
LD-A O 53 605 BOLT BERANEK ANO NEWMAN IhC CAMBR IDGE MASS F/B 9/2

UNCLASSI~~I~ D ~~~~~~
Nfl D ALGLIRA FOR COMPUT ER

~~~~~~~~~oioe

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I
DO-__
I!I _

_ _

I I.~
•
,,

p -

(.0 ~~~l~
8

~I2.5

II _______

~~3 2 1IIII~2

I . i ~ (~ 2.O

(((((1.8

fl~f lh .25 llll~ IIIn~
MICROCOPY RESOLUTION TEST CHART

NO 10 N4{ BUR~ A1I OF I ONI 01110 0 . .

Bolt Beranek and Newman Inc. _ _ _ _

tX~ BBN Re~ t No. 3749
~~~ ICAI Report No. 9

Understanding Hand-Printe d Algebra for Comp uter Tutoring
Stephen C. Purcell

December 1977

lie ~~‘

~~~~~~~~~~~~~~~~~~~~~ 
-

I
I

B BN R e p o r t N o . 3 7 4 9
I C A I R e p o r t N o . 9

U N D E R S T A N D I N G H A N D - P R I N T E D A L G E B R A FOR C O M P U T E R T U T O R I N G

S t e p h e n C. P u r c e l l

C1~~~\

D e c e m b e r 1977

I

L __________ ________________ _ _

SEC U HIT Y CL*SSIFICAI1(IN O~ IHL. P~~LL (; ; , ; l , . , . d ,

REPORT DOCUMENTATION PAGE R L A D INSTRUCTIONS
FSEI. OR E UOMI 1. ETrJ(; ‘(.IRftl

I . REPORT NUMBFR —
12. GOVT ACC ESS I I fl u ~ ~~~~~~~~~~~~ ~!1~It

BBN Report II 3749 ~~~~~~~~~~~~~~~~
Q~

7TL E (.i d SubSStt.)
— i

-I. ~I . . l U —

h lUnderstanding Hand—Printed Algebra for Technical ~e~~~t#) j
~Compute r Tuto r ing ~~ 6 PERFORMING ORG. REPC~~~ NUMBEfl

1-

MDA 9t 3— 76 — C ~1j ~8
~~~~~~~~~~~~~

_ _ _ _  _ _ _ _ _ _ _ _

_ _ _ _  

_9. PERFORMI NG O R G A N IZ A T I O N  NAME AND ADDR ESS 
___________________

— r _ j  I s —
u ~~~~~~~ M I J . P L r ~.Bolt Beranek and Newman, Inc . 

~~~
j5O Moulton Street

~Cambridge, Massachusetts 02138
(I I . CONTRO LLING OF FICE NAME AND ADDRESS I? PCPOR r

‘Defense Advanced Research Projects Agency

-

1400 Wilson Boulevard 13 N U M9 E R O F P L .~~

~Ar1ington, Virginia 22209
I 14 MONIT ORING AGENCY NA ME & ADORESS(II dille,.nI from Conl,ol!h n~ O(f ire) 15 SECURIT

Unclassified
I S a DCCI_ A S~~I I I~~

a~~u ~):~~ i4 N~~I
SCHEDUL E

15 DISTR IRUTIO N STAT EME NT (of Phi,. Repogn
~~~~~~~ 

.
~~

This document hcr~ h. cn . -. -

for public r’ 1~ r~~’ ~- ‘  -~ 
‘

~~~~~

~istrthution is UL Gd. s’., y

¶ 7 DISTI1I3UTION STATEMENT (of lhe abstract sntcrod in Block 20. if dlller.nI Iron. R.part)

kpproved for public release; distribution unlimited

¶ 9 SU I ’ PL E MLI I l A RY NO I ES
This research was supported in part by the Advanced Research Projects
Agency , Air Force Human Resources Laboratory , Army Research Institute for
Behavioral and Social Sciences, and Navy Personnel Research and Development
Center .

K EY WORDS (conlino. on ,o.-er e ai,Io .1 necessary or,d IdentIfy by bloc -k number)

tablet—based character understander , intelligent algebra tutoring system ,
I character recognizer, multiple knowledge sources, CAl

PCcOIIriU. on r.s.r,. •ido ,I nere,.a ry nOd identify ~v block number~~~~~
.- — -—

This thesis demonstrates how the use of a global context can improve the
1 power of a local character recognizer . The global context considered is

a computer tutor of high school algebra that observes a student working
algebra problems on a graphics tablet. The tutoring system is integrated
with a character recognizer to understand the pen strokes of an algebra
solution coming from the computer tablet. A tablet based input understander
for an algebra tutoring system is designed and imPlemented .) (OVER)

DD 1 JAN 73 1473 EDITION OF I NOV 65 ISOBS OL ET E
~~~~~ L~~ ~~~

. _ -I .,I, ,- ....1s

O ~ 
~~~ 

~~~~~ u RI~~ ( ~~~~ S5I F IC AT ION OF THIS !~ A GE ~~~~~~~

- --- -._ _ _  _ _ _ _



I
SECURIYY CL.AUIFICATIOH OP ENIS PAGC(ITh.. Data lnl .,.d ~

This thesis joins together two uses of a computer , intelligent tutoring
and tablet communciation . Natural communication with computers has been
pursued through speech understanding, English text understanding, special
purpose languages, hand printin~ and graphics. This work extends the
power of hand—printing understanders by using more varied and higher level
sources of knowledge than have been used previously.

I
I
I
I
I
I
I
I
I
-I
‘-I
.1
J
T1

SECURITY CI.A$$IPICAEION OP THIS PAG C(IP~w Dat ~~fs’~~

- - --
I
t-—— —- - — _

~~
_

~
_ ..—



I .
I Ah~’hra Purcell

I
ABSTRACT

This  thr s i s  dr ’monstra tes how the use of a global context can improve th e power of a

I local c h a r - IcIe r rr ’cogi iiler. The g lobal context considered is a computer tutor of hi g h school
al gelii -a t h a t  ob serves a student workin g al gebra problems on a graphic tablet. The tutor ing
systPrI~ is iii t i’~ i-atc d wi th  a character recognizer to understand the pen strokes of an algebra
solution coming f r o m  the Compu ter tablet. A tablet based input understand er for an al gebra
t u to r i i ig  system is designed and imp lemented.

- 

T h i s  thes i s  joins together two uses of a computer , in te l l i gen t  t u t o r i n g  and  table t
co mml l luca t io i i .  N a t u i - a l  communication w i th  computers has been pursued th rou gh  speech
u n c l e i s t a n r l in g ,  En gl i sh text unde r st and ing .  special purpose languages , hand pr int i n g ,  and

- grap hic s . This  work extends the power of hand- pr in t ing  understanders by using more varied
and hig her h’vel sources of knowledge than have been used previously.

ii

- 
NTIS

7 DDC E r  s —- - -,~UMNP~!OUNCFO 0
-
~ JUSTIFICATION 

-

I - BY 

-“‘
~~~~ “°~r~ /

- - ~~~~~~~~~~~~~~~~
-

F
I.

I
I

- . UNDERSTANDING HAND-PRINTED ALGEBRA
FOR COMPUTER TUTORI NG

Stephen C. Purcell

February 1977

Ac k i ,owfrd c~.’nwiits -
Th is pap er is based on a Massachusetts Institute of Technology Master of Science

thes is . I would l i k e to t h a n k Ira Goldstein and J ohn Seel y Brown for t h e i r g u i d a n c e and
encou 1a,~emcsit . I t h a n k Dick Burton , Johan de K leer and Mark Miller for discussions tha t
hel ped to organ i7e my id eas.

This i-r ’search was supported in part by the Advanced Research Proj ects Agency . Air
Foice l - l u m a n P.r sout -ces Labora tory , Army Research Ins t i tu te for B e h a v i o r a l and Social
Scienc es . and Navy Pe rsonnel Research and Develo pment Center , under Con t rac t No.
M IJA~I(I3- 7~3-C (IlflS. and also by the Advanced Research Projects Agency under Contract No.
N OO (I l I - 7 !~-C~O(d3 w h i c h covered work done by the au thor at the A r t i f i c i a l In te l l igence
Labor ato ry , a M a ssachuse t t s Inst i tut e of Technolog y program .

_ _ _ _ _ _ _ _ _ _ _ _ _ -- ~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ 
—



Al gebra I Purcell

TABLE OF CONTENTS

Pr eface 2
In t roduc t ion  3

Ch alkl ’oarc l  Langua ges 3
Overview o1 A I CA I  System Model 4

SI)ecitiC Domain 7

Al gelira Tutoring 7

Or g an i z a t ion  8
Scenario 12
System Or g an iz a t ion  17

Reco gni z er  17
Pa i ser  24
Exp er t  31

Scenaru - I R evi s i t ed  38
Previous  and R e lated Work 43

Rr ’cogn iicr s for Tablets 43
Al gebra Systems 45
Paisers 46

M nIt i 1 il e Representations 48

Computer Ins t ruc t ion  48
Si gni i i can ce  SI

r lie Good I dea s SI
Dead En ds 52
Sui pi isec

Al lc c t i r s  54
Conclu ci o i i  56
BiIllirl g ra~ lIy 57

A pp endix 62
Charac t e r  Set 62

J - Al ( ’ebra G r a m m ar  63
I — Sin pliui rr 64

— - 

.a~: ~~~~~~~ ~~~~~~~~~~ ~~~~

. 

~~~~


Al gebra 2 Purcell

PREFACE
-

A portion of our research in knowledge-based instructional systems research has been
directed towards utilizin g advances in computer technology to build flexible instructional
environments. W ithin such systems, the inc reased hardwar e capabilities should enable the
student to concent rate on solving a problem (or performing a task) and be freed from
con st i -a ints (I) p laced on hi s ideas by conventional CA ! in which the author must pre-specify
every ins t r uc t iona l step or (2) p laced on his expression of his ideas by the communication
channel or language that the student must use to interact with the tutorin g system. One of the
by-products of our research has been the ever increasing awareness that the above limitations
can often be sim ultan eously overcome by employing the “i ntelligent ” embedded in the tutoing
module , which is used to overcome the fir st constraint , to also enrich the man-machine
communicat ion ca pabilities. That this “intelli gence” can serve a dual role should not be too
surprisin g. A competent tutor can often use his problem-solvir~ expertise to guess at what a
student is t ry in g to say (or ask) from his extremely vague and garbled utterances (i.e., sloppy
handwr i t in g, ina rticulatel y expressed ideas , and so on).

This report describes some initial research invesKgat ing how the capabilities of an
i ntelli gent tutoring system can also be used to enable a student to communicate easily and
effici entl y with the tutorin g system. The tar get domain of high school algebra was chosen for
two reasons. The first is that the input problem is a major stumbling block to an effective
al gebra environme nt . While mathematical expressions are inherently two-dimensionaL current
ke yboa rds are one-dim ensional and provide an extremely awkward input medium. If the entry
of expressions is not very natura l , the student will do his intermediate work on scratch paper ,
going to the trouble of enterin g expressions to the system only when he has the answer. This
pre vents th e tutor from commentin g on any of the student ’s intermediate solution steps which
ma y be cri t i cal to determinin g the student ’s error or to suggesting better method s of solution.
What would be ideal is a tablet input system (similar to pencil and paper) wh ich “understands ”
m a t h e m a t i c a l scr ibb l ing (e.g., handwr it in g) . The second reason for choosing high school
al gebra is tha t the language of mathematics (e.g., its syntax and semantics) is closed and small
enough (as opposed to a “natural ” lan guage) to make the problems tractable. What follows is a
description of the techni ques that have been explored to provide a powerful input medium for
the domain of al gebra expressions.

John Seely Brown
Principa l Investigator

Intelligent Instru ctional Systems

- —— - - - - — . - _______________

I
Algebra 3 Purcell

I
INTRODUCTION

This thesis demonstrates how the use of a global context greatly improves the power
of a local character recognizer. The global context considered Is a computer tutor of high
school algebra that observes a student working algebra problems on a graphics tablet . The
tutoring system Is Integrated with a character recognizer to understand the pen strokes of an
algebra solution coming from the computer tablet.

This thesis joins together two Interesting uses of a computer , intelligent tutoring and
tablet communication. Natural communication with computers has been pursued through
speech understandin g, English text understanding, special pu~~ose languages, hand printing
and graphics. This work extends the power of hand-printing ur~ erstanr 1ers by using more
varied and higher level sources of knowledge than have been used pre~~ously. The tablet Is a
unique medium for communicating In what could be called Chalkboard La’~iguages.

