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A FINITE DIFFERENCE TECHNIQUE FOR SOLVING OPTIMIZATION PROBLEMS

GOVERNED BY LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

by

Douglas C. Reber

Abstract: Aspects of the approximation and optimal control of systems governed
by linear retarded nonautonomous functional differential equations (FDE) are
considered. First, certain FDE are shown to be equivalent to corresponding
abstract ordinary differential equations (ODE). Next, it is demonstrated thaf
these abstract ODE may be approximated by difference equations in finite
dimensional spaces. The optimal control problem for systems governed by FDE i=
then reduced to a sequence of mathematical programming problems. Finally,

numerical results for two examples are presented and discussed.
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1. Introduction
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Our concern in this investigation is with the approximation and optimal
control of systems governed by linear retarded nonautonomous functional differ-
ential equations (FDE). After presenting some basic properties of solutions of
FDE in section 2, we demonstrate in section 3 that certain FDE are equivalent to
corresponding abstract ordinary differential equationsc(ODE). This equivalence
leads to two significant results. The first is the validily of a "variation o
constants" representation of solutions in the state space R" x L2(-P,0;Rn).

(A similar result was obtained by Delfour [7]; such representations in the

state space C(-r,O;Rn) are well known - see Hale [10, p. 207].) For our
purposes, the importance of this observation lies in the fact that a compactness
property of the variation of constants representation also obtains for the
solution map of FDE. The second result is that a finite difference technique,
similar to those used in the field of partial differential equations, may be
employed to approximate solutions of FDE. These results are discussed in
sections 4 through 8.

The operator theoretic framework for the approximation of solutions
of FDE requires an investigation of sufficient conditions (known as the
stability and consistency conditions) for convergence of approximate solutions
to the true solution. Other, more routine details of the particular scheme
we have chosen are incorporated in the definitions and interrelationships of
various spaces. The scheme itself has beer studied by Delfour [7] by a more

direct approach. One objective, therefore, of this investigation is the re-

formulation of an existing technique in such a manner that certain essential




features are emphasized. An immediate additional benefit is that more

general optimization problems than those considered by Delfour [7] (linear-
quadratic) are seen to be easily handled.

The finite difference technique leads naturally to the definition of
a sequence of mathematical programming problems. The o?iginal optimization
problem (i.e. that which is governed by a linecar FDE) is shown in sections
9 and 10 to be the "limit" of these approximating problems, in the sense that
the corresponding eoptimal controls, payéffs and trajectories all converge.

We then discuss numerical results for two examples in sections 11
through 13. Standard techniques of numerical analysis were applied in each
case to solve the approximating problems. The first example was chosen for
its simplicity, so that an analytical solution would be readily available;
the second is associated with a biochemical process.

Finally, some concluding remarks on the above technique are made in

section 1U4.

Most of the notation employed is standard. In particular, given p > 1,
a closed interval I and a Banach space X, the symbol LD(I;X) will denote the
set of (equivalence classes of) strongly Lebesgue measurable functions
f: I~ X for which fI|f|p < o, LP(I;X) is made into a Banach space by defin-

ition of the usual norm |-|I . The PRanach space of continuous functions with

(1)

» (I3X) denotes the set of

the supremum norm will be denoted by C(I3X).
absolutely continuous functions from I to X whose derivatives are in

L2(I;X). For Banach spaces X, Y the symbols Z(X,Y), P(X) will represent

the usual sets of continuous linear transformations with the uniform




operator topology. The spaces R" and g will be endowed with the euclidean
and spectral norms, respectively.

Given arbitrary sets G, H with G C 1, define ch(G,H) as the
characteristic function of G. We shall assume that the positive integers
m, n, « and v, the positive number r and the numbers a, b with b > a are
fixed. For a function f defined on [a-r,b] and t E}[aéb], the function ft will
be defined on [-r,0] by ft(O) = £f(t+8). The symbol A will denote the set
{(t,s): ac<s<t<b}.

Several results are stated without proof in the sequel; unless otherwise
indicated, proofs may be found in Reber [15].

The author wishes to express his appreciation for the helpful comments and

suggestions of Professor H. T. Banks.

2. The Initial Value Problem

For the moment, consider an FDE as an equation which relates the deriva-
tive of a function x: [a-r,b] - R™ at time t € [a,b] to the values of a given
function f and an operator L(t,:) acting on x, as an element of L,. Thus we

write
x(t) = Lit,x,) + £(t)
(x(a),x ) = (n.4).

It might appear that some simple FDE may not be formulated in this way.

For example, consider #(t) = o(t)s(t~1) with e € lb(a,h;R). The difficulty

lies in the fact that for a given (t,4) G:fﬂ,h1’L? the value e(t)¢(t-1) is

not well defined. This is merely an inconvenience, since we may reformulate
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the problem as

i

®(t) = n + f [L(s,xs) + f(s)]lds,
a

xa = ¢

just as is done for ODE satisfying the Carathéodory conditions.
Several preliminary definitions are vequived to doaoribe the TDE under

consideration. Let the Banach spaces Z, A, £ and I' be given by

n

2= R" % LQ(—r,O;R")

Vv <
A= Lo(a,bs(XRT™) x 1 (-r,05R" ")),
) < )

E = ¢(a,b;2) and
F = Lz(a,b;Rn).

A generic element of Z will be denoted by 7 = (r,,4). The norms of 2

v
and (X Ran n) are the usual norms for product spaces. A
0

generic element of A will be denoted by X = (AO’°"’Av’D); the com-

)XLQ(—P,O;Rnx

ponents AO""’Av may be considered elements of L2(a,b;Rnxn) and the

X
component D may be considered an element of LQ([a,b]X[—r,O]; RY n)

Let W denote the subset

W= ((n,$)E2: ¢ Ew;”, n=4(0)}.

n

Now define the operator L: [a,b]xL2(—r,0;R")XA + R by

0
v
L(tyd) = Lltyd,2) = § Ai(?)¢(—ti) + I D(t,0)4(6)d0
0

-




where 0 = PR Rt S < and \ = (AO""’Av’D)' Ye remark that although in

a strict sense L is not well defined (point evaluations of X and ¢ are required),
no problem is encountered because these terms will appear under an integral
sign in our usage below.

Thus we consider FDI of the form
xCt) = L(t,xt,x) + F(1) (EORRE)
with ()2,f) € AxF and initial value

(x(s),xg) = € Z, s € [a,b] Fixed. £2.2)

A function x is a solution of the initial value problem (IVP) given in equa-
tions (2.1), (2.2) if: RE Wg])(s ,b3R0) , x satisfies equation(2-1)almost
everywhere in [s,b] and (x(s),xs) satisfies equation (2.2). (For convenience,
when s = b define a solution of the IVP in the obvious way.) Our discussion
will concern only this restricted class of FDE.

We now describe some properties of solutions of equations (2.1), (2.2).

2.1 Theorem. There is a unique solution of equations (2.1), (2.2) which

depends continuously on Y = (s,z,A,f) in the sense that the map (t,Y) -

(x(t37),x (Y)) is continuous on AxZxAxF into Z.




Define the operator V: AxAxZ + Z by V(t,s,A\)r = (x(t;s,5,A,0),
xt(s,c,x,o)). One may easily see from the above that V is contin-
wous and is linear in r for fixed (t,s,\). Therefore, whenever B C A is
relatively compact, there isby the uniform boundedness principle, a constant
M (depending on B) such that sup{lv(t,s,k)léa(z): (t,s,)) €AxB} < M,
Uniqueness of solutions of the JVP implies that V(t,s)%= V(t,1)V(1,s) and
¥(s,8) = I for all a < 8¢ ¢ =t < b, It is casily verificd that ¥(t,s5,1)
takes W into itself for all (t,s,)) € AxA.

When dealing with linear ODL in Rn, the variation of constants formula
provides a very useful explicit representation of solutions. The map ¥
defined below retains the form of this expression; that it indeed represents
a solution of FDE, and in what sense, will be demonstrated in the next sec-
tion.

Let ¥: ZxAXF >~ E be given by

t
YT A L)t = Ve, a,0)c + [V(t,s,n(f(s),o)ds.

a

The existence of the integral in 7 is assured by the uniform boundedness of
V over Ax{)X} and the strong measurability of the map s * V(t,s,x)(£f(s),0).
Now define z: ZxAxF - E
2(L,A,£)(t) = (x(t,a,c,\,f), x(a,0,0,F)).

We list some properties of the functions 2z and Y which will be of

interest later (e.g. in the proof of Theorem 3.14).
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2.2 Lemma. The functions 2z and Y from ZxAXF to E are continuous.

Furthermore, for each fixed (z,A\) the map f > ¥(z,)\,f) is affinre and

compact.

3. Equivalence of FDE and abstract ODk :

In thic section we shall establish a relationship between solutions of
certain FDE and solutions of corresponding abstract ODE in the space Z.
For this part of our discussion we will require that A be contained in a

proper subset of A. Therefore, define the set

nxn) an))

v
I\c = Cl(a,b;(X:R YL?(—r,O; R
o )

of continuously differentiable functions on [a,b]. Define a norm on AC by

IAIC = z IAjlc + |D|C, where each Aj is conzidered an element of C(a,b; R

0
and D is considered an element of C(a,b; I (-r,0; R

nmy
It is not difficult to see [ 8, lemma 19, p. 298] that for a separable
Banach space X, C](a,b; ¥) is dense in LQ(a,b;X). Thus AP is dense in A.

The following lemma is given for reference; its proof follows from

Theorem 2.1.

3.1 Lemma Suppose y = (g,),f) € WxAxF, Then the function (t.s) = xt(s,y)
€ c(-r,05R") is continuous on A. loreover, the function (1,s) = L(t,x (s,Y))

is continuous on A for v GEWYACxF.




