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A FINITE DIFFERENCE TECHNIQUE FOR SOLVTN c , OPTIMIZATION [~ROBLEMS

GOVER~JED BY LINEAR FUN ~FIONAL DIFFERENTIAL EQUATION S

• by

Douglas C. Reber

Abstract: Aspects of the approximation and optimal contro]. of systems governed

by linear retarded nonautonomous functional differential equations (FDE) are

considered . First, certain FDE are shown to he equivalent to corresponding

abstract ordinary differential equations (ODE). Next, it is demonstrated that

these abstract ODE may he approximated by difference equations in finite

dimensional spaces . The optimal control problem for systems governed by FDE i:~

then reduced to a sequence of mathematical programming problems . Finally ,

numerical results for two examples are presented and discussed .
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1. Introduction

Our concern in this investigation is with the approximation and optimal

control of systems governed by linear retarded nonautonomous functional differ-

ential equations (FOE). After presenting some basic properties of solutions of

FOE in section 2, we demonstrate in section 3 that certain FDE are equivalent to

corresponding abstract  ordinary d i f fe ren t ia l.  ~quations (ODE). This equivalence

lea Is ~o two s ign i f ican t  r e s ult s .  The f i rs t. i~ t h e  v a I id~ v o~ •i “variation ‘~

constants” representation of solutions in the s t a t e  space x h 2
(—r ,O;R ~ ) .

(A similar result was obtained by Delfour [7]; such representations in the

state space C(-r,O;R~ ) are well, known — see Hale [10, p. 207].) For our

purposes, the importance of this observation lies in the fact that a compactness

property of the variation of constants representation ~1so obtains for the

solution map of FDE. The second result is that a finite difference technique ,

s imi lar  to those used in the fiel.d of partial differeririal equations , may be

employed to approximate solutions of FDE . These results are discussed in

sect ions L4 through 8.

The operator theoretic framework for the approximation of solutions

of FOE requires an invest igat ion of sufficient conditions (known as the

stabi li ty and consistency conditions) for convergence of approximate solutions

to the t rue so lu t ion .  Other , more routine deta i ls of the part icular  scheme

we have chosen are incerpora~ ed in the d e f i nit i o n s  and in te r rela tionsh ips  of

var ious spaces. The scheme i t se l f  has been st u d i e d  by D eifour  [7] by a more

d irect approach . One oblective , therefore , of this  investigation is the re-

formulation of an e x i s t i n g  techni que in such a manner tha t  cer ta in  essential 

~~~~~~~~~ ________
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features are emphasized . An immediate additiona l bene f i t  ~~ tha t  more

general optimization problems than those considered by Deifour [7] (linear-

quadratic) are seen to be easily handled.

The finite difference technique leads naturally to the definition of

a sequence of mathematica l programming problems. The original optimization

problem (i.e. that which is governed by a linear FOE) i~ shown in section~’

9 and 10 to be the “limit” of these approximating problems , in the sense that

the corresponding optimal controls, payoffs and trajectories all converge.

We then discuss numerical results for two examples in sections 11

through 13. Standard techniques of numerical analysis were applied in each

case to solve the approximating problems. The first example was chosen for

its simplicity , so that an analytica l solution would be readily available;

the second is associated with a biochemica l process.

Finally , some concluding remarks on the above technique are made in

section l~-t.

Most of the notation employed is standard . In particular , given p > 1,

a closed interval I and a I3a nach space X , the symbol L ( T ; X )  will denote the

set of (equivalence classes of) strongly Lebesgue measural)le functions

f :  I -
~ X for which f 1I f I ’ ~ 

< m. T ( I ; X )  is made into a Panach space by defin—

i tion of the usual norm ~ . The Jlanach space’ of co flt  i nu ous funct ions with
p ( 1)the supremum norm wil l  he denoted by C ( I ; X ) .  W 2 ( I ; X )  deno te~ the set of

absolutely continuous funct ions from I to X wh ose de r ivat ives  arc in

L2 (I ; X ) .  For Ba nach spaces X , Y the symbols 9(X ,Y ) ,  ~~ ( X )  wil l  represent

the usual sets of continuous linear t ransformat ion s  w i t h  the’ un i form

- - - - -~~~~~~~ — - .  -~~~ -—---- — -— -— ~-— a-- -- s__ ~~~~~~~~~~~~~~~~~~ — -~~~~~
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operator topology . The s p1r ~~ s R~ and R n n  w i l l  ho endowed w i t h  the euclidean

and spectral norms , respr~c t i v .~ l y .

G iven arbi trary se!s (~ If w i t h  G C I! , d~~Nr’ie ch ( ’~, I f )  as t he

characterist ic  f u n c t i o n  of 0. We shall  assume t h a t  t h e  pos i~~Sve integers

m , n , K and v , the posit ive number r and the  numbers  a , h w i t h  h ~ a are

fixed . For a funct ion f defined on [a—r ,bil and t E [a~b ],  the function w i l l

be def ined on [—r ,0] by 
~~~~~ 

f ( t + G ) .  The symbo l. A wil l  denote the set

{ ( t ,s) :  a< s< t<b }.

— - - - Several results are stated without proof in the sequel; unless otherwise

indicated , proofs may be found in Reber [15].

The author wishes to express his appreciation for the he lp fu l  comments and

suggest ions of Professor H. T . Banks.

2. The Initial Value Problem

For the moment , consider an FDE as an equation which relates the deriva—

tive of a funct ion  x: [a—r ,h ]  -~ R~ at t ime t E- [a ,h l  t c ‘ he v a l i i r ~s of a given

funct ion  f and an operator T~(t , ) acting on x 1 as an ~ t n r i e n t  ‘

~~~ 

Th us we

wr i t e

*( t )  r i ( t ,x~
) ÷ f ( t )

( x ( a ) , x 1) (
~~~ ).

It migh t •lpp ’ar  t h a t . s n m .~ s i m p l e  FN ; ma x’ r i o t  h~ f . -r~’ i t a t ’ ~d in this  way .

For exampl e , cons ider :~ ( t  ) .~( t  )x(t—l) wi It ~ I~2
(a ,b~~F) .  The d i f f i c u l t y

l ies in the fact  th a ’, fo r  a g iven  (t ,~~) E f i ,h N 7 
the v~i l u e  e ( t ) ~ ( t — l )  is

not wel t  d e f i n e d .  Thi ~z ~ m e r r ly  i n incn~ivn nieri ~~’ , s i nc ’ -’ we’ may reformulate

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

~~~~~~~~~~~~~~~~~~ - 
_ _ _ _ _
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the problem as

x(t) ~ + f [L(s , x )  + f ( s ) I l d s ,

just as is done for ODE satisfying the Cara t h~~od’ rv ~~ n d i t i r~ns .

Severa l pre i i  rn i urn v de’ 11 iii i ‘u s  ar” i I I - ‘ , ‘ ‘~ 
t h - ~ ,‘DF under

consideration . Let the flanach sr-’aces Z, A , F and F ho g iv en  by

Z = x L
2
(_r ,O;R n)

A L7 (a ,b ;(X R m
~~ ) x T 2

(_ r ,O ;R
nx n ) ) ,

E C ( a ,b ; Z )  and

F t, 2 (a ,b;R ~~) .

A generic element of Z w i l l  he denoted by ~ (r ,~~) .  The norms of Z

and (XR
m*fl )xL

2
(_r ,fl;R

fl
~~~) are the usual norms for product spaces. A

generic elemen t of A will be denoted by A = (A
0
,... ,A ,D); the corn—

nxn
ponen ts A0,... ,A may he considered elements of L

2
(a ,h;R ) and the

component 0 may be considered an element of L2
([a ,hiX [_r ,OJ; ~~~~~~

Let W denote the subset

W = ( ,~
)
~~:~: • ~ q~~~(f l )) .

Now def ine  the “p~ i . i t  “i I.: [a,bjxL2
(~ r ,fl;I~

5)xA j~
Ti by

L( t,~~) = L( t ~~~~~~ ~ A . ( t )~~(- i . )  + J [ (  t ,A ) ~~~O ) ~I~

__________
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where 0 = . . . < -t = r and A (A0,. . . ,A , P ) .  We i ornar3~ ha t although in

a strict sense L is not well deFined (point c v i  ~ i i ; i  j~~~~,- 
~f A and $ are required),

no problem is encountered because I hese terms ; i f l l  I~~~~oar itridor an integral

sign in our usage below.

Thus we consider FDF of I i i - form

,A ) + i(’) (2.1)

with (X ,f) E AxF and ini tial v a l u e

(x(s),x5) ~ C Z, s C [a ,b] fixed. (2.2)

A function x is a solution of the initial value problem (IVP ) given in equa-

tions (2.1), (2.2) if~ 
X C  ~~~~~~ ,b;R~ ) , 

x sat isfie s equa tio n (2.l)aimos t

everywhere in [s,h] arid (x(s),x )  satisfies equ at ion (2.2). (For convenience ,

when s b define a solution of the IV? in the obvious way.) Our discussion

will concern only this restricted class of FOE.

~e now describe some properties of solutions of equations (2.1), (2.2).

2.1 Theorem. There is a unique solution of e~ uations (2.1), (2.2) which

depends continuous ly on Y = (s ,~~,A ,f) in the sense that the map (t ,y) -
~~

is con tinuous on Ax ZxAxF into 7.

IA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _
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Def ine the opera tot’ V : AxA x Z -
~ Z by V( t ,s ,A ) r, (x (  t ;s , ~~, A ,O ) ,

x
~

(s ,
~
,A ,0)). One may easil y see from the above that V is contin-

uous and is linear in ~ for f ixed (t ,s ,X ) .  Therefore , whenever  B C A is

relatively compact , thor” r ,by the uniform boundedness principle, a constant

M (depending on B) such that sup{jV(t ,s,A )I
~~ ( Z ) : (t,s,A ) EA x B} < M.

Uniqueness of solutions of the P/P implies t hat  V ( t ,~~)~ = V(t ,-t)V(r,s) and

V(s,s) I for all a < < r < I < b. It is n t-d iy y r - t i f i c i  I i t t  V(t ,s,A )

takes W in to itself for all (t ,s ,X )  E A xA .

When dea] ing w i t h  l ine ar ODE in R n , I he v,iri,-ii i OT T of cons ants  f ormu la

provides a very useful exp lici t represen~ aHon of s o lti t ions . Th e map ‘P

def ined below r e t a ins  the form o~ t his expre ss ion ; t h a t  j t  in rlc- ’d represents

a sol ut ion of FIlE , and in what sense, will he domcnstrate’l in the next sec-

t ion .

Let ‘I’: Zx A x F -
~ E be given by

W (~~,A ,f ) ( t )  V ( t ,a , A ) r, + J V (t ,s ,A ) ( f ( s ) ~ 0)ds .

The ex is tence of the in t e g r i ]  in Z is assured by the un i fo rm houndedness of

V over A~ { A }  and the strong me asurability of th e man s V(t ,r,,))(f(s),O).

Now define ~: ZxAx t’ -
~~ E

( w ( t ,a,~~,\ ,f), x~
(a ,r,,A

~~
ffl.

We list some properties of the functions and ‘V which will be of

interest later (e.g. in the proof of Theorem 3.iti).

--— - - - — ----- ------ - --- - ----- ----- - - ,-~~~~~~~~~ - _ _
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2.2 Lemma. The functions z and ‘V from 7,xAXF to E are continuous.

Furthermore , for each fixed (
~~,X )  the ~~~ f -

~~ ‘V ( i ,X ,f )  is aff ine and

compact.