Chalkboard Langua ges
Let us examine the Chalkboa rd Languages that make communicating with a tablet

unique. By Chalkboard Languages, I mean the kind of communication that calls for a two-
dimensional d ynamic medium. Consider what is written on a blackboard at the end of a lecture
or discussion and how d ifficul t It can be to reconstruct the conversation. The missing element
is the development , in time, of the symbols on the board . To watch the board all through a
conversation Is quite different than to see It statically at the end. The board is used to outline
and elaborate , propose and modify , Introduce and refer to Ideas. Erasing, pointing and
overscorlng are uniquely possible. As a two dimensional medium It differs from spoken and
written language , and resembles drawing and diagramming. There are extra degrees of
freedom for expressing relationships between elements of the conversation. Just as many
disciplines augment English with their own vocabulary, there are domain specific conventions
for grap hical expression. These conventions range from Informal outlining and arrow drawing
to more formal notations such as architecture or mathematics . Chalkboard Languages have the
added property that they are media for communicating with oneself. People talk to themselves
and write to themselves but the more natural ways to think about “half-baked Ideas ” are
scribbling, outlining, diagramming, sketching, etc., all two-dimensional , dynamic processes.
performed natura lly on blackboards.

Algebra 4 Purcell

There are many examples of chalkboard languages. There are block diagrams that
use arrows in trees and graphs to express hIerarch y, communication paths, similarities. etc.
Architectural sketching Is a chalkboard language. Electronic circuit schematics have graphical
symbols and two dimensional conventions. Formating programmer’s code to show structures Is
two dimensional and , Idiosyncratic. Geometry Is discussed and theorems proved with the help
of dynamic diagrams. The outlining of Ideas for a paper or talk sometimes becomes a two
dimensional process with an InterestIng development In time. Likewise the proofreader ’s
correction notation Is a two dimensional language that depends heavily on pointing, circling
and underlining . Maps embody a specialized two dimensional language. The notes that a
reader makes in the margIn of books and his underlines are a small language. A process Is
often described with diagrams which are changed to reflect the changing states of the system
being described. There have even been programming languages developed around diagrams
and flowcharts. Pygma llian (Smith 1975] is an example of such an Iconic programmIng
language, though the diagrams are buik largely from pointing and menus. And last but hardly
least (for me anyway) Is the chalkboard language of algebra problem solving. Algebraic
manipulations are natural ly performed In two dimensions. In problem solving the rigid syntax
of algebra is relaxed to allow fragments and overwritIng to change subexpresslons. In the
tutorin g situation there can be pointing, focus for emphasis and significant pauses. The
algebra domain has a number of good features for a test case.

Overview of AICA I System Model
The computer tutor Is a second focus of my thesis. I use a system of modules based

on the work of (Brown l975](Burton 1975](Goldstefn 1977]. The block diagram In figure 1 shows
the organization of an AICAI System (Artificial ly Intelligent Computer Aided Instruction),
following (Goldstein 1977].

The expert module Is central to this system organization , because an intelligen t tutor
needs to know about its subject matter. Recent work In CAl has Incorporated experts Into
tutors for geography (Scholar (Carbonell 1970]), electron4cs (Sophie (Brown & Burton 1975)), set
theory (Excheck (Smith et al, 1975]), arithmetic (West (Burton & Brown 1976]), planning and
debugging (Goldstein & Miller 19761 In Goldstein’s organization, an expert can propose actions
in the domain to be compared with the actions chosen by the student. The expert detects non-

_ _ - - -—~~~

I
I Algebra -

5 Purcell

I
I
I

- 1
KNOWLEDGE

1 -1 MODEL j
TASK

-

LISTENER ~~PERT
-

- ~~~
CHOLOGIST1

‘L

i

I
I Figure 1. AICAI SYSTEM

I
I
I
I
-___- - - - - - -_ _ _ _ -- - - -r~~~~~~ -- - -- _ _ _ _

Algebra 6 Purcell

optimal actions and reports them to the tutor for comment. Another function of the expert is to
aid the Input and output modules by answering semantic questions about the domain of
discourse.

-

The Student Knowledge Model represents the student’s current skill or what part of
the expert ’s k nowled ge he has mastered. The knowled ge state Is represented by overlay
modelling (Goldstein&Carr 1977], a technique that models the learner ’s skills as a subset of the
expert ’s skill. Expert rules that he uses correctly become part of this model, while unused but
appropriate rules do not. The tutor consults the model to restrict its remarks to be relevant.

The Psychologist is responsible for watching the student-tutor dialogue and keeping
the student knowledge accuiate. It associates with each expert rule Its confidence that the
student does or does not understand and use the rule.

The Tutor decides which problems to present and which Issues to discuss or comment
on. It decides ~~~~~~~~~~~ when , and how to advise the student , based on Information from the
expert , the knowledge model and the learning model.

The Learning Model represents the student’s prefered style of receiving advice and
comments, which Is a subset of the Instruction sty les available to the tutor.

The Input and Output modules are responsible for communicating with the student ,
enabling the tutor to instruct and the expert and tutor to follow his work. This module receives
the most attention in this thesis.

It is the Interaction of these modules that makes the tutor flexible, Intelligent and
responsive.

-

- tr~r-flr n’~~~~~~~ -- - - -- — —

Algebra - 7 Purcell

SPECIFIC DOMAIN

Algebra Tutorin g
The chalkboard language that I concentrate on Is elementary algebra problem

solving. A student works an algebra problem on a graphics tablet, and the compu ter watches
and reacts. Algebra is a good domain for study; It is bounded but not artificial , and it is rich
enough to be interesting. The inclusion of the algebra tutor make this world all the more
interesting and makes the communication more focused . This domain has the advantage that
ha nd printing is more natural than cursive hand writing In algebra expressions. This property
makes the lower-level character recognition easier, preventing the system from being front-end
bound. The algebra conventions are fairly uniform between Individual dialects, so a generally
useful system is more feasible. A system for architecture sketching, for example , has to know a
lot about individ ual styles (Negroponte 1975](Herot 1974]. Algebra Is used both for the
individual’s problem solving and for communicating that process or result to others. Both of
these modes are present in the algebra lesson environment and serve to enrich it. A
conversation can be maintained between tutor and student. The possibilities for both long or
short interactions allow various uses of discourse phenomena in the understander. In algebra
the two dimensional nature of expressions Is very Important. The procedures being taught are
invoked by cues tha t include 2-D rel ationships in the expressions. Cancelling rules , for
example, are learned with reference to “above and below the fraction bar.” The Algebra lesson
is interesting for the many sources of knowledge that come Into play.

-~ ne source of knowledge is the individual character ’s features. Another Is the set of
differential diagnostics to distinguish similar characters , I.e. knowledge of which features are
most important to choosing one character over another to account for some Input. Next the
system knows the formal syntax for algebra , which expressions are well formed; for example,
parentheses usually match. Also there Is an informal syntax for algebra which has to do with
such thin gs as the ordering of subexpressions , the spacing and clustering of expressions.
Numerical factors precede variables , variables are generally alphabetized , coefficients of one are
dropped , etc.. Next , there is semantic reasonableness such as typical values for such things as
exponents. There Is, In fact , the whole semantics of algebra that underlies the expressions and(procedures. The procedures of algebraic manipulation , themselves, are a powerful source of
knowledge that determine which transformations are possible in one step (given , perhaps, the

I
I

- a—

Algebra 8 Purcell

student’s level). Substitutions , for example, have a procedure; sometimes parentheses must be
introduced in numerical substitutions and sometimes not. A higher-level source of potential
knowledge is the dIscourse structure. The algebra session Is goal oriented . There Is coherence
to the subexpressions throughout a problem session. Finally, the system can have a model of
the student user. His strengths and weaknesses, his consistent bugs or conventions can help the
system to understand his input . There are so many diverse sources of knowledge to help the
system that the major challenge of this project Is organizing them to work cooperatively.

Organizatio n
In the AICAI system model, this research concentrates on the Input module and part

of the expert module. There are three major modules as shown In figure 2.
The first major module Is the character recognizer, which communicates with the

tablet and the parser. It receives a stream of pen co-ordinates from the tablet, collects them into
strokes and collects the strokes Into characters for the parser. The characters that It finds are
organized and communicated in a chart [Kay 1967]. The chart Is a lattice ordered by the
arrival time of strokes from the tablet.

The recognizer learns Its alphabet In a training session, and can easily be taught to
distinguish 50 to 60 dIfferent characters. It can be taught an Individual’s Idiosyncratic printing
style or it can be trained on a generall y- universal character set. The recognizer can find
multiple Interpretations of ambiguous characters and will assign plausibility weights to the
alternative Interpretations. The characters it finds are next used by the parser.

The parser is the second major module of the system. It receives the chart of
characters from the recognizer and builds a chart of phrases and finally one ph rase for the
expert. The character chart is ordered by the temporal sequence of strokes on the tablet, while
the phrase chart Is organized spatially by the two dimensions of the tablet.

The parser Includes a grammar of algebra syntax that defines the structures to be
discovered in the characters. The phrases that It produces are tree structured algebra
expressions. Several structures are built In parallel , and there Is a scheduler that allocates
resources such as time and space to the alternative , growing Interpretations. The scheduler Is
based on a system of potential plausibility scores for the partial theories and can be tuned to
search in a depth first fashion or in a breadth first one or In somewhat both ways. The

I
I Algebra 9 Purcell

I -

I
I

I I

I INPUT LISTENER EXPERT

I .

-
‘

TABLET - CHARACTER) PARSER ‘.. MA TCHER

I -
_ ______

RECOGN’ZER

I

I
I
I -

Figure 2. SUBSET OF AICAI SYSTEM

I
I
I

- — — -- —— - -—-- --.-- .! — — .— — --- - -- -- - -—--- -

Algebra - 10 Purcell

expressions found by the parser are matched by the expert to the expressions In the problem
and In previous lines of the solution.

The expert Is the third major module of the system and communicates with the parser
and nominall y with the tutor , which Is not included In this work , but Is discussed In
(Brown et. al. 19751 The expert takes the phrase chart from the parser and matches expressions
to the previous context to discover the series of algebra transformations that the user has made,
which is the output to the tutor. A secondary output Is confirmation scores for the parser.
which are found when subexpresslons match the previous context. Also the expert can get
ahead of the parser and predict expressions for the parser to verify.

The expert Includes an expression matcher, simplifier , canonicallizer and transformer.
It can ignore details by abstracting from the surface graphical representation of an expression
to a more algebraically canonical form. So, the expert makes sense of the parsers output and
intermediate outputs to guide the parsing and , In turn , the character recognition.

Figure 3 shows the hardware that supports the system. Half of the system runs In a
dedicated IMLAC computer and half in a time shared PDP-l0. The IMLAC Is Interfaced with
a keyboard , a vector display screen , and a COMPUTEK graphics tablet. The processing
power of the IMLAC Is used to track the pen, maintain the display and extract features from
the pen strokes. Most of the system Is written In INTERLISP (Teitleman 1975] and runs under
the Tenex operating system on the PDP-l0.

The above major logical modules of the system will be discussed In further detail in
the chapter called SYSTEM ORGANIZATION. Having seen the hardware and software
organization , we will now look at an example of the problem solving that the system Is designed
to understand.

--— -- - - - - ---- -— ~~~-_-—- -_________________________

I
I Algebra Ii Purcell

I

LI STENER ~~~~

1

€XPERT~~
”

1

CHAR
~ FEATURE 9600 ACTER

- —

—
~~~~ EXTRACTER BAUD PARSER MATCHER

RECOG-
NIZER

~~~~~~~~~~~~~~~~~~~~~~ IMLAC 
L~TERL,SP POP—tO TENEX J

- Figure 3. HARDWARE

I-

II
_ _ _ _ _ _ _ - —~~~~~~~~~~~~~~

--

~

-

~~~

- 

-



Algebra 12 Purcell

SCENARIO

What follows is an example of input for the system to understand. The system’s
output is printed in capitals, and my commentary is written in italics.

PLEASE REDUCE:

(A -:- ((2A-3BX2A- -SB)]] + 1/2

YOU CAN WRITE ON THE TABLET NOW .

~ L DIVISION GOES TO MULTIPLICATI ON.
I.> 

~~ \ DIVISION IS CHANGED TO FRACTION.(~
)
~ UPPER CASE CHANGED TO LOWER.

- 
REMOVAL OF SQJJARE BRACKETS.