Let of [a,bJXAqxw -+ 7 be given by o/ t)(p(0),) =aZ(t;2)(w(0),p) =

(L(t,p,x), }). Consider the initial value problem
y(t) =g/(r3))y(t) t € [s,b], s € [a,b] fixed, (3.1)
y(s) = £ € W. ; (3.2)

A solution of equations(3.1),(3.2) on [s,b] is a continuous function
y: [s,b] > W which satisfies equation(8.1)on [s,b] (one-sided derivatives to

be taken at the endpoints) and is such that y(s) = z. (For convenience,

when s = b define a solution of the IVP in the obvious way.)
The following definition is essentially that which appears in Krein

21, p.19815

3.2 Definition The IVP given in equations (3.1, (3.2) is uniformly

correct if:

i) for each sela,b] and 7 € W there is a unigue solution of the IVP,

ii) each solution y(t,s,5,)) and its derivative %T v(t,s,z,\) are con-

tinuous for (t,s)& A and fixed (g,\), and
iii) the solution depends continuously on the initial data in the sense
that if Ci € W and ci + 0 then the correspending solutions con-

verge to zero uniformly relative to (t,s) € A.
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3.3 Lemma Given A GEAC, there is an equivalent inner product topology on

Z and a positive w = w()) such that Z/(t;))-w())I is maximal dissipative for

each t € [a,bl.

Remark The idea of redefining the inner product is related to similar defini-

tions in [37] an! [181. This and the following lemma are required for the

proof of Theorem 3.5.

Proof Define ZA = R" x L2(-r,0;Rn) with inner product SRy s where

=\

v j=1 '
<(n,¢),(d,‘b)>>‘ = <n,0> & + ); Bj J <"b(ﬂ)"b(0)-“‘“ 40
R i R
-T.
J
Vv
and B, = 1 + Z IA.l o It is easy to see that
j i i'c

|01, < (o], < 812 e ],

so the topologies are equivalent.
LE (nj,¢j) > (n,¢) and.&/(t)(ni,¢j) =+ (a,1) then:

i) ¢. > ¢ and $. + ) in L, imply that

J J g 2

$(0) + [1(0)do and ¢i +> ¢ in C(-1r,03R™), and
O -

"

$(0)

n
ii) ni +n in R implies that ¢(0)

"
=

¥

So (n,$) € W, Furthermore ijf)(ni,¢.) Ct)(n,d), i.0. ¢(t) is closed.

]
Let w(}X) = 1 + IAIC. To see that ¥ (t)-wl is dissipative on its domain
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0
\Y)
<J¥(t)(n,¢),(n,¢)>l = Jen,A (t)d(-7.)> + <n, I DC1,0)d(0)dn>
. 0 i iRy RN
e 5
v -Tj-l ”
+) B J <$(8),4(0)> do
] R"
=T
1
v 9 v 2
& [|A0(t)|+(1/2)Z|Aj(t)|]|n|' + (1/7)Z|Aj(t)||¢(-tj)|
1 1

2 v
e Qo] nlZxaza e sl amiiad (o]’
: 1
b 2 2 2
= (1/2)Z[Aﬁ[pl¢(—rj)| + (1/2)|n]" - (1/2)]#(-p)]

J -
< [(1/2)(1+]p| )+§|A | ]|n|7 v (1/2)|n| |¢|7
ot R < s ki ‘le

2

< U]+ 12|, 05

= (w ~ 1/2)|tn 0912,

LR
where we have repeatedly used the inequality eq < (1/2)(c +d").
It remains to show that ¢(t)-wl is onto, which will estabiish maximal
dissipativeness. Fix (a,¢) in Z. Let ¢ € L, be a solution of the OPE ¢-wé = ¢35 in par-

?em(e-s)

ticular let ¢(0) = ew9¢(0) + P(s)ds. Cleariv (4(0),4)€ Wi we need

only demonstrate that ¢(0) € R" may be chosen so that L(t,4) -wd(0) = a.
Write
0
v
L(t,d,)) = ) Ai(t)¢(—ri) + [ D(t,6)¢(6)d0
0 -
-r

as H(t)¢$(0) + g(t,y), where
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P T, O wh
HCE) = Je  JA.(t) + fe' D(t,0)de ,
0 ! J
-
and
i 0
\Y) T-j u)(—T_i-S)' 0 1‘(0'—")
S GETE )= ZAj(t) f o ; h(s)ds + J D(1,0) ]ﬁL (s )dsde.
Ly 0 =T 0
The equation L(t,d)-wd(0) = a« has a solution if H(!')-wl is invertible,
ice. if (H(t)-wI)$(0) = «-G(t,W) has a so'ution. Ohserve that
s o)
R
[HCE)] < J)AL] .+ {J D dq}‘/2|D(t)l
= g L L
0 2
=
£ Ik,
¢ 2w8 o2 =20y 51 /2
since (f e”"do) ' ° = [(1/20)(1 - e )17 < 1 by choice of w = 1+|>‘|c o

1. Consequently (H(t)-pI) U exists and has norm no greater than one. Hence

¥ (t)-wl is onto. /117
3.4 Lemma I(LVTt)—uI)-li < (n = o+ 1/’2)—1 for all u > w()).
S ﬁ?(ZA - e

Proof Suppose ¢ €W and v > w. Let § = (/(t)-puI)z. Then

~<E >, = < Y(t)r,z>

s L7y ey ek

X \?

So —<5,g>A > (- w+ 1/2)<t,5”

. Since —<E,c*\ i_‘fletlx we have

A

TR



1y

= -1
'Clx < (- w0+ 1/2) 1|g'x = (p - w+ 1/2) I(JﬂTt)-uI)EIA-

= 5y
Therefore |(/(t)-pI) "] < (n-uw+ 1/2) 7. /77
7 58(zx) -

The following theorem will enable us to conclude that solutions of the IVP
(3.1), (3.2) (if they exist) are unique and depend continuously on the initial
data in the sense of part (iii) of Definition 3.2. The basic idea of the

proof may be found in Krein [11, p.20u4].

3.5 Theorem Every solution y of equations (3.1), (3.2) satisfies the in-

equality

’Y(t)lz_i H(A)ew(k)(t—s)lc’z’

v
where, M(1) = (1 + ) |A,| )1/2
TAls

Proof We again find it convenient to use R By 'he definitions of

derivative in 7 and of a soluticn of the IVI,

(y(t+e,s) - y(t,s))/e » ov(t)y(t)

as ¢ + 0. Hence
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y(t+e,s) = [I + egf(t)ly(t,s) + o(e)
9 2 : =l
=[E - e (D)1 - ef{t)] "y(t,s) + ole)
=01 - e 'y(t,8) - 2O - e ' (1)y(t,s) + ole).
In view of Lemma 3.4, for 1/e > w(}) we have L
311 x e
I[1 - eoAt)] l-@("*x’ = (1/e)|U1/e)T - /(1)) ‘»Q(Zx)

< (1/e)0(1/¢) - et

=1+ ew + o(e).

Thus

‘y(t+e,s)|x 5_|y(t,s)|A(1+cm)+e|g/(t)[(l/c)I—QV(t)1"1Q¢(|)y(v,s)|x+o(c).
Since ¥(t)-wl is maximal dissipative, we may apply a resuit of Pazy

(14, Lemma 3.2, p. 10] to conclude that for all w € 7,

(1/e)([wt(1/e) 1T - L%Tt))—lw > Bole b 0

This implies that u[ulﬁgﬁTt)]_]w »>was p > o (multiply both sides by 1 + ew;

let p = (1/e) + w)., For 1/e > w we have

(/) (/)=o) T = w = AOLC/e)T-7(1)]1 N

Therefore _Q((t)f(l/c)l—qut)]—‘w +0as ¢ +0 for all w €& 7, and so
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(JyCtre )|, - [y(t,9)]))7e < uly(t,s)], + 06e) + ofe)/e
for all € with 1/e > w. Hence
6+|Y(t’S)|X _<__u)|y(1‘,s)|A

where 5+ indicates the upper right derivative.

i , b it
If f €EC(s,t3R), then (see 129, pp. 239,210]) D £(0) > 0 on [s,t] implies

—(1,\( ) )0
e |

that f(t) > f(s). In particular, for £f(8) = - v(B,s)'l we find that

Iy(t,'s)lA ew(x)(t-S)ly(s,s)l

| A

x° il

ly(t,o)], < M7, /111

| A

Several more lemmas are required to establish the relationship hetween FDE
and abstract ODE. The proof of the following result follows a standard

argument (see [19, p.239]); we state it here for sake of completeness.

3.6 Lemma. Suppose X is a Banach space. Let x €C(a,b;X)

b ch that % (t) exists and is continuous on [a,b). Then %X(!) exists on

[a,b] (one-sided derivatives to be taken at a, b) and

t t
x(t) = %(a) + f x(g)ds = =x(a) + I i}(s)df
a a

for all t € [a,b].
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Proof (1) We first show that for s € [.a,b), 2.
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37 Lemma (1) _For every X € A, and s € [a,b) the derivative %(t,s)g

exists in Z for t € [s,b] and equals (t)V(1,s)z, if 7 €W,

(2) Similarly, if + € (a,b] and 7 €W, the derivative

%—Z—(t,s)a‘; exists ir_x_ Z for s € [a,t:].g_n_g equals -V(t,2)¥(s)r.

(One-sided dérivativgg are_to be taken at the endpoints.)

I

+
mV(t ,8)7 | s exists if

LE M.

Suppose (n,$) = 7 € W. Then Lemma 3.1 implies that

ste
(l/e)f L(O,xe)df) -+ L.(s,xs)
s

as ¢ + 0. It is an elementary fact (see {9 , p. 25ul]) that x €& Lz(s-r,b)
implies (l/c)(xs+c—xs) > (x)S in [.2(-—r‘,_0) as e 4 0,

Using the fact that 7 € W, the definitions of @¥(t) and V(t,s), and

Lemma 3.1, we may conclude that the functiont » (y/( t)V(t+,s)r, is continuous

on [s,b). Hence the function t » V(t,s)r is continuously right differentiable

’.
on [s,b).Therefore , Lemma 3.6implies that V(! ,z)r = 7 + ,!_CV(O)V(O,s)ch for

all t € [s,b], and thus the desired concluzion.
(2) Fix t €(a,b]l. Then for s € [a,1); ¢ > 0 sufficienily small,

and r € W we have
(1/eM Vit ,s+e)-V(1,5)]z = -V(t,s+e )1 /e V(ste ,s)-T1r.