3. Equivalence of FDE and abstract ODL

In thi~ sect- ion we shall establish a iolat-ionsiii p between solutions of

certain FDE and solutions of corresponding abstract ODE in the space Z.

For this part of our discussion we will require that A be contained in a

proper subset of A. Therefore , define the set

A = C
1

(a ,b;(X R~~
ut
~~yI,2

(_r ,O; R~~~~) )
c -

of continuous ly d i f f e r e n t i a b l e  func t ions  on I a ,b]. Defin e a norm on A
c 

by

t A l c = 
~ 

IA 1L + I~I ,  where eash A . is ceit d~ red OTT ~~1er~r- ’n I of C(a ,b ; p~~~
fl
)

and D is considered an element of -“(a,b ; l~~~(_r ,0; ~
n~ ti ) )

It is not difficult to see 18 , lemma ]~~, p . 29~~.1 t li— ~ t foi a separable

Banach space X , C 1
(a ,h; x ) i s dense in L2

(a ,h ; X ) .  Ili tis A ~~ dense in A.

The fol1 owing lemma is given for reference ; jl~ pr oo f fol l ows from

Theorem 2.1..

~~ Lemma ~
‘
~~~pc~~e y (~~,\,f) C WxA~ F. J hr n  the f u n c t i o n  ( .s )  -

~ 
x
~

(s , Y )

EC(—r ,fl ;Rm )is continuous on A. Moreover, the func tion (t ,s) L ( t ,x
~

(s ,y ) )

is continuous on A for y C W~~A xF’.
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Let ~~ : [ a ,b ] vA ~~~-1 -
~~ 7 be given by c~(t)(il’(0) ,~~) ccV~ t ;A ) ( t ~( 0 ) ,~~) =

(L ( t ,~~,A ) , ~). Consider the init i al valit’-’ pre’blem

~~ t) ~~~
(t ;A )v (t) t C is ,b], E [a ,l r ]  f ixed , (3.1)

y(s) = 
~ C W . 

-r (3.7~

A solution of eqiii tio its (2 .l ) ,(3.2) on [s,bi is S cont inuou s  func t ion

y : [s ,h]  W wh i ch s-i t i s f i e s  e’pilt ion ( 3 . l )r n  I s  ,hJ ( o n e — s i d e d  r l r rj v at i v e s to

he taken at the —‘nd pointn ) and is such that y (o) = ç .  (Fcr convenience ,

when s = h def in”  a so lu t ion  of the IVP i n  th e obvious way.)

The f o l l o w i n g  d e ’f i n i t i o n  is e s sen t i a ll y t h a t  which  appears in Krein

Ill , p .193] .

3.2 Definition The IVP given in equations (2 . j) , (3.2) is uniformlI

correct i f :

i) for each sda,hi and ~ C W there is a unique solution of the IVP ,

ii) each solution y(i ,s,~~,A ) and its dnriva t ve v( t ,s ,~~,A ) are con-

t inuous  for ( t ,s)E A and f i x e d  (~~,\ ) , m d

i i i )  t h e  sol i t t  ion depends  con t  i t i i i - u s l y  rn  I lie m i  I i I l o l i  i n  the sense

that if c . C in n r,. ~1 ‘lien 11 i i  T~~1 I111  so l i t ’ i SIS con—

ver$- -’ t o  z’-’r” u n i f o r m l y  r e l a t i v e  to ( t ,s)  C A.

_ _  - _ ~~~~~~~- -  - - - - ~~~~~ - - - ~~~~~~ - - -
.
- 

_ _ _ _ _
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3.3 Lemma Given A C A
~
, there is an equ iva te in t  inner produc t topology on

Z and a positive w w(~~) such t h a t  c1(t- ; ) ) -w t ) ) 1 is  max i m - i ]  d issi pative for

each t C [a ,bI .

Remark The idea of r e d e f i n i ng  the inner prod v~
r is i e l ’a t e ’ l  ‘ n s i m i l a r  de f in i—

i- ions in [3] an [18 L This and the following l emma ar e r r - t t i i r r d  for the

proof of Theorem 3.5.

Proof Define = x L~ (— r ,0 ;R~~) wi th  inner  produc t <~~~~ •> ~ , where

— -I.

= ~~~~~~~~ + 
~ 
~

• 
J 1_ l

<~~~q~~~q ( q )  dfl

‘I
and ~. = 1 + ~ ~~~ . it i s  easy to see f l i n t:

3 . - .  I C

~~~~~~~~~ 
l ( nM f ~ 

<

so the topologies are e q u i v a l e n t .

If ( n . ,~~.)  ± (r i ,~~) and .cj ( t ) ( q . ,~~.)  -
~ 

( cI , I I ’ ) t h e n :

i)  i~~. 
-
~ i~’ and rti . -

~ P in 1
2 i m p l y  tha t

I -

4 ( 0) 4 i ( O )  + f’jt (o)do and $. + ,~ in C ( — i ’ , O; P~~~~, and
0

n
ii) n. - -

~ 
q in }~ imp li es tl i i l  ~1’( 0)

So (n ,~~)E W . Fu r t h e rm o re  (t)(n .,f 1
) + ~~~‘(t ) ( n ~,~~) , i . e . ‘(‘ ) is closed .

Let w (A ) I. + l A l~. To see t h a t  ~~‘(t)—w I is  di ssi pative on its domain

_---_-- - - -—--—--- - ~~~~~~ - - - - -
~~~ - - 
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<
~~
(t)(1,

~
) , (n,

~
)>A = ~<q , A . ( I ) ~~(- T .)> + ~n , ,P )~~(~~) h O >

— T .V
+ ~: ~ j <~(o),~(n)> in

.1 -‘ 

~~~~ 

p

~1

~ [1A 0(t)t+ (h/2)flA .(t)l l i n t
2 

+ (h, ’7)~~lA . ( t ) l l+ (~ T.)l
2

1 1

+ ( l / 2 )~~f l ( ’  ) i 1n 1
2+ (1/2 )11 ( ) l i~l~~ !/~~lA f ( n ( 7

- (l/2)
~ fA

1 f C I~~
(_T

j)l
2 

+ (l/2)j~~l
7 

-

< [(1/2) (i+JDi )+flA .I~ ]l n I
2 ( h /7

~l’~lc l~ l~

~~ 
(l A l ~ +

= (w -

2 2
where we have repeatedly used the inequal i ty  cd < ( 1/ 2 ) ( c  +d ).

It remains to show t:ha t •cy (t)—uI is onto, whi ch w i l l  ‘~st ahlish maxima l

dissipativeness. Fix ~~~~ in Z. l e t  th C L2 ~~C 3 S OI TJt . 1 011 ( ‘1 t h e  i f  ~— w ~ ~‘; n i - U  —

ticular let ~(e ) = e~~~ ( O )  + Ye
I o ( e_ s )

~,( S)ds  Cl ’ m i - l v (~~( q ) f ) ç  W~ ~~ need

only demons Ir a  t~ t h a t ~(e) C p
11 T:: iy !rr chosen so tha t  L (t  ,~~ ) — w~ ( O )

Wri te
0

L(t,~~,X ) ~ A~ (’I)+ (-T~~) + 

~r 
~~~~~~~~~~~~~~~~

as H(t )4 t (o )  + G ( I - ,4, ) ,  where  

- -~~~~~~~~~~ .- - -
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0

V ~~~~
11( t ) ~e 1A . ( t )  ~ 1e D ( t  ,0 ) d O

and
— T . 0 I)-1

. C (t,~~) = ~~~. ( t )  J e ‘P (s)ds 

~ ~r 

I , f l )  J i ( n _ ~r 
~‘J’(~~Hsd0 .

- 

The e q u a t i o n  L (t ,lr )_ r~~(0) = has  i solu t  - - t i  if I ! ( ’  ) — i , ~l is ~,,‘ ni t i h 1~~,

i.e. if (ll (t )—wT )r ~’(0) = ~— G ( i  ,iI’ ) his a ~~~ bi t  i r a , . ( } ,  p s - - t i t t

3— - 

J 1 1( t ) 1  < flA~ l~ 
+ 

~ ~
r

0
2h1 P

~~~~~~~~

2
(t

~~
u J s

I t~i~

s ince (1 e
2
~~ d O )~~ 2 

= [ ( l ’ ? i r i ) ( !  - ~ < I ~-v c t i - r ~~~- e  ‘ii 1+ l x i  ~
1. Cons equentl y ( I1 (  t ) — u i  exis ’. s an d ha~ norm no go - a t  or than one. Hence

S1(t)—~j~I is onto.

3 • 1~ Lemma I ( Y (t )— til ) < (p  — w i- 1/2) 1 
f j j  >

- Proof Suppose ç C 14 and ii > w. Let ~ (~~( I: ) — p  I ~. Then

= — < c v ( ’  )r ,n\ 4

So 
~

<
~~‘~~

> A ~~ (p - ~ ~~~~~~~~~~~~~~~~ since ~~~f 3 f~ < we have

L -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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kl~ 
< (~ 

- + l /2) 1
I~~)~ 

= ( p  - +

Therefore t (~1 ( t) -p T Y~i ‘~~ ~ 
< (p  - ü + 1/ 2 ) 1

.
‘ A ’

The f ollowing theorem w i l l  enable us to conclude that  solut ions of the IV I

( 3.fl , (3.2) (if they exist) are unique and depend continuous ly on the initial

data in the sense of par t (iii) of Definition 3.2. The basic idea of the

proof may be found in Krein [ii, p.20’43.

3.5 Theorem Every solution y of equations (3.1), (3.2) satisf ~~~s ~~~~ j~z.

equality

l y ( t ) I z 
<

- - 1 where M (\) (1 + 
V 

)h/2
1 C

Proof We again find i t  convenient to use 
~~

• , • >
>~~ 

hly ‘h o deF i n i t ions of

(let’ ivi t : ive in 7 and of 1 sol  itt on of the I VP

(y (rt- r ,s)  — v (t ,s ) ’ l/ r  ~ . cV( t ) y ( t )

as c ~ 0. Hence 

— — -~~~~~ - - - - — ~~~~~~~~~ — - - ~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~- - ~~~~~~~~— - -~~
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y (t+c ,s)  [I t ~ c1(t)1y (t,s) + o(c)

= [I - c~~
72(t)1( I - c~~(t)1 y(t,s) + 0(c)

[I - c~~~ t)1~~ y (t ,s) - ~
2
~~ (t)~~I 

- ~~~~(t ) ]
~~~~~(t)y(t,s) + o(c).

In vi ew of Lemma 3.4, fer i/ i -  ~ 1~(A ) we li tse

Ii’ - c~~(t)l~~l Q( 7 )  (1/c)l [(l/e )~ 
-

< (1/c)[(l/c) - fiji
_ I

= 1 + c to + o ( c ) .

Thus

tY (t
~~

,5)l
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Sin ce ~~ ‘ ( t ) — u I is ma~:im-i i d iss ipa t iv e , we  m- i v i t i n l V  a res i i t  of Pazy

[114, Lemma 3.2 , p . 101 10 conclude that for all E

( l /~ ) ( [ o i + ( i / c ) l I  - 
~~(tfl

tw ± w is c t 0.

This implies that p[p I—~~~ t )f
1 w -

~~ w as ii -
~~ ( mul t ip l y both sides  by 1 + Lw;

let ti = (i/s ) + w). For 1/c > w we have

( l / c ) [ ( l / c ) I - ~~~~t ) i 1w - w = ~~~(t l l ( l / ~~)I-~~~(t ) ]~~l , .

