,t) = o(ro:O)(ig) (ﬁ—o) ; (48)

where the dimensionality V = 1, 2, 3, respectively.
When we introduce the similarity assumption Eq. (9), Eq. (A8)

reduces to

-V
p=pf (A9)

Moreover, if we specialize Eq. (8) to an adiabatic law
A A
p=p [(p/p)Y-1], (A10)

A A
where p, p and Y are constants, then

A Y-1 V(v=-1) & fp A\ T
22 = 12 £ = f ( Yp =2 (All)
dp - & [ @ A A ’

0 P (<] P

and one can write (A2) in the form

. g QB b—-— A &
“v(y=1) A /[P it d A
- f %’1’-(7‘—’) %g;-@/n (p/9)s (A12)
P p o
or if Y# 1,
. V(V'l)+1 2 A Y=1
- e e B el .
£f B ¥-1 & ¥(r 2 (p/P) (A13)
where :
° A A
c= = p/p (A1k)

and 42 > 0 is a separation constant, If y=1(the case of interest in

the present work), Eq. (Al3) is replaced by

.f.f = c2/42 = - ¢? 8(_222/37% (pola). (A15)

16




Note that by assuming a positive separation constant, we have

effectively chosen case III (in the notation of ref. 9), in which all

fluid particle trajectories pass through a minimum displacement at
the same time (when f = 0). This instant we denote by t=0, ; i

Equation (Al5) thus yields
d n Py

b(r°2725 -=-1L

and

f=1/f,
where we have adopted units such that
¢ =1L = 3 = 3 =1,
The solution of (Al6) is

P, = D exp (-r°2/2),

where D is a constant. Equation (Al7) can be integrated once to

yield
i - (2 én f)i,
whence > 0n £ ; H A
t = f ds e° o = f ds e°® /2.
0 0

For early times t << ],
f(t) ™1 +8 ¢,

Integrating (A21) by parts repeatedly, we find

£2/2 £2/2 o
t =& =1, e '1ﬁ+....
;a

he

f-1 +0n £

f-1
i — — T e
\’2‘" f (2 n f)g
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(A16)
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(A19)
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(a23)




To lowest order, them, for t >> 1

f(t)~t\ﬁ—0n_t [1+o (EL:)]

From (A9),
p=n/f= £-1 exp (-r02/2)

p=p-1=£1exp (-rozla) -1,
Finally, the radial velocity becomes

- ‘ - i
u=rf to(ahf) .

18
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APPENDIX B. DERIVATION OF THE PERTURBED
EQUATION OF MOTION

Consider the equations of motion in Lagrangian form,
Eqs. (Al1-2). Let g(go,t) denote the unperturbed motion of a fluid

element whose location is Eo at t=0, Hence
Po(Bot) R = - Y 7, (B1)

where po and p, are the unperturbed density and pressure, and

g (2 .0)
D(E:t) - CARS . (32)

v, & (2,,t)]

Let a perturbed motion be defined by

r(r,t) = R(r,t) + §(r ,t). (B3)

Note that on taking the gradient of (B3) with respect to r at fixed

t one has

;=VE+V5_. (B)-#)
But by the chain rule

Ve (W) =2-7E 7

b Tk A LR

Thus
o =l = log &+ 9 &l
=|1+v §|~1+vR-5. (B6)
19
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The integral of the perturbed continuity equation (the condition that
mass is conserved unc\ier the perturbation B%) reads
p(r,t) = 22£§i:; - oo(E,t) + 0, (R,t), (B7)
Vksl
where we use R to identify a given Lagrangian fluid element.
Together (B6) and (B7) yield

0, (R,t)

1+R-5

P, (R,t) + ol(g,t\ =

~ 0, (R,t) = o (R,t) g £ (B8)