Note that the system must be aware of common notational variations and ambiguities , such as
lower and upp er cases for litera ls. The system must recognize when “x” I s used for multiplication
and when it Is used as a variable. This diff erence , of course , cannot be detected locally. Here the
“( 2” closely resembles the letter “R. The local features of these strokes are Consistent with either
Interp retat I on and can confuse the recognizer . The ambiguity Is resolved by more global
constraints. For exampl e, the followin g “)“ must be matched; under the “R” interpretation there
would be no matching “ (“ . The choice would be re inforced by ma t c/RL ng the inpu t  to a
transformation of the problem statement. -



I
Algebra 13 Purcell

I 
A OK.

MULTIPLICATiON OF FACTOR A N D  F R A C T I O N .I \~~
-
~~~ REMOVAL OF PARENTHESES.(ZA-3~) ~~ UPPER CASE CHANGED TO LOWER.

I ONLY PART OF EXPRESSION IS WORKED ON.

I The student has only transformed a subex/ ression that his attention is focus ed on , dropp ing the
“1/2”. The difference locally between a N2 0 and a “Z” is only the sh arp up pe r corner of the Z”.

I When context otherwise discriminates , this feature need not be drawn carefully; on (l ie other hand
this feature might be the only clue to an important diffe rence and then the fe ature must be reliabl y

- detectable. Part of the expression could be interp reted as (2A-3B) 2. The local pa rser will build
this theory but not extend it. -

A -

OK.
- ——-—-- --

~~
f- MULTIPLICATION OF FACTOR AND FRACTION.

~
‘ (q - ~~~

’
\

DISTRIBUTION OF FACTOR OVER SUM.

He re we pick up the “1/2” that was dropped last line. Notice the stroke segmentation problem
that can occur above. If the “I” overlaps the fraction bar -“ it could be mistaken for a +

“ or
an “L”. It Is not enough to cluster strokes into characters solely on the basis of overlap.

F
-

.—--—-- - - - - - - - - — - —-— —— -—

Algebra 14 Purcell

OOPS.
HOW DOES 4a2—Sab GO TO 2a(a—3b) ???

Z.. OR 4a2 GO TO (2a) (a) ???

_ _ _

ATTEMPTED FACTORING OF SUM.

- 3 PLEASE TRY AGAIN.

The best match between this exp ression and Me last one, breaks down where the student incorrectl y
f actors. In the subexp ression “3b”, if the vertical alignment of the characters is careless , then the
tuber p r ess ion without context could mean exp onent iation. Since the context of the p rev ious
exp ressions rules this out, the system must tolerate a b” written above to the righ t of the “3” and
make the right interpretation , ignoring local info rmation to satisfy more global considerations. The
expe rt may even want to propose the discrepancy as a student error , but the tutor would p robabl y
classify it as careless and not fundamental , unless it were re-occurrin g.

14
— +

- (3b) OK.

FPCTOR1N.~ SUN.

36

A context free p arser would have much diff iculty inter 1br etting the double fraction bars. Both
f raction bars are of equal width , but one must be subordinate to the other (Me p ossible meanings
are quite different — dIvision is not associat ive) . Context will easily help out here.

I -

I Algebra 15 Purcell

I 31 OK.

I CANCELLING FACTORS.
REMOVING DOUBLE RECIPROCAL.

I There are many hand printed characters that closely resemble each other. The “b resembles a “6”;
the “a” and “u” resemble each other. Likewise, “2” and “Z” , “I” and “)“ etc.

I
-

4 _ _ _ _ _

OK.

-
INTRODUCING FACTORS.

1 -

OK.

3 ~) ADD FRACTIONS (LIKE DENOMINATOR).

-

OK.
I CANCEL TERMS.

I Cancellation does not f I t well Into a tree structured pa rse. It links sepa r ate ‘lower’ branches of the
parse tree. Alto I t Is intimately tied to Me two dimensional layout of the expression. In a linear

j text rep resentation of the expression , cancellation would be much less convenient.

I
I

— —

Algebra 16 Purcell

—------ —— OK .
CANCEL FACTORS.

- -~~--~~~~~~~~~~~~~~~~~~~~~~- -
- I - -

~~~~ - -



Algebra 17 Purcell

SYSTEM ORGANIZATION

Recognizer
The block diagram In Figure 4 shows the major submodules of the recognIzer.

Tab’et
A computer graphics tablet Is the student ’s medium to communicate his work to the

System. An algebra problem may be worked out line by line on the tablet just as It would be
solved on paper. The System follows the motions of the pen and thereb y watches the student
work. The pen actually writes on paper over the tablet so the student can see his work directly,
or he can watch his writing traced on the display screen. Watching the screen assures the
student that the system Is following the pen correctly. Also If the screen outputs Information the
student will see it conveniently. Most people find It easy to draw on the tablet and watch the
screen. The parallelism Is usually learned In about 20 minutes of practice, tBernsteinXadaptlng
to the SRI/Xerox mouse requires similar training). The Computek tablet does not have the

- most desirable properties for printing. The best tablet and pen combination Is one with: (1)
low pressure required to depress the pen , (2) even lower pressure to keep It depressed (hysteresis
for a click feeling), (3) short travel to depress the pen: about 1/16 Inch and (4) hIgh friction
between the pen and tablet. The Computek pen fails In pressure and travel, having too much
of each. The friction between Its pencil lead and paper Is adequate. We have begun tests with
a Summa-Graphics tablet which seems better In all these categories. Experience with the tablet
overcomes these obstacles largely, but when a novice uses the system the poor data is very
difficult for the System to cope with.

The tablet is directly connected to the IMLAC display processor , which extracts
features from the pen strokes and sends them to LISP on the PDP-10. The IMLAC samples
the pen location about 60 times per second and maintains an Image of the strokes on its display.
A switch in the pen detects when the tip Is pressed to the tablet for writing. The signal from
this switch defines the start and end of each pen stroke. The feature extraction and character
segmentation is organized around the data In each stroke from pen down to pen up. Each
stroke is gathered from the tablet; its features are computed and sent along to the character
recognizer.



Algebra 18 Purcell

[ TRAINER 
-

f~ J—~ EXTRACTIONJ~~ 
~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SEGMENTER CHARACTER
DIAGNOSTICS

Figure 4. CHARACTER RECOGNITION

~1 ______________________

- 

-. - - 

- — —— 

-



I
Algebra - 19 Purcell

Feature Extrac ter
The character recognizer suggests Interpretations for the strokes based on their

features and mutual positions. The vector of features computed in the IMLAC for each stroke

Is: (XM IN XCTR XM AX YM IN YCTR YMAX SI S2 S3 S4 VISITS CORNER S START
END TOTAL) as shown in Figure 5.

The individual features are as follows:

XMIN ,XMAX ,YMIN ,YMAX are the horizontal and vertical boundaries of the stroke, that is
its enclosing rectangle.

XCTR ,YCTR are the coordinates of the stroke’s center.
SI ,S2,S3,S4 are boundary crossing counts. The enclosing rectangle is divided into thirds

hori zontall y and also vertically. The four interior boundaries (like a tic tack toe

board) generate nine subregions. Each feature Is a count of the times the stroke
crosses one of these four boundaries. The crossing count is limited to three bits and
the side of the boundary that the stroke started on is encoded In a fourth bit. Each
Sn, then, ranges from 0 to IS.

VISITS is a nine bit binary integer that records the subregions visited by the stroke. Each bit
indicates whether th e stroke entered each of the nine regions.

CORNERS is another nine bits to record the inflection points, or corners of the stroke. This
information is used to distinguish for example a 2 from a Z. The curvature  Is
calculated at each point in the stroke and compared to a threshold. When the cu rv e
is tighter the corner bit for the point ’s region is set. An improved algorithm could
take into account time information , but the one imp lemented does not.

START ,END are the directions in which the stroke travels near its start and end. There are 16
values that these directions can take. These features are important for distinguishing
a C from a left parenthesis.

TOTAL is the total winding count of the stroke. This obscure feature was added when ones
and twos were confused and the other features were not sufficient to separate them.

Trainer
The character recognizer learns its alphabet from examples that the user prints

during a training phase. The trainer presents a menu of characters to be learned and accepts

printed examples one character at a time. The feature extracter builds the same vector of

I
_ _ _  

_ _  _ _ _ _ _



Algebra 20 Purcell

YMAX 
-

S4=+1 
________  ________  

________

S3=+1 ________  ________  ________

- 
- 

~~~~~~~~~~~~~~~~~~~~~~~ /
-__-_

• XMIN S1=+2 S2=-3 XMAX

VISITS = 7168 CORNERS = 0

_ H~~ .
Figure 5. FEATURE EXTRACTION ON STROKE

I

—

Algebra 21 Purcell

features that are used In the purely recognition phase and attempts to recognize the character.
When the user corrects the recognizer , the new pairing of features and character is remembered.

f Since the trainer only accepts single characters it does not have the same segmentation problem

that the recognizer has in continuous printing. Instead, a pause between strokes of about 1/2

I second signals the end of a character. To relate the multiple strokes of a character, their centers

are considered to trace a path In space much like the path of a stroke. This path Is

I summarized like another , final stroke. In multip le stroke characters, then , each of the features
named above is reall y a series of that feature with one Instance per stroke that makes up the
character.

-
The four series SI to S4 are each filed into a tree structured discrimination net for

efficient look up later. For the character pairs that are not well distinguished by the SI to S4
I features a table of diagnostics describes which other features are evidence for which characters.

This diagnostic information is not subject to training, but there is no reason it couldn’t be.

I The recognizer can be tailored to one individual’ s printing, or it can be taught to
accept a sort of super set of common printing styles. So far the trainin g sets have been
somewhere between a universal character set and the author ’s own style of printing.

Recognizer
The recognizer must take the features of the strokes in a proposed character and find

I the most likel y interpretations of that collection of strokes. To propose Interpretations, It uses
the SI to S4 features of the character strokes as an index Into the tree structured dictionary

formed during training. Each feature (or sequence of them in multi-stroke characters) suggests
a set of characters. The characters that are suggested by most of the features are the best
candidates for an interpretation. A character may fail to show exactly the same features as the
trainer saw, because a nearest neighbor matching Is used . Nevertheless , for a character to be
recognized successfull y, a similar one must have been seen in trainin g. The similarity needed is

J a function of how welt the features ignore small variations in character style and yet capture the
differences between separate characters. The features used are admittedly ad hoc, and are not

I necessarily a model of the important features in a character as seen by a person . The
recognizer produces a set of proposals and a confidence score for each.

I
I
I

Algebra n Purcell

Segmenter
The recognizer needs to know the group of strokes that constitutes a character. The

system can reliably find the boundary between strokes by watching for the pen to be lifted , but
the boundarie s between groups of strokes that make up characters Is not well marked . A
recognizer that accepts continuous characters and strokes Is significantly more difficult to
construct than one which requires some signal between characters, such as a pause of 1/2 second
or so.

The Segmenter’s task is to find the group of strokes In each characters in conjunction
with the recognizer. These groups are subject to several constraints. First, strokes must be
written sequentiall y in time. Thus the recognizer can not understand l’s and t’s that are dotted
or crossed after Intervenin g characters. The grammar , however , can know about such
constructions. Second, the strokes of one character usually touch each other. The exceptions
such as ‘—‘ are accounted for In a table of Inter stroke distances for the spread out characters.
Second, the strokes must be grouped in such a way that all the groups can be Interpreted . In
particular , all the strokes must be accounted for. Within these constraints the segmenter may
find several ways to group the strokes.

The multiple groupings form a lattice ~f characters, the character chart (Figure 6);
and the parser must accept these possible groupings as Its Input. The character recognizer
places its proposed characters In this lattice and the spatial relation specialist observes the
latti ce’s Implied alternatives. The scoring functions takes into account the mutual exclusion of
alternatives in the lattice by normalizing the scores of alternatIvely competing interpretations to
the best score of the group. More will be said about this normalization process in the section
on the scheduler. The segmenter ’s alternatives are based on local information that the
recognizer has about characters; the more global constraints of parsing an interpreting the
input Is expected to provide the constraints to arrive at the definitive interpretation for the
segmentation and character recognition.

Character Diagnostics.
After the recognizer finds candidate interpretations based on its training session, this

set of proposals Is winnowed down by the use of differential diagnostics. The character
diagnostic tells, for a pair of characters, which features are most reliable for choosing between

— — - - ---

I
Algebra 23 Purcell

I
I .
I
I
I

I Figure 6. CHARACTER CHART

Ii
1:

Algebra 24 Purcell

the pair. For example the knowledge that Inflection points In certain areas of characters
distinguish the 2 from the Z, or the U from the V. The diagnostics use a wider set of the
extracted features than the trainer does. This component of the recognizer Is more hand
tailored to an a priori al phabet , and as such , complements , nicely the trainable character
definitions.

Parser
The block diagram in Figure 7 shows the major submodules of the parser.

Spatial Specialist.
The spatial relationships between characters of an algebra expression express

meaning that must be recognized (see Figure 8). Some operations of algebra are not even
written with symbols but by spatial arrangement of their operators. Multiplication is denoted
by concatenation , exponentiation by superscrIpts and Index ing by subscripts. Even operations
de n oted by symbols expect their arguments to be found In certain spatial arrangements.
Fractions are written verticall y, and equations horizontall y. In one dimensional languages, the
possible concatenation relationships are reduced to two: left and right. A two dimensional
language requires more relationships.

This algebra system is organized around nine relations: above, below, left-of , right-of ,
on , left-above, left-below , right-above and right-below (see Figure 9). There Is a specialist that
can compare any two characters (or phrases) and find one of these nine relationships. For each
character all the other characters fall Into nine sets relative to It. Actually only the closest
neighbor in each set is likely to combine with It to become a larger phrase. The syntactic rules
for algebra refer explicitly to these spatial relationships. In a grammar for a one dimensional
language the rules Imp licItl y specify the spatial arrangements. In fact the rules are written In
one dimension and rel y themselves, on one-dimensional ordering and concatenation just to be
expressed. The spatial relations are maintained explicitly In the Spatial Network data structure
for the parser and grammar to use.

When characters (or phrases) are recognized to be constituents of a larger phrase, the
new phrase’s neighbors must be made explicit. Most of the constituents neighbors are Inherited
by the new phrase. Of course the constituen ts themselves were related neighbors but they will
not become neighbors of the new phrase. Since a phase’s sub-constItuents must be disjoint , a

Algebra 25 Purcel l

character SPATIAL
recognizer SPECIALIST

• SCHEDULER
SPATIAL [J
NETWORK

PARSER -

EXPERT

Figure 7. PARSER

Algebra 26 Purcell

A

Figure 8. SPATIAL INFORMATION IN ALGEBRA

. 1

_______—

I
Algebra 27 Purcell

a
- 3A