The limit of the right-hand side as € + 0 is -V(1,s) (=), (by the results
of part (1), the uniform boundedness of V(t,s) over A and the continuity of
s +» V(t,s)w for all w € 7).

The strong continuity of /(s) over W and the uniform boundedness of

V(t,s) over A imply that the function s » =V(t,s)y(s)r is continuous.
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Therefore, we may again use Lemma 3.6 to conclude that for s € [a,t],
t
V(t,s)y = ¢ + JV(t.,o),cx/(o)z;du. /1)
s

Part (1) of the above lemma is also true as an "only if" statement -

for details, see [15].

We may now relate the solutions of equations (3.%),'(3.2) to those of

equations (2.1), (2.2) when f = 0.

3.8 Theorem For X € A_ and 7 € W, V(-,5,M)C is the unique solution of

equations (3.1),(342).Furthermore, this IVP is uniformly correct.

Proof Theorem 3.5 and Lemma 3.7 imply that V(-:,s,))z is the unique
solution of equations (3.1), (3.2). Uniform correctness then follows
immediately from Lemma 3.1 and the corresponding properties of solutions

of equations (2.1), (2.2). 1/l
We turn now to the inhomogeneous case. Thus we consider the IVP
y(t) = f(t)y(t) + glt), (3.3)
y(s) =z EW; s Elab] Fixed . (3.u4)
While equations (3.3), (3.4) represent the problem we wish to solve,
technical considerations (to be discussed below) require some slight
modifications. In particular, for s as in equation (3.4) and w = w(}) ,
-
define gift) =gf(+) - wI and gw(t) = em(S ‘)g(t). We shall consider

the IVP given by equation (3.4) and

3.13 vit) = (t)y(t) + g (t). (3.5)
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For operators U(t,s): Z + 7 defined for (t,s) € A we list properties

that will be discussed in the sequel (see [11. p. 195]):

1°. the operator U(t,s) is bounded on 7 uniformly relative to
(t,5) € 85
27. the operator U(t,s) is strongly continuous in (t,s) on Aj
37  U(ts) = it v)iv,5), Ui 8) = 1 fara < § € v £ t < by
4-. i) the operator U(t,s) maps W into itself,
ii)vthe operator ;%Kt)u(t,s);%;](s) is bounded and strongly
continuous on 7 for (t,s) € Ay
5°, on ¥ the operator U(t,s) is strongly differentiable relative

e = _ 3 ] ; B
to t and s, with ST-U(L,S); = _;ﬁ}t)u(t,s)c and g Ult,s)g =

—U(t,s)&fﬁs)c.

In addition to the hypotheses listed in Lemma 3.9 below, there is a
standing assumption in Krein [11, p. 195] under which this lemma is proved.
In particular he assumes (as we also do) thaf.Qﬁgt) haz a bounded inverse
satisfying sup{[;ﬁ}a);ﬁi](s)I: s € [a,b]} < ». This requirement is treated
in Lemmas 3.10 and 3.11. The proof of Lemma 3.9 may be found in Krein

[11, Theorem 3.3, p. 1971].

3.9 Lemma If, in addition to the above assumption, we have:

a) the IVP given by equation (3.4) and the homogeneous

part of equation (3.5) is uniformly correct;
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b) o/(t) is strongly continuously differcntiable on W for t € [a,b];
B 2] tor

¢) U(t,s) satisfies properties 1°-5°; and

w(a-t s . s S
d) Ew(t) = M2 L)g(t) 1is continuously differentiable,

t
then y(t) = fU(t,s)g(s)ds yields a solution of equation (3.5) with initial
a ) m—— — 1: e ———

value zero at t = a.

M(S-t)y(t)

Clearly e is a solution of equations (3.4), (3.5) if

and only if y(t) is a solution of equations (3.3), (3.4). Therefore,

the homogeneous part of equation (3.5) is uniformly correct, and its solution

w(s-t)

operator is given by Vm(t,s) = e Vit 5

From our previous results, it is not difficult to see that Vm(t,s)

. o} &
satisfies properties 10-30, uo(l), 5" and that J&&(t) is strongly

(¢

ontinuously differentiable on W for t € [a,b] whenever A EEAC.

3.10 Lemma (cf. Krein [11, pp. 176, 177]) Condition 1%(ii) obtains if

zero is a regular point of j{?ﬁ) for all1t € [a,b] and
= e S 1

K = sup{lg/éalgﬁgl(t)léa(z): a<t<b} is finite.

Proof Write o/ t)V(t,s) 1(s) as [-KX/(t)V(*.,s),cv—l(aﬂ[_f.rf(a\.w_’(s)]. The
e w w w W w w w w
map (t,s) *_Qg(t)g(t,s) is strongly continuous on W (this mav be established
as in the proof of Lemma 3.7, part (1)).Hence (1,s) - :ﬂg')%gf,3)$¥zl(a) is
strongly continuous on 7. For each fixed (t,s), cy(')V(!,s)cy'](z) is a

w oW W
closed linear operator defined on all of 7; therefore it is bounded by the
closed graph theorem. Strong continuity with respect to (t,s) and compact-
ness of A imply by the Banach-Steinhaus theorem that the operators

ﬁt&t)%ﬁt,slﬂg—I(a) are uniformly bounded.

For t,ttoc € [a,b] and any 7 € Z we have
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|otga) of " (rro)e-gg() o ' ()z] = |z o (o) Lap(0)-a/(evo) 1 (1)

| A

K| Lar(£)-oA(e+0) 1o 01z
w w w

The right-hand side goes to zero as ¢ > 0 by the strong continuity of %(t)
on W. The conclusion follows immediately. 111/
We now show that the second hyvpothesis of ILemma 3!:';'].0 is satisfied for
the operators Jym(t). (Lemma 3.3 shows that the first hypothesis is satisfied by
_Mm(t).) These operators were introduced because the operators gf(t) do not

necessarily satisfy a corresponding hypothesis.

3,11  Lemma There is a constant K such that nya)&{'](t)[ @z S K for all
w w -

t € [ab].
Proof We may write

(A -0 (1)) = e + e,

where e, = [ oAa)-o/(t)] (M(t)-ml)_] .and e, = (1) -wD)(HF(t)-ul )—1 = d.

For (n,¢) € W,

-|[Ma)-j‘/(t)](n,¢)|7 = II,.(a,:b)-L(t,rb)' - Qpl‘\l I&l
: g" — c c

1/2}.

where p = max{1,r From the ‘proof of Lemma 3.3 when(n,4) =

-1 ]//?
(F(t)-wl) (a,) we have M'c < [&C0)]+r |M[ and
s "

Inl < JGCO=0D) | a-6Cr,) ] < [a] + |6C,0)].




Observe that

Vv
|6t )| < J|A
0 u

Thus lnl :_|a| 5 rl/Q pl)\l(|1]:|I . Consequently
ey

142

|¢|C = |_a| + " (1+p hlc)'xblLQ 2 |(”,U')[Z

where -d = 2[1 + r1/2(p,|A|C+])]. 5o ’e l < lei pd; therefore
c

lg(z) i)
~1
lo7 () (t)lg(z) < 2]A]_ ed+l.  Let Kk = 2|a|pd +1. /177

The following two lémmas are useful in establishing the vaiidity of the

term "variation of constants formula" as regards the function V.

3.12 Lemma For (r,0,f) € Wxh xC (a,h;R"), ¥(g,A,f) is the unique

solution of equations (3.3), (3.4) with g(t) = (£(t),0) and s = a.

Proof Solutions, if they exist, are unique hecause the equation is linear
) Yy q $

and its homogeneous part has unique solutions.

The preceding discussion allows us to conclude that

t

/ ; \ o
\m(t,j)c + ! J"”)'

a

w( a=-c)

(1 (s),0)do

is the unique solution of equation (3,5)fer =(a) = £. Observe that this

expression may be rewritten as




T ——
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t
(@ thyy aye s J 2=y (1,00e T () ,0)d0

a

|
= ew(a_'){V(t,a)c + J V(t,o)(f(o),ﬂ)dn}
. d
= ot tlen 5 Byee): ; /111
313 Lemma For (7, A,f) GEWYACXC(a,b;Rn), z(g,A,f) is a solution of

equations (3,3), (3.4) with g = (£,0) and s = a.

Proof By Lemma 3.1lthe functicn s - L(s,x_) is continuons on [a,b]. Since

f is also continuous,
tte

lim (1/e)[x(t+e)-x(t)] lim (1/5)1 [U.(S,xs)-!f(t;)_]df‘,
>0 t

"

L(t,xt) ARG

Furthermore, X EELz(a—r,b) implies lig (]/ﬁ)lxr+ﬁ—x1j = (i)t in L2 for
€

all t € [a,b]. ' o

Ve are now in a position to state the fundamental result of this
section. Its proof follows immediately from Lemmas 2.2, 3.12 and 3.13 and
the density of W x AC x C] X 4% A% Es An important implication of this

theorem is that the map f -+ z(g,A,f) is affine and compact for all fixed

(z,A) €2 x A (see Lemma 2.2). This fact will be used in section 8.

3.14 Theorem The solution map =z(g,A,f) and the variation of constants

representation ¥(z,A,f) are identical on ZxAxF.




Theorem 3.15 below provides the basis for the approximation scheme to be

discussed in sections 4 through 8.

