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ON THE STRUCTURE OF A LIAPUNOV FUNCTIONAL

FOR A DIFFERENCE-DIFFERENTIAL EQUATION

WITH ONE DELAY

Abstract: A quadratic positive definite Liapunov functional

that yields necessary arid sufficient conditions for the asymp-

totic stability of the solutions of the matrix difference—

differential equation cJ~~( t~/ = Ax(t) + Bx(t-r) is constructed

and its structure is analyz
A
ed. The method of construction is

a natural generalization of the same problem for an ordinary

differential equation, and this relationship is emphasized.

1. Introduction.

In this note we construct a Liapunov functional for the

determination of the asymptotic behavior of the solutions of

the linear autonomous matrix difference-differential equation

with one delay

k(t) = Ax(t) + B x ( t — T ) ,  t > 0,

where x(t) is an n-vector function of time, A and B are con-

stant n x n matrices and t > 0.

In this note, we generalize results presented in [7] for

a scalar equation; essential to this generalization was the
‘ S.CtM 0

study , presented in (2], of the existence, uniqueness and struc— 0

ture of the solutions of a special functional differential equa—
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2.

tion which is intimately connected with the construction of

the Liapunov functional presented here.

The problem of constructing Liapunov functionals for

equations of this type has been previously considered by Repin

(8], Datko (3] and Hale (5,6]. This study is in the spirit of

the previous ones, but is more specific.

2. The Difference—flifferenLjal Equation.

Denote by L2 ([a ,b],~~
2
~) the space of Lebesgue square

integrable functions defined on [a,b] with values in .
~~~~~~~~~

, and for

a fixed t > 0 consider the Hu bert space = x

T Twith inner product <u 1,u2> = v1v2 + J 41(O)4 2 (0)dO , where

u1 
= ~~~~~~ E ~~~~~, and the naturally induced norm isJ (v,~~) =

+ 1_I With x: [—T ,00) -~ I~~~, for t > 0 we denote

by x~ the function x
~
: [-i,0] + ~~~~~~~~~~ where x

~~
(O) = x(t+O).

Consider the matrix difference—differential equation

~ (t) = Ax(t) + Bx (t—t), t > 0, (2.1)

where A ,B are n x n matrices, x(t) is an n—vector and T > 0,

together with the initial conditions

x0(0) = ~~~, x0 
= 

~~~, (2.2)

where (E;,~~) E ~~~
‘.



3.

A solution of this initial value problem is for each t > 0,

a function x E L2 ([-T ,t],.g~~) such that x is absolutely

continuous for t > 0, satisfies (2.1) a.e. on [O,t] and

x(0) ~~~, x (O) = 4 ( O )  a.e. for 0 E [—t, 0]. It is known [1 ,6]

that (2.1)—(2.2) has a unique solution , defined on [-T ,~~ ) ,  which

depends continuously on the initial data in the norm of ~~~
‘.

The initial value problem (2.l)-(2.2) can be rewritten as

x (0)  x ( 0)1~: I = d l t } (2.3)

(x0(0),x0
) = (

~ ,4 )  E ~~~~~~ (2.4)

where

xt
(O) Axt(0) + Bxt

(_T)

= ~x (0) , ( 2 . 5 )
xt go ,— T < 

—

and this operator has a domain , dense in .W’~ defined by

= {u ;,4~
) E ~~ 

q is A.C. in [—i ,O],

E L2[—t ,0], ~~0) =



The operator iI is the generator of the C0-semigroup Sit) , where

Sit) : i~~
’-~~~~ ’ is given by V(t)(~~,~~) = (x(t),xt)i the

solution pair of (2.3), (2.4).

It is known [1,6] tha t there is a constant y such tha t the

spectrum of d lies in the left—half plane Re (A) < y , and that

for every E > 0 there exists a constant K > 1 such that

I .V(t) I I  
~~~~~~ 

< ~~~~~~~~~ (2.6)

The spectrum of d consists of those complex A which satisfy the

characteristic equation

det[AI_A_Be A T ] = 0. (2.7)

Finally,  [5,6], a useful representation of the solutions of (2.1)

is given for every t, u > 0 , by

0
xt+~~

(O) = S(u)xt(0) + j
T

t 
(2.8)

where the matrix S is the solution of the ma tr ix in itial value

problem

5 (t ) = S(t)A + S(t—r)B,

(2.9)

S(0) = I, S(t) 0 for t < 0.

We now turn to the construction of a Liapunov functional.

~~~~ ~~
•t:: - -
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5.

• 3. A Quadratic Functional.