Therefore ~~( t )[( 1 /c )I—~~~( t ) 1 0 as r I 0 fo r  a l l  i-i C 7, and so

-~~~~~~~~ -~~~~~~~~~~~ - -  ~~~~~~~
—- —

~~~ 
= -~~~~~~~~~~~ -~~~ .- ~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ - - - -- — -- --~~~~~- - - -- - -~~~ —-~~~
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( I Y ( t ~~,5 ) i ~ - 
I~~~~

(
~~ 

~~~~~~~~~~~~~~~~~~ 

< w l y ( t ,s ) I
A 

f 0 ( r )  4 0 ( t )/ C

for all c with 1/c > w. Hence

• ~~~~~~~ 
< w~y ( t ,s)~~

wher~ B
’
~ indica tes the tipper righ t deriva t i vr’.

If f C C(s,t;R ) , then (see I.~9, pp. 221 , 2 ’ I O l )  fl
t f ( f l )  -- () C j j  k,t ]  i m p l i s

that - f ( t )  > f(s). In particular , for f(P) -e 
tl f (A ) 0

1 (P )I we find that

-- — - 

Iy (t ,s)I A < e 
t
~
s)

fy (S s)I , i.e.

Iy (t ,5)I z M (A)e t
~~~~ I Z. I // I

Several more lemmas are required to establish the re la t ionship between FDE

and abstract ODE. The proof of the following result follows a standard

argumen t (see [19 , p .239 ] ) ;  we state it here for sake of comple t eness.

1 3.6 Lemma . Suppose X is a Banach space . Let x E C(a ,h ; X )

be such that ~~ ( t )  ex i s t s  and i s continuous on I a ,h ) .  Then ~~ 
) exists on

[a ,b] (one-sided derivatives to be taken at a , h) and

I . t I,

X ( t )  = x ( a )  + f ~: ( s ) d - -~ x ( - i ) + J ~~~~~~
I i  :m a

~~ r all t C [a ,bl .

____________________________________ -~~ —- —. -
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3.7 Lemma (1) For ev~ry A C A and s C Ia ,h) the derivative

exis ts in Z for t E [s ,bJ  and equals  ~~~ ( t ) V ( t  ,s) r ,, 4~ 
z E 14.

(2) Simi larly , if t C (a ,l i  and r, C 14, t he  der iva t ive

}Y- t,s)~ exists in Z for sE [a , t ]  and equals  - V ( t ,s)~~ ’( s ) ~~.

(One-sided derivatives are to be taken at the endp ointu .)

Proof (1) We first show t h a t  for  s C [a ,b ) , -~-~-V(t 
~~~~~~~~~~~~~ 

exists if

~~~E W .

Suppose (n ,~
) = C W . Then Lemma 3.1 implies that

S+C

(l/c)f L(o ,x~~
)do -* t(s ,x )

~ c ~ 0. II: is an e l e m en ~sir~ fact  (see ( 9  , p.  2 5 U 1 )  ! l i i t . ~ E1n
2
(s—r ,h )

imp lies (l/c)(x
i-

—x 5) 
-

~ ~~~~~~ 
in E

2
(—r ,0) as ‘: ]- 0. 

-

Using the fac t  tha t r C W , the defini tions of ~~~~( t ) an d  V( t ,s ) , and

Lemma 3.1, we may conclude that the function t - -
~~ ~~~( t ) V ( t ,s ) r  i. s cont inuous

on [s,b). Hence t h e  f u n c t i o n  t V (t ,s)r~ is cenli ntio us ly righ t differentiable

on [s ,h ) . Therefo r~ , t,emma 3.6implies that V (t ,o) r , + jcy (0)V(O ,s)~dO for

all t C fs ,bi , and thu s t h e  desired cone h r  inn .

(2) Lix t C (a ,h , 1. Then for (I I a ,’ ) , ‘ 
-. 
~ - ‘ ‘ii I ic i en! ly sr ia l 1

and r~ C W we have

(1/c )fV (t ~~~ 
) - V(  s , -~ ~ i r . = --V( t ,s+u ~ I / c  )1 V ( s f ,  , s ) -  I 1~~.

The limit of the  r i g h t — h a n ’ !  side a ; c () i s  —V( t ,s Y i -( H ~r. (i - ~ the results

of par t (1), the uniform hcoindedness of V (t ,-:) over A md ihe conti nui ty of

s ~ V(t ,s)w for all w C Z) .

The strong continui ty of cV(s) over 14 an] t he tit i i ‘ t m  ho indedness of

V(t ,s) o~’er A imply thaI t h e  f u n c t i o n  -s -
~~ — V ( t  ,s ) c y ( s ) r , i s  c o n t i n u o u s . 

~—~~~~~~~~~~~~~~~~ —--
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Therefore , we may again use Lemma 3.6 to conclude that for s C [a,t],

V(t,s)r, ~ 
+ Jv (t ,o)~~(o)~ de. 1/1/

Part (1) of the above lemma is also true as an “only if” statement -

for details , see [15].

We may now relate the solutions of equations (3 . L) , ( 3 . 2 )  to those of

equations (2.1), (2.2) when f = 0.

3.8 Theorem For ~ C A
~ 

and r. C W , v(~,~,- \ ) c  is the  u n i jue~~~o1ution o~

e~~~~t ion s ( 3 f l ,(3 . 2) . Fu rth e r m o re , I- his IVP is uniform ly con-rest ..

Proof Theorem 3.5 and Lemma 3.7 imply that V(.,s,A )ç i s  the unique

solution of equations (3.1), (3.2). Uniform correctness then fo1l~~s

immediately from Lemma 3.1 and the corresponding properties of -solutions

of equations (2.1), (2.2). ////

We turn now to the inhomogeneous case. Thus we consider the IVP

y ( t )  d(t)v(t) + g(’ ), (3.3)

y ( s )  = ~ EW , s C Ia ,hl fixed . (3.14)

W h i l e  e q uat i o n s  (3.3), (3.4) represent the problem we wish to solve,

t e c h n i ca l  c n n s i i er a t ; nn s  (t o  be d i scussed  below ) r e q u i r e  some s I i ~~ht

m o d i f i c a t i on ~~. In p a r t i c u l a r , for  s as i.n equat ion  ( 3 . 4)  and w w ( X )

de f ine  ~~~( t )  d(’)  - wI and g,,1(t) = e~~~~~~~ g ( t) .  We shal l  consider

the IVP given by equat ion  ( 3 .4 )  and

~(t) z~~~(t)y(t) + g ( t) .  (3 .5)
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For operators lI (t ,s): Z 7 defined for (t ,s) C A we li s t properties

that will be discussed i.n the seque l (see I ll, p. 105 11) :

• 1
0. the operal:or IJ( t ,s) is hounded on 7 un i f o r m l y r e l a t i v e  to

(t,s) C A;

2
0
. the operator ! l (  t ,s)  is strongly c~ j jt 1. f l U ) U  i n  ( i . ,s) °n A ;

0 -3 . U(t,s)  = U ( t , i) U ( - n ,s) , U(s ,s) I f o r  a < ‘~ < T < t b;

— - 4
O~ 1) the  operator I J ( t ,s)  maps W i n t o  it self ,

ii) the operator ~~~ t ) U ( t ,s)~~~~
1
(s) is hounded and strongly

cont inuous  on 7 for (t ,s) C A ;

5
0 on W the operator tl (t ,s) is s t rongly  d i f f e r e n t ia b l e  re la t ive

to t and s , w i l : h  
~

-j -- t J ( t ,s)~ = f /j t )U (t ,s ) r  and U t t ,s)~

— U ( t ,s )J1i’s ) r .
ci,

In addi t ion to the hypotheses  listed in Lemma 3.9 below , there is a

s tand ing  assumpt ion  in  l~i o i n  Ri , p . 19511 un de r  wh~ ch t h i s  IC i f f iS r i  is proved.

In par ticular  he assumes (as we also do) that V (t. )  ha:: -ì hounded inverte

satisfy ing sup{I~~~
a)
~~~

1
(s)

~
: s 

~ 
[a,b]} ~. This reqitiremeni. is treated

in Lemmas 3.10 and 3.11. The proof of Lemma 3.9 may he found. in K~’ein

[~1i , Theorem 3.3, p. 197].

3.9 Lemma If , in addition to the above assumnti~n , we have: -

a) the IVP given by ~guation (3.4) ~~~~ the homogeneous

part of ~~~ation (3.5) is unif ~~~~~~ correctj

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~. ~~~~~~~~ ~~~~~~~~~~~~~ — , 
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b)  ~~‘( t )  is strongly c o n t i n u o u s ly  d i f f e r e n t i a b l e  on 14 for i E [a,b];
(11 

-
~~~~~ 

_ _ _ _ _  -_ _ __ _ _ _  _ _ _ _ _ _ _

c) U(t ,s) satisfies properties 1~ — 5°; and

d)
~~~~

(t )  = e r g(-t) is continuously differentiable ,

t
• then y(t) = fU ( t ,s) g ( s ) d s  y ields a solution of equation (3.5) with initial

a 
-______ ___________ — __________________

value zero at  t = a.

Clearl .y  e
tJ
~~

5 t ) y ( t .)  is a solution 01 equations (3.4), (3.5) if

and only if y(t) is a solution of equations (3.3), (3.4). Therefore,

the homogeneous par t of equation (3 . 5 )  is un i fo rmly  correct , and its solution

operator is given by V ( t ,s)  = e
5t)

V(t ,s).

From our previous r e s u l t s , it is not  d i f f i c u l t  to see that  V ( t ,s)

sa t i s f i e s  properties l
O_30, 4°( i ) , 5° and th at  ~~~~~ ( t T ) is strongly

cont inuously d i f fe ren t iab le  on 14 for t E [a ,b] whenever A C A .

3.10 Lemma (cf. Yrein I l l, pp . 176, 177.!) Condition ‘i °(ii) obta ins  
~~~[

zero i s a  ~~g~~ar point of ~~ (t ) for ~j~~t Ei Ia ,h l  and

- ( 
K sup{!

~~
(a)

~~~
1(t)J

~~~(Z)
: a<t<b } is finite.

Proof Wri te t)V (i ,s)~V~~(s) as ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The
Ic) Cc) cii C*i w Ii) (i) 

~
map (-t ,s) -

~ ~~‘(t )V( ,s)  is strongly continuous en 14 ( t h i s  may he established

as in the proof of Lemma 3.7, part (l)).Hence (t ,s) -~ ~~‘( V ( t , s)  1(a )  is

Strong ly continuous on 7. Per each fixed (t ,s ),  c)-’( t ) V ( t  , ) ç ~T
1 ( i )  is a

closed linear operator d”fined on all of 7; therefore i t is l o i n- l ed by the

closed graph theorem. strong con trinuity w it .h respect to (f , ) an d  compact-

ness of A imo l y b~ the Paci-t ch- -~~te inhaus theorem th a t the opera tor s

~~~1
t ) V ,çt ,s1~ç

1 ( a )  are uniformly h--unded.

For t , t+c C [a,hJ and any r. C 7 we hav e

-- -- ~~~--~~~ — -,  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~ —-~~~~~~~ --
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~~~~~~~~~~~~~~~~~~~~~~ ~~~(t ) i I =

< Kt [~/(t)-~~~
(t+o )]d

1 (t )~~l .