315 Theorem For (r,),f) GSWXACXF, z(g,A,f) is the unique solution of

E
ylE)y = ¢ + ![M(s)y(s) + (£(s),0)1ds.
5 a

Proof One may easily show that for (g,A,f) € W x A x T the function
H()z(z,\,f)(+) is continuous on [a,b]. Hence the integral exists.

Using the definitions of & and z, one may then verify that z is a
solution of the integral equation. Uniqueness follows from Theorem 3.8, 1717/

We emphasize that the above integral equation is equivalent to equations
(3.3), (3.4) with g = (f,0) only if f is continuous.

Finally, we remark that instead of using the FDE theory from section 2
to show that the IVP of equations (3,1), (3.2) is uniformly correct, we could
have invoked a result of Krein [11, Thm, é.ll, p. 208] after our Lemma 3.u,
This was not done for two reascns. The first is that some material required
in the proof of Krein's theorem has not been discussed; the second reason
is that properties of solutions of equations (3.1), (3.2) imply (once one
has proved uniqueness of solutions of equations (2.1), (2.2)) corresponding
results for the FDE only when (z,\) € wac' Consequently the FDE theory
had to be established independently in order to obtain results for general

CE N ) & TN,




4, Factor Convergence of Solutions

We have shown (Theorem 3.15) that solving the equation

t

y(t) = ¢ + [[g/(s;)\)y(s) + (f(s),0) s
a
is in many cases equivalent to solving equation: 2. Pl B Ul e
chapter we present a finite difference method which lcads o a very conven-
ient approximation scheme for equation (4.1)3his method may easily be imple-
mented on a computer.
Finite difference schemes are based on the concept of factor conver-

gence; a good introduction to this idea may be found in Krein [11, ch.V]. Our

scheme is essentially the same as that developed by Krein, although the

initial formulations differ since he deals directly with ODE in Banach space.

The letter N will always denote a positive integer;
if it appears as a superscript in the definition of a term, it will be
omitted from the notation when no cenfusion will result. e assume.further
that [a,b] = [a,atkr] for some positive integer x. More will be said in

section B8 concerning this last assumption.
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For a given N, partition [a,b] into ¥N subintervals of length r/N
N, &N N & = 2 3 c
by {1:i }i=0’ where ti = a + ir/N. The approximation scheme iz sugpested by

the heuristic argument:

i-1 it L
2 _ y(ti) = e o) J [F(s)v(s) + (£(s),0)]ds ;
A‘|:0 ’.
1]
implies that ,
B i-) e 41
y(t.) - (e/N) J o (Gy(t.) * o+ ) f (f(s),0)ds,
1 N 1
0 0 ;
;
: tj+l ]
where (r/NWN(j)y(tj) approximates j F(t)y(t)dt for each value of j.
ts
J

Some preliminary definitions are required to discuss factor convergence.

For a given N, let

5 N : t
i 7z = X R" with inner Droduet <eiins s aas e SRR ) z CaD S
| ) N Z ) n
i ' 0 I 1 1 R 3
kM
E,, = X Z, with maximum norm,
N N
a 0
N % . @ .
"‘i = [=9p/N, =(3=1)r/N) for 4 = 1,2,.s.sN,
N
Jy = {01,
Khi' = [at+ir/N, a+(i+1)r/N) for i = 0,1,...,kN=1 and
N
= + 3
chN {atkr}
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Given an element ¢ G,lv(—r,O;Rn), led

o = (Ur) J #(0)do.
J.
J
Let Eg denote the Banach space of functions from [a,b] tc 7 which are

3 5 . N .
uniformly continuous on each interval Ki’ with supremum norm |-| 0

Ex
Define the operators

L N N

e VAR ZN by nu(n,ﬁ) = (n,¢],...,¢u), and
s 5l by p,y = (m y(t ) noyCt )

Bg* "u""n N g e T e

0
Note that |nNr,|7'” < |zl and Ipr-lyh‘”f- ly'“?x for all ¢ €7, y €E.

Now define the operators

N

= = :

™ :ZN—>Z by LY (vo,izJ vj ch(Jj,[—r,O])), and
KN

ey L : =ikl -1

Py @ By > By by pyw = igo (myws) ch(K,,la,b]).

-1 -1 v P
Observe that “N ,pN are right inverses of "N’pN respectively, and that

. .0 . = ; s
E C:L” for all N. Note also that in general, (pN]w)(°) is not continuous on

[a,bl, soy E does not imply that p;le y € R.

The following two lemmas show us the sense in which the spaces ZN,EN

approximate 7, E respectively.

4,1 Lemma For all ¢ € 7,
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s N » o,

=
=
=

Y

v
Y
—
N
ol

Proof (see [ 3, Lemma 3.2]) This is easy to verify by computation if r =
(n,¢) and ¢ is continuous. Then use the density of the continuous functions

plus the linearity and uniform equicontinuity nf the mars r > nilnN;, LS

2}
1]
e
St
=
=

4,2 Lemma Fo

lim |y - pﬁley| o =0
N-»oo EN

1

- =1 =
Proof For i = 0,1,...,«xN we have (p” pNy)(r):wr ﬂNy(t ) when t egKi, Observe

I

]

that the operators wg ™ converge strongly to the identity in 7 ( Lemma

4.1)stherefore n;lnNg »> £ uniformly with respect to # in the compact set

{y(t): t €& [a,b]}C 7. This fact and the uniform continuity of y imply that

(p;ley)(t) converges to y(t) uniformly with respect to t € [a,bl]. LA

TE {yN}N=l is a sequence with the property that Yy € Ey for all N, we

say that (y"} factor converges to y &€ E if
lin |p,y-y | = 0.
fise N N LN

Such limits, if they exist, are unique by Lemma 4.2.

Let v = (5,A,f). Recall that by Theorem 3.15, z(t,y) =
(x(t,a,y),xf(a,y)) is the unique solution of equation (h,1). Suppose that
there is a sequence {z”(y)} which factor converges to z. For ecach N, define
xN(t) = xN(t,y) as the first component of p&lzN(Y)(t). The significance of

factor convergence lies in the fact that Lemma 4.2 implies

>

1im sup{lx(t)—xn(t)lzt € [a,b]} = 0.

N-soo

PSS
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Therefore, the approximation of a solution of equation (4.1) in fact also
yields an approximation of a solution of equations (2.1), (2.2).
S. The Approximation Scheme
.
Equation (4.1) may be rewritten in a more convenient form. To :
5 this end, let 4
|
‘3 E = {z €E: 2(t)E W, VYt and 9#C€ 1),
oo T = T(A): E .» E be given by
]
£
(Ty)(t) = y(t) - [oF(s)y(s)ds, and
o
S: W x F > E be given by
t
80, E£0E) = 0 & [ LECa ) 0)ds.
a
3
We want to approximate solutions of
i
Tyii= SO £ (5.1)
. Therefore consider the equations
- T™n = Sydy(e.f) (5.2)
where
kN
F., = XZ, 6 with inner product
N 1 N
EN
<t 0> = (r/N) ol e
rN 7 | ZN
1
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qN: Zx F » 7.N * [” is given by

QN(Csf) - (nnc,(H/r)J (£(s),0)ds ..., (N/p) (f(s),0)ds),

T
0 yr.’l—]
SN: ZN % }” - Y.u is given by (w = ('.-10... ,.V”))
":(\ 1 = 0 C
(s w), =
””)I 1
wy + (r/M) ] F L= ByZiisianlty
i=1

and T Eq > EN approximates T in the sense to he described below. Observe

Tl

that pNS(c,f) = S”qn(r,,f) for all (g,f) € WxF and that "'r—:] exists for all N.

The properties of the operators T; determine the degree of success of

1

the resulting approximation scheme. To illustrate, it is quite natural to
= : . . . . .

ask that TN exist for all N, because this would imply existence and unique-

ness of solutions of equation (5.2).MWe could ask further that the condition

Pyly = TNpNy obtain for all y,N. This would imply that for solutions y, Yy

of equations (5.1), (5.2),

ot AENT, SR N e
Py = Ty TyPyy = Ty pyTy = Ty pySCesf) = TSy, (o, 0)

= Yy

for each N, i.e. immediate factor convergence. [he fivst requirement is
attainable but we do not know of a scheme which satisfies the second
requirement for general A GEAC.

The particular definitions now given lead to a scheme which has
previously been studied; more will be said in section 14 concerning this.,

For a given N, let




e(*,N): {0,1,...,v} > {0,1,...,N} be such that

-T.Edl for all j,

] (jsN).

AN,*) = A(N,+,0): {0,1,...,kN=1}x{0,1,...,v} » R"™" be given by

AN,1,5) = (nmJ A,
K

i

D(N,) = D(N,=, 2): {0,1,...,kN-1}x{1,2,...,0} > R™™ be given by

J.

BIN,i,5) = (N/r)zj f D(t,0)dodt,
1
Bt

L(N,<) = L(N,*,x): {0,1,...,kN-1} » EZ(ZN,Rn) be given by

Vv N
L(N,i)v =] AL, 5)vy oy + (/) )
'=O it | s

D(N,i,7)v.,
]
] 1=

JJ% = JJ%(X): 0,3,.0 5801} = EB(ZN) be given by

L(N,i)v
(_MN(i)v). =
]
(N/r)(v. ,-v.)
=1 =)

and finally let
TN s TN(X): EN = EN be given by

Yo

b L T i-1
y; - (e/m) ]

] .!Q’N(j)yj

0

-1 : -1
Assuming for the moment that Ty exists, define 2y = Ty quN(;,f).

Then
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] =]

- = i [ -
PuZ = 2y = Ty SySy TuPy? - T Sx"n(”’f)
= (s s T poz - au(r,£)]
N PNEON TNPNE T Qe

Hence factor convergence is established once we demonstrate that:

s -] e i R o s
(1) sup{IT” Suléa(? xru’nn). N=Ta2 ek (thi= iz known as stability

of the difference scheme) and

P . -1 . .
- = is is known A siste 3
(ii) I;m ISN TyPu? q”( f)' Z 6 0 (this is known as consistency of

the difference scheme).