~~~~~~~~~~~~~~~~~~~~~

- b
- 

. . RIGHT-ABOVE

3 
LEFT-OF RIGHT-OF 

____

BELOW

Figure 9. SPATIAL RELATIONS

I1_~~~~~~~~~ _______ ~
—— -—

~~~~
- .

~~~
.— 

~~~~~~~
—-

Algebra 28 Purcell

phrase cannot combine with part of Itself to make a new phrase. Since the exten t of a phrase is
defined to be the union of Its constituents’ extents, its constituents cannot be Its neighbors. The
other neighbors of Its subphrases, however, can and often will be Its new neighbors. If phrases
concatenated vertically combIne, then the neighbors above the higher one will be neighbors
above the new phrase, and likewise below. A phrase that was a right neighbor to both phrases
will be right related to the new phrase. A phrase that is a right neighbor to only one phrase Is
a trickier case; It will be a new right neIghbor only If It Is almost to the rIght of both. This
inheritance of neighbors is central to parsing algebra and to discovering operator precedence.

Spatial Network
The relationships discovered by the specialist are held In the Spatial Network data

structure to guide the parser. A relation connects two characters (or phrases) and the two sets
of phrases built on them. New phrases are created across this boundary by matching a
grammar rule to the relation type and to the phrase type of two phrases, one from each side of
the relation. The phrases on either side of the boundry have plausibility scores, and the
relation can estimate the plausibility of the best new phrase that It could find. All the relations
In the network can be queued by their potential , and the search for new phrases can be
organized around them.

The relations are represented as pairs of complementry relations each directed in an

opposite direction. The relations manage the growth of new phrases at their site In such a way
as to assure that any ph rase is constructed only once. Otherwise the chart of phrases Is polluted
with costly duplications that will grow in parallel.

Spatial relations can be formed to a new phrase but more often the relations between
characters support relations between higher phrases. The relations are sensitive to the lattice-
structured chart produced by the character recognizer. The alternatives of the character chart
are Implicitly mutually exclusive. Since the spatial specialist looks for nearest neighbors it has
to really look for nearest consistently existing neighbor. So the spatial network Is grown
between not just the correctly interpreted characters, bu t between all the alternative

Interpretations of the Input strokes. Also since the system runs concurrently with user Input ,
new characters can clobber previously closest neighbors. The spatial network Is designed to be
dynamically modifiable.

I
Algebra 29 Purcell

Phrase Chart
The recognized phrases are connected to their subphrases and superp hrases in the

Phrase Chart data structure. The phrase chart is like a well-formed substring table of Wood’s
ATN system. It is an extensional representation of the grammar , instantiated with phrases

recognized from the input. It contains many partial parses that share common substructure. It
consists of the linked data structures representing phrases, relations and other objects. The
chart holds the state of many progressing parsing produced In a search that tries to extend the
most promising interpretations.

The chart Is formed from phrases and the objects that they are connected to. A

phrase consists of:
TYPE: e.g: number , expression , term
STROKES: that part of the input accounted for by the phrase.
SUBPHRASES: the immediate constituents.
SUBRELATION : the relation between constituents.
SUPERPHRASES : phrases built out of this one.
NEIGHBORS: phrases that might combine with this one.

COORDINATES: X-Y information: location , extent.
SCORE: Plausibility or likelihood that this Is the correct Interpretation.
ALGEBRA: Algebraic meaning.

Grammar of Algebra
The system’s grammar Is a generalization of augmented phrase structure grammars

for one-dimensional languages , examples of which can be in (Heidorn 1975] and (Pratt 1973].
Each rule specifies a syntactic transformation from one pattern of phrases to another. The rules
use the nine spatial relations explicitly to specify the two dimensional structure of the algebra
language. There are non-terminal categories of phrases also mentioned in the rules such as:
digit, letter, term, expression, etc. The rewrite part of a rule typically looks lIke:

<phrase type> —— > <phrase type> <spatial relation > <phrase type>
The rule also contains two expressions of scoring information , one to be evaluated before the
application of the rule , which can check for preconditions, and one to be evaluated after the
rule is applied and a new phrase Is built. The rule also gives Its al gebraic meaning by
specifying how to generate the algebraic interpretation of the phrase in terms of the

I

-,~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
— — — —- - —

Algebra 30 Purcell

interpretations of its constituents. For example the rule that describes the construction of
multiplication by horizontal concatenation wil l build the product of the new phrase’s
subphrases.

The nonterminal phrase categories form a hierarchy by Inclusion. A digit can be a
number, which can be an expression , etc. The grammar could have rules from each category to
the next more general one. Instead these ‘IS-A’ relations are combIned with the grammar to
form a more expanded version , where every rule that held for expressions will hold for
numbers as well. When the system Is initialized , the grammar Is compiled Into a discrimination
net and expanded to include the transitive closure of the ‘IS-A’ links. ThIs expansion saves the
construction of many redundant phrases at runtime.

Parser
The parser matches the tablet input to some phrase-structured tree producible by the

grammar. It builds many trees in parallel until one can be extended to account for the entire
input , or falling that , It trys to cover the input with only a few trees. The half-built trees are
held in the Phrase Chart data structure, while the parser works at extending the phrases with
the highest scores. Neighboring phrases In the chart may combine Into a new phrase according
to the grammar rules. The spatial specialist forms triples of neighboring phrase types and their
spatial relationship to use as an Index Into the grammar. When the trip le matches a grammar
rule , the parser evaluates the pre-appllcation scoring expression and queues a task with the
resulting priority to build a new phrase. When the phrase construction task runs , it adds the
new phrase to the chart data structure , finds the new phrase ’s neighbors and up dates the
relations that border the phrase. The search for new phrases can be organized by queuing
phrases as tasks to look for neighbors to combine with. Or, as currently done, the relations may
be queued as tasks which will take pairs of phrases from the phrase sets on either side of
themselves and try the combination. From the scores of the phra ses It touches, a relation can
estimate the potential score of new phrases that It could create, this gives a priority to queue
the relation task at. The algebra expert has the chance to see the growing expressions and to
modify their plausibility scores as It sees fit. In this way the phrases that shouldn’t extended
should sink down the task list never to waste resources, and the good phrases should be
extended until they become the parsing of the whole Input.

Algebra 31 Purcell

Scheduler
The Scheduler controls the effort allocated to extending the competing theories in the

parser ’s phrase chart. The system uses a numerical scoring system that is tenuously based on

-~ probabil ities. Zero is the perfect score , and larger numeric scores indicat e less p la usible

I constructions. Negative scores are not used . When combining scores of a phrase’s constituents ,
the size of each constituent is used to weight each score. In this way, scores behave as densities ,

I and since they are combined additively they should correspond to log probabilities. When a set
of mutuall y exhaustive alternatives are scored the scores are normal lized to make the best
alter na t ive have score zero. In this way, the parser works on phrases that are locally
imp lausible , but without better alternative; while good phrases that have as alternatives even

I better phrases are pursued less actively. This normalizing system follows one u sed at SRI
(Paxton&Robinson 1975] and Woods’ Shortfall scoring (Wood s 19761 Parsing can be viewed as
search , and it is up to the scheduler to control that search.

Expert
I The block diagram in Figure 10 shows the major submodules of the expert.

I Abstracter
The expert uses a hierarch y of abstractions to represent algebra expressions. Each

I level of abstraction is like an equivalence class of expressions over stronger and stronger
algebraic equivalences.

-

Each :lass is represented by its canonical member. For examp le, the

J associativity of addition generates equivalence classes of sums, each of which can be represented
by the left associating versions. These abstractions allow the expert to find corresponding

I express ions in a problem solut ion tha t differ onl y in the appl ica t ion of al gebraic
t ransformations. Sums that are equivalent by associativity have the same abstractions (Lisp
EQ). The more powerfu l abstractions hel p the matcher bridge larger transformations of

I expressions. On the other hand , simple transformations may not have any effect on the
abstractions. So if the system is to notice a simple change like removing parentheses , it must

I have a very literal representation of the user ’s expressions as well. When the student
transforms an expression , the level of abstraction that best reflects the transformation Is aI measure of his sophistication. Beginners operate on the surface representation of algebra with
rules for moving signs and pa rentheses, while experts operate on more underl ying trees of

I
I

4
- - -

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
- — —  —-— .— -- - — ~

— - - -.—-— - - - __________ — —  - --.-— - - —



Algebra 32 Purcell

parse ABSTACTER
chart

/ ABSTRAC~~\
~~~ CHART 

/

confirmations MATCHER ~ ~~~~~~ IFFERENCES)

predictions CURRENT
~
ALGEBRA

\~~~ONTEXT 7 [TRANSFORMER

tutor~

Figure 10. EXPERT

I

I
1
I.

--~~~~ - -_ _ _ _

-

Algebra 33 Purcell

operations. For examp le, the expert combines like terms that may be alike not at the surface
representation, but only in the expert ’s head after reordering factors. So, an al gebra expert
needs to see many la yers of detail in an expression.

The matcher part of the expert tries to see the current line of al geb ra as some

transformation of a previous line. To do so it matches expressions and subexpressions at

various levels of abstraction. It acts a little like a theorem prover trying to achieve a goal (the

current line) from the premises (the previous lines). It could find a series of steps at the surface
representation level , but the sequence could be long and hard to find. Looking for a chain at
more abstract levels is like usin g lemmas or finding islands in the proof to aim for. As an

alte rnative to forward and backwards chaining, this method is really an intelligent middle out
strategy. Abstractions are powerfu l aids to matching and searching.

What are the levels of abstraction? First, the lowest level is just the characters and
spatial relations as the parser finds them. These objects and l inks are a very undigested
representation of algebra. But they may be just the one used by beginning students. When a
beginner misapplies transformations , the strongest invar iant s may be at this surface level , while
the tree structure seen by an expert will undergo radical change when the illegal transformation
is performed. The second level of representation Is the phrase structured parse tree, just what’s
on the paper , but grouped correctly. This tree still represents artifacts of the external forms of
al gebra such as parentheses , small and ca pital letters tha t mi gh t be In t e r c h a n g a b l e
representations of one variable. Graphical variations for the same algebraic operations are still
represented as this level. Multi plication can be expressed by ‘x’, by a dot or by concatenation.
Fractions can be written horizontall y or vertically. Next level is just the underlying algebraic
variables and operations without regard to the graphical idiom. This level ignores parentheses
because operators and arguments are represented unambiguously. But the order of arguments
to commutative operators is still preserved. At the next level that arbitrary order is removed;
as is the nesting of successive associative operators. The next deeper level simp lifi es the
expressions as much as it convenientl y can.

