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ON THE STRUCTURE OF A LIAPUNOV FUNCTIONAL
FOR A DIFFERENCE-DIFFERENTIAL EQUATION

WITH ONE DELAY

\

Abstract: A quadratic positive definite Liapunov functional
that yields necessary and sufficient conditions for the asymp-
totic stability of the solutions of the matrix difference-
differential equation Jf(t);{: Ax(t) + Bx(t-1) is constructed
and its structure is analyz%d. The method éf-é;ﬁstruction is
a natural generalization of the same problem for an ordinary
differential equation, and this relationship is emphasized.

r—‘

1. Introduction.

In this note we construct a Liapunov functional for the
determination of the asymptotic behavior of the solutions of
the linear autonomous matrix difference-differential equation

with one delay

%x(t) = Ax(t) + Bx(t-T1), t > 0,

where x(t) is an n-vector function of time, A and B are con-

stant n x n matrices and Tt > 0.

In this note, we generalize results presented in [7] for ‘—‘-':;}//
a scalar equation; essential to this generalization was the -

sectid D

4

study, presented in (2], of the existence, uniqueness and struc-

ture of the solutions of a special functional differential equa-




tion which is intimately connected with the construction of

the Liapunov functional presented here.

The problem of constructing Liapunov functionals for
equations of this type has been previously considered by Repin

[8], Datko (3] and Hale [5,6]. This study is in the spirit of

the previous ones, but is more specific.

2. The Difference-Differential Equation.

Denote by L2([a,b],§?n) the space of Lebesgue square
integrable_fgqctions gefined on [a,b] with values in é?n, and for
a fixed T > 0 considér thc.uilbert space & = P" «x L2([-T,0],9?n)
with inner product <ul,u2> = vr{v2 + jfT¢I(0)¢2(0)d0, where

u; = (v;s¢;) € &, and the naturally induced norm iSII(v,¢)|L2 =

0
vlv + f 0T (8)¢(0)d0. wWith x: [-T,%) » R, for t > 0 we denote
=T

by x,_ the function x,_: [-7,0] » ®", where x, (0) x(t+0).

L~ t
Consider the matrix difference-differential equation

x(t) = Ax(t) + Bx(t-1), > 0, (2.1)

where A,B are n x n matrices, x(t) is an n-vector and T >0,

together with the initial conditions

xo(O) =g, Xg = 9, (2.2)

where (£,¢) € .




A solution of this initial value problem is for each t > 0,
a function x € Lz([-T,t],éfn) such that x is absolutely
continuous for t > 0, satisfies (2.1) a.e. on [0,t] and
x(0) = £, x(8) = ¢(8) a.e. for 6 € [-1,0]. It is known [1, 6]
that (2.1)-(2.2) has a unique solution, defined on [-1,2), which
depends continuously on the initial data in the norm of (.

The initial value problem (2.1)-(2.2) can be rewritten as

x. (0) x. (0)
e iy S SR (2.3)
dt
X Xt
(x(0),x,) = (£,4) € &, (2.4)
where
xt(O) Axt(O) + th(-r)
= |ox, (0) ' (2.5)
" e — =T £ 8 20

and this operator has a domain, dense in &/, defined by

AaY) = {(£,9) € &| ¢ is A.C. in [-7,0],

¢' € L,(-7,0], ¢(0) = €].




The operator &/ is the generator of the Co-semigroup S(t), where
S(t): &~ & is given by F(t)(£,¢) = (X(t).xt), the

solution pair of (2.3), (2.4).

It is known [1,6] that there is a constant Yy such that the
spectrum of o/ lies in the left-half plane Re(A) < y, and that

for every € > 0 there existsa constant K > 1 such that

y (y+e) t
||5/(t)||(¢¢;a{) < Ke . (2.6)

The spectrum of o/ consists of those complex ) which satisfy the
characteristic equation

det [AI-A-Be T

] = 0. (2.7)
Finally, [5,6], a useful representation of the solutions of (2.1)

is given for every t, u> 0, by

0

xt+u(o) = S(u)xt(o) + I_TS(u-a-T)th(a)da, (2.8)

where the matrix S 1is the solution of the matrix initial value

problem

S(t) S(t)A + S(t-1)B,

Q-lQ..
e

(2.9)

S(0) I, S(t)y = @0 for € < U,

We now turn to the construction of a Liapunov functional.