Associated with the functional differential equation

(2.l)-(2.2), or (2.3)—(2.4), and motivated by the results in

t 7 3 , we wish to consider the real symmetric quadratic form on

V(~~~ ) = ~
TM~ + e

6T +

+ ~TQ(0)~ + 2~ T 
f

O 
(3.1)

+ 2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- Here 6 is a real number , M,R are constant n X n real positive

definite matrices and Q(ct) is a continuously di f ferentiable matrix

that is assumed to satisf y the initial value problem for the

functional differential equation

Q’(c~) 
= (AT+ 6 I ) Q ( c L ) + eâT BTQT (T_ a ) ,  0 < a < T (3.2)

Q(0) = Q(0)T = Q0
, (3.3)

where the superscript T denotes transpose and Q0 is a symmetric

but otherwise arbitrary matrix.

Evaluation of the Fr~chet differentiable Liapunov functional

(3.1) along the solutions of (2.3)—(2.4) with initial conditions

in ~ (d) yields a function of time , which we denote by

v(t) = v (xt(0),xt). This function of time is differentiable along 

~ —~~~- • — - ~~— - - 
~~~~~~~~~~~~~~~~~~~~~~ 

--- - -
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such solu tions , and a laborious but straightf orward computa tion ,

which makes use of (3.2) and (3.3), shows that the derivative of

this fun ction along these solutions is given by

= 
~~~~ 

V(x
~~
(0),xt) = —26v(xt(0)i xt

) + (3.4)

+ x~~(0)[(A
T÷óI)Q(0) + Q(0) (A-1-6I) + (AT+oI)M + M (M-óI) +

+ e6TBTQT(T) + e~
TQ(T)B + 2e6’R ]x

~~
(0)

— eót h (xt(0) ,xt
( T ) )  U(x

~~
(0) ,x

~
) ‘

where

ER MB~~E xt
(O) 1

h(xt
(O),xt

(—T)) = [x ~~( O ) , _e dT x~~( _ T ) ] I  
T H —6 

( . ( 3.5)

LB M RJ L_e Tx (_
Tfl

A direct application of Theorem 3.9 of [9] shows that for

any solution with initial condition on ~~~
‘
, V(t) < U (xt(0),xt).

It is our purpose to show that , through the fun ctional

(3.1) and its derivative (3.4) it is possible to estimate the

rate of growth or decay of the solutions for our original func-

tional differential equation (2..3)—(2.4). For this purpose

appropriate choices mus t be made for the positive def in i te matrices

M and R, of the constant 5 and of the matrix Q(a) determined

by (3.2) and (3.3).
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7.

To be more specific , denoting by y = max ffle A ( det[AI-A-

Be At
1 = 01 , we wish to show that for every E> 0 and

—6 = y + 2E it is possible to choose matrices M,R and Q ( c t )

satisf ying (3.2) and (3.3) for which there exist positive constants

c1,c2 such that

< V(~~~ ) < c2 l~~~,$ )lI , ( 3 . 6 )

and

< —26V(E ,~~) . (3.7)

These last relationships imply that {V (~~,~~) ~
l~’2 H (~~ 4 )  H is a

norm equivalent to the original norm on ~~~~
‘ and that, in this norm

H (xt(O)ixt) I ~ Hx0(0),x 01 I~,e_ ó t , ( 3 . 8 )

whereas in the original norm on

• c 1/2 tI I (x t
( O)  ,X

t
) I 

~ 
i i  (x0(O) ,xo) I ~~~~ , C

6 
. (3.9)

These estimates are precisely those stated in (2.6) and are the

best possible. It should be noted that the norm induced by the

square root of the Liapunov functional is the best possible one

in the sense that it yields (2.6) with K = I. Moreover; if

— -• -- 
-
~ 2~~~!~~~

•
~ 

-
~~~:
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y < 0, then the Liapunov functional (3.1) shows that

t2.l)— (2.2) is uniformly exponentially stable.

First of a ll, consider an appropriate choice for the

matrix Q(cz), a solutiOn of (3.2), (3.3) for 0 < a < r. In [2)

it was shown that equation (3.2) with initial conditions (3.3)

has a unique solution ; moreover, it was shown that the linear

vector space of all solutions of (3.2) has dimension n2, and

the structure of these solutions as well as simple methods of

computation which take advantage of the particular structure of

the equation were presented .

Associated with equation (3.2)—(3.3) is an integral , whose

structure is motivated by a simi.’ar in tegral for ordinary  d i f fer-

ential equation. Indeed , let W b~. a symmetric matrix and let

S(t) be the solution of equation (2.9. . Consider the expression

Q(c&) = J S
T(u)e 6UWS(u_a)e6~~

_
~~du. (3.10)

0

Since, for every E > 0, I IS(t) II < ke~~~~~
t for some K > 1 and

since 6 = —y — 2E, it follows that this integral converges. More-

over , it immediately follows from the definition of Q(a) that

Q ( c z )  = QT(_a), Q(o) = QT(0) and, since S(t) satisfies (2.9),

that Q(c *) satisfies

—.4
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= (A T+61)Q(ci) + BTe6TQ
T(T_ct), 0 ~ CL < I

(3.11)

~T(0) = Q(0) = f S
T(u)e 6h1WS(u)e6~

1du

and , moreover , given the continuity of Q(a), that

Q ’(O) + Q ’T(0) = (A T+61)c)(0) + Q(0) (A+6I) + BTC6TQT(T) + Q (t)e6’B

(3.12)
= _5T(0~~ = ~w.

These observations , and the uniqueness of the solutions of

(3.2)— (3.3), show that Q(a), defined by (3.10), is the unique

solution of (3.2)—(3.3) with the initial conditions prescribed by

the second equation of (3.11).

It is easily seen that the map W -
~~ Ô (O), def ined by

Q(0) = 
I:s

T u e 6h1ws u e 6udu ,

as a map on the space of n x n symmetric matrices is one—to-one ,

onto and it maps positive definite matrices W into positive

definite matrices c~(0).

With this particular characterization of the matrix function

~ (c*) it is possible to bring into evidence the particular structure

of the Liapunov functional (3.1).Indeed , substitution of (3.10) into