The right—hand side goes t o  zero a ;  0 -
~ 0 by l ice strong cont i nuity of d(t)

• on 14. The conclusion follows immediately. ////

We now show that the second hypothesis of Lemma 3~ 10 is satisfied for

t he operators .~~~‘ (  t ) .  ( Lemma 3.3 shows t h a t  th e  f i r st  hyp ol :hes is is satisfied

~~~ (t).) These operators were introduced because the oper ators ~~(t) do not

necessarily satisfy a corresponding hypothesis .

3.11 Lemma There is a constant K such t h a t- 
~ 

t ) ~~~~~~
1 ( t  

~~ 
~~~~ 

K for all

t C [a ,b J .

Proof We may w r i t e

(~~~~a)- u I ) (~ci(t ) -w i )~~ e 1 
4- e2,

where e
1 = i~~~a)-~~’( t)] (~~~ t ) -wI  )

_ 1  
-and  e

2 
( c V( ) - c i c I ) (  ~~( t )~~~J ) 1 

=

For (n , cfc ) C 14,

- I[~~~(a)--~~
( t.)i (p ,~~)I7 IL (~i ,~ )-L(t,~~)I ~ 

< 2p 1- \ 1 5 H5
1-

.1/2
where P max{l ,r ). From the proof of Lemma 3.3 when (n,jt

(.c1(t)- lc) I )~~ (ri , !)  we have 
~~. ~(0)I+r

1 ’’ k - I 
I. , 

and

In I ~ I (lT( t )-ci~T )  i
i ~rt-G ( t- , !.‘ )  I < + t ,c g ) 

~~
.

- .. :._ ~fl_.2 ~~~~~~~~ —
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Observe that

IG(t ,~)I ~ ~IA 1I c~~~
2 I 1~I j +

~2

Thus Ini < la l + r~~
2 

p I~ I c IH I; Consequen t 
~v

- 

~~c ~ + r~~~
2
(i+ p I A 1 ~~

h h 1 I L 
< d I (o ,~) 1~

where - d  = 2 [l  + r1/2( ~~. I A I
~~~~

÷ i ) ] .  Go 1e 1 ! < 2 I A I
P d ;  therefore 

-

< 2 fX ~ pd+ 1. Let K ThI~Pd +1 . ////

The foilowinp two lemmas are useful in establishing the validity of the

term “variation of constants formula” as regards the function ‘V.

3.12 Lemma ip~ ~~~~~~ 
C 14 XC ,h ; P’1 ), ‘y (~~,X ,f) i s the uni que

solution of equations (3.3), (3.4) w!th ~
( t ) = ( f ( t ) ,0) and S = a.

Proof Solu t ions , if they o;- .i s t , are unique 1- e c cu s e  the e q u a t i o n  is linear

and its homogeneou s part  has uni que so lut ions .

The preceding disc ;i s s i . occ a l l o w s us to corn lude that

V ( t  , -~~ ) r~ J~ic t ,o )“~ 
t — ( ~ ( 1 ( a )  , () )d o

in the uniqu~ ~
:o 1ci t j~-n -~ 1 ‘ ‘

~~~~
- ° ion (3.5)f (-c) r, . -a ~ -o -c -v e t ; I t  th is

• 
exp r ’~ssi on ‘nw he c”...-r c t - ir ’n as 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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e
a_ t )

V ( t ,a~~ + J ~c1 (o-t 
~v( t: ,o) e

O ) ( f ( o ) ,0) d o

= ecit~~~~
t )tv ( t ,a )~ + J V( t ,o ) (  1( o )  ,n ) dj

e
t )

’V~~~,X ,f ) ( t ) .  / 7 / I

3.13 Lemma ‘oi ( r ,, A , E)  C WYA XC(a,b ; ll’5, z(~~,A ,f )  L~ 
a solution of

-- -— - equation s (3 .3) , (3.~~) with g = (f ,0) and s = a.

Proof By Lemma 3 .l t he  fu n c t i o n  s -
~~ L(s,x )  is con ’ m oons on [a ,b] .  Since

f is also continuous ,

t + r

lim (l/~~)[x( t+c)-x ( t . ) ]  l. i.m (l/c)J r l (s ,x ) -t  I C ;  ) jd s

L ( t  , x
~~

) + f ( t  ).

Furthermore , k C L,(a-r ,h )  i m p l i e s  lim ( l / i : ) J  x~ +~~ x 1 . 1 

~~~ 
in P 2 for

a l l  t C fa ,b].  
- 

/1/I

We are now in r3 positi on to state the fundamental result ef this

section . Its proof follows immediately from Lemmas 2.2, 3.12 and 3.13 and

the density of 14 A C
1 

in 7 x A x F. An important imp li cation of this

theorem is that the map f -
~~ z(’,X ,f) is afficce and compact for all fixed

(c,A )  ~~ Z x A (see Lemm~ 2.2). This fact wil ] he used in section 8.

3.14 Theorem The solution map z(~~,A ,f) and t he variation of constants

representation ~s(~~, , f) are identical on ZY!1XF. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~—-- -- -~~~~~~~~ — -~~~~~~ 
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Theorem 3.15 below provides the basis for the approximation scheme to be

discussed in sections 4 through 8.

3.15 Theorem For ( t , \ ,f) C 14~ A xF, z( ~,A ,f )  i s t’ir -  i iic i qcje solution of

yC t) = ~ + Ji~~~(s)v(s) 
-t

Proof One may easily show t h at  for  (~~,X ,f) C 14 x A x F the function

-- -— - ~~~( . ) z ( ~~,X , f ) ( ~~) is continuous on [a ,b]. Hence the integra l exis ts .

Using the d e f i n i t i o n s  of ~~~ and z , one may then v e ri f y tha t  z is a

solution of the i n t e g r a l  equation . Uni queness fol lows from Theorem 3.8 . I / / I

We emphasize  that  the above integral equation is equivalent to equations

(3 .3 ) , (3 .4 )  w i th  g = (f ,0) on ly if f is continuous .

F inall y ,  we remark that instead of using the FDE thecry from section 2

to show that the IVP of equations (3.1), (3.2) is un i fo rmly  correct , we could

have invoked a result of Yrein Ill , Thin. 3.11, p. 208] after our Lemma 3.4.

This ;;as net done for two reasons. The first is that  some mater ia l  required

i n the proof of Kre i n ’s -theorem has not heerc discussed; the second reason

is that properties of solutions of equations (3.1), (3.2) imply (once one

has  proved uni queness of sd c i t  ions of equa l oci-~ (7.1 i~ 
(c i . ~~ ) )  ‘- - - ‘rresponding

r - - ~u 1. ts for t h e  FD P on l y  wh en ( t , ) C WXA . f l — n s e q s ;i y h i ’  I P E  theory

had to be es a1~ I isiced i nr iepocr l~~n t lv in or i°r o oh t ci c-c r, -: , 1 ’ for general

( r , , X )  C z~A .

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ -~~~~~ —~~ -- —~~~~~~~~~ - - _ p~~~~~~~_
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4. Factor Convergence of Solutions

We have shown (Theore m 3.15) that solving the ‘quation

y(t) = ~ + J r ~~ (s ; x ) Y ( s )  ÷ (f(s~~,”) 1-is (4.1)

is in many cases equi ” ai e c cl . t o -  solv ing o q ccc o i l s  ( . fl . ( ? .  ) .  i.n Ihi ;

chapter we presen t-  a f i n i t e  di fference met hod sic i ch I’ a !  t ‘ a very conven-

ient approximai;ion scheme for equa ion(4.1);~h i n me t hod ma y e a s i l y  he imple-

men ted on a computer.

Finite difference schemes are based on io  conceI t of fac tor conver-

gence; a good introduction to this idea rn-mi he found i n Krein [11, ch.V]. Our

scheme is essential lv t:hc same as t hat dcvelnj-od by Pre in , a It ho igh the

initial formulations differ since he . deals direct ly w i t . ic ‘iDP in Hanach space .

The letter N will always denote a positive integer;

if it appears as a sup erscri pt in the def ini t ion of a t e l - n , it w i l l  be

omitted from the notation when no confusion w i l l  resu ’t . ~-1~ as-: ’i~io-further

that {a,h]  = [a ,a-s-Kr] for some positive in t:ogor K .  M o e  w i l l  1- ’~ s - i ld  j f l

section 8 concerning this las t assccmption .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ---~~~~~~~~~~~ — ~~~ - - --- - -——-~~~~~ -~
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For a g iven II , partition ia ,h] into c - i l  suhintervals of length r/N

by (t~~}~~ 0, 
where = a f f r / N .  The appr oximation scheme is suggested by

the he urist ic argument:

. t .
1~~’. t i - t - i

y ( t
1

) = ç + 

~ J U ci(s)v(s) + (f(s),fl) .lds

imp lies that

i-i i—i . j+ 1
— - y ( t . )  - (rIN ) ~ ~~

‘
1
(j)y(t .)  ~ + 

~ J ( f ( s ) , 1) ) ’ls ,
0 0

t .
~

t- 1
where (r/N )

~~ N
(i)y(t

~~
) approximates ~~~(t)y(t)dt for each value of j.

Gome pr~~Hm inary ~e1initions are required o discuss factor convergence .

For a given N , let

N N
= X R~ wi th innr- r product -

~~ 
~~~~~~~ rc ~ (r/M ) ~ <~~~~~~ >

II 0 ‘U I R

= X Z 11 vi h max mum norm ,
0

• 
T~ = [-ir/Il , - (  ~~

- 1 )r I t ! )  for -j .~~~ 

N
- ( Oj ,

= {a+ir/N , a + ( i + l ) r / N ) for i = 0,l. ,...,vN—i and

N
K = {a+Kr}.
dl
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Given an element ~ C 1.
7
(—r ,0;R~ ), 1 ’ t

c1c
~ 

(t l /r )  f 4 ( E l ) d O .

]

Let denote the  Banach space of funct i ons I c - c m  f a ,hl ~c 7 which are

uniformly con ’:inclous on o~~h i cit -s r-’ial K~ , --H ‘ I I  s urc r ’ e cn hi c f l  cc°rs I . I
Define the operators

- 

— — - 
~~: Z 

~ 
Z N ~~ ~t4

(n ,~ ) = (n ,i~,... ,~~
) , acid

p}1
: E~~-*E11 

by p
11
v = (~~11

y ( l
0

) ,.

N ote th at 
‘~~N~~~711 

< k - ~ 
,i t i ( i  1p 11y 1 1.

< Iy I 1 o for all ~ C Z , y C E~ .

Now define the operators

~N ”~N~ by s~~ v = (v
0,~~ 

v . ch(-l .,[-r,0i)), and

n~~~: F~ 
-
~ F~ by p

N
1
w = 

i~~O 
(ii~~ w .)  ch (K .,[ a ,h ]) .

Observe that 
~~

1 ,p
~
1 

ire righ t inverses of 11
N ’~ N 

respectively , and that

P C foi all N . No ’ e also ha ’ in genera l , (p ~~~w ) (  ) is not continuous on

[a ,h1 , so y E does not imp ly that 
~N 

~
‘ ~~~ P. -

The following two lemmas show us the sense in which the spaces ZN , EN
approxima te Z , E respectively .