3. A Quadratic Functional.

Associated with the functional differential equation
(2.1)-(2.2), or (2.3)-(2.4), and motivated by the results in
[7), we wish to consider the real symmetric gquadratic form on

&,

s 0
T !_T

V(E,§) = ETME + e 0T (0)Re2%% (0)ae +
0

+ ETQlOIE + 26" [ Q(a+T)e
-T

8 (a+T) 54 (a) da (3.13

S (a+B+2T1)

0 (0 T T
+ 2 f I " (a)B'Q(B-a)e B¢ (B)dRda .
-7

a
- Here § is a real number, M,R are constant n X n real positive

definite matrices and Q(a) is a continuously differentiable matrix
that is assumed to satisfy the initial value problem for the

functional differential equation

(aT+s1)0(a) + e®"BTQT (1-a), 0 <o < 1 (3.2)

Q' (a)

Q(0) = (0" = g, (3.3)

where the superscript T denotes transpose and Qo is a symmetric
but otherwise arbitrary matrix.

Evaluation of the Fréchet differentiable Liapunov functional
(3.1) along the solutions of (2.3)-(2.4) with initial conditions
in () vyields a function of time, which we denote by

vV(t) = v(xt(O),xt). This function of time is differentiable along




such solutions, and a laborious but straightforward computation,
which makes use of (3.2) and (3.3), shows that the derivative of

this function along these solutions is given by

V(o) = G5 Vx (0),x,) = -26V(x,(0),x,) + (3.4)
T T T
+ xt(O)[(A +81)Q(0) + Q(0) (A+SI) + (A +SI)M + M(A+SI) +
+ 9"8ToT (1) + %TQ(1)B + 2e6‘R1xt(0)
= e%Th(x, (0),x%, (1)) = Ulx, (0),x,)
& bt t el
where
R MB xt(O)
o T S & 28 AR,

h(xt(O),xt(-r)) = [xt(O), e xt( T)] T i .(3.5)

B'M R|[]|-e Txt(-r)

A direct application of Theorem 3.9 of [9] shows that for

any solution with initial condition on &, V(t) S Ux (0),x,).

It is our purpose to show that, through the functional
(3.1) and its derivative (3.4) it is possible to estimate the
rate of growth or decay of the solutions for our original func-
tional differential equation (2.3)-(2.4). For this purpose
appropriate choices must be made for the positive definite matrices
M and R, of the constant § and of the matrix Q(a) determined

by (3.2) and (3.3).




To be more speéific, denoting by "y = max{Re A| det[AI-A-

Be-xr]

= 0}, we wish to show that for every €> 0 and
-6 = Yy + 2€ it is possible to choose matrices M,R and Q(a)
satisfying (3.2) and (3.3) for which there exist positive constants

cl,c2 such that

clll(s,wll‘é < V(E, ) < czll(£,¢)||;/. - (3.6)
and
V(E,d) < =28V(E,9). (3.7)
These last relationships imply that {V(€:¢)}l/2 |](£,¢)r£¢ is a

norm equivalent to the original norm on & and that, in this norm
||(xt(0),xt)||ﬁ/ < ||x0(0),x0||$z/e_6tr (3.8)

whereas in the original norm on &

o) i -5t
H(xt(O),xt)Hd/g[EI] H(xo(O),xo)l!we . (3.9)

These estimates are precisely those stated in (2.6) and are the
best possible. It should be noted that the norm induced by the
square root of the Liapunov functional is the best possible one

in the sense that it yields (2.6) with K = 1. Moreover, if

-




Y < 0, then the Liapunov functional (3.1) shows that

(2.1)-(2.2) is uniformly exponentially stable.

First of all, consider an appropriate choice for the

matrix Qf(a), a solution of (3.2), (3.3) for 0 cw 2T In [2)
it was shown that equation (3.2) with initial conditions (3.3)
has a unique solution; moreover, it was shown that the linear
vector space of all solutions of (3.2) has dimension n2, and
the structure of these solutions as well as simple methods of
computation which take advantage of the particular structure of

the equation were presented.

Associated with equation (3.2)-(3.3) is an integral, whose
structure is motivated by a similar integral for ordinary differ-
ential equation. Indeed, let W be a symmetric matrix and let

S(t) be the solution of equation (2.9:. Consider the expression

Q(a) = f ST(u)eGUWS(u-a)eG(u—a)du. (3.10)
0
Since, for every € > 0, |[s(t)]|]| < Ke (Y*E)t  £or some K > 1 and

since § = -y - 2€, it follows that this integral converges. More-
over, it immediately follows from the definition of Q(a) that

O(a) = GT(-a), 0(0) = QT(0) and, since S(t) satisfies (2.9),

that 5(a) satisfies




3' (@ = AT+s0 () + BT N (r-a), 0 <o < 7

- (3.11)
aT(0) = @(0) = f sT (u) e®%ws (u) e¥¥au
0
and, moreover, given the continuity of Q(a), that
3'0) + 8'T0) = AT+61)0(0) + 0(0) (a+s1) + BTeSTQT (1) + a(ne’TB
(3.12)

-sT(0)W = -W.