Comp lete simplification is too difficult and open ended in general [Moses 67].
Instead , the abstracter only applies conservative strategies to make expressions simpler. It

a pplies basic arithmetic Identities such as elimination of factors of one and terms of zero. It

combines like terms and like factors; It expands certain products, and it factors certain sums.

There is no guarantee that all algebraicall y equivalent expressions will have the same canonica l

I
I
____ - ,_~~~~~ —. ---- .-- -~~~ -- ~~~— - - - - - - -

Algebra 34 Purcell

form , but many will. Algebraic equivalence, in its most general form Is undecidable.
A more abstract level yet, Is to evaluate the expression In some model. That is, the

abstracter makes some random assignment of value to each var iable , where Instances of a
variable all get the same assignment. Then the expression Is evaluated for those values. There
are technical details associated with the choice of dom aIn for the variables and operations.
With real numbers, roundoff and overflow are problems for any finite representation. A finite
field such as the Integers modulo a prime can be used, but division by zero and advanced
functions like square root are troublesome. In any case this hash evaluation method Is even
more powerful than the simplifier for matching legally transformed expressions.

So far the abstractions have captured legal transformations at many levels, but what
about illegal ones? The first answer Is that they do, In fact, help catch mistakes by Identifying
the fragments of an expression that can be accounted for and matched. The remaining
transformation , if It can’t be accounted for legally, must be an Illegal one. Once It Is Isolated it
can be looked for in a table of common mistakes. Still , It would be nice to have an abstract
level that brid ges even Illegal transformations. There would probably have to be a series of
standard forms that would suggest two expressions were related. These forms would
characterize features of expressions that probably would not change during most opetations.
The occurence of each (free) variable In the expression Is such a feature, that will not disappear
across most transformations Certainly, new variables are not Introduced often. A less reliable
feature is the presence of a given operator. The power of abstractions for matching across
mistakes begins to break down because equality at some level must be replaced by some more
difficult nearest neighbor match. All In all the abstract levels greatly aid the matcher.

Abstract Chart
Corresponding to the phrases In the phrase chart are phrases In the Abstract Chart.

An abstract version Is associated with each syntactic phrase In the parser ’s chart. These
abstractions are forced to be unique. When two expressions are equal In Lisp they must also be

~~ in Lisp. Equality is detected with a data base of expressions, with links from each expression
to a list of all the larger expressions containin g It . The equalizer uses this hash array of
ba ck pointers like Conniver does, to match lists by Intersections. Each element of a new
expression is uni qu ized and then a previous occurence of that list Is looked for In the
intersection of the element’s back pointers. The uniqueness of expressions helps to order terms

I

I
- - - - ~~ --— -— -.-———- —.~- —-—— .— — —-- ————-- —

I
Algebra 35 Purcell

of a sum uniquely. The abstracter and equalizer work hand in hand to give the expert man y
useful views of an expression.

Previous Context
Previous lines of an algebra solution provide a context for interpreting the latest line

of input. All the lines of a problem solution should be connected by the application of algebra

rules. Further, there is continuity between lines that can aid the recognizer and parser. The
same variables should appear in the lines. Even larger subexpressions are often copied from
line to line as other parts of expressions are modified. The system, then, can be guided by the
previous context. For a simplification problem the context is the series of expressions leading to

the solution. Likewise in solving equations the context Is a series of transformed equations.
The matcher will compare new input expressions with the previous context to judge their
plausibility and to make predictions.

Matcher
The matcher tries to read between the lines of a solution. It compares the previous

context to the current input , as algebraic expressions and as their associated abstractions. The

matcher looks for syntactic congruence in the tree structures, and builds a list of corresponding

fragments over some portion of the tree. Rather than match from the fringe of the expression
tree up, all fragments of the tree-structured expressions are examined for matches. In particulir

all instances of the variable X in the first expression are tentatively matched to all other
instances in the second expression. Likewise all additions are matched to all other additions.
Then these seeds of a match are exteiidecl wherever connected structure continues to match. In
thIs way the seed matches are extended over as much of the trees as possible.

Similarities
The areas that can be matched are the similarities between expressions. When there

are al ternative matchin gs, all but one should be elimi nated. Matching at one layer of
abstraction can guide the matchin g at other layers. The simila r ity is a tree structure like the
matched ex pressions , but incom plete. It has loose ends where the match failed to continue.
These loose ends are the boundaries of the expression differences.

Algebra 36 Purcell

Differences
The differences are those unmatched portions of the trees , which may be loosely

related by their connection to matched portions. The differences are evidence that an algebraic
transformation has been applied. A difference can be characterized by the appearance or

- disappearance of operators or variables. When multip lication Is distributed over addItion , a
multiplication operator appears as does a new copy of one factor. The features of the
differences are used as an index to the rules of algebra. - .

Algebra Rules
The algebra rules allow the matcher to continue matching expressions that differ by

algebraic operations. The rules must be organized according to the differences that the
matcher will find in the before and after expression. When the rule is applied to the before
expression , the result should match the after expression. A transformer makes the rule
applications.

Transformer
The transformer applies the algebra rules to finish the work of the matcher. A

successful match using a rule is evidence that the rule was used between the previous context
line and the current context line. The expectation model of the current line can be transformed
by the discovered rule and thereby reflect more accurately the best current expectation.

Current Context
The Current Context is a dynamically changing expression of what the system expects

the user to be writing. As each line begins the current context Is Initialized to the previous
context , giving rise to the expectation that the previous line will be repeated. As evidence
accumulates that the current line Is not merely a copy of the previous line but a transformation
of that li ne, the current expectation is modified to reflect discovered transformations. At that
point the current context may be a more accurate model of the user’s input than the parser was
able to discover by itself , and so It acts as top down prediction to guide the parser.

It is a simplification to assume that any line will simply repeat the last line. A natura l
extension Is to predict the transformations that the user will app ly and let the current context
reflect the expected transformation before any evidence Is discovered. Of course the table of

I
I Algebra 37 Purcell

- transformation rules acts like a more general expectation that some of those rules will be

I applied , but it is not as specific a prediction.
- When the current context matches the parser’s output then all transformations have

been discovered and the understanding is complete. Dynamically, the current contextI mechanism acts like a servo-system with negative feedback. The matcher differences the input
with the current context and provides feedback through the algebra rules that modifies that

I current context until It matches the Input . The series of modifications defines how the input Is
related to the previous context.

I
~44

I
I

II

Algebra 38 Purcell

SCENARIO REVISITED

Now that we have seen the system organization , let us return to our scenario for a
closer look (refer to previous figures). In particular let’s look at the student’s second expression
and see how the system processes It. The student wrote

A
2>

2.

(2fl—36)

3b

First the tablet will divide the Input Into 15 strokes and extract the features from each. The
features that the Imlac will send to Lisp look like

(((373 781 399 799 3 3 1 9 379 257 339))

((380 791 394 792 9 9 0 0 56 I 752))

((177 751 642 766 9 9 0 0 56 S 512))

((688 751 692 771 0 8 1 1 393 I 716))

((686 759 784 768 9 9 8 I 56 S 512))

((723 769 727 791 I 8 1 1 451 I 714))

((114 759 751 760 9 9 I 8 56 I 512))
-

-
((7 18 736 743 751 1 1 9 1 1 478 272 512)) -

.

((184 691 250 727 2 1 1 1 423 S 671))

((285 697 223 719 11 1 1 1 1 553 251 527))

((239 696 257 123 2 9 3 3 379 257 939)) -

((247 787 261 758 9 9 8 I 56 I 512))

((285 706 289 788 9 9 I S 7 I 736))

((31 8 698 328 726 12 12 1 1 511 97 4))

((594 685 622 738 15 15 11 399 S 728))))

Each list holds the features for one stroke, as described above in feature extraction sectIon.

_ _ _ - —~~~— -- -

I
Algebra 39 Purcell

From trainin g sessions the recognizer has a character-set description , structured as four trees.
These four trees are applied to the features SI to S4 of groups of strokes, yielding character
Interpretations for the strokes, which are passed In a chart to the parser:

(P14037 b)

(PH035 3)

(P14033 —) -

(P14831 A)

(P14929 a)

(PH027 2)

(PH825 5))

(P14823 b)

(P14821 3)

(PHSI9 —)

(P14817 a)

(P14815 2)

(P14814 2)

(P14812 R)

(P14810 So

(P14888 .-)

(P14886 —)

(PH884 A)

(PH802 a)

Next the parser uses the algebra grammar to build phrases from the characters.
Every subphrase that will eventually be par t of the interpretation must be discovered, and
along the way many side paths will be explored . Many “obviously wrong ” theories are
discovered by this parser because it tries to parse every subset of the characters without regard
to the characters outside that subset. Phrases are proposed in a context free way and then
evaluated with respect to context. Some of the phrases built by the parser:

(P14084 (DIVIDE A (T III ES (PARE N (— (TI1IE S 2 a)

_ -~~~~~~~~~~-~~~~~ —- - - -~~~~~~--- -

Algebra
-

40 Purcell

(TIMES 3 b)))

(DIVIDE (TIMES 2 a)

(TIMES 3 b3

(P14083 (TIMES (PAREN (— (TIMES 2 a)

(TIMES 3 b)))

(DIVIDE (TIMES 2 a)

(TIMES 3 bi

(P14082 (DIVIDE A (DIVIDE (TIMES 2 a)

(TIMES 3 bI

(P14881 (DIVIDE (TIMES 2 a)

(TIMES 3 b)))

(P14888 (DIVIDE (TIMES 2 a)))

(P14079 (DIVIDE A (DIVIDE 2 b)))

(P14878 (DIVIDE A (TIMES (PAREN 0— (TIMES 2 a)

(TIMES 3 b)))

(DIVIDE 2 bI

(P14077 (TIMES (PAREN (— (TIMES 2 a)

(TIMES 3 b)))

(DIVIDE 2 b)))

(P14876 (DIVIDE P (TIMES (PAREN (— (TIMES 2 a)

(TIME S 3 b)))

(DIVIDE 2 (TIMES 3 bI

(P14075 (TIMES (PAREN (— (TIMES 2 a)

(TIMES 3 b)))

(DIVIDE 2 (TIMES 3 b3

(P14074 (DIVIDE A (DIVIDE 2 (TIMES 3 bI

(PH873 (DIVIDE 2 b))

(P14872 (DIVIDE 2 (TIMES 3 b)))

Phra se 84 (PH084) is the complete parse which includes phrases PHO83, PHD8I, and PHO8O,
but not the others. Recall the five abstract levels for expressions; I use !~~~~~~ . for line n of the
Inpu t at abstr act level m. The Abstracter receIves the phrase

I
I Algebra 4l Purcell

I
I 2.2> (DIV—BAR P (TIMES (PAREN (— (TIMES 2 a)

(TIMES 3 b)))

I (DIV—BAR (TIMES 2 a)

(TIMES 3 hI

I ft build s the other levels:

I 2.3> (DIVIDE A (TIMES (— (TIMES 2 A)

(TIMES 3 B)

(DIVIDE (TIMES 2 A)

(TIMES 3 II

I
2.4> (DIVIDE A (TIME S (POD (TIMES 2 A)

f (MINUS (TIMES 3 B))
I

(DIVIDE (TIMES 2 A)

(TIMES 3 II

2.5> (MU). (RAT 3 2)

I

(EXP (ADD (MU).. 2 A)

j (MUL —3 I))

— 1))

I
The studen t’s next line was:

A

+ —

/ 4 a 2 — Sab \ 2

)

- -
\ 3b /

-I- -~~
— - - -~~~~~ —~~~~~~—- - — .-- -- ---

—-

Algebra 42 Purcell

A major operation Is performed between line 2 and line 3, a factor (2a) is distributed
over a sum (2a-Sb). Nevertheless the level 5 abstraction does not change. The expressions are
not directly equal, due to the student ’s changing focus, but the matcher can easily see that line 2
Is a subexpresslon In line 3. When the matcher tries to make this matching on level 4. It finds
itself matching the product (2a-3bX2a!Sb) with the quotient (4a2-6ab)/3b. The difference can be
accounted for by the transformation “multiplication of factor and fraction.” The resulting
numerator would be (2a-Sb)2a Instead of 4a2-6ab. These are seen to be equal at level 5 but not
at level 4. The transformation to account for the difference Is “Distribution of factor over sum?