Hence the perturbed density is given by

p--oV-g \BQ‘

o dp
B - - _0 o) 7 \
p,E+0oR Y [‘“o ;1] * (8- (B10)
or
" dp,
by - . V \ . V - . \
% Sl a_ %o " §]* (g 8) - Ypp, - (g 8) o,

dpo dpo
— . 5 « v —— .
oy Vee(p &) -§* Yo B, +R 8%,

—_— —

[}
<1

(V. « &) @
Vg 8 Ropg

[}

<
=
—
Q.|Q.
o| T

(o]

<]
=

\ - . .
(0, & ] 75 X 4 v5 Pyl + \VK £) 75 Py

(Vg * &) % P,

dp

(2}
= — 7 . - . - *
\73[‘1p R (005\] 4 VBVBP° V!3 SVRPO

(B11)
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If we divide by Py and rewrite (Bll), suppressing the subscripts

R and zero, there results

£=v [%%Ev- (pp] + 22 % LV . (p])
-E.V[—;-Vp]-%gs-Von-%(vos.) o
-v[%%%v. (pg].s. v [%svﬂ'np] (B12)

Using (A25) and (A26) for ¢ and p, we find
£=v [%v. (pp] +ri- ¢

-v[v-5-5;5]+-§5, (B13)

f

the Lagrangian form of the perturbed equation of motion in the case
of an isothermal pressure law.

The boundary condition at a free surface associated with
Eq. (B12) is found from requiring that the pressure on the boundary

not change under the perturbations:

P(R) = p(R) + p (R)

= - 22 .
YRl = 50y~ § (B14)
whence
T«32*0 (B15)

21
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APPENDIX C. SOLUTION OF THE PERTURBATION EQUATION

The solution of Eqs. (25-28) is facilitated by two circumstances:

the space and time dependence separate completely (in Lagrangian
variables), and the solutions can be carried out in stages so that g
is found "a piece at a time.'" The first piece is the position
vorticity w,which satisfies Eq. (33), a homogeneous equation. One

solution is immediate, since from Eq. (10),
2 f - f, (c1)

The other is then found to be

£ E(e)
g(t) = £ gf =-ff ds e-52/2. (c2)
0 0
We thus have
£(0) = 1, £(0) = 0; (c3)
g(0) = 0, g(0) = 1, (k)

and so we can write the complete solution of (33) including initial

conditions, in the form

©(r,t) =w (r) £(t) + o _(x) 8(t), (c5)

where Qo(g\ = w(xr,0). Evidently the spatial dependence of
w is "frozen in'" at t=0.

We now Fourier transform §, w and ¢ in angle according to
an
M oas . £ (zye), (c6)
0

L.
m

5? (r,t) =

n

etc. [In what follows we will display the dependence on m in the

transformed quantities only where it is important.] If we now write

E(r,t) = gra(r,t\ + eg B(r,t) +e v(r,t), (cT)

22




e

o e

we observe that, as & result of our assumption that the perturbations

are independent of z, the radial component of (C5) yields

Y(r,t) = v (r) £(t) + ?o(r) g(t). (c8)

Since v is completely determined and does not appear in the equations
governing & and B, we can omit it from further discussion.

Writing w = e - W, we note that

x@_-'s_ew (CQ’

=

and
r*Vxw=imw (c10)

After Fourier transforming, Eq. (52) thus becomes

-

R (o (o} o8}
£ o -;S;(r&:)- g - (14--;“';)0 + fmw. (C11)

Equation (C11) is subject to the boundary condition (B15), d.4.;

o(r_) = 0(r+\ =0 (c12)
To solve (Cll\, consider first the homogeneous equation obtained
by setting w = 0. Writing

o(r,t) = W(r) S(t), (€c1%)

we find

1d [ aw)_ _dw o’ .
[rdr<dr) ¥ dr (1+")w]w

= -pe=f'§g"! (C1k)

)