Stability and consistency will be proved in sections 6 and 7 respectively.

It might appear more natural to write pyz - z = (T;J)[T Ce,£)1

NP7 Sy
and establish the corresponding stability and consistency results. However,
we have been unable to demonstrate that in this case the stability condition

obtains for general systems.
The following lemma is given for reference; its proof is straight-

forward (use induction for part (i)). Note the similarity of part (iii)

with the function given in Krein [11, p. 3u2].

5.1 Lemma With SN,TN as above, we have:




g
i
;
i
B
E
'

33
i) Tl B S E given by
N "N N
VO =0l
slias :
R, 7y = [I+(r/M) oy (0)Iv ) + (v -v ) : i N
) 7 {0
(T+(r/M) o () IV, + { [(I+(e/N)oZ () (v, -v )
o N o " s tina N k+1 K
+ (vi-vi_l) 122,850 o kN
o -1 c
ii) SN : EN * ZNXFN given by
v 1 =0
0
(S_lv) =
r
QU va=Vi ) s 2 e
i i-1
oy -1 3 :
iii) Ty Sn* Zy*Fy > By siven by
Y VO i=0
=1 o St}
(T Syv); =4 [I+(r/M)A (0)]v, + (r/N)vl e
i-1 i-2 i—lA
L I [I+(e/N) A () Iv, + (2/N) ] [.Hu +(p/N)MN(j)J}ka
j=0 k=0 "j=k+]
+ (r*/N)v.L X =P Sgen iy RN
-

iv) Sy Ty EN * Zy¥Fy siven by

<
[
"
o
-

1

M/ Cv, L1+ (r/N A (1-1D) v, ) 1= 1,2,0..,kN.
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6, Stability

In proving that the desired stability condition indeed obtains, we find
as in the proof of Lemma 3.3 that it is more convenient to work in certain

spaces with equivalent inner product topologies. So for a given N, let

k(+,N): {0,1,...,N-1} > {1,2,...,v} be given by
N

k(3,N) = min{k>1: =1y e U J.},
i=j+1 .

_ N
By = Bj(x)

j = 01],2,~--a”']s
i=k(§,N)

and

N
Y, = YN(X) = X R" with inner product

5 0
Tg
RPalke EER,TS O MABR) ) B, L Kegss g
Yy gD & 0 ’ gD
For A€M, define M(A) = (1 + ]} |A].|C)1/2. Observe that 1 < By < M°(A)

for all N. Thus the new norms satisfy

|| <'| <M(X)|-| .
. B Ty = N

fne purpose for these rather complicated definitions is that they enable us

in the proof of Lemma 6.2 below to write for v € 2

N,
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= N
jgl,Ajlc lvl(js”)l z jg](8i~]-—8i),vjl'

Define the spaces

kN
,Z;J = 3?"(” = )gYN with maximum norm,
kN
F = F(\) = XY, with inner product
N N 1 N
! iN
<.,~> = (P/N) <','> .
‘5% i YN

Then

"' il'l > ’~M()\)|'I and
Ey AS'.‘N— P2

il s P UTC DT KN
Fy A i

| A

We will show that

oo

«} *
sup{ITN SN'fZ(YNx F, @) H21,2,...1 < =,

which will yield the desired stability result.

Lemmas 6.1 and 6.2 contain the crux of the stability argument, which
is summarized in Theorem 6.3. The idea of defining the inner product used
in the proof of Lemma 6.2 was motivated by a similar definition in [16]. Define
the symbol p as p = max(l,rl/z},

6.1 Lemma Suppose that for a given A EEAC there is an a = a(i) > 0 for

which max{|I+(r/N)_;¥'N(i)|ca(Y y: 0<i<klN-1} < 1 + ar/N.
5 N
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|
r
!
1
H
!

Then there is a constant B = B(A) such that for all N,

aKr

-1
O < Be .
NN F L E)

Proof The existence of such an a implies that for all N and all j, k with

Oikf_jf_K"-ls

1 . e
IiI=Ik[I+(r/N)_WN(lDL@(YN) S 4

:4_-(__”.

Consequently for all i = 0,1,...,kN (see Lemma 5.1 (iii))

i
-1 oKy
K sed f. s (o), * i) § v, )
‘u kil
g - < 2™T(|v |2 4 (er)x/N) T |v.|2 )12
I - o'y, . P
f i=1 N
i “n 1/2  akr
f < 2" “pe IVIY xth- Vel
; N
I
6.2 Lemma Given ) € Ac there is an a = a()) for which

max(’n(r/N)_dN(i)[g(Y y} O<i<fi=1} < 1 + ar/N.
N

i : Proof For v € Y",

1
=)

Vo * (r/N)L(N,i)v k

i ([I+(1"/N),d"(i)lv)k =

i Vi1 k

B TN | |
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Hence,

\Y
|([I+(r/N)JX%(i)]v)O|Rn £ IVOI+(P/N)ﬁ§0|AjIc|vg(jﬁlﬂ
, N
+ (/)Y [pai,i, | v
j= :

N
:_|v0|+(r/N)|A0|C|vo|+(r/N) g(Bj—l—Bj)lvjl + (r/n)|D|C|v|ZN

N
i|v0|+(r/n){|x|C|v|YN + §(3j—1_8j)lvj'}'

In the above series of inequalities we have used

N
(r/N) |

N
ID(N,i,j)I'le = ((r/N) Z 'D(Nsisj)l2]1/2lvly
i 1 3 N

1 ]:1

where

N
(r/N).Z '2

J

N
|D(N,i,j)|2 = (r/N) ) I(N/r)2f j D(t,0)dedt

. LY .
Ly

X 2
< (N/r) I 3 J [DCt,0)|“dodr
=1y,

1 1
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. N
Thus letting {-**} = {l?\l(‘lvlY - Z(Bi—l_ﬂi)|vi|}’ we have
B N ] ; :

l([I+(r/N)J¥%(i)]v)o|;n < |V012 # 20/ |y [{-e0) + e e

Using the inequality 2cd f.C2+d2’ vwe find that the middle term on the

right-hand side satisfies

20e/M) |vo | (2} = 20e/m00 (280 2 |v 90 (1728070 0]
2 2
< 280(r/N)|vO| + (0728 Y /M- 1"

Observe that

—~—
.
St
A

N
2 2 2 5)
< 2Bzl 7{§(sj_1-5j)|vj|}

2

YN

| A

) N N 5
2[x[ Ivly + 2 %(Bj_l—sj) %(Bi_]—ﬁj)lvil

2

YN

| A

2 N ;
2[x|Z1vly + 28 F8s_ -85 lvsl”.
1 -

Recalling that 80 = 1y

N :
? 2 Sy 2
2(r/N)|vO|{- } j_?BO(r/N)IvOI +|X|C(P/N)|VIY”+(7/H)%(gi_l_gj)|vj|

? 2 v 2
< e/ + |3 21]vlg He/MY@ . -85 vyl
3

N

and




2

M3 < emiaela]?|v]?
= N

n |v]” )
+ 2R lwv A
9 YN

Consequently,

|[I+(NN)%(1)]VI$N < |v0| 2+(1~/N)[(1+21~)|A Izmﬂojlvli

n

2 . 2
[“+ (r/m) JB I
1

j—)’vj—l

1
+ (r/N) §<aj_]-sj)fvi

N
2 2 2 2
= lvol + (r/N)[(l+2r)|AIC+SBO],leN+(r/N)§Bj_l]vjl

< (L * ar/N)|v|3 H
N

where o = (l+2r)|A|§ + 5M2(A). Therefore

I[I+(r/N)M’N(i)]v|Y < (1 + ar/n)1/2|v|Y < (1 + ar/W)|viy .
N N N

6.3 Theorem Suppose Gl(: AC is such that sup{|A|C: A € Gl} < o, Then

-1
sup{|T, (\)s | g
N N éa(szrN,LN)
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Proof Note that sup{M(X): €6G,} < = and

=1 : s o=
sup{lTN “)SNl_@(YNx,_?/;x(x), @ () e G E = 10,0

a(X)er,

< sup{B(N)e LE G <= . 4

The conclusion follows immediately. ol

7 Consistency

As usual, for y = (z,),f) let x = x(a,y) denote the soluticn of equa-

(r,f). We shall restrict

. =1
2). = = I
tions (2.1), (2.2); let z, z”(y) Ty (A)SN]L

!
our attention to y € G, where G = {c}XGle2 is such thaf: € W Gl(: AC
is relatively compact in A with m, = sup{lxlcz 2 GEG]} finite; and GQC: B
is bounded. It will be of interest later to know that {ZN(Y)} factor con-
verges to z(y) uniformly with respect to y € G (the function z was defined
in section 2). Thus the primary result of this section is the statement of
Theorem 7.5 that the consistency condition is fulfilled uniformly with res-

pect to y € G.

By definition of the operators py and qy,

[S;lTNp"z(v)Ji =
(N/r){nNz(ti,y)—[1+(r/N)£Vh(i—1)Ivnz(ti_],Y) }

15 N2y siehly

and




i
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HNC .= 0
[qN(c,f)]i =

(N/r)[ (f(s),0)ds i

g

0 T |

Hence, defining

"

5 =1
g(N,y)(i) (r/N)[S” T”p”z(y)-qu(c,f)]i,

we obtain

g(N,y)(i)
"NZ(ti’Y)'{[I+(r/")£x1#i_l)]"NZ(ti—]’Y)+I (f(s),0)ds}
150
= ) R 1S

Observe that g(N,y)(i) €3ZN; let g(N,y)(i,j) denote its jth component.

Taking advantage of the representation z(t,y) = (x(t,a,y),xr(a,y)), we

find that for'j = 2,3,...,HN

g(N,y)(i,3)

(nNz(ti,y))j - ("NZ(ti-]’Y))i—l

N
(xt'(a,y))j =« K%y

M
(a,y))._1
i i-1 J

The terms g(N,y)(i,j) for j = 0,1 must be analyzed separately and in

more detail.