- ~~~~~~~~~~~~~~~~~~~~~~~~ - -  - - -
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(3.1) fo~ c!(c*) yields , after some rearrangements and interchanges

of integrals , that our functional is of the form

V(xt(O),xt
) = x

~~
(0)t.1x

t (O) + eóT f x
~~
(0)Re 2

~~
xt (0)d0

(3.13.)
+ I xt+ (0)we 2

~~
xt+~~

(0)du.

Simi lar ly ,  using this notation , equation (3.4) becomes

U(xt(0),xt) 
= _26v (x

t(O) ,xt) + x~~(0) [—W + (A T+aI)M + M (A+óI) +

+ 2e
6t
R]xt(O) 

- e
6t
[x~~(0) ,_e 6Tx~~(_T)] [ ] [ t ~~~~~~

j. 
(3.1:4)

Given the nonnegative nature of the last term in (3.13) it

follows that , letting Amjn (A) denote the smallest eigenvalue of

a symmetric matrix A ,

m i n ( A nin U4) ,e_ I
~~~

T A min (R ) ) ~J (
~ ,4 )  V (~~,q)

yielding a value of c1, for equation (3.6), given by

C
1 

= min(A min (M) ,e I 6 I T A min
( R) ) .  (3.15) 

-~~~~
-
~~ • - - - - -
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Similar ly,  since from ( 2 . 6 ) - ,

l ix  ( 0 ) 1 1  < H(x ( O ) , x ) j I Ke~~~~~
U

ll ( x  (0),x ) J J
U ~4~n -  u u - 0 0

it follows that

A (W)
V (~~,~~) < [max{A max (M) ,e

l ó I T A max (R) } + 
max K 2 J I I ( ~~~) I~~.

This yields for equation (3.6) a value of c2 given by

A (w )
c2 

— max[A (M), e~~~
l t A (R)] + 

max K 2 . (3 . l~~

It remains to be shown that  equation ( 3 . 7 )  holds. For th is

purpose inspection of equation (3.14) indicates that it is necessary

and sufficient to show , by appropriate choices of positive definite

matrices W ,R and M , to have the matrix

Tw 
— (A÷6I)Tt4 — 

~-I(A+~3I )  — Re6T MBe 6~l
G = I (3.17)

LB
TMe6T Re6T]

positive semidefinite. But this is always possible; indeed , a

particularly simple choice of such matrices is to let W ,R and

M to be nonnegative multiples of the identity matrix , i.e.

M = I , R = kRI and W = k
~

I. Letting k R = v~A max~~~
T ) and 
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~~ = max ( 0 , A max (A +AT ) + 26 + 2eóh/Amax (BB
T))~

then (3.17~ is lositive seinidefinite and therefore , for these

choices of ~1,R and W ,

‘
~
r(x

t(0),xt) 
< _26v(x

t(0),xt) 
(3.18)

for every (xt (O),xt) E ~~

• - It is to be noted that , with these choices , the Liapunov func-

tional is particularly simple and reduces to

V(xt (0)i xt
) = x

t
(O)xt (O) + e ~ A ( 13B ) J x t (0)x t (o)o dO +

+ max{0,Amax (A+A T) + 26 + 2e6T/Amax (BBF))• (
~~ l9~

J~
xT (O)x (O)Q265ds.

This funct±onal is a direct generalization of that used in (7], and

generalizes those used by 1-lale [5,6] and Datko [31 . We recapitulate

the above results in the form of a

• ~~~~~~~~~~~ L~~ 
-
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Theorem: Consider the retarded equation c (t) = Ax(t) ÷ Bx (t—t)

and the LiapunoV functional V given by equation (3.1). If

y = max {Re A~ det [ A I ~ A~ Be A T 3 = 0) and E > 0, then there

exist constant positive definite matrices M and R and

a differentiable matrix Q(a), 0 < ci < I with Q(0) =

such that the functional V is positive definite, bounded

above, and V < 2(y+E)V.

of course, if y < 0, the above result implies exponential

asymptotic stability; moreover , the ra te of decay is precisely the

expected one.

4. A Comparison with Ordinary Differential Equations.

In this section , it is our object to point out the intimate

relationship between the results obtained for our functional equation

and the classical results on the construction of Liapunov functions

for ordinary differential equations.

Recall, [4], that given the system of ordinary differential

equations

*(t) = Cx(t) , (4.1)

where C is an n x n matrix , a Liapunov function for this
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system can be always taken as the quadratic form