1

where | is a separation constant. The radial equation

dw 1 dw L ‘
arz * (r A r) ar * (’u wl ;’) S (c15)

o3




subject to

w(r+) = 0, (c16)

determinesan eigenvalue problem with solutions wn corresponding to

b =1, 2, o . . Writing Eq. (C15) in the form

% %; [r e /2 %%] + [ ol = %;J e T2y o, (c17)
we see that
o r2/2 daw\? m
- daw 2
Ir dr re [(dr) +<1+?Z)WJ
Bo= = >0, (c18)
r
= -r?/2
I dr r e ¥ w2
r

so that the eigenfunctions are oscillatory. From classical Sturm-
Liouville theory, we know that the eigenfunctions wn(r) form a
complete orthonormalizable basis in the space of real functions on
(r_, r+), with the orthogonality condition given by

Ty

-r?/2
Ir dr re wn(r) wn.(r) = 6nn' i (c19)
The W's can be expressed in terms of confluent hypergeometric

[13]

functions, viz.,

wn(r) = rtm F(# (12m- un), 1+m 8 ], (c20)

where F(a, c; x) is a solution of

d® F dF
x5zt (¢ = x) o - AF=0. (c21)

method is to utilize (C18) as a variational principle and solve for
p by the Rayleigh-Ritz procedure. Given p, a linear combination of

ol

The p's must in general be determined numerically. The most efficient

> e e




two independent solutions of (C21) can be found which satisfies (Cl2).
The asymptotic forms of the standard solutions of the confluent
hypergeometric equation (C21) in the limit a = - ® for fixed x

are 13
i

-3
8(a,e; x) ~m  T(c) (& ex - ax)4 exp (#x)

nie

+ cos g [(2c - La) x]i -% T+ 3 ﬁs (c22)
and
F PO
v (a,c; x) ~T T(Hc-a+3) x 2 exp (Bx)
. cosg [(2¢c - ka) x]ﬁ +(a-2c+Dm s. (c23)

Using these we can calculate the asymptotic behavior of the eigen-

values un, i.e., the WKB approximation for un. The result is

b= 2m+<%2)2, (caok)

n=1,2, . . ., where 4r = r,-r_. All but the first few eigen-
values are well approximated by (C24), and the approximation
improves as &r — 0.

The time dependence is given by

f2§+uns-0. (co5)

Using én f as the new independent variable, we can convert (C25) into

a confluent hypergeometric equation also. The result is

S(t) = F(- &% b ;0 £) - fi D_u (f), (co6)

n

where D is a solution of the parabolic cylinder (Weber-Hermite)
equation. It is convenient to choose two independent solutions of
(c26) as

25
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m
s, (t) = i(— 50, B f), (c27)
"
T (t) = ¥(t) 6(& -2, f), (ce8)
n 2
where & is the Kummer function[IB) associated with (C21). From this
choice it follows that
s(0) = 1, §(0) = 0; (c29)
T(0) = 0, T(0) = 1. (c30)

We next seek a particular solution of the inhomogeneous equation

(C11) in the form

~

o(r,t) = ;‘3\ o (t) W (r). (c31)

Using (C5) and C15), we find

£2 S'n + o En = im [wn(o) £(t) +a, (0) g(t)]. (c32)

The desired particular solution is thus simply

5 = i:ﬂ lw_(0) £ +o_(0) g, (c33)

and the complete solution, including initial conditions, is

im wn(O)
o (t) = o (0) - u_n+1_ s,(t) +
imw_(0)
6n(0) - —;:;%— Tn(t) + “'::1 [Wn(O) f(t)
+ J)n(o) g(t)], (c3h)
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Now we can find a particular solution of (29) in the form
§ =& 0 +egB, where

boor dew’ (r) im w_(0)
a(r,t) = T [r “fr r—un:'l-l_ } [an(°) % u,,+t1‘ ] Sa(t)