‘t .l Lemma For all ~ C

— — — — -— ~~~~~~~~~~~~~~~~~~~ ~~
-—-- --

~. 
_ _

~~~•- • ~~~~~~~~~ — _:~~—~~~ — _
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~ in Z as U ~

Proof (see [3  , Lemm a 3.2]) This is easy to verify by computation if ~ =

(ri,~~
) and ~ is continuous. Then use the den sity of the conlinucics functions

plus the lineari  t.y and un i  form “ - l u i c o n t i n cj i  t y of th e i - cat  ( 
~N

hT
N~~ 

I//I

4. 2 Lemma For a l l  v P

u r n  — 

~~~~~~~~ ~ 
= 0. -

E11

Proof For i = 0 ,l , . . ., vil  we h~~’;e (~~~
1p y~~~t )~~ ~~y (t ) when t EK 1. Observe

that  the operators e4 n . -~4~1c I e g t ~~~~- y o ~~~; ‘n she ~ er ~ t i tv  5 n Z ( Lemma

4 .1) ;therefore ~ un i forri ls with r° c - ’ - - t  f~~ r i0 th e compact set

{y(t): t C [a,bI}C 7. This fact and the uniform continuity of y imply that

(p~~ p~y ) ( t )  converges to y ( t )  uniformly Wi t ic respect to t C [a ,b]. I//I

If (y~1 }~~~1 is a sequenc e with the proper ty  t h a t  C for all N , we

say tha t  {y 11} factor converges to y C E if

u r n  ~~~~~~ 
= 0.

N~~ N

Such limits, if they ex i st , are unique by Lemma 4.2.

Let y = (r,, A , f ) .  R e c a l l  t h a t  b y Theorem 3.15 , s( t , y)

(x (  t ,a ,y) ,x
~
( a,y)) is the un i que  ~ol ut.i on of c-qua t i on ( ~1 1). suppose that

there is a sequence 
~~~~~~~ 

wh i ch factor converc~os to z. Per each N , define

x.~(t) = xN
(t ,y) as the firs t component of p

~
’z

N
(Y)(t). The significance of

factor convergence lie in the fact that Lemma 4.2 imp lies

lim sup {~ x ( t ) — x ~1 ( t ) J : - t -  C [a ,b l }  = 0.

___________________________ - - - - ----‘--- - - — —-~~~~~~ —.‘-~ -—----. ‘-~~~~.
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Therefore, the approxilna t ion of a solution ~-t ‘qication (4.1) ~ 0 i r ICt also

yields an approximat ion of a s o l u t i o n  of eq uat i ons ( 2 . 1 ) ,  ( 2 . 2 ) ..

~~~ The A pproxicna t:iorc ~-cheme

Equa t ion  ( ‘4. 1 ) nay he i-° ’-;r i . t e n  in a more coccv”cc i °c s ’ form.  To

th i s end , le t

= (z EL : z ( t  )C  W , V t - ‘nd ~~~~~

-— - 

T T ( A ) :  L~~ -~ E be g iven by 
-

(T y ) ( t ) y ( t ) - J~~~( s ) y ( s ) d s , ; c r i ’ l

5: 14 x F -
~ P ho given by

t
S(~~~, f ) ( t )  ~ + f ( f ( s ) ,0)ds .

We want to approximate solutions of

l’y = S (r,,f). 
(5.1)

Therefore consider the equations

• T
N” N ~N~’T1~~~’

1
~ 

(5 .2)

where

KN
X Z N 

with in ner product
1

K N
< ‘ > F ( r / U )  

~ 
,

• N 1 ‘N

- - fl.. —- --~~~—- -— - -— 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ :_~~_ -_ ~~~~~~
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7, x F -
~~ 

~‘ is ~ i reri by

q1
~(r,,f )  

~~~~~~~~

S
~~

: 
~!I ~IT 

-
~ 

t~~1 (j  =

• 1 :~ I
(r

~~
:) . 

- . . .cc
0 

+ I r/!I ‘I I 1 , , I

1= 1

anti T~1
: E~ -

~ E~~ approxima t es T in the sense to he des~ r~ 1’ed below . Observe

that p11
S(~~,f )  = 511 q 11

( r,,f) for all (r,,f) E l-~~F an- -I h- c ~>:is r; for all N.

The properties of the operators T11 do
t 
~rninc thc’ ‘1.-p roc of success of

the r e su l t i ng  a pp r o x i m at i o n  sch”ne . To I l l i c s t i  i t o , it qci it ” natural to

ask that  T~~ exist for all Ti , because th i s  w e d - -I irnn ty oxi sl eccce and unique-

ness of solutions of equation (5.2). ~.4e coci~ d as 1— f c i r t l s ” c ’  isa’ the condition

P N TY = T~1p~1
y ob ta in  f or a l l  ~ ,!i. This wou ld in ly s ic - i t icr sol’ c ions y,

of equations (5.1), (5.2),

p il y = T~
’T~p~ y T~~ p~1

Ty T~~ p~ S( ç, f )

for each I-!, i. . e. ii:c cic” d i a ’  o fact o~ convergeitsc . I he I f i t  r .~-~’ c i rement is

attainable . but we do not know of a scheme which satisfies the second

requirement for general X C

The particular def in i t ions  now given load to a scheme which has

previously been studied; more will he said in section 14 concerning this.

For a given N , let 

- --—---- ~~~~~~~--- - --- -- ~~~--—•--•—- ~~—-- =~~~~~~~~~~~~-~~~~~~~~—-- - - - -f l~~~~—=~~~-- -~~~~ -- —~~--~~--.- - -- -~~~~~~~
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t(~~,N ): {O ,l ,...,v } -
~~ {o ,i,.. .,N )  be such that

E 
~~(j,N) 

for al l  j ,

A ( N ,.) = AOl,. ,A): (0 ,1 ,... ,KN-lI x{o, 1 ,... , v }  P he given by

AO1 ,i ,j) = (N/r)J A .(t)dt ,

D (N ,.) = D(tl , ,  A): (0 ,1, . .  .,KN— l)x (],2,.. .,U } R
tIYI1 he given by

D ( N ,i , -j )  = (U/r )2J 
J
D(t O)d8dt

L(N ,~~) = L (N , , A ) :  ( 0 , ] , . . . ,K N — l }  ~~(ZN ,R
n ) be given by

V N
L(N ,i)v = ~ A ( N I i~ 1)v ~ ( ~~ 

+ (r /N ) 
~

j=0 1, 
:~=l

.

~~~~~~ 

= .~~~(A): {0,l,...,KN- l} 
~~~~~ 

be given by

L (N ,i)v  j = 0
(~~‘(i)v). =N

(N / r ) ( v .
1
—v .) j 1,2,...

and finally let

TN = TN
(A): E

N EN be given by

i = 0

(T
N

y )
i 

= 
i— i

( y .  — (r/tl )~~ I = 1 ,2,.. .,KN .

Assumi ng for the moment that TN
’ exists , define Z

N = T~~S~q~(~~,f). Then

_______________________________________________ - —
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-l -1 .
p~1z — z~, T~1 

S I
~ 

i~ p~ s — ~~ S1,1q11
(r,,f )

= (T
~
’S
N

) [S
~

1
Tp,pN

z — q~1(f ,f)J.

= Hence factor convergence is established once we dernons ’ r . c ’e  that:

• (i) sup(~ i~~s11~ ~ 
x~~ r ~ P1=1 ,2,...) (th i s 1-nou n -is stabilit y

- - TI TI ’  ‘N

of the difference scheme ) and

(ii) lim Iç
’T~ p11

z_q
11(c, f)I 7 XF = 0 (this is k now n  is consistency of

N ‘N U

the difference scheme).

Stability and consistency wi l l be proved in sections 6 and 7 respectively .

It might appear more natura ] to write PN Z 
— Z

N 

(T~
3 )[T~1p1J

z_S1,1q~(~~,f)1

and establish the corresponding stability and consis tency results. However ,

we have been unable to demonstra te that in this case the stability condition

obtains for’ general systems .

The following lemma is given f or reference; its proof is straight..

forward (use induction for part (1)). Note the similarity of part (iii)

with the function given in Krein [11, p. 342].

5.l Lernma With SN ,TN as above , we have:

_ _  _ _ _  _ _ _ _  ~~~~~~~~~~~~~~~~~~
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i) TN
’: EN 

EN 
given by

• V
0 i = 0 ,

(f1v). = [I1-(r/N)
~~

’
N(0)]vO + (v

1
— v

0
) - j

• i—i 1—2 i~ ]
JJ{I+ (r/bI )jd1(j)1v 0 + 

~ fr i  [ I+ ( r / N L c *c~~
( .~

) ] ( v
k+l

_v
k

)
j 0  k=0 1=k+l

÷ (v 1
_v
~~1

) i 2 ,3,.. . ,kN ;

ii) S~
1 : E

N 
Z

N
XF

N 
given by

—l 
v
0 

- 

i 0

(S
N v)i = -

(N / r ) ( v .—v .
1
) I = 1 ,2,... ,vU ;

iii ) TN
’SN: ZN

XF
N 

-
~ 
EN given by

v
0 i = 0

(T~~S11v). = [I+(r/N)~~~~(O)]v0 
+ (r/N)v i =

i— i. 1—2 1—1
+ (r/N) ~ 

~ 
11 U +(r/N)

~~ ,~
(j)JJv k ÷ l- j=0 k=0 j=k+l

+ ( r / N ) v . i 2 , 3 , . . .

iv) SN
1TH: EN 

-
~~ 

ZW
XF

N given by

V
0 

i = 0,

(S
~
1TN

v)j =

(N/r)( v.— [I+(r/N)~~~1 (i—l )jv . 1
) i = 3 ,2,. ..,KN.

~

•— -

~ 

-- --- -
~~~----—---- ~ — - - - -

~~~~~~~
- 

~~~~~~ 
-- - - -

~~~
- -

~~~~
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6. Stabili ty

In proving that the desired stability condition indeed obtains , we find

as in the proof of Lemma 3.3 that: it is more convenient to work in certain

spaces with equivalent inner product topologies . So for a given N , let

,N ) :  (0 , 1, . .  • ,l’I— l ) -
~ (1 ,2,... ,v) be c’Jven I~v

TI
k (j , N )  = m i n { k > l :  C U - I~~

) ,
i i+ l

1

= ~ ( x )  = 
V

_1_ + 

~ ~~~ ‘c i fl,1 ,2,...,TI- 1 ,
i = k ( 1 , 1I) 1

and

N
= Y

N
(A ) = X R ’~ w i t h  inner product

0
N

= ~~~~~~~~ + (r /M ) 
~ B. < . , .>

N I R~

For A E A , define M ( A )  ( 1 + ~~ IA~ I~
)”2. Observe that 1 < B~ < M 2 ( A )  —

for all N. Thus the new norms satisfy

~~~~~~ ~~
.

• t • I
y ~~~ 

M(
~~)I .I 7N N ‘P4

~‘ae purpose for these rather complicated definitions is that they enable us

~n the proof of Lemma 6.2 below to write for V E ZN , 

~~~~~~~~~~~~~~ • - ~~~~~~~~~~ ~~~~~~~~~~~~~~~~• ± • ~~~~~~~~~~~~~~~~~~~
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.~1
IA 1 I~ ‘~~(j,M ) ’ =

Define the spaces

• KN
= i~~(~~) = XYN with maximum norm ,

0

KM
• 

-
~~~~ 

= ~~~ ( x )  = XY 11 wi th inner produc t

~~~~~~~~~~~ 
= ( r IM ) 

~ ~~~~~~~~~~~ 

.