V(x) = (4.2)

where P is a positive definite matrix. Moreover , if

y = max{fle A l det[AI—C] = 01 and if, for E > 0, —6 = y + 2E,

then given an arbitrary positive definite matrix W, the algebraic

equation

(C+6I)Tp + p (C+61) —W , (4.3)

has a unique solution P which is positive definite. This matrix p,

if used in (4.2) along the solutions of the differential equation

(4.1) yields, upon differentiation,

C(x(t)) = —26V(x (t)) — 
Tw < —26V(x(t)). (4.4)

Furthermore, the unique positive definite solution of (4.3) can

be obtained as the integral

= 
i~~

CT%6
~~e~~e

6
~~ u. (4.5)

Let us now bring into evidence the relationship between the

results obtained in the previous section and these results. T~’~
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func tional differential equation under consideration is

cc (t) = Ax(t) + Bx(t—t), t > 0 . (4.1’)

Once again , we assume that y = max{Re A l det [AI_A_BC AT ) = 0)

and , for E > 0, let —6 = y + 2E. The Liapunov functional is

then of the form

V(xt(0),xt
) = x

~~
(0)Mx

t
(0) + eóT J x ~~(0)Re

260xt(0)d0 (4.2’)

+ x
~~
(0)Q(0)x t(0) + 2x~~(0) I Q + t ) e

6 + Bxt
(T)dO +

+ 2 

~ J x ~~
(a)BTQ(~ _a)e

6 +
~~

2T)Bxt(B)d6da.

The choice of the positive definite symmetric matrices M and R

in this expression is rather arbitrary. Their purpose is to insure

the strict positive definiteness of the functional on the Hilbert

space ~~~
‘; it should be noted that if M = R = 0, the functional

(4.2’) is positive, but does not satisfy a relationship of the type

v(xt(0),xt
) > ci II (x t (O) ,xt)l

~~, 
for c1 > 0. The requirement that

the matrix G of equation (3.17~ he positive semidefinite is always

satisfied for M = R = 0 and W positive semidefinite. Given an

arbitrary positive definite matrix W , it is always possible to

select positive definite matrices M and R so that G is positive

semidefinite.

- ~~~±~~“ •
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The choice of the continuously di f ferentiable matrix Q(a),

0 < a < t is critical. Given an arbitrary positive definite matrix

W it must satisfy the functional equation

Q ’ (cz ) = (AT~t~6I)Q(cL) + j3T~ óTQT(~ _~ ), 0 ~ a <

T (4.3’)
Q(0) = Q (0),

with the condi tion

(AT+6I)Q(0) + Q(0) (A+61) + BTe6TQT(T) + Q(T)eóTB = -W. (4.3”)

In the previous section it was shown that such a Q(ci) always

exists and is unique.

With such a choice of Q(a), one then obtains that, along all

solutions of the functional differential equation (4.1’)

V(xt(0),xt
) <_26V(x

t(0),xt). (4.4’)

Moreover , such a matrix Q(ci) exists, is unique and a representation

of it is given by the integral

Q( a ) = 
f

m
sT(u)e6UwS(u_a)e6~~

_
~~au, (4.5’)

where S(t) is the solution of equation (2.9). 
- •  --
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The strong relationship between the unprimed and primed

equations is now clear. Indeed , note that for T = 0, the matrix

C in (4.1) becomes A + B and the matrix P in (4.3) becomes

Q(0) + M and all the primed equations become the unprirned ones.

Equations (4.3’) and (4.3”) are of a much more complex

nature than the familiar algebraic equation (4.3). However, in

spite of its appearance, the linear vector space of the solutions

of (4.3’) is not infinite dimensional but , as was pointed out in

the previous section, has dimension n2. Hence, although the

problem of construction of the Liapunov functional for the func-

tional di f f e r ential equa tion does not reduce to the solution of

an algebraic equation such as (4.3), it reduces to the solution of

a linear d i f f e r e n t i a l  equation , equation (3.10) , wh ich ca n be

accomplished without difficulty.
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