B 1

* im @ _(0) W (r)
1
o - SER o [ g B0
. 3&0“(0) f(t) +J:n(0) g(t)z] 3 (€c35)
b T odrw (r)
B(r,t) =Z |imr " [ 2 [0 (0) -
o} - e e
imw_(0) 3 im wn(o")
] LA [onm) i ] Tn“)f
T drW _(r) . s
g p“‘j_l ;1 ¥ r“ ;wn(o) £(t) +4_(0) s(t){ +
n r

r

%J‘ dr rW n(r) 3wn(o) f(t) + (Bn(o) 8(t)$J (Cc36)
r
3

If the arbitrary lower limits on the integrals are chosen so that

(b +1) wn'(rl) ok Wn(rl) [un+1 + :2?] 3 (c37)
r, wn'(rg) = - wn(re) [un+1 - r22] ; (c38)
wn'(ra) e wn(rs), (€39)

then

g~ ¥l (cko)
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and
G-V‘z. (Chl)

Thus the general solution to (29) can be written

£§=T+vy, (ck2)
where

v2 ¢ = 0. (ck3)
The mth component of # satisfies

m

%%r.(rg_g)-g.w.o, (clb)
whence s

m m [r \" m(F-

$ie,e) = 0 [=) + 2 |=—) . (cks5)

+

The time dependence is obtained by substituting (C45) in (C29),
whereupon the right hend side vanishes:

m m
20, -(1Fme, =0 (ck6)
This equation is of the same form as (C25), so we can immediately
write down the solutions. For consistency with our previous choices,

we set

py(t) = 8(&(1Fm), &; on £], (CLT)

qg(t) = £ 8 (17 #m, 3; 0n £), (ck8)

These satisfy

Pi(O) =1, ﬁi(O) = 0; (cL9)
q4(0) = 0, q,(0) = 1. (¢50)
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For m=2k, q, reduces to f multiplied by a polynomial in én f of order
k.

Since p_ and q_ both diverge the same way at large t, it is use-
ful to introduce in their place two new solutions which behave
asymptotically like Y, the standard confluent hypergeometric function
of the second kind:

2 I'(m+l) q_(t)
Pzt; -P_(t)*\/_—rm-)—'— (c51)
Q(t

For large argument we have

P(t) ~ (n £)” é(mﬂ), S (c52)

Q) ~ @ g)” B Lo (c53)

All the other asymptotic results we require follow from the general
formula

Z _a=c

§(a,c;z) ~ F%TJ e’z

as z = © (csk)
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APPENDIX D. A BOUND‘ON THE FUNCTIONS Sn, Tn
Given u > 0, let U(t) and h(t) satisfy

3 £2U+puU=o0; (p1)

£2h-h=0, (p2)

where f is defined in Appendix A, and let

U(0) = h(0) = a > 0; (p3)

U(0) = h(0) = b > 0. (D)
where a + b = 1. Then the following inequalities hold for 0 < t < «:

loco)| = n(e) = §3 £v). (05)

Proof: (i) Assume a=1, b=0. Then h=f. Denote the solution of (p1)
with these initial conditions by Ul. Define

c[u]-ﬁ‘f’—z+i12>o. (D6)
Since .
-2uU2 £
Em=— (D7)
we have
ﬁ—-lf’: + U2 £ w2(0) + 0(0)3, (p8)

or for U = Ul,

ula < =, (D9)

Hence (D5) holds for case (i).

[}
Proof supplied by Richard Beals,

30




(11) Assume a=0, b=1. Then h=g, defined in Eq. (C2). Denote the |
appropriate solution of (D1) by U,. From (p8),

U,2 < U 2(0) = 1, (p10)

whence
|02| st. (D11)

But from Eq. (C2),
t<gc< Jg £, (D12)

which demonstrates (D5) for case (ii). The general result follows,

since for a > 0, b > 0,

luf = lau, + bU2| < alu,| + vlu,|

Saf+bg-h‘€f. (p13)
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Fig. 1 — Numerical solution of Eq. (10) for f(t) (solid curve), with first
order power series and asymptotic approximations [Eqs. (A22) and (A23),
upper and lower broken curves, respectively] shown for comparison.
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