N 1 N

Then

H
E 

< I • I  ~~ < M(A )I
~~l F , and

N N ‘N

~ 1 F~1 
~~~. I I  P1 (A )~

We will show that

sup {I T
~

1SN J~~~(Y 11
x ~~~~

, ~~~~ 
t 1 1 ~ 2~~. . .} < ~~ ,

whi ch will yield the desired stability result.

• Lemmas 6.1 and 6 .2  contain the crux of the stability argument, whi ch

is summarized in Theorem 6.3. The idea of defining the inner product used

in the proof of Lemma 6.2 was motivated by a simi lar definition in [161. Define

the symbol p as p = max 1,r~
/’2}.

6.1 Lemma Suppose tha t for a given ~ E t’c 
there is ‘in i a ( A )  > 0 for

whi ch max (II+ (r/N )
~~

f
~(i)I ~~~~~~ 

O<1<KtI -1} < I + mr/N.
- N 

~~ - - -----  --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~- - - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--
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Then there is a constant B = B (A) such that for all N,

—l ctKr
T11 SN 

~~
(Y ?I

x
~~~I ,~~~I

) ~ Be

Proof The existence of such an m implies that for all N and all j ,  k with

0 < k < < K!I 1,

IIi[I÷(r/N )-~~( 1) I~~( y )  < e .

Consequently for all I = 0,1 ,... ,KU (see Lemma 5.1 (iii))

I (T~~
SN

v)
i I y < e °

~~
(Iv

~ l y + (r/N)~~ Iv~~~ )
N N :j=

~ 
P-I

< 2 e ( ~ v~~~ + (Kr)(r/N)

- 1/2 a ,r< 2K pe ~~~~~~~~~

6.2 Lemma Given A there is an m m (A ) for wh i ch

max {~ I+ (r/U)..~~1
(i )f~~~~~~: O<I< ~U—] } < .1 + mr/U.

Proof ror v E Y~1~

I v0 + (r/PI)L (N ,i)v k = 0

({I+(r/N)
~~~

(i)Jv )
k f

I.~ 
v
k l  k = l,2 ,..., N.

L w—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Hence ,

I vO I+ (r/N)~~~IA~ I C Iv P (~~T J )

N
+ (n i l ) 2 ~ II)(tl ,i , )I HI- p] 1

~ 
1v 01+ (r/N)1A 01 )v ü l+ (r/1I) 

~(B 1 i~~i
) Iv

~I + (r /tt )IDI Iv I

< Iv 0 I÷ ( r /N ){ IA I
~ Iv I y + ~(B 1 1~~ )I’ i1f .

In the above series of inequalities we have used

(r/N)
~~~ ID (N,i ,1)I Iv . I < [(r/N )

~~~ ID( N ,i ,j ) I
2 ]~~

2
I v I 7

where

(r /PI )~~ (D(N ,i ,j)1
2 

= (r/N)~~ I (N/r)2J J D(t ,O)dOdt I
2

j— i K. J .
1 1

~~~ 

~~ 

1~~l 
J

ft(t,OH
2d0dt

•:~ J ! ) ~~~~
’

.

~~~~ _ _ __ _  _ _ _ _ _ _ _ _ _ _ _ _ ________ _ _ _ _ _  -—----- —~~— —-—-—-~ -- - - -
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Thus letting ~~~~~ = { J A J Iv I~ + ~(B. 1
-~~.1 )~ v .~~), w” have

I([I+(r/N )
~~~i

(i)]v)
0 I
2
n 

< + 2 ( r / N ) 1v 0 1 ( . . . )  +

Using the inequality 2cd < c
2+d 2, we find tha t th e middle term on the

right—hand side satisfies

2(r/N)Iv01{ ”) = 2(r/fl)[(2B0
)~~

2
Iv 0f][

(]/2 h/2 ( . . . ) ]

< 2B0(r/N)1v 01
2 

+ (]/2B 0)(r/TJ){~ 
. .

Observe that

< 2 J A ~
2
~v~~ + 2t~~~~~~1~~~~~I~~~1~~

2

- 
< 2jA ~~~ v J~ + 2{~ (B. 

‘

-

~~~~~~~~~~
} i ] i ) j v i I

< 2 J A I~ Iv I~ + 2B0 ~~~
1 1

~~~~~~
1

~~~~~I~~~~~~~~L

Recalling that B0 
> 1 ,

2(r/N)~v0~
{.”} < 2B0(r/N)Iv 0I

2+jA (r/N )IvI~~
+(n/tI )

~~~ . 7 -~~.)jv .I
2

< (r/M)[2A
0+ I A I

7
i Iv I~~~+(r/tI )~~~ i - l~~ 

)Iv~ V

and 
— 

-~ -~~~~~
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( r /N ) 2 {. .  .}2 
~ 

(r/PI )
~ 2r IA i

7
fv i~ + 2(l

~ I v l~ I.

Consequently ,

IrI÷ r/w~~~~invI~ ~~~ Iv 0f
2
+(r/?-I)[(1÷2r)IAI~ ÷ tA

0
]jvV

+ (r /M ) 
~~~~~~~~~ r~i

) I- ’~I 2 
+ (n/tI ) 

~~ j l  L~~, V

- ~ Jv~J~ + ( r / N ) [ ( l + 2 r ) i A I ?
÷5~ 0 ] i v J

2 + ( r / p J )~~B J v J
2

~~- 
( I  + ctr/n ’, l v i ~.

where ~ = (l÷2r)IAI 2 ÷ 5M 2
(A). Therefore

l [I+(r/tl)
~~
’
N
(i)]vf Y 

< (1 + mr/N)
~~

2
iv I~ < ( 1  + mr/tI )Iv~~ . I//I

N N N

6.3 Theorem Suppose G
1 C ~~ 

is such t h a t  sup ( A l :  A E G1} < ~ . Then

sup {lTN’( A ) S PJ I~~(Z~~. E ) : A C G
1 ; N = 1 ,2,...) 

--=~~~~~~~~~~~~~~~~~ 
- 

~~~~~ ~~~~~ - ——— —  -- -—— 
~~~~~~~~~~~ 

——-
~~~~~

-- 
~~~~~~~~~~~~~ ~~

- —‘- ~~~~

- -

~~~~~

- —
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Proof Note that sup { M ( A ) :  A CC
1
) < “ and

sup { t T ~
’( A )SN l 

~~(y  
~~~~~ 

~~~~~~~ A C ii = 1 ,2,...)

- 
~

- < s u p { B (A ) e  m ( X ) v r ~ A ~ - •

The conclusion f o l l o w s  i T n n n ( i i a t e i y .  i/ / I

7. Consistency

As usual, for y = ( ç , X ,f) le t x = x (a , y )  d en o t e  t h e  solution of equa-

tions ( 2.1), C 2.2); let Z
N 

= z11
(y )  TN

’ ( A ) StI q r
(
~~, f ) .  We shall restrict

our attention to y C G , where C = ( ç ) xC
1
xC

2 
is such  t h  : r, C W ; C C  Ft

is relatively compact in A with m
1 

= sup (J A l 0
: ~ C 

(‘.~~ ) f i n i t e ;  and G
2C 

F

is bounded. I t  w i l l  be of ini :erest la ter  to know t h a t  ( z
11

( y ) }  f a c t o r con—

verges to z (y )  un i fo rmly  w i t h  respect to y E  C ( t h e  f u r y - h er, z was de f ined

in section 2). Thus the primary result of this s~ s
s ion is the statement of

Theorem 7.5 that the consistency condition is fulfill ed un i formly with res-

pect toy EG .

By definition of the operators 
~N 

and

I 5N~ =

[S
~

3TNppIz( y ) ) j = j
~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ )Ii

~,J~
.(t.

l 
,y ’

~ }

i = 1 ,2,... ,KU ,

and

— -- - - -- -
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I”u~ 
I = 0

= ( -

1 
(t I / r )j  (f(s),0)ds i = 1 ,2,... ,vll .

K.
1—1.

Hence , defining

• g (N,y)(i) (r/N)[S~
3
T

11 p~1
z(y)-q

14
(~~,f ) ] .,

we obtain

1° i = 0

g(N ,y ) ( i )  =

(4 z (t1,y )-{[I+(r/N)~~~1
(i_ l) ]n ~ z(t. 1 ~Y ) t f ( f (s ) ,O)ds )

= 1,2,.. .,vIl .

Observe that g(N,y)(i) C Z~1 ; let g(N , y ) ( i,~~) denote it~ ~t h  component .

Taking advantage of the representation z(t ,y) (x(t ,a,y),x1 (a ,y)), we

f ind tha t for j = 2,3,... ,N

g(N ,y ) ( i , j)  
~~~~~~~~~~~ 

— (lT
N

z( t . ] ,y)) . l

N TI- 
= (x

~~
(a,y)). — (x ~ (a ,y)).

1 
-

1•

= 0 .

The terms g(N ,y)(i~ j )  for i 0 ,1 mus t be analyzed separately and in

- 

- 

more detail.

7.1 Lemma (i) m2 sup (lx~(a ,y)l : (t,y) C [a ,h1”~) is finite ;

(IU r = su p ( i ~~
x ( • , a~ y ) I I ( a n ) : y E G} is finite .
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Proof Let ( n , + )  = r. Observe that lx (a,y)l = 
~~~c 

for all y and that

supflx( t;a,y)J : a < t < b , YE G} is finite by the hypotheses on G
1
,G2 

and

Lemma 2.2, Theorems 3.5, 3.14. Consequently x(y) is continuous on [a-r ,b]

and bounded uniformly with respect to y, so m
2 is finite. Condition (ii)

1/2follows from the relations (recall that p max{1,r }):

l~
(t ) l ~~. 

P I A l~ !x~l~ ÷ l f ( t ) l

< pm
1
m
2 

+ I 1 (t) l

for t C [a ,b] and the fact t:hat for all y, l~~(a ,y)l 1 = H1 . I//I

~2

Define

h ( i ,y) { J I ~~(t ,a , y ) I 2d t J 1 /2

for I = 1,2,... ,dI. The following lemma is easily proved using H~1der ’s in-

equality and the definitions of g(N, y) ( i ,l) and h ( i ,y ).

7~.2 Lemma sup {~~g (U ,y ) ( i ,1) ~~: 1<i<KTI , y C C )  < h ( i , y ) ( n /N ) 1”2 .

The analy s i s of g (N ,y)(i,O) utilizes the fo11owinc~ elementary result.

7.3 Lemma For all t ,s C [a-r ,h] and all y CC we have lx(-t )—x(s )l<

n t-si ’12. Furthermore , given I C (1,2,...,KPI }, j  E { 1 ,2,...,PJ } and

t C [a ÷ ( i— l—j ) r /T I , a + ( i +] —j ) r / N I, we have

< 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof The f irs t s t a t emen t  is an immedi at e  conseql Ieni -e of L emma 7.i. Let

a + ( i — l — j ) r / U  and o = — i .  Then o C I 0 , 2r/U I b y hypothesis . Observe

that
1 4( n/ FI )

x ( t ) _ ( x ~ )~~ = I x (r÷o ) - (Pl/r )f x(0 )d0 I

• = (!I/r) IJ [x(t +~~)-x(t +0 fld0 J

r /M

< (TI /r ) J r l o-o l~~
2do.

- 
n/N 

1/2The function a -
~ J la-O l do assumes the maximum v a lu e  of

(2/3)(2~
’2-l)(r/N)3’2 < 2(r/U)3’2 (when a = 2r/N ) over the interval

[O ,2r/N]. I / / I

7.4 Lemma For all y EG , max{jg (N,y ) ( i ,0)~ 1 < i < K N )  < 2pFm
1

(r /N ) 3”2.