At abstract level 5 (canonically simplIfied) there are only two differen t expressions in
the whole scenario (except line 2 focuses on a subexpresslon). Lines I to 6 reduce ta

3b 1 (ADO (MUI. (RAT 3 2)

> ———————————— + — S

2(2a—3b) 2 (UP (ADO (MU). 2 A)

(I~L -3
—1))

(RAT 1 2))

While lines 7 to 9 reduce to:

a (MUL A

(EXP (ADO (NUt. 2 A)

2a—3b (MUI. —3 5))

—1))

This example shows two algebraically equivalent expressions that have different semi-
canonical representations. The step that the studen t took but the simplifier did not Is the
Introduction of factors while adding fractions.

.4 _______________________________ — — - - - - _______ — ——. . - . - _________________- -—

Algebra 43 Purcell

PREVIOUS AND RELATED WORK

i This thesis builds on previous research in several areas , extending some and
borrowing from others.

I Reoognizors for Tabl ets

I . My character recognizing module is similar to many recognizers previousl y built for
tablets (Diamond 1957], (Bernstein 1969], (Teitleman 1963], (Ledeen In (Newman&S proull 1973]).
Researchers have found dynamic character recognition on tablets to be significantly easier than

I the more general problem of static character recognition through cameras or image scanners,
especially in the hand printing domain. The time information available from the tablet makes

I stroke segmentation much easier. A number of schemes were developed to classify strokes and
characters by significant features such as some description of shape. Diamond and Bernstein

I classified shape by local geometry, namely the sequence of directions that the stroke traveled in
At each interval of time or stroke length , the di rection was quantized and added to a growing

I stroke description. This description would be matched against a dictionary of descriptions ,
which defined a character set. This relative stroke description failed to capture important
features such as closed or inters ecting. The difference between a small a and a small u is

I whether or not the character is closed at the top. The relative directions at each interval of the
strokes are nearly the same (figure Il).

To overcome this difficulty, some features of global geometry must be used.
Teitleman , Croner and Ledeen computed global features of strokes by impos ing grids of lines(over characters which divided them into regions. The stroke could be viewed as the sequence
of regions visited or as boundry-crossing features. Now features like closure could be described

I as starting in , and returnin g to the same region. The recognizer module that I use takes this
global approach. The general sh ape of strokes is not enough to recognize characters. The u

I and v have similar shapes but are distinguished by the v’s sharp point. The presence of points
or corners is an important feature that earl y recognizers ignored . In the Ledeen recognizer , for

I examp k , the letter Z was crossed to distinguish it from the digit 2. M y recognizer , like some of
Bernstein ’s, looks for the Inflection points as features. It uses only spatial information to find

I th.m, but velocity information can greatl y aid the detection of corners tNegroponte 1975). There
Is a tradeoff between using local descriptions and using global ones. Just as we saw the local
descriptions fail at closure, the global descriptions fail to capture efficiently features that really

I
__

~

=_=_=n-— -. .. - - -
~~~~~~~~ - - - - - — -- --—— - -- - - - —



Algebra 44 Purcell

Agure 11. CHARACTER EXAMPLES



I Algebra 45 Purcell

are local. For examp le man y characters can be printed with long tails at the end of a stroke

I (figure II ). The letter a or the digit 2 may have long tails that will distract a global system
from properl y normalizing the size and position of the character before imposing the grid.
When the grid is misaligned , the stroke will not be properly described , and recognition mayI fail. The tail can a ffect most all of the global features , yet in a local scheme onl y a very few of
the features describe the tail. (Here again time information can be used to an advantage. If

I the intervals are chosen by time , because It corresponds closely to importance, then the long tail
which is most likel y quickl y executed , will not appear in as many ‘syllables’ of the description

I and not carry as much significance. The local method can thus filter out certain variations in
style and execution which onl y confuse the global method . Probably the best recognizer would

I combine these method s, but mine does not , and I know of none that does.
There is a basic difference of emphasis between my system and previous recognizers.

I A common theme was to keep the systems as context free as possible, designing them to identify
characte rs solely on local evidence , not to make second guesses and not to make mistakes.

I Systems that incorporated recognizers expected perfect characters from them, so the user was
given immediate feedback to check constantl y. M y system frees the user from checking the local
results of the recognizer by using all the global evidence and context that it can.

Algebra Systems

I A nurr ..~ nf two -dimensional parsers for al gebra have been designed or bui l t
[Henderson 1968), knderson 1968), [Guertin l971], [Mart in 1971], [Bernstein 1971]. Henderson

I and Anderson view ~agebra as an instan ce of a two dimensional language which Is a
generalization of the one dimensional simple phrase structure language. The syntax of the

I language is a set of replacement rules that can generate any legal sentence from the start symbol
by successivel y replacing phrase categories with phrases according to the replacement rules.

I Anderson parses an expression by performin g this generation non-determinist icall y until  he
generates an expression to match the input , then the tree structure which is apparent in the

I generated expression is taken as the structure of the Input expression , which was not apparent.
This top down approach to parsing depends on strong predictions from the language ’s
grammar, or gross inefficiencies arise. In fact for efficiency, Anderson designed another parserI better tailored to algebra. The more efficient parser was not as committed to algebra’s intrinsic
two dimensions , but sought to reduce the input first to one dimension before parsing. A

I
I
_ _  

_ _  - -~~~~~~~~~~~~~~ -~~~- 
_ _ _ _



Algebra 46 Purcell

preprocessor linearized the expression by Inserting special characters to mark the two
dimensional information. This linearization was done with as little Information as possible and
as locall y as possible. Guertin , in his Matter system, and Martin also used linearizers before
parsing. Unfortunatel y the linearizing choices are made with minimum evidence and are
difficult to undo later, which tends to make these systems fragile and exacting. An example of
the assumptions made by the linearlzer Is that neither the numerator nor denominator of a
fraction will extend farther to the left than the fraction bar. This may usually hold , and users
may easily adapt to the requirement , but such a system will not degrade gracefully. A two-
dimensional feature that is hard to decide without context Is the vertical alignment of sequential
characters. If exponentlation is plausible, then the raised character Is significant , If not then the
user can be sloppier and the relative vertica l posItions Is accidental.

Parsers
Much of my system Is patterned after various speech understanding systems: HWIM

at BBN [Woods 1976], HEARSAY at CMU (Lesser 1975), and one at SRI (Walker 19751 All
these systems try to assign meaning to user Input In the face of uncertainty based on fab ble

- knowledge sources. Algebra understanding is like a mini speech understanding project. It is
more difficult than text , because the Input Is much less reliable and less constrained. Text
parsers rely heavily on the small function words that cannot be reliably found in speech, to
guide parsing. Algebra has fewer function symbols, less redundancy and has the uncertainty
simi!ar to speech. Speech is, of course, much harder because the Information Is so locally sparse.
There are, at least In algebra, simpler methods that begin to give results. The previous algebra
systems have gotten as far as they did with much less power than must be used to do speech.
In borrowing from these natural language domains, I had to generalize them to two dimensions,
but they did serve as guides.

The first similarity between these projects and mine Is the use of multiple knowledge
sources. All the speech systems use roughly the same sources: 1) Acoustics, 2) PhonetIcs,
3) Lexicon, 4) Verification, 5) Prosodics, 6) Syntax, 7) Semantics, 8) Pragmatlcs, and 9) Control.
All of the systems organize the interaction of these knowledge sources around theories or partial
Interpretations of input. Each KS (Knowledge Source) can Inspect a theory and extend it or
criticize it. When a theory Is extended enough to explain the whole Input adequately then the
system has done its job and has understood the input. The Idea of a parser is usually extended



Algebra 47 Purcell

to include structure building in the domain of each KS. My system Is like these ones when its
parser builds parallel structures in the syntactic and semantic domains of algebra , guided by the
hi gh level context and the low level features. Character recognition is like phoneme and word

- 
identification.

A second similarit y is that like my system, each of the others must manage partial
theories and usually maintains several of them , workin g on them concurrentl y. Each system has
a data structure and bookkeeping system to hold the theories in. SRI uses the Parse Net , a
consumer and producer structure based on Kaplans GSP (Kaplan 19’731. CMU uses a

I Blackboard as a communication channel where KSs make proposals and criticisms. BBN uses
a Well Formed Substr ing Table to hold completed phrases and a word-phoneme lattice for the

I Phonetics , the Segmentation, the Lexicon and the Verification. A common theme in all these
data structures is to eliminate duplicated effort. A phrase should not be constructed twice for

I different purposes, if a phrase is discovered twice it should only be represented once. The
phrases that are discovered by producers should be routed to the appropriate consumers.

I Phrases are filed in the data structure according to some characteristics such as position, phrase

type, etc. This data structure serves as the market place for consume rs and producers. M y
phrase chart organizes partial interpretations (the phrases) according to their position and

I neighboring phrases. The scheduler actively matches the mutually consuming phrases.
My system can be compared to -PAZATN , an automatic protocol anal yz er for

elementary programming [Miller & Goldstein 1976b]. Both systems have synthetic grammars
which can generate interpretations to be matched to an input. Like my phrase chart , thei r

I DATACHART holds the state of par tially completed interpretations. Their PLANCHART
serves a role similar to my expert’s current context , providing expectatio ns for the parser.

I PAZATN’s prepr ocessor serves a function similar to my character recognizer ; It classifies and
I locally processes input items. Both systems rely on a scheduler to conduct a “best fIrst” coroutine

i search. There are parallels in the structure building of each: the protocol (fringe) register
I corresponds to the strokes register in my phrases. ~ Jtle corresponds to nam,~ :inputs to Inputs,

~~~~ to algebra expression. The systems differ in their choice of linguistic formalisms. As Its
I name implies , PAZATN is based on the ATN formalism rather than on augmented context free

rules. I also tried to use the ATN formalism but encountered difficulties that will be discussed
later. PAZATN maintains Conniver contexts as it builds Interpretations , while I have nothing
similar. MIller and Goldstein have capitalized on the Idea that linguistic parsing methods can

I
I

______ - —- ---

Algebra 48 Purcell

be generalized to many forms of analysis. In a sense I have made a similar generalization of
parsing to anal yzing algebra problem solving. To show its generality they have also applied
the PAZATN system to a mathematical domain , symbolic Integration. The algebra tutor could
benefit greatl y from their formalisms for planning and debugging [Miller & Goldstein 1976a1

Multi ple Represent ations
The Expert module’s use of abstractions takes advantage of multiple representations

as many other Al programs do. MYCROFT (Goldstein 1974,1975] der ives mu ch of its power
from the correspondences between turtle programs and an analytic model of geometry. Each
domain uses its own representations and procedures, but the system has additional knowledge
of mapping between these domains. Another example of mapping In and out of a model Is the
SOPHIE electronics tutor (Brown&Burton 1975]. A quantitative model (simulation) of a circuit
is used to answer both quantitative and qualitative questions about the circuit and its possible
faults. Many systems model their domain but few have knowledge abou t the model that Is
sepa r a t e and that use the model in ways that extend It so. My system uses multiple

representat~on of its algebra knowledge. Its syntactic grammar defines one representation of
algebra expressions , namely the two dimensional printed one. In the expert each level of
abstraction is another representation of the form and meaning of an expression. The abstracter
maps expressions from one representation to another. The parser uses two different charts for
its task; the character chart is ordered temporally, while the phrase chart Is ordered and
connected spatially. The spatial specialist controls the mapping between these representations.
The system benefits from multi p le specialized but connected representat ions, rather than trying
to use one universal formalism to express Its knowledge.

Computer Instruot ion
Computers Aided Instruction (CA!) has earned a very bad name in the education

world, and rightly so. Most CAl has used computers as page -turners and bookkeepers.
FlexibiIi~y and adaptability are repeatedly recommended for this field. Yet the typica l answer Is
a preprogrammed lesson with branches between possible “paths TM. In essence, every possible
lesson must be anticipated by the author. This kind of CA! could be a medium for a very
gifted teacher, but the computer Is used for little more than distribution and glitter . The
horizons of CA! were broaded by the Introduction of simulation s that students could perform

I
Al gebra 49 Pu rcell

on the machine. The system could onl y guess what use the student made of the simulation ,

I however , because that sim ulation was a black box to it. For example , in physics there are
simulations of arbitrar y gravitational fields [Bork 1975) and elementary circuits; in genetics
the re is a fru it f l y simulation of inherited genes and characteristics written for the PLATO

I terminal system. These systems vary in their generality. Some onl y allow the student to vary
parameters, others allow more “str uctural” modifications. Still , most CAl system lack anything

I resembling intelligence.