These observations, and the uniqueness of the solutions of
(3.2)-(3.3), show that 6(a), defined by (3.10Q0), is the unique
solution of (3.2)-(3.3) with the initial conditions prescribed by

the second equation of (3.1l1).

It is easily seen that the map W -+ Q(0), defined by

0
~

Q(0) = J ST(u)eéuWS(u)eﬁudu,
0

as a map on the space of n x n symmetric matrices is one-to-one,
onto and it maps positive definite matrices W into positive
definite matrices Q(0).

With this particular characterization of the matrix function

Q(a) it is possible to bring into evidence the particular structure

of the Liapunov functional (3.1).Indeed, substitution of (3.10) into




10.
(3.1} for ©Q(a) vyields, after some rearrangements and interchanges
of integrals , that our functional is of the form
T St . : 2849
V(xt(O),xt) = xt(O)Mxt(O) + e I_Txt(O)Re xt(e)de
X (3.13)
28u
+ foxt+u(0)We xt+u(0)du.
Similarly, using this notation, equation (3.4) becomes
T
Uk (0) %) = =28V (x_(0),x.) + x_(0) [-W + (AT+81)M + M(A+sI) +
R MB x, (0)
T T 5
+ 2e° R (0) = e®"ix] (0),-e ™ TT (- 1)) £ . (3.1%)

£ n -e"srxt(-ﬂ

Given the nonnegative nature of the last term in (3.13) it

follows that, letting Amin(A) denote the smallest eigenvalue of

a symmetric matrix A,

: -8t - lph
min (A ; (M) ,e Amin(n))ll(£,¢)ll < V(E,9),

yielding a value of Cyr for equation (3.6), given by

~|8]r

= min(kmin(M),e Amin(R)). (3.15)

s |




1i.

Similarly, since from (2.6),

Y+€
IIXU(O)IIggn < I'(XU(O)'XU)IEV < ke Y )ull(xo(O),xo)lLV 3

it follows that

Amax (W

2

6]t

2 2
V(g,9) < [max{xr _ (M),e T R K l||(£.¢)|£y.

This yields for equation (3.6) a value of c, given by
A (W)
et |6 max 2
c, = max[Amax(M), e Amax(R)] + T I (3.1 6

It remains to be shown that equation (3.7) holds. For this
purpose inspection of cquation (3.14) indicates that it is necessary
and sufficient to show, by appropriate choices of positive definite

matrices W,R and M, to have the matrix

W~ (A+SI)TM - M{A+ST) = ReST MBe ST

- (3.17)

BTMeGT Reér

positive semidefinite. But this is always possible; indeed, a
particularly simple choice of such matrices is to let W,R and
M to be nonnegative multiples of the identity matrix, i.e.

M

= = i = T
I, R kRI and W kwI. Letting kR Amax(BB ) and




& T 8t / q
kw = max(O,Amax(A+A ) + 28 + 2e Amax(BB ¥k,

then (3.17) is positive semidefinite and therefore, for these

choices of M,R and W,
V(xt(O),xt) < —26V(xt(0),xt) (3.18)

for every (xt(O),xt) S
It is to be noted that, with these choices, the Liapunov func-

tional is particularly simple and reduces to

St

L}

0
X, (0)x, (0) +e”" A (BB") J xp (0)x, (0)e**%0 +

=L

V(Xt (0) lxt)

T St /. %
+ max{O,Amax(A+A ) + 28 + 2e Amax(BB ¥ 3. (3.19)

= 28s
foxt+s(0)xt+s(0)e ds.

This functional is a direct generalization of that used in (7], and
generalizes those used by Hale [5,6] and Datko [3]. We recapitulate

the above results in the form of a
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Theorem: Consider the retarded equation x(t) = Ax(t) + Bx(t-1)

and the Liapunov functional V given by equation (3:1),  1If

-AT] = 0} and € > 0, then there

y = max{Re A| det[)I-A-Be
exist constant positive definite matrices M and R and

a differentiable matrix Q(a), 0 < a < v with Q(0) = Q(O)T
such that the functional V is positive definite, bounded

above, and Q < 2(y+€) V.