7.1 Lemma (i) m, = sup{lxt(a,y)lc: (t,y) € [a,b]*G} is finite;

(1) r = sup(lgzx(-,a,v)' y € G} is finite.

L?(a"r,b):
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Proof Let (n,$) = . Observe that Ixa(a,y)lC = l¢|c for all y and that

sup{ |x(t3a,y)|: a <t <b, yYE G} is finite by the hypotheses on Gl’GQ and

Lemma 2.2, Theorems 3.5, 3.14. Consequently =x(y) 1is continuous on [a-r,b]

and bounded uniformly with respect to Yy, so m, is finite. Condition (ii)

2
follows from the relations (recall thatp = max{l,rl/g}):
[x(t)] < p|A|C|xt|c + ()|
< pmm, + ()]
for t € [a,b] and the fact that for all vy, |>'<a(a,y)|I = |¢|I . 1
"2 2
Define

h(i,y) ={ J ]i(t,a,y)lzdt}]/?

Kg1
for i = 1,2,...,kN. The following lemma is easily proved using HBlder's in-

equality and the definitions of g(N,y)(i,1) and h(i,y).

7.2 Lemma sup{|g(N,y)(i,1)]: 1<i<kl, y € G} < h(i,y)(r/m)/7,

The analysis of g(N,y)(i,0) utilizes the following elementary result.

7.3 Lemma For all t,s € [a-r,b] and all y €G we have |x(t)—x(s)|§

Flt-sfl/z. Furthermore, given 1 € {1,2,....kN}, F € {1,2,...,N} and

t€ la+ (i-1-j)r/N, a + (i+1-j)r/N], we have

/?

|x(tya,)-Gx, Gt < oreem)!

i-1
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Proof The first statement is an immediate consequence of Lemma 7.1. Let

T=a+ (i-1-j)r/N and 0 = t-1. Then o € [0,2r/N] by hypothesis. Observe
that
t+(r/N)
|x(t)=(x, Y| = |x(t40) - Qi/r) %(0)d0 |
f-3
5 T
r/N
= (N/P)II [x(t+g)-x(1+0) 1dn |
0
r/N
< (N/r) J Flo—ell/zdo.
0
r/N 1/2
The function ¢ + [ |0-8| '“de assumes the maximum value of
0
(2/3)(23/2—1)(r~/N)3/2 i?(r/N)a/2 (when ¢ = 2r/N) over the interval
[0,2r/N]. ViR

7.4 Lemma For all y €6, max{|g(N,y)(i,0)] : 1 £ 1€ N} < 29Tml(r/N)3/2.
Proof Observe that

g(N,y)(i,0)

i

x(ti)-{X(ti_l)+(r/N)L(N,i-])nNz(ti_')+J f(t)dt}

K3

I [L(t,xt)+f(t)]dt-(r/N)L(N,i—l)nnm(tj_l)—J f(t)dt

il Rjey

I L(t,xt)dt - (r/N)L(N,i—I)n”z(ti_]).
K,
i-1

Thus




uy

v H
g, y)(i,00) = | ] J /\_i(f)x(t-Tj)+I ) Il)(',ﬁ)x(ue)dﬂm
j=0 . j=1
Ki—l Ki—l Ij
- N

- J /\O(t,)x(ti_])d! - Z‘ j /\.,(I)(:{'. )9,(i,N) Aar

K i=1 v i-1

i f=

0 oS =

N
I D(t,0)(x )3d0dt|
. ts ]

j=1 I 1=1 -

i=1 i

1
= —

\YJ
H
ij 'AOIC|A(') x(ti_l)ld'+.z: J |Ajlcly‘(' T]) (“t. )E(j,")ldt
].._]_ 1-1
K. K.
i-1 1-1

N
+ I ) I |n(t,o)||x(t+o)—(xr )”Idodt
: -1 ]

K1 3 .

v
i2r(r/N)1/2{Z I |Ajlcdt + I [ ID(t,e)}dedx_}
j=0 o
Seen By v
Y
< 2F(P/N)l/2{(r/n) 3fa .+ rl/QJ [D(t)] dl}
- §=0 Jie : L2

< 2prm (r/1) Y7, /117

The consistency of the approximation scheme is now readily established.

7.5 Theorem The 1limit

s =]
0 = lim |S T, p,7(y)-q,(z,f)|
ciia B M 7 ¥Fy

exists uniformly with respect to y € G.
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Proof By Lemmas 7.1, 7.2, 7.4 and preceding remarks,

£ 2 . KK > g
|sN TNpNz(Y)-qN(c,f)|,, . = (el I (/r) |;v,(N,Y)(1)|Z
NN i=1 N
kN ) )
= (N/r) § g,y E,00]° + (e/m) aCi,y) G, |7
izl

et 2 3 -9 2
< (N/r) § {20rn ) (r/M)” + WG,y (r/ID7)
izl

N
.<1~1(r/N)2(2m'm])2 + (v/m) } J |>’<(r)|2dt;
1=

Bic

| A

(r/N)r2[1+Kp<20m])2].

Therefore

1e-1 \1/2
Isy TNpNz(Y)-qN(C,f)IZNXFN < i oS
1
2] /2

where m, = F[i+Kr(2pml)

3 is independent of y € G. /117

8. Approximation Under More General Assumptions

So far, we have relied greatly on the fact that A is continuously differ-
entiable. As we shall see below, the preceding results enable us to approximate
solutions of equations (2.1), (2.2) whenever X € A 1is essentially bounded.

Once this has been established, we may deal with such FDE on any bounded
interval [é,b] by simply extending A and f as zero to the interval [a,atkr]
for an appropriate integer «.

Let

nxn

) X L,(a,b; R= Ty

v
A, = L_(a,b;(XR
0




u6

with norm I'lm. Using a standard result [12, corollary, p. 288] one can
prove that for every X € A_ there is a sequence {wi} in A_ of step (i.e.
finitely-valued) functions which converges to A in the A norm, and is such
that Iwilm < 2|x|_ for all i. From {v;} one can construct a sequence (Ai}
in A having the same properties, i.e. lxi-xl + 0 and for all i, 'xilc <
2lxE. :

Suppose (g,A,f) & WxA xU' is siven; led {\i} he g above and define
Ys vy (T PP B e M e (c,Ai,f) respectively. Then the set G =
Li[yi} satisfies the standing assumption of section 7, hence also the hypo-
theses of Theorems 6.3 and 7.5. Therefore

1im Ip"z(YN)—zN(y”)lF =0l
N n

Note that z(yy) converges to z(y) in E by Lemma 2.2. Consequently

{ZN(?N)} factor converges to z(y), since

.

lei(Y)—zN(YN)lEN §_|Z(Y)‘Z(YN)|E + IpNz(y“)—zN(YN)|EN. (8.1)

Assume now that f, fi EF (i = 1,2,...) and {fi)—5£} redefine Y, as
(;,Ai,fi). Then Lemma 2.2 and Theorem 3,14 in conjunction with the above 3
reasoning and sfandard inequalities, imply that once again (ZN(YN)} factor “
converges to z(y). This fact will be used in the proof of Lemma 10.1.

Since we are primarily concerned with the computational aspects of
this theory, it is of interest to know how the operators jr%(XN) relate to
JJ%(X). To this end, let o be chosen so that ?co is the smallest posi-

tive number representable in the language to be used on a given computer

(e.g. 250 = 16-85 in double precision FORTRAN on IBM 360, 370 machines). If




L7

5
:
1
|

in addition to the above requirements on X, we ask that IA-AHI <

comin{(r/N)l/Q,r/N}, then for all j, k, N:

ME i e

|AN, §,k,0)-A00, 5,k,0 )] < (ti/r)
IDON,3,k,0)-DC, 3,k 00| < (/e) [ x=xy | < e,
Thus the machine representations of J%%(X”) and JJ@(X) are identical.

Observe from Lemmas 7.1 and 7.4 that the rate at which {p”z(yN) -

z"(yN)} factor converges to zero is determined by m,,m, and the bound in F

on {f }. The overall rate of factor convergence of ZN(YN) to z(y) depends
i

also (see equation (8.1)) on the rate of convergence in E of z(yN) to zly)s

which in turn depends on the particular sequences {Ai} and {fi}.
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9. The Control Problem

Having seen that solutions of equations (2.1), (2.2) may be approximated
by solutions of the difference equations (5.2), we proceed to deal with an
associated optimal control problem, which will be denoted as (P). We replace
the inhomogeneous term f appearing on the right-hand side of equation (2.1)

. nxm _m
with the product Bu, where B € Lm(a,b;R ) and u € L2(a,b;R )

Throughout this chapter we shall use the letter x to denote a solution
of equations (2.1), (2.2). For a given N, the symbol Zy will denote a solution

of equation (5.2); the symbol Xy will denote the corresponding first component

of p;‘lzN (see section Uu).

Let U denote the space of control functions, Lp(a,h;Rm). Assume that
functions gt ZxF » R and £, U + R have been defined and that a subset %

of U has been specified. Define the cost functional ®: % - R by
¢(u) = gl(z(b,a,c,A,Bu),x(‘,a,g,x,Bu)) + g?(u).

The optimization problem is

(RP): Miniﬁize ¢ over- %.

Problem () is tractable under the hypotheses given below. We need
the concept of quasiconvexity for the statement of these hypotheses. A
real-valued function h defined on a convex set is quasiconvex (see [u ,

section 5]) if

h(aut(1-a)v) < max{h(u),h(v)}
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for 0 < a <1 and all u, v. If strict inequality obtains for 0 < a < 1 and

u # v, h is strictly quasiconvex. Equivalently (see [g , Defn. 1.5.2]), h is

quasiconvex if the set {u: h(u)<a} is convex for all real numbers a.