-

An earl y a t tempt at add ing inte l l igence to CAl was the SCHOLAR system

I [Carbonell 1970). The SCHOLAR system teaches geography by a two way dialogue of question
posing , question answering , and reasoning from a semantic “net ” data base [Collins 1975).

I Another approach to improvin g CA! was the use of a theorem prover to teach formal logic
[Goldber g 1973). That system could check students proofs , give hints , and complete partiall y

I solved proofs.
A system tha t added some intelligence (about the domain) to s imulat ion is the

I SOPHIE electronics tutor [Brown&Burton 19751. That system uses an electronics simulator to
answer questions and “reason ” about a power supply circuit. Faults are introduced and
measurements are simulated. The student troubleshoots the circuit and the tutor comments on

I the students strategies and reasonin g.
Many peop le have advocated “stude nt models” for CA! but few have been able to

give substance to the phrase. A system called WEST [Burton&Brown 1975) does make effective
use of modeling student strategies and performance in comparison to an “expert ” strategy and
performance. WEST is a game involving ari thmetic that the student plays “aga inst ” the

computer , who makes h in t s and comments. In WEST the student ’s choices are noted and
h ypothetical l y exp lained b y various strategies or methods. Reoccurrences of methods are
commented on; suggestions for improved pla y are made on the basis of these patterns. WEST

- partially inspired the AICA I system model presented above , and its greatest contribution is in
st udent knowled ge modelling by means of overla ys. It includes all the other modules (except

* the learning model), in at least rudimentary form.
The AICAI paradigm has been app lied to learning decision theory and probability in

the game of Wumpus [Stansfie ld ,Carr&Go ldstein 1976). W!JSOR , the Wumpus Advisor
program offers advice to players on choosing moves -In a game of uncertain knowled ge. The
advisor is designed to illustrate the AICAI organization. The authors try to implement each

I
______ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - .  - -  - - -

~~~~~~~~~~~~~


Algebra 50 Purcell

modu le as a ru le based system. Future directions for tutors of computer games are outlined In a
proposal for Computer Coaches (Goldstein 1976] that exploits the similarities of good tutoring
for an enjoyable game to good coaching in athletics. The research would address goals of Al,
psychology, pedagogy, and computer science.

Systems like the above are changing the Image of CA!. Computers can make a
positive Impact on education [Brown et.aJ. 19751 The economics of education for too long have
been that only one teacher, can be provided per 20 to 40 students. Computers will have the
advantage of availability. AICA ! systems may eliminate the disadvantage of stupidity.

‘ 1
i i

I
Algebra 51 Purcell

SIGNIFICANCE
The significance of this research can be discussed in terms of the good Ideas that

went into the system, the ideas that led to dead ends, the surprises encountered, and the A l .
issues and techniques applied.

The Good Ideas
I think this research combines many good ideas, some original and some drawn from

other work. The focus idea was to integrate a graphical communication channel with an

AICAI tutor of algebra. To accomplish this, many more ideas were employed.

The trainable chara-cter recognizer is a very general and powerfu l model of
recognition. A set of features is chosen to be extracted from the input, and a record is kept of

the training set which guides future recognition. This general model was successfully app lied

to tablet character recognition , guided by existing recognizers and extending them where

necessary.

Augmented context free parsing is another good idea that was adapted to Algebra

Understanding and was generalized from one dimensional languages to two dimensional ones.

Algebra fits conveniently into this kind of syntactic language description. Parsing is facilitated

by many techniques. The character chart for the recognizer-parser interface and the phrase

chart are important organizing devices. The spatial specialist formalizes the geometric relations
underlying graphical algebra expressions. Parsing can be viewed with insight both as search
and as a pattern match between the grammar and the input. Parsing would be next to

impossible without the addition of a Scheduler and Scoring system. In this area the good ideas
include the use of multi-tasking with a queue of tasks and priorities. The scoring strateg y of
shortfall density is also interesting.

The expert’s abstracter is a general scheme for representing algebra expressions at

many levels. The particular levels chosen are based on ideas for simplification and hash-

evaluation. The expression matcher generalizes simple subexpression matching and can take

advantage of the expert’s levels of abstraction. The abstracter and matcher combine in a novel

way to use the “discourse” context in the understanding process and to potentially guide the

parser directly.

Intelligent systems are the combination of many good Ideas, no t merely a few
‘universal’ principals as early researcher hoped. It has taken many Ideas to design and build

I

Algebra 52 Purcell

this algebra system, and not all the ideas could be Integrated In or made to work.

Dead Ends
Some ideas looked promising but for various reasons were eventually rejected . For

example I thought the parsing paradigm of Augmented Transition Nets (ATNs) [Wood s 19’7O)
could be generalized to two dimensions. I thought the arcs could include spatial diyection
restrictions and ‘pushes’ for subexpresslons. But on -closer examination , the generalization fell
apart . When recursion was included , the direction restrictions and the pushes for
subexpressions did not occur together in pairs as envisioned. Instead, If an ATN had three
pushes it would have two spatial restrictions to knit them together. This modification might
have been accommodated but the ATN view suffered from worse problems. The spatial

predictions broke down across the recursion; the subexpresslon’s location could be predicted,

but not the location of its ‘first’ constituent. In fact there Isn’t a very natural notion of ‘first’

constituent of an expression. A left-to-right and up-to-down ordering can be Imposed, bu t It Is
not as natural a: the time ordering in natural language and other one dimensional languages.
For example. after a parenthesis Is found, an expression can be expected to Its right. But If the
express ion is for example a fract ion, then the first constituent, the numera tor, is up to the right
from the parenthesis. It doesn’t help to call the fraction bar the first constituent either, because
the next constituents, the numerator and denominator would not be directly related, and since
the fraction might occur as a denominator, the natural first constituent would again be the
numerator. More Juggling has failed to produce a suitable generalization of ATNs and I have

given up that attractive, but unworkable idea.

Another dead end was the use of destructive modifications of partial theories to build
larger theories. Standardly, subexpresslons are Incorporated Into higher expressions without

modification. The tree structured phrase structures can share subtrees; In this way duplication

of effort Is avoided. In parsing Infix operators with precedence, It looked attractive to modify
phrases as new Information was discovered. For example the parser might find a + b and build

the appropriate phrase. Next It might look further and see that the Input was 2 a . b where
the multiplication had higher precedent and therefore preceded the addition. Either the

addition phrase could be discarded or the first argument !~
could be changed to 2~ . The

modification seemed like an elegant way to handle precedence of operators, but It turned out

that It conflicted fundamentally with the chart Idea . There is always uncerta inty in the theories

Algebra 53 Purcell

that the parser builds, and so it cannot afford in general to be modifying a phrase that might

actually have been correct without modification. If the system could be sure that it always didI the right thin g, then it could use destructive mod ification and parse deterministicall y as Marcus
is able to do for English [Marcus 19751. To get around the objectionable modification, I

I experimented with putting a level of ind irection between operators and arguments. I tried

using formal names for function arguments and maintaining contexts of name value bindings

I to preserve the notion of alternative theories that shared structure. In the above example the

plus operator wou ld have two symbolic arguments, one of which would be bound to ~~.. Wh en

I the multiplication was discovered, that argument name would be rebound to the product of ~
and a. The resulting system would have intensional names which could be manipulated

I without knowing their referents. Equivalence classes would be necessary, because many names

could have the same referent, and in different interpretations, one name could have different

i referents. The design became unwieldy and I could not get a clear picture of what I wanted,
I nor see my way through the details. This idea became another dead end explored and

abandoned.

Surprises
Research is never without surprises. I am ever surprised how easy it is to design or

-

describe a system of processes, techniques and features , but how slow and difficult it is to put
those ideas into programs. The dead ends mentioned above came as surprises.

Characters in context are surprising ly sloppier than those printed alone. It was

probably a mistake to build the recognition trainer to handle characters one at a time~ One
cannot help prin ting a single character more carefully than one character in many. The same

effect occurs in speech; a word in isolation is pronounced distinctly, while in the context of a

sentence it may undergo radical transformation and degradation. I expected this effect that
I speech has, but I was still surprised by it.

I Also I was surprised to find duplicate theories could develop in my chart and clog the

parser. Rather then check for duplication, the parser tries to enumerate possible phrases in

such a way that each potential phrase is proposed only once. Unfortunately, this desired

I behavior is a global property of the algorithm and Is fragile with respect to many local

perturb ations. When consecutive phrases are duplicated the extra phrases increase

I
I

- - -

~

-- - - ..-.- - -- —-------

Algebra 54 Purcell

multipllcatively. If I were redesigning the system I would have more consistency checks to
av oid wasted replication.

Finally, I was pleasantly surprised how small and simple the expression simplifier
became as I understood it better and could combine similar rules Into more general ones. The
first steps of symbolic math processing were Instructive and satisfying to rediscover. It Is
surprises like these that make a project like this one Interesting.

Al Issues
This system Is more an exercise In Al-engineering than basic research on one topic.

The two goals, computerized tutoring and tablet communication, can each be pursued with and
without the use of Al techniques, but I think the use of knowledge based programming Is
necessary for achieving either goal. I think the techniques drawn together In my system begin
to acheive these goals of machine intelligence.

A cen tral A! issue in th is research Is the use and con trol of mul tiple knowled ge
sources. One source of knowledge is the Individual character’s features. Another Is the set of
differential diagnostics to distinguish similar characters, I.e. knowledge of which features are
most important to choosing one character over another to account for some Input. Next the
system knows the formal syntax for algebra, that is, which expressions are well formed; for
example, parentheses usually match. Also there Is an Informal syntax for algebra which has to
do with such things as the ordering of subexpresslons, thd spacing and clustering of
expressions. Numerical factors precede variables, variables are generally alphabetized,
coefficients of one are dropped, etc. Next, there Is semantic reasonableness such as typical
values for such things as exponents. There Is, in fact, the whole semantics of algebra that
underlies the expressions and procedures. These semantics are modeled by the levels of
abstraction the expert uses and the transformation rules of algebra. The next higher source of
knowledge Is the discourse structure. The algebra session Is goal oriented. There Is coherence
to the subexpressions throughou t a problem session. Finally, the system can have a model of
the student user. His strengths and weaknesses, his consistent bugs or conventions can help the
system to understand his Input.

My approach to organizing these diverse knowledge sources Is extending the non-
determinism of the parsing strategies to encompass them. Observing the principle of least
commitment , each module offers multiple explanations of what ft sees. A scheduling and

- -..--- _ _

Algebra 55 Purcell

scoring system combines the evidence of the various modules and filters out the less likely

interpretations. The representations and interactions among the modules is not as uniform as

in CMU’s Hearsay, for ex ample , because the system’s layers are arranged to communicate
directly with their neighbors. The recognizer communicates with the parser but not with the

expert, for example. The simple stylized communication helps to keep the system simple.

Like most A ! systems, this one can be viewed as rule based. I think rules are the

more regular component of knowledge but cannot be separated from their interpreter. My

description of the two-dimensional constraints in algebra is composed of simple rules built out

of a handful of spatial relations. Making the rule behave correctly, however, required spatial

knowledge to be embedded in the rule interpreter, the parser. I think generally that there are

domains of knowledge that are simp le to describe when the right primiti ves are chosen.

Programming is greatly simplified by a good language; linguistics has been searching for the

right interpreter for rules of syntax. Transformational grammar is one interpreter, Marcus’s

WASP parser is another interpreter that makes grammar rules very simple. Beginners in a

I field or to a skill often fin.d they must absorb a methodology before they can acquire any

content. For my system, I know I have the right primitives and interpreter when the rules can

I
express simpl y the knowledge In a module. The character recognition trainer is almost like a

rule editor and debugger. It helps you input rules for character identification and shows

conflicting rules where further debugging is needed.

I My system benefits from a large collection of ideas and view points that have

developed in the name of Artificial Intelligence.

I
I
I
I
I
I
I
__________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - — ---— S - — _______

Algebra Purcell

CONCLUSION
This research does not have a clean conclusion . I ch~se a very open-ended project

with many goals, the first of wh ich were met, many more were explored to differing degrees,
and some goals were completely out of reach. The possibilities for continued research are

plentiful. The Algebra Tutoring system as sketched could be completed. Only the start of the

expert module was designed. The tutoring and modeling modules were Ignored. Many topics

in the input module remain to be explored. There is the possibility of specializing the

character set to a student as he works. A more thorough attempt could be made to understand

a student that consistently mis-parses expressions; this system actually leans heavily on nearly

correct algebra. A more deterministic approach to the parsing could probably succeed and be

more efficient. Another direction of development which ought to be pursued Is ~ j .(
explanation. The student Is learning to do just what the tutor must do, and If the machine’s
algebra procedures resemble the student’s, then It could explain In more understandable ways
how to, for example, clump symbols of an expression Into phrases observing precedence and
other conventions, or It could explain why it chose some algebraic transformation to perform

over another. The use of computers In education has this potential to be an example to be not

a black box, but “a wh ite box” (Goldsteln&Papert 76).
In conclusion, I think tablet understanders and computer tutors complement each

other nicely. This research has demonstrated some of the capabilities of the combination and

some of the techniques for engineering such systems. Much remains to be done In this area to

build fluent computer tutors.

- - --~ - . - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -- - 5 . ..---- - .- - —-5----

I
Algebra 57 Purcell

BIBLIOG RAPHY

Anderson , Robert H. (1968) Syntax -Directed Recognition of Hand-Printed Two-Dimensional
Mathemat ics, PhD Dissertation , Harvard University, Cambrid ge, MA.

Bernstein, Morton 1. (1969) Hand-Printed I np ut for On-Line Systems, Technical Report, System
Development Corporation, Santa Monica, CA.

Bernsein, Morton I. (1971) “Computer Input Output of Two-Dimensional Notations,” In the
proceedings of Second Symposium on Symbolic and Algegraic Manipulation , March 23-
25, 1971, Los Angeles, CA.

Bobrow , Daniel and Collins , Allan. (1915) Rep resentation and Understandin g, Studies 1 ’z
Cognitive Science , Academic Press, New York , NY.

Bork , Alfred M. (1975) “Effective Computer Use in Physics Education,” American J ournal of
Physics.

Brown, John Seely and Burton, Richard R. (1975) “Multiple Representations of Knowledge for

Tutorial Reasoning,” in Bobrow and Collins, Representation and Understandin g.
Studies in Cognitive Science, Academic Press, New York , NY.

Brown, John Seely, Burton, Richard R, Miller, Mark L, deK leer , Johan, Purcell , Stephen,
Hausemann , Catheline and Bobrow, Robert. (1975) Steps Toward a TAeor ettca l
Foundation fo r Complex Knowledge-Based CA!, Bolt Beranek and Newman, Cambridge,

MA.

Burton , Richard R and Brown , John Seely. (l975) “A Tutoring and Student Modelling
Paradigm for Gaming Environments,” SIGCSE Bulletin, February.

. 5 - -—