Of course, if y < 0, the above result implies exponential

asymptotic stability; moreover, the rate of decay is precisely the

expected one.

4. A Comparison with Ordinary Differential Equations.

In this section, it is our object to point out the intimate

relationship between the results obtained for our functional equation

and the classical results on the construction of Liapunov functions

for ordinary differential equations.
Recall, [4], that given the system of ordinary differential

equations

X(t) = Cx(t), (4.1)

where C is an n x n matrix, a Liapunov function for this




system can be always taken as the quadratic form

V(ix) = erx,

where F is a positive definite matrix. Moreover, if

Yy = max{Re A| det[AI-C] = 0} and if, for € > 0, -6 =

14.

(4.2)

Y + 2G,

then given an arbitrary positive definite matrix W, the algebraic

equation

(CHSE) P + P(CHST) = =H,

has a unique solution P which is positive definite.

(4.3)

This matrix

if used in (4.2) along the solutions of the differential equation

(4.1) yields, upon differentiation,

V(x(t)) = =26V(x(t)) - x'Wx < -26V(x(t)).

(4.4)

Furthermore, the unique positive definite solution of (4.3) can

be obtained as the integral

o T
P = f eC ueduWeCuedudu.
0

(4.5)

Let us now bring into evidence the relationship between the

results obtained in the previous section and these results. The




15.
functional differential equation under consideration is
x(t) = Ax(t) + Bx(t-1), t > 0. (4.1")
Once again, we assume ;hat vy = max{Re A| det[AI-A-Be-XI} = 0}

and, for € > 0, let -8 = y + 2€. The Liapunov functional is

then of the form

0
Vix, (0),x,) = xz(O)Mxt(O) P J_sz(e)ReZGOXt(e)dO (4.2")

S (a+7)

0
+ x:(O)Q(O)xt(O) + 2x§(0) I_TQ(a+T)e th(r)da +

0 0
+ 2 f J xz(a)BTQ(B—a)eG(a+B+2T)

th(B)dBda.

The choice of the positive definite symmetric matrices M and R
in this expression is rather arbitrary. Their purpose is to insure

the strict positive definiteness of the functional on the Hilbert

space &; it should be noted that if M = R 0, the functional
(4.2') is positive, but does not satisfy a relationship of the type
Vix (0),x.) 2 c1||(xt(0),xt)|kz for cl'> 0. The requirement that
the matrix G of equation (3.17) be positive semidefinite is always
satisfied for M= R =0 and W positive semidefinite. Given an
arbitrary positive definite matrix W, it is always possible to

select positive definite matrices M and R so that G 1is positive

semidefinite.

N
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The choice of the continuously differentiable matrix Q(a),
0 <a < T 1is critical. Given an arbitrary positive definite matrix

W it must satisfy the functional equation

(aTssT10ta) + Bre g (1=a), 0.2 0 < 1,

Q' (a)

(4.3")
ot (0),

Q(0)

with the condition

TeGTQT(T) + Q(T)edTB = -W. (4.3")

(AT+61)Q(0) + Q(0) (A+6I) + B
In the previous section it was shown that such a Q(a) always
exists and is unique.
With such a choice of Q(a), one then obtains that, along all

solutions of the functional differential equation (4.1"')
. o )
Vix  (0),x.) <=26V(x (0),x ). (4.4")

Moreover, such a matrix Q(a) exists, is unique and a representation

of it is given by the integral

Qla) = I sT (u) e®%us (u-a) e’ (W% gy, (4.5')
X :

where S(t) is the solution of equation (2.9).

e i e 37




17.

The strong relationship between the unprimed and primed
equations is now clear. Indeed, note that for 1 = 0, the matrix
C in (4.1) becomes A + B and the matrix P in (4.3) becomes
Q(0) + M and all the primed equations become the unprimed ones.

Equations (4.3') and (4.3") are of a much more complex
nature than the familiar algebraic equation (4.3). However, in
spite of its appearance, the linear vector space of the solutions
of (4.3') is not infinite dimensional but, as was pointed out in
the previous section, has dimension n2. Hence, although the

problem of construction of the Liapunov functional for the func-

tional differential equation does not reduce to the solution of

an algebraic equation such as (4.3), it reduces to the solution of

a linear differential equation, equation (3.10), which can be

accomplished without difficulty.
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