We assume throughout that:

(H1) % is closed and convex;
(H2) g. is continuous (i = 1,2);
(H3) g. is quasiconvex (i = 1,2); and

(H4) a) % is bounded, or
b) (i) g; is bounded below (i = 1,2),
(ii) g, is radially unbounded (i.e. g, > = as [u] » =),

(iii) the mappings Q;l and the sets qu (defined in section 10

below) satisfy Q;;l%N C % for all N.

Other than (Hub)(iii), the above hypotheses are standard in control theory.

From Lemma 2.4 we see that the maps u - z(b,a,;,A,Bu) and

u + x(*,a,z,A,Bu) are affine and continuous. Consequently ¢ is continuous
and quasiconvex; ¢ is strictly quasiconvex if y is. By Mazur's theorem
(see [12, p. 85]), the set % is weakly closed. This theorem also implies
that ¢, being lower semicontinuous and quasiconvex, is weakly lower semi-

continuous.
Let the sequence {ui} be such that Q(ui) +> a = inf{¢(u): u €2},

Hypothesis (H4) implies that {ui} is a bounded sequence. Hence, there is a

weakly convergent subsequence {ui(j)}; let u”* denote its weak limit. Clearly
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a < o(u* im inf =
< #(u*) < lim inf ¢(ui(j)) a.

Therefore, problem (%) has a solution. The optimal control is unique if we
assume that ¢ is strictly quasiconvex.
As in section 8, no problem is encountered in extending the interval

on which solutions of equation (2.1) are to be defined. In particular, if

we extend A and u as zero over some interval [b,atvr], then z(t) = z(b)
for b < t < atkr. Thus only trivial adjustments need be made in defining
a new cost functional. For this recason we assume henceforth with no loss

of generality that b-a = ¢r for some integer k.

10.  The Approximate Control Problems

We now associate cost functionals Ty with equation: (5.2) in such

a way that the resulting optimization problems, denoted HY?)", reflect
several properties of problem (#). To this end, define

kN wll

UN = XR" with inner product Sy, & (r/M) Z e
1

1 N -

n

Let QN denote the map from U into U  given by

N

QNu = ((N/P)[ wWtIdE; ves (N/r‘)[ u(t)de)
K0 K|<N-l
Observe thaf'QN'Q(U,UN) <1 for all N. Define a right inverse Qﬁl’ UN U

of QN by

kN=1

o N :
QN v igo vi+1 ch(Ki,[a,b_]).




(Recall that similar definitions were made in section u),

%, ~ R be given by

Define %N = QN% . Let ¢ N

N

= i -1 = =
oy(v) = 8 (pplzy X 852,800 WI(b), xy(2,0,BQ v)(+)) + g,(ay'v).

We define the approximate optimization problems as

(;y@?)n: Minimize 8, over ?%”.

We could have defined &N as a function fr;m ‘% to R. However, this would have

changed the nature of LQ(Q?)N from that of a classical mathematical programming

problem to an optimization problem over an infinite-dimensional control space.
Since the maps v » (pﬁlzN)(;,A,BQilv)(b) and v - xN(g,A,BQ§1V)(°)

are affine and continuous (obvious from Lemma 5.1 (iii)) for each N, each

by is a continuous and quasiconvex function over the closed convex set @kN.

Using arguments similar to those employed in section 9,we may conclude by

hypothesis (H4) that for each N there is a solution uﬁ S qk” of problem

(jt@P)N. Observe that &y is strictly quasiconvex if s is, in which case

uﬁ is unique.

Suppose for the moment that the following results have been established:

-

1£ e
S

u, then ¢(u) < lim inf ¢N(uN).
~-1
1f QN uy * u, then d(u) = lim ¢N(uN).

For all u €U, Q;;lQNu > u.

Suppose {v } is b i - =
PP y! is ounded in U and Vg =V Then QN QNVN v,
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For each N, let uﬁ denote a solution of problem (;%@?)N. The follow-
ing lemma is instrumental in establishing the relationship between problems

(P) and (LP),.

10.5 Lemma The sequence Q&lu; is bounded in U.

Proof The result is simple to establish if % is bounded (pick a sequence

{vN} in % such that QNVN = uﬁ; use equiboundedness of the linear functions

=1l
N

Then for all N,

u -+ Q QNu). Otherwise (cf. [2, section 4]), choose an arbitrary u € %.

8, (u) < o (Qu).

Lemmas 10.2 and 10.3 imply that the right-hand side converges to ®(u). Thus,
the sequence {¢N(u§)} is bounded, which implies by (H4b)(ii) that {Q;luﬁ}

1117

is also bounded.

Let {u'-'-'(i)}i=1 denote a subsequence of {”ﬁ} having the property that

N
the sequence {Q;luﬁ(-)} is weakly convergent in Uj; let u® denole its weak
h
limit.,
Since u® is a natural candidate for a solution of problem (), we

must consider whether it is an element of %. Lemma 10.5 and hypothesis (Hu)
ensure that a bounded sequence {vi} exists in Z with the property that

QN(i)vi = u“(i) for all i. Let v. be the weak limit of the weakly convergent
subsequence {vi(j)}; since % is weakly closed, v € %. Lemma 10.4 implies that
= % & -1 % %' 4 i

QN(i(j))uN(i(j)) —~v, Hence u* € % because Qu(i)Ui(s) —>u* implies that

u® = v,
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10.6 Theorem The above u® is a solution of problem (). Furthermore,

J

(us

o(u*) = 1im ¢ i)

N(i)

Proof For all u€& % we have by Lemmas 10.1, 10.2 and 10.3

)

(us

¢(u*) < lim inf ¢ HE

M(i)

)

(us

N(i)

| A

lim sup ¢N(i)

| A

LD s i< Gigs !

= ¢(u). /717

Under assumption of strict quasiconvexity, a standard argument involv-
ing subsequential limits implies that this u® is the unique solution of
problem (£?) and that Q§1u§.4;u*.

So far, we have not exploited the finite-dimensionality of (;y@?)N.
Indeed, we shall not explicitly do so. This aspect of the approximate
optimization problems is important, however, because it permits us to
develop computational packages without introducing further apbroximations.

An example of a control set satisfying hypothesis (Hub)(iii) is given
below. Control sets of this type, and those satisfying hypothesis (Fua),
are commonly used in optimization problems.

Let X be a closed convex (unbounded) subset of lfn Define the set

% = {u: u(t) € X a.e. on [a,bl}.
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Clearly, % satisfies hypothesis (Hl1). We employ a standard argument using
the Hahn-Banach theorem to demonstrate that % satisfies hypothesis (Hu4b)(iii)
as well. In particular, for u €%and i = 0,1,...,kN-1 let ¥: = yi('u) =
(N/r)J u(t)dt. Suppose that Ys &€ X for some i. Then there exist ¢ €R,
K .
i
m T T 1 _
& ER such that ¢ < & % and sup{f v: vE X} < c. Therefore, c < § g =
(N/r) J ETu(t)dt < ¢, a contradiction.
K -
4

We now supply proofs for lemmas 10.1, 10.2, 10.3 and 10.4,

Proof of Lemma 10.1 Our remarks in section 8 imply that zN(uN) factor

converges to z(u). Observe that for all y € EN’

-1

sup{l(pN y)(t)lzz t € [a,b]} = IyIEN.
Using these facts and Lemma 4.2, we find that

lim sup{l(p;"lzN)(t)-z(tHZ: t € [a,b]} = 0. ]

N 3
Therefore(p-lz Gy X BQ_lu Jb) » z(b,a,z,A,Bu) and x (g, A BQ-lu )()

n 282580 Ty i ] i B |
+ x(+,a,5,A,Bu) in Z and F respectively. The conclusion follows from the

continuity of g, (hypothesis (H2)) and the weak lower semicontinuity of 2,

(hypotheses (H1), (H2) and Mazur's theorem). /777

Proof of Lemma 10.2 This follows immediately from hypothesis (H2) and the

convergence of (p;‘lzN.)(b) to z(b) and xN(~) to x(+) as above. /777

Proof of Lemma 10,3 This may be proved in exactly the manner in which [, emma

4,1 was established. /777




55

: ] i —

Proof of Lemma 10.4 For all w €EU we have (QN QNvN,w) = (vN,w) = (vN,w—QN QNw)
. -1 ) -1 :

since for U, U, € U we have (QN QNul,u2) = (ul,QN QNu2 . The conclusion

follows from Lemma 10.3. ////

11. Description of Numerical Techniques Employed

In our discussion of numerical results, we shall not explicitly consider
the effect of round-off error. Our intention is not to imply that it is ]
negligible, but to emphasize the particular characteristics of the approximation
scheme presented in section 5. In this regard, note our comments in section 13
concerning the chemostat example (for N = 32).
The finite difference scheme was used in the manner described below to
compute solutions of problems L&igﬁN (see section 10). Its implementation was
easy; in fact, the only further approximations required arose in the evaluation

of MG A(N,i,j) and D(N,i,j) (see sections 4,5). A standard quadrature algo-

rithm, exact for fourth-order polynomials, was employed for this purpose.
Since QNQﬁlw = w. for each w EE@%N, the set of ndmissihln controls for each
approximate problem was readily characterized.

The difference equations for the state and (see [13 sec. VII.U]) auxil-
iary equations were solved exactly. HNumerical solutions of problems (ﬁ%@?)N
were obtained By a combination of the gradient and conjugate gradient
techniques. In particular, for a fixed N, a gradient step was
taken on the first, fourth, seventh, etc. iteration, with conjugate gradient

steps in between. This procedure was continued until a convergence criterion

for the values of ON was satisfied.
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Several optimization problems governed by autonomous systems (namely
examples 1, 2 and 3 of [3]) were solved numerically both by the technique
described above, denoted as method R, and its analog (see [3]) for the method
of Banks and Burns, denoted as method B. In each case the results were
compared to an exact soiution. As expected, low~order (i.e. N = 4, 8)
approximations with method R were not very accurate. The results were better
for intermediate values of N (i.e. 16, 32) and quite good for large N
(i.e. 64, 128)

Generally speaking, comparable accuracy was obtained by taking N twice
as large for method R as for method B. The definite, and not surprising,

advantage of method R is its faster execution on a computer. Evaluating on

this basis, methods B and R are roughly equivalent. Consider example 4.3 of [3]:

method B fequired about 32 seconds to execute with N = 16, while method R

required 17 seconds with N = 32, Method B was only slightly more accurate.