Proof Observe that  -

g(N ,y ) ( i ,0) = x ( t
I

)_ {x ( t
I l ) ÷ ( r / N ) L ( N , i _ l )

~ N
z ( t . l )+ J  f ( t ) d t }

= 
I

tE. (t ,xt
)+f( t )]dt_ (r/N)L (TI ,i_ 1 ) rpi :~

(t .: )_I f(t)dt

- (r/U)1~(tJ ,i -i )n~1:;(t~~~1
).

Th us



- .~~~~~~~~~~~~~~~ . ~~~‘~~~~‘ —-‘,~ —-—%—-.—-,-,-—---•,•----—----— 
-

v N
= I ~ I A.(t)x (t-i .)+f ~ I D ( t  ,0)x (t+8)d0dt

j 0  ~ ~ .‘ 
~~l 

‘
V V -‘i—I 1— 1 ‘ -1

- 

~~
_ 1

A
0
(t

~~~~

u 1_ 1 )dt 
- 

~~~ 

~i-1 

)(:-: 

i-1~~~ 
I,N )

• 
- I .

~ J D(i ,O)(x~ )
~ d0dt l

• 
~< 

j—l 
~

i- — i  ii

J t~0l 0i~
-(
~ 
)-x (t1 1 )ldt÷~ I IA ~ I~

lx (t
~
T ~)-(zf

)
~(1~ 1)Id t

N 1
+ J ~ J I N t ,0 ) H x ( t ÷ 0 ) _ ( x~ 

)‘.Id o d t
=1 - • _

~~ 
1

K. ~~~~J .  1

i—l 0

< 2r(r/N)l~ 2t~~ J IA
~~~~I~~~~

dt  + 

~i-l 
Lr

(t
~
0 l0d

~~

< 2r(r/N)~~2{(r/!I)~~~ IA .i + rl/2J IP(t )I 1 d t }
< 2pr m 1(r / N ) 312. I//I

The consistency of the approximation scheme i.s no--I readily established .

• 7.5 Theorem The limit

F 
- 

0 — u r n

exists uniformly with respect to y C C.

— - — — — - — - .L .. L L ~~~~~~~~~._ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • . .~~ —
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Proof By Lemmas 7.1, 7.2, 7. tt and preceding remarks,

v N
= (rIM ) 

~N TI i=i~ N

KM

= (NIr ) ~ (~~g (N , y) ( i ,O)~~
2 

+ (r/t-t)if (U ,y)(i,1)1
2
}

i=1

• < (N / r )~~~~((2p1’m 1
)
2( r / N ) 3 ÷ h 2( i ,y)(r/lI)2}

= KN(r/N) (2PFm ])
2 + ( r/ 1 I)  J l~ ( t ) l 2 dt

K.
i— I

< (r/N)r
2
[lfKr(20m

1
)2}.

Therefore

~~~~~~~~~~~~~~~~~ < m
3
(r/I1) 1’2,

where m
3 = n [i + K r (2 p m 1 ) 2 11”2 is independen t of y E G. I//I

8. Approximation Under More General Assumptions

So far , we have relied greatly on the fact that A is continuously differ-

entiable. As we shall, see below , the preceding results enable us to approximate

solutions of equations (2.1), (2.2) whenever A C Pt is essentially bounded .

Once this has been established , we may deal with such FDE on any bounded

interval [a ,b) by simply extending A and f as zero to the interval [a ,a+Kr]

for an appropriate integer K.

Let

A,, = L ( a ,b; (X R~~
’) ‘

~ L2
(a ,b ; g

flXfl))

— , ~~~~~~~~~~~~~~ — —‘— - - - ~~-~~~~~ - - - ‘ —  - - - -‘~~~~~~~~~~ ~~~~~~~~~~~~~~ - r-.,-- —r— — ,r-~~t t r t~L~ rr_r”r -- ~~- ———
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with norm f .  Using a standard re~ u1 t [12, corol lar y , p. 288j one can

prove that for every A C A~ there is a sequence (tF . I in A~ of step (i.e.

finitely—valued ) functions wh ich converges !.o A in the A norm , and is such

• that I’~.l~ 
< 2 JA ~~ for all i. From {rp .} one c- rn construct a sequence {X.)

in Ac having the same properties , i.e. l A
1
- A i  -

~~ 0 and for all 1 , i A 11 0 ~
2 1 A I  . -

Suppose (
~~,X ,f) C 

WVA xj’ is s;iverr ; l e t  { \ . )  I”  t —  - i t -we awl ~k f i r i c

y, y~ Ci = 1,2,...) as ( r,,A ,f ) , (~~,A . , f) rnspe eti vel y . Then t h e  set C

U. (y . }  satisfies the s t a n d i n g  assumption of sect:ion 7, hence also the hypo-

theses of Theorems 6.3 and 7.5. There fore

u r n  IPtrz~~N
)_z

N(Y TI )I E~ 
= 0.

Note that z(y
N) converges to z(y) in E by Lemma 2.2. Consequently

{ZN (Y N)) factor converges to z(y), since

IPNZ(Y)
Z
N

(Y
N )I F. ~ + IPN

Z(y tI )7 tI (Y
N )i E

. (8.1)

Assume now that f, f. C F (i = 1,2,...) and {f.)—~ f; redefine y~ as

(r~,A 1, f1). Then Lemma 2.2 and Theorem 3.14 in conjunction with the above

reasoning and standard inequalities , imply tha t once again (z
H

(Y
N
)} factor

converges to z(y). This fact will be used in the proof of Lemma 10.1.

Since we are primarily concerned with the compull’ i onal aspects of

this theory , it is of interest to know how the opera t ors c
~~

(A
N
) relate to

To this end , let c~ he chosen so that 2r o is the smallest posi-

tive number representable in the language to he used on a given computer

(e.g. 2c
0 

= 16 65 in double precision FORTRAN on ION 3F~0, 370 machines). If

- — - 
k~iil4
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in addition to the above requirements on we ask that I A _ A
~1 l ~

c0
min{(r/N)~

”2,r/N}, then for all j ,  k, TI:

< (TI/r)
~~

2
IA-X 11 I < £~~, m d

< (N/r )~
X_ X

~~ <

Thus the machine representations of 
~~ i

(A
~~
) and ~~~1

(X) are identical.

Observe from Lemmas 7.1 and 7.4 that the rate at which {p !Iz(Y
N
) —

factor converges to zero is determined by m1,m2 and the bound in F

on (f ). The overall rate of factor converc~ence of z (y ) to z(-y-) depends- T I N

also (see equation (8.1)) on the rate of convergence in E of z(y
N
) to z(y),

which in turn depends on the particular sequences {X.} and {f.}. 

- • - -—— -~~~~~~~-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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9. The Control Problem

Having seen that solutions of equations (2.1), (2.2) may be approximated

• by solutions of the difference equations (5.2), we proceed to deal with an

associated optimal control problem , which will he denoted as (9). We replace

the inhomogeneous term f appearing on the right—hand side of equ ii:ion (2.1)

with the product Bu , where B C L (a,b;R~~
m
) and u C L2

(a,b ;R
m
).

Throughout this chapter we shall use the letter x to denote a solution

of equations (2.1), (2.2). For a given N , the symbol ZN 
will denote a solution

of equation (5.2); the symbol XN 
will denote the corresponding first component

of PM
’Z
N 
(see section 4).

Let U denote the space of contro l f u n c t i o n s , L2 (a ,h ; R m ) . Ass ume tha t

functions g1: ZxF -* R and g
7
: U -

~ R h ave been de f ined  arid t h a t  a subset ~k

of U has been ~pecified. Define the cost functiona l ~: ~~~~ -
~ R by

•(u) = g1
( z ( b ,a,i~,A ,i3u),x(~~,a,~~,A ,Bu ) )  + g 7(u).

The optimization problem is

(9): Minimize • over- ~~‘.

Problem (9) is tractable under the hypotheses given below . We need

the concept of quasiconvexity for the statement of these hypotheses. A

real—valued function h defined on a convex Set  i s  quasiconve x (see [14

section 5)) if

h(czu+ (l—a)v) < max {h (tr),h ( v ) )  

~~ — --~~~~~~~~~~~ - -~~~ -~~~~~ - - - -~~~~~~~~ ~~~~~~,•- -~~~~--~~~~-- - _ _
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for 0 < ~ < 1 and all u , v . If strict inequality obtains for 0 < ~ < 1 and

u � v , h is strictly quasiconvex. Cquival.enti.y (sen 16 , Defn . 1.~~.2}), h is

quasiconvex if the set Cu: h (u)<a} is convex for all real numbers e.

We assume throughout’ that:

(ill)  ~~ is closed and convex;

( 112) g. is continuous (i = 1 ,2);

(H3) is quasiconve x Ci = 1 ,2); and

( 1114) a)  ~~~
‘ is bo un ded , or

b)  ( i)  g
1 

is bounded below (i 1,2) ,

(ii) g2 
is radially unbounded (i.e. g2 

-
~ as (uf -*

( i i i)  the mapp ings and the sets (def ined in section 10

below ) sat isf y °N
1
~~ N C ~~ for all N.

Other than (114b) (iii), the above hypotheses are standard in control theory.

From Lemma 2.4 we see that the maps u -
~~ z (b ,a,~~,A ,Bu) and

u ~ x(•,a,~~,A ,Bu) are affine and continuous . Consequently ~ is continuous

and quasiconvex; ~ is strictly quasiconvex if is. fly tiastir ’s t heorem

(see [12, p. 85]), the set ~è is weakly closed. This  theorem a l so  imp lies

that ~‘ , being lower semicon t-inuous and quasiconvrx , is w e a k l y  lowe r semi—

continuous . -

Let the sequence Cu
~

} be such that G ( u . )  -* = 1nf{~~(u ) :  u E .9) .
Hypothesis (114) implies that Cu1

) is a bounded sequence. Hence , there is a

weakly convergent subsequence {u.(.)}; let u5 denote its weak limit. Clearly 

— —--~~~- - —~~~~~~ - - -—~~~ --~~~~~~~~~~~~~ —~~~~~~ ~~~~~~~—— — ——— -~~~~~~ - — - — ~ - -~~~~-—~~~~~~~~~~~~~~~ -—~~~~~~~~~~ ——~~~~ -
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a < ~‘(u~ ) < lim inf t~(u. . ) =
-

— — 1( 3 )  -

Therefore , problem (9) has a solution. The optimal control is unique if we

assume that 4 is strictly quasiconvex.

As in section 8, no problem is encountered in extending the interval

on which solutions of equation (2.1) are to be defined . In particular, if

we extend A and u as zero over some i n t e rva l  [b ,a+vrl , t h e n  z(t) z(b)

for b < t < a+~r. Thus only trivial adlustments n r r d  he made in defining

a new cos t f u n c t i o na l .  For th i s  reason we assu me h ence forth wi thu no 1os~;

of generali ty that b-a = yr for some integer r .