~~~

________ S’_ _ _ _ __ .___
i 

-.—- -

~~~~~~~~~

--—— S_ - —

Algebra 58 Purcell

Carbonell , Jaime R. (1970) Mixed-inittaff i,e Man-Corn p uter instruction, Technical Report 1971,
-

Bolt , Beranek and Newman , Cambrid ge, MA.

Collins, Alla n , Warnock , Eleanor, Alello, Nelleke and Miller , Mark L. (1975) ReasonIng from
Incomplete Knowledge,” In Bobrow and Collins, Representation and Understanding,
Studies In Cognitive Science, Academic Press, New York, NY.

Dimond, T L. (1957) “Devices for Reading -Hand Written Characters,” proceed ings of Eastern
Joint Computer Conference, December 1957.

Goldberg, Adele. 0973) Compu ter-Assisted instruction , The Application of Theorm-Pr ovlng to
Adaptive Response Analysis, Technical Report 203, Psychology and Education Series,
Institute for Mathematical Studies in the Social Sciences, Stanford University, Palo Alto,

CA.

Goldstein, Ira P. (1974) Understanding Simple Picture Prog rams, Technical Report 294, A.!. Lab,
M.I.T., Cambr idge, MA. -

Goldstein, Ira P. (1975) “Summary of MYCROFT: A System for Understanding Simple Picture

Programs,” Artificial Intelligence 6, 3, 249-288.

Goldstein, Ira P and Miller, Mark M. (1976) Al Based Personal Learnin g Environments:
Directions for Long Term Research , A! Memo 384, Al Lab, M.I.T., Cambridge MA.

Goldstein, Ira P and Paper t, Seymour. (1976) A.i., Lan p age and Study of Knowledge, A.!.
Memo 337, A.!. Lab , M.I.T.. Cambridge, MA.

Goldstein, Ira p . (1977) A Prel iminary Prop osal for Research on The Computer as Coach: An
Athletic Paradi gm for intellectual Education , Memo 388, Al Lab., M.I.T., Cambridge
MA.

Goldstein, Ira and Cart, Brian. (1977) Overlays : a Theory of Modelling fo r Computer Aided

.5 .. .5, —.5- —- - ---5 ---- -
~~-t~~~~~~~~~~~~~~~~ -5-—— . . -.--—

- .--~~~~-5- -- -5— —— --5-

I
Algebra 59 Purcell

instruction , Forthcoming Memo, Al Lab., M.I.T., Cambridge MA.

Guertin, F E. (1971) M A T T E R, I ts Functional Description , Dynamic Modeling Computer
Graphics System Document SR.l5.l7, Project MAC, M.I.T., Cambridge, MA.

Heidorn, George. (1975) “Augmented Phrase Structured Grammar,” in Theoretical Issues in

Natural Language Processing, June 10-13, 1975, Cambridge, MA.

Henderson, Austin. (1968) Pattern Crammars,Computational Structures Internal Memo, M.I.T.

Herot, Christopher F. (1974) Using Context in Sketch Recognition, (Master’s) Dissertation, M.I.T.,
Cambridge, MA.

Hitachi, I. (1975) Direct I n put System for Han d printed P rograms and Data , Central Research

Laboratory of Hitachi, Ltd., Tokyo, Japan.

Kaplan, Ron. (1973) “A general Syntactic Processor,” in Rustin, Natural Language Processing,

Algorithmics Press, New York.

Kay, Martin. (1967) Experiments with a Powerful Parser , RM-5452-PR RAND Corporation,
Santa Monica, CA.

Lesser, Victor , Fennel, Richard , Erm an , Lee and Reddy, Raj. (1975) “Organization of the
Hearsay II Speech Understanding System,” IEEE Transaction on Acoustics, Speech and
Signal Processin g Assp-23, 1, 11-24.

Marcus, Mitch. (1975) “Diagnosis as a Notion of Grammar,” In Theoretical Issues in Natural

Language Processing, June 10-13, 1975, Cambridge, MA.

Martin , William A. (1971) “Computer Input Output of Mathematical Expressions,” in the
proceedings of Second Symposium on Symbolic and Algegraic Manipulation, March 23-

25, 1971, Los Angeles, CA.

I

Algebra 60 Purcell

Miller, Mark L and Goldstein, Ira P. (1976a) Overview of a L~inpisU c Theory of Design, M emo
383, Al Lab., M.I.T., Cambridge, MA.

Miller, Mark L and Goldstein, Ira P. (1976b) PAZATN: A Linguistic Approach to Automatic
Analysis of Elementary Pro gramming Protocols, Memo 388, Al Lab., M.I.T., Cambridge,
MA.

Moses, Joel. (1967) Symbolic integration , Proect MAC, TR-47, M.I.T., Cambridge, MA.

Negroponte, NIcholas. (1975) Sketching A Computational Paradig m for Personalized Search ing.
Working Paper Architecture Machine Group, Department of Architecture, M.I.T.,

Cambridge, MA.

Newman, William and Sproull, Robert F. (1973) Princip les of Interac tive C’ 4put.r Graphics,
McGraw Hill, New York , NY.

Pax ton, William and Robinson, Ann. (1975) “System Integration and Control In a Speech
Understanding System,” American J ourna l of Comp utational LInguistics 5.

Pratt , Vaughan. (1973) “A Lingistics Oriented Programming Language,” Proceedings of the
Third International Joint Conference on Artificial Intelligence, Stanford University, CA.

Smith , David Canfield. (1975) PYGMAL iON: A Creative P rogramming Environment, A.!.M.-
260, Al. Lab, Stanford University, Palo Alto, CA.

Stansfield , J, Carr , B and Goldstein, I. (19%) Wum p us Advisor I : A First implementation of a
Prog ram that Tutors Logical and Probabilistic Reasoning Skills, Memo 381, Al - Lab.,
M.I .T., Cambrid ge.

Teitleman , Warren. (1963) New Methods fo r Real Time Recognition of Hand -Drawn Characters .
Report 1015, Bolt Beranek and Newman , Cambrid ge, MA.

5 - .-~~~
- - ~~~~~~~~—--— --5- 5-- - -

I
Algebra 61 Purcell

Teitelman, Warren. (1975) I N TE R L I S P Reference Manual , Xero x P.A.R.C., Palo Alto.

Walker, D.E, W.H. Paxton, J.J. Robinson, GO. Hendrix, B.G. Deutsch, A.E. Robinson. (19’75)
Speech Understanding Research , Stanford Research Institute, Menlo Park , CA.

Woods, William. (1970) “Transition Network Grammars for Natural Language Analysis,”

Communications of the ACM , Vol. 13, No. 10.

Woods, William, et. al. (1976) Speech Understanding Systems, Final Report , BBN Report No.
3438, Bolt Beranek and Newman, Cambridge, MA

I —

- —5 - - - -— —5— - - --5-- - —.__-—- -5- —

- 5-
’ -

5— -—--5- —5-- ~ 5 -5_

Algebra 62 Purcell

APPENDIX

Charac ter Set
The character recognizer has been trained to recognize the digits, the upper and

lower case alphabet (where they differ) and various math symbols as follows:

0123456789

Aa Bb C Dd Ee Ff Cg Hh hJJ K LI Mm
N n O P O~q R r S T t U V WX Y y ~~
() {- } (]

square root
long division
less than or equal
greater than or equa l
division symbol (dot bar dot)

integral sign

sigma

p1

Algebra 63 Purcell

Algebra Grammar

Category Inclusions:
EXP TERM

I lPROD- ---FACTOR- lLETTER -----—(&B~~Z,a,b,...z
- INUM B----DIGIT--{0,I ,...,9

I
I

Rewrite Rules:

I (ADDOP LEFT-OF PROD) TERM
1 (EX P LEFT-OF TERM) EXP

(PROD LEFT-OF FACTOR) PROD
I (: LEFT-OF PROD) RECIP

(I LEFT-OF PROD) RECIP

(PROD LEFT-OF RECIP) EXP

(EXP ABOVE --) NMRTR

I (NMRTR ABOVE EXP) FACTOR
(ROOT ON EXP) EXP

I (NUMB LEFT-OF DIGIT) NUMB

(+ ABOVE -) PM

I (I ON EXP)
(FACTOR LEFT-BELOW EXP) FACTOR

I
I
I

_
___ _ _ _ _ L

-

- -—— —~ ‘~_ --_ —a ~~~~~~~~~~~~~~~~~~~~~~~~~~ n—— — — — —— - —

Algebra 64 Purcell

Simplifier
At level 5, the abstracter simplifies expressions find a semi-canonical form for them.

The simplifier applies algebraic identities, evaluates the variable-free expressions, regroups the
arguments of associative operators, reorders the arguments of commutative operators, combines
like terms and factors (cancellation), and selectively applies the distribution properties. In order
to order the arguments of commutative operators , all expressions are given a unique
identification number. The following type conventions are used to express the simplifier’s rules:

a,b,c algebra expressions
r ,q rational numbers
n,m signed Integers
aO,bl algebra expressions ordered by unique Id-number (aO.cbl)
•~ A addition, multiplication, exponentiation

SIMPLIFIER’S RULES:

Identity

0 + a
O o a
b a

0~~ a
V’a
a A O

a “ 1

Evaluation
. r
o r

q~~
’n

Associativity
a . (b .c) —— > (a . b) , c
a * (b s c) •—> (a . b) s c

- ~~~~~~~~~--- --— - 5--- -

Algebra 65 Purcell

a A (b o r) =.> (a~~ b) A r
a “(b icu c) .c__ (a A b) ”’c

Commutivity
+bI.aQ ~~.>

o b b o a O •=> o a O o b I

H I
Cancellation

+ a*q + a*r ——> ao(q+r)
o a”’q o a”r — —> a”’(q.r)

Distribution
.ro(a.b) —~~> + roa + rob
o (aob + aoc) ——> o a * (b.c)
(aob + a’:’c) r ——> a”r * (b.cY’r

The internal representation for expressions at this level Is In Lisp S-expressions using the
prefix operators: -

(VAR a) variable
(RAT m n) rational number
(ADD a b) addition
(MUL a b) multiplication
(exp a b) exponentlation

All algebraic operations must be expressed In terms of these basic ones.
~~

Is expressed as
(MUL A (EXP B -1)).

I
I
I

_ __ _ _ _ _ _ 5 - -