12. Results for a Simple Nonautonomous System

We now present an example for which numerical and analytical solutions
were readily obtained. These solutions were used to evaluate the accuracy
of the above finite-difference scheme.

Consider the system
x(t) = 6tx(t-1) + u(t) t € [0,2],
(x(O),xo) =L 16y,

and associated optimization problem (&): minimize #(u) = (1/2) x2(2) *

2
2
(1/72)[ u“(t)dt over the set %= L2(0,2;R).
0

i i S B N i o ARG
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An analytical solution was obtained in the following manner by means of

necessary conditions on extremal pairs (see [13, section VII.2]). It is easy

to verify that this problem is normal, so for an extremal pair (x%, u®) there

is a function ¥ €5L2(0,3;R) such that

e (2,31]

and on [0,2], i(t) = -6(t+1)Y(t+1). Furthermore, uy* satisfies the pointwise max-

imum principle:

PO (Btx*(t-1) + ut(t)} - (1/2)[u*(t)]? =

max{w(t){Gtx*(t-l) + v} - (1/2)v?}
v ER

Therefore u® = ¢,

Letting ¢(2) = «, we find that

-3mr2-ﬁmt+]00 t € [0,117,

u®(t) = ¢(t)
R

This in turn implies that

-t + 3(1-a)t? + 100t + 1 t € [0,11,

x%’f(t) =
5 u 3 2
(=1.20)t” + (4.5)t + (26a-12)t° + (12-36a)t

+ at + (16.20-0.5) t €[1,2].
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Using the fact that -a = x%(2), we obtain o = -23.5/u4 .8,
Since we know a priori that problem (/#) has a unique solution
(section 9), these necessary conditions imply that it is given by (x*,u®) as

defined above. Consequently the optimal cest 4% is given by

20 i
¢* = (1/2)[X*(?)]2 Fa 12 f[u*(t)]?d!
0
= (1/2)u4.8a°
= (23.5)2/89.6

= 6.1635.

Selected values of %%, u® are given in Table I.

We have computed numerical solutions of the corresponding problems (Q(@”)N
for N = u, 8, 16, 32, 64 and 128. A summary of the results is included in
Table I. Observe that in this example the quantities n”(x(O),xn), A(N,i,q)

and D(N,i,j) were compuféd exactly. In particular,

wN(x(O),xO) = il g sl v,

0 1 = 0 and &l N 1y
A(N,i,§) =

(6143)/N j=v=1andall N, i,

D(N,i,j) =

]
o

VNg 15 3.

The same general behavior is observed for this example as for the autono-
mous systems discussed above. In comparing the approximate solution for
N = 128 to the analytical solution, we sece that the relative error in the

control values is less than 2%, except at time 0.75 where it is about 3%. The

relative error in the payoff (for N = 128) is less than 0.2%.
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13. The Chemostat - a Biochemical System

In this section we present numerical results for an optimization problem
based on the dynamics of the chemostat. This device controls the growth of
a microorganism population by regulating the supply of one essential nutrient,
while provihing all other nutrients in excess. Equations (13.1), (13.2) below are
similar to models of the chemostat which have appeared in the literature (see

[5], [17]). The nonlinearities in these equations are analogous to those
L]

appearing in the initial velocity approximations (usually associated with the

names of Henri, Michaelis-Menton, and Bripgs-ilaldane) which are used to model

enzyme catalyzed reactions (see [1, Ch. 1]).
Let x and s represent the microorganism population density and nutrient

concentration in the growth chamber, respectively. Let the state of the system

be given by (x,s) € C(-1,3; RQ). Then we have

0
vV x(t) [ s(t+0)y(8)do
(1) . - D(H)x(1) e e Tial, - s

0
K+ [ s(t+8)y(0)do
-1

VvV, x(t)s(t)
t €10,3], {13.2)

§(t) D(t)[SO—S(t)] -

K+ s(t)
where o denotes the nutrient concentration in the incoming medium, D(t) the
washout rate, K the saturation constant for the rate of uptake of nutrient,
V. the maximum growth rate, and V? the maximum uptake rate. The function

i
Y EEL2(-1,O; R) is used to weight the distributed effect of the nutrient con-

centration on the growth rate.
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In the case to be considered below, we made no attempt to assign physi-
cally meaningful values to the above constants; rather, we arbitrarily set the
values 85 7 20 = N s V2 = 1/2, and defined y(0) = 1, 6 € [-1,0].

The optimization problem (%) was formulated as follows. A control

D €EL2(0,3; R) was employed to force the system away from an initial steady

state. The system was then linearized about the resulting trajectory,

(=1.,05 R?)). The cost

; s S d z 2
§ denoted as z = ((x(f),xt), (s(t),ﬂt)) & €(0,3; R xL,,

function ¢: %= L?(O,3; R) > R was defined as

2 3 3

8(u) = sflz(r)l?dt ¥ snflz(t)-[z<2)-§<t)1l?dt + Sflu(L)I?dt
0 2 0

+ 50(2(3)-[3(2)-7(3) 1|7,

where z = (x-%,s-3) and u = D-D represent the state and control functions
respectively for the linearized system. This particular definition of & wag
motivated by the objectives:
(i) keep z and u small along the trajectory, so that the lineariza-
tion is fairly accurate; and
» (ii) force (x,s) to the new steady state (x(t),s(t)) = (x(2),s(2)),

e L2.3])

We have computed numerical solutions for the corresponding problems
(d?)N for N = u, 8, 16 , A summary of the results is included in Table
II. The magnitude of xﬁ(t), sﬁ(t) for t €[0,2] and for each value of N is
less than 0.1, except for xﬁ(l.75) and xﬁ(?.o). These magnitudes are less

than 0.2.

T —
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wn

0.2022

0.0004
-0.0166
-0.0286
-0.0390
-0.0501
-0.0619
-0.0738
-0.0849
-0.1617
-0.1605
-0.1278
-0.0870
-0.0870

xﬁ-x
0.1312
<0.1022
0.0856
0.0761
0.0727

s¥#-s
Iy

-0.0686
-0.0538
-0.0155
-0.0410

-0.0400 °

TABLE II: CHEMOSTAT MODEL

0.2283

0.0673

0.0077
-0.0215
-0.0376
-0.00492
-0.0617
-0.0756
-0.0897
-0.1533
-0.1862
-0.1657
-0.12uy
-0.1012

xg-x
0.0991]
0.0673
0.0u490
0.0364
0.0268

5'8"9
-0.0434
-0.0278
-0.0200
-0.0160
-0.0147

16

0.21407

11'1‘6

0.0611h

0.0171
-0.0020
-0,0115
-0,0188
-0.,030N
-0.0482
-0.0697
-0.1220
-0.1871
-0.1832
-0.1481
-0.1116

4

0.0892

0.0565
0.0382
0.0237
0.0084

i - e

-0.0225
-0.0056
0.0018
0.0047
0.0053
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The runs displayed in Table II required much more time to execute than

those appearing in TableI.. A rough estimate (exact figures are not available)
of the total CPU time required for N = 4, 8, 16 is 420 seconds. A run was
made with N = 32, Numerical errors appear to have become significant here, for
the CPU time required to meet the convergence criterion was greater. than
expected and the results differed slightly from what had been anticipated
(based on an examination of earlier runs).

The rather lengthy execution times for this example show
that batch processing is advisable in some cases. The program loaded into
less than 256 K bytes of storage, and used five disk files with total length

under 90 K bytes.

14. Concluding Remarks

The theory we have presented generalizes the work of Banks and Burns
(see [2], [3j) on autonomous systems in two ways:

i) nonautonomous systems are treated, and

ii) the approximating systems are governed by difference, as opposed

to differential, equations.

The primary practical advantage of (ii) is that it leads directly to algorithms
which may be implemented on a computer, whereas the theory developed in [2],
[3] requires a numerical approximation of the approximating ODE systems.

The use of averaging approximations in the study of hereditary systems
is not at all new. For a detailed bibliography and commentary on the literature,

we refer the reader to section 5 of [3].

As mentioned earlier, the approximation scheme discussed in section 5

has previously been studied. Delfour [7] investigated its convergence and
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applicability to the linear quadratic optimization problem. The techniques
he employed are substantially different from those we have chosen. For
purposes of comparison we shall use our notation to briefly describe his work.
(The symbol A° below denotes a space similar to our A_.)

Delfour defines piecewise constant R"-valued
functions by means of the solutions of the difference equations obtained
from the first component of equations (5.2). These functions are shown
: [7, Prop. 3.2] to converge in the supremum norm to the solution of equations

(2.1), (2.2). Having asserted [7, Thm. 2.1] equivalence of equations

s 0
(2.1), (2.2) and the corresponding abstract ODE in Z for (g, ,f) € W x A" x F, he
restates [7, prop. 3.u4] the approximation results in operator notation in

spaces similar to Z Corresponding theorems are presented for solutions

N

of the adjoint and Riccati equations, which lead to his treatment of the

optimal control problem.
The major difference between Delfour's approach and that represented
by [2], [3] and our own efforts is that (for the linear regulator problem)
Delfour approximates not only the state equation in Z, but the infinite-
dimensional adjoint and Riccati equations as well. The method of [2], [3]
and this investigation involves immediate approximation of the state equation in Z
. by a finite-dimensional problem (either an ODE or difference equation) and
then employment of standard numerical methods to solve the approximate

problem.
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