10. The Approximate Control Problems

We now associate cos t frin cti onals ~~~ 1 1 1  C ’ 1 i i , I t  j e u r - (5 .2) in such

a way that the resultinc~ opt imization prohlerr~s , d e n o l e t  
~~~~~~~~~~~ 

reflect

several pro :erties of prohl’-’rn (9). To this end , define 

-UN = XR wi th inner product ~~~~~~~~~ = (~ ~~~~ -
, .

‘

. • 
~ .

1

Let denote the map from Ii in to T

~~~~ 

g i v e n I v

Q~~U = ((N/r)J u(t)dt , ..., (TI/r)f u(t ) d r )

Observe that 1
~N 1

~~( u u )  ~ I for all U. Define a ri ri it irlerse Q~’: UN ~ U

of 
~N 

by

KU — I
Q~~v = 

i 0  
~~~~~~ ch (K.ja ,hJ).

- - -~ - -  - — — - a~~- ~— ~~— - - - . a,_ - ~—
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(Recall that similar definitions were made in section i i ) .

Define 
~ N = . le t 

~N 
R he g iven by

~~~~~ 
g (( p lz~ X~~,A ,BQ ’v ) ( b ) , xN (

~~,A ,nQ~ 
v)( fl + g2 (Q~~ v ) .

We define the approximate optimization problems as

(
~~
‘
~~~ i

: Minimize over

We could have defined ~I as a function from ‘2i to R. However , this would have

changed the nature of 
~
19

~N 
from that of a classical mathematical programming

problem to an optimization problem over an infinite-dimensional control space.

Since the maps v -
~ 

(p
~~
zN)(c,A,

BQ
~~
v)(b) and V -

~~ 
x
N
(
~~
,A ,BQ

N
v)( )

are affine and continuous (obvious from Lemma 5.1 (iii)) for each N , each

is a continuous and quasiconvex function over the closed convex set

Using arguments similar ~o those emp l oyed itt section 9,wo may rencIude by

hypothes i s  ([itt ) that for each N there is a sol ’it ion u~ C of problem

Observe that is strictly qunsiconvex i~ g~~ is , in w h i c h  case

is unique.

Suppose for the moment that the f o l l o w i n g  r e s u l ts  have been established:

10.1 Lemma If QN
’UN~

_
~~
U , then ~(u) < lim inf

10.2 Lemma If Q
~
1
uN ~ u , then •(u) = lim

10.3 Lemma For all u EU , Q ’Q
N
U -

~ u.

10.4 Lemma Suppose {vM} is bounded in U and vN -~ v . Then Q
~~

QN
v
N -~~v. 

—--~~~~~~~~~~~~~ - - ~~~~~~~~ - - - -  - - —-~~~~ ~~~~~~ - - - - -~~~~~~ -
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For each N , let  u~ de n ote a solut ion of p r o b le m (,
~~~
?)

N
. i h i e  fo l low-

1mg lemma is instrumental. in establishing the rrlat-ionshi p between problems

(9) and

10.5 Lemma The sequence Q
N
’u
~ 

is bounded in U.

Proof The result is simple to establish if ~~ is bounded (pick a sequence

{v N
} in ~~ such that: QNvN = use equiboundedness of the linear functions

u -‘- QN
’QN

u). Otherwise (cf. [2, section 4]), choose an arbitrary u C~~~.

Then for all N ,

<

Lemmas 10.2 and 10.3 imply that the right-hand side converges to ~~u ) .  Thus ,

the sequence {
~ N

(u
~~

)} is boun ded , which implies by ( H t t b ) ( i i )  tha t  {Q~~ u~ }

is also bounded . 1’/~”I’

Let {u~ ( 1) }~~ 1 denote a subsequence of h ivinc~ the prorerty that

the sequence is weakly  convergent , j u t  U ; l e t  n i~
’: denote its weak

N N ( i )
l imi t .

Since u~ is a natural  candidate for a solution of problem (9), we

must consider whether it is an element of ‘i’. Lemma 10.5 and hypothesis (114)

ensure that a bounded sequence ~v.} exists in ‘~iwith the property that

= U~~( 1) for all 1. Let v. be the weak limit of the weak ly convergent

subsequence {v.(.)}; since ~‘is weakly closed , v ~ ~~~ . Lemma 10.4 implies that

—~ v . Hence u~ E~~~ because QN~~i ) u
~ ( . )  ~~~~~~ implies that

u* = V .

_ _  
_ _ _ _ _ _ _  _ _ _  

-
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10.6 Theorem The above u~ is a solution of problem (9) .  Furthermore ,

= 
~t I ( . ) (u U ( . ) ). 

-

Proof For all uC ~~~
‘ we have by Lemmas 10.1, 10.2 and 1.0.3

ut (u~) < lim inf 
~TI (i )~~

‘
~i( i )

< lim sup

< lim sup

= ~(u). I / / I

Under assumption of strict quasiconvexitv , a standard argument involv-

ing subsequential limits imp lies that this u~ is the uni~jrue solution of

problem (~~~) and that Q~~u~~
_
~~u~:.

So f ar , we have not exp loited the  finite_dimen sinni!i lv of

Indeed , we shall not exp iictt : .ly do so. This anFect of he approx i mate

optimi zation problems is importan t , however , because it permits u-s to

• develop computational packages without introducing further approximations .

An example of a control set satisfying hypothesis (H4b)(iii) is given

below . Control sets of this type, and those satisfying hypothesis (Ptta ),

are commonly used in optimization problems .

Let X be a closed convex (unbounded) subset of h~~. Define the set

Cu: u (t) C X a.e. on [a,b]}. 

—~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —----_ - —---- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Clearly , ~“satisfies hypothesis (Hl). We employ a standard argument using

the Hahn—Banach theorem to demonstrate that ~
‘satisfies hypothesis (H4b)(iii)

as well. 
- 
In particular , for u E9’and i = 0,1 ,cU- i let y. y

1
(u)

(N/r)f u(t)dt. Suppose that y. ~~X for some i. Then there exist c ER ,
JK 1

~ ER~ such that c < ~~~ and sup{~
T
v: y E  x } < c. Therefore, c < ~Ty• =

(N/r) ~
Tu (t)dt < c, a contradiction .

J K  -

1

We now supply proofs for lemmas 10.1, 10.2, 10.3 and 10.4.

Proof of L emma 10.1 Our remarks in section 8 imply that zN (u N
) factor

converges to z(u). Observe that for all y C E N ,

sup{f (p~~y)(t)t~~: t E[a,b]} = ‘~~~E

Using these facts and Lemma 4 .2 , we f i nd  tha t

1-1m sup{I (p
~~
zN
)(t)_z(t)l

Z: t E JIa,b] } = 0.

Therefore(p
~
’zNX C , A ,BQ

~~ uN
)(b ) -

~~ z(b,a,r ,A ,Bu) and xN
(
~~
,A ,BQ

~
’u!t

)(
~~
)

-

~~ 

x(~~,a,~ ,A ,Bu) in Z and F respectively . The conclusion follows from the

continuity of g
1 

(hypothesis (112)) and the weak lower semicontinuity of

(hypotheses (Hi), (112) and Mazur ’s theorem). I//I

Proof of Lemma 10.2 This follows immediately from hypothesis (H2) and the

convergence of (p
~
’zN

.)(b) to z(b) and x
N
(.) to x(-..) as above. /71/

Proof of Lemma 10.3 This may be proved in exactly the manner in which L emma

~.l was established . /1/I 

-- -- - - ~~~~~~~~ ~~~~~-—- - 
- - - - - -
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Proof of Lemma 10.4 For all w CU we have (Q
~~

QN
vN,w) = (vN,w) - (vN,w_QN

1
QN
w)

since for u1,u 2 E U  we have (Q
~~ QN u l ,u 2 ) = (u l ,Q N

1QN u 2 ). The conclusion

follows from L emma 10.3. /1/I

11. Descri ption of Numerical Techniques Employed

In our discussion of numerical results , we shall not explicitl y consider

the effect of round-off error. Our intention is not to imply that it is

negligible , but to emphasize the particular characteristics of the approximation

scheme presented in section 5. In this regard , note our comments in section 13

concerning the chemostat example ( for N = 32) .

The f ini te  difference scheme was used in the manner described below to

compute solutions of problems L
~~~ N (see section 10). Its implementation was

easy ; in fact , the only further approximations required arose in the evaluation

of 11
N~~ 

A ( N ,i , j )  and D (N ,i ,j )  (see sections 14,5). A standard quadrature algo-

ri thm , exact for fourth-order polynomials , was emp loyed f or this purpose.

Since QNQ~
’w = w - for each w C the set of admissi b le controls for each

approximate problem was r ead i ly  characterized.

The dif ference equat ions  for t h e  s t a t e  and  (see [13 sec. V I I . 4 ] )  auxil-

iary equations were solved exac~ lv. T h u r n e r i c a l  s olu t i o n s  of prob l ems 
~~~~~~~~

were obtained by a combination of the gradient and cc ’ninug ate grad ien t

techniques. In narticular , for ~ fixed N , a gradient step was

taken on the first , fourth , seventh , etc. iteration , w i th  conjugate gradient

steps in between. This procedure was con t inued  u n t i l  a convergence cri terion

for the values of was satisfied.

--— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Several optimization problems governed by autonomous systems ( namely

examples 1, 2 and 3 of [3]) were solved numerically both by the technique

described above , denoted as method R , and its analog (see [3]) for the method

of Banks and Burns , denoted as method B. In each case the results were

compared to an exact solution . As expected , low—order (i .e .  N = 4 , 8)

approximations with method R were not very accurate. The results were better

for intermediate values of N (i.e. 16, 32) and quite good for large N

(i.e. 64 , 128) 
-

Generally speaking, comparable accuracy was obtained by taking N twice

4 
as large for method R as for method B. The definite , and not surprising ,

advantage of method R is its faster execution on a computer. Evaluating on

this basis, methods B and R are roughly equivalent. Consider example 14~ 3 of [3]:

method B required about 32 seconds to execute with N 16, while method R

required 17 seconds with N = 32. Method B was only slightly more accurate.

12. Results for a Simple Nonautonomous System

We now present an example for which numerical and analytical solutions

were readily obtained. These solutions were used to evaluate the accuracy

of the above finite-difference scheme .

Consider the system

~ ( t ) = 6 t x ( t - l )  + t i ( f )  t C 10 ,21 ,

( x ( 0 ) , x0
) = ( 1 ,1) ,

and associated optimization problem (9): minimi ze •(u~ ( 1/ 2 )  x2 (2 )  +

( l/ 2) f  u
2

t)dt over the set ~i= L2
(O ,2;R).

~ 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~—~--— - - - ---— —---~— ~~~-
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An analytica l solut ion was obtained in the fol low ing manner by means of

necessary conditions on extrem a l pair s (see [13 , s e ct i o n  \‘II.21). It is easy

to verify th af ~ th is  p r ob lem is norma l , so for  an o x t r r m u l  p a i r  (x~ , u~ ) there

is a function 4’ C L
2

( fl ,3;R) such that

1 o tE(2 ,31

4’(t) = ~

I — x ~ ( 2 )  t = 2

and on [0 , 2],  4 ’ ( t )  —1~(~~+ l ) i ~, ( t + l ) .  Fu r the r -more , u;~~s a t i s f i ~~s the pointwise max— 
-

imum principle :

*(t)(6tx~ (t—1 ) + ti~~( t ) }  — ( l/ 2 ) [u ~:(t ) ] 2

maxt
~

(t ){ 6tx
~
:(t_1) + v} - ( l / 2 )v 2

~
vER

Therefore u~ = 4’.

Letting 4’(2) r~~, “c lind tha t 
-

I ~~~~~~~~~~~~ t C

u’~’(t )  = 4 ’( t )  =

• L ~ 
C [1 ,21 .

• This in turn implies that

~~~~~~~~~ + 3(l-~ )t
2 

+ l0~ t + 1 C [0 , 1],

x~(t) =

(-l.2cx)t
5 
+ (14.5)t

4 
+ (26a-12)t

3 
+ (l2 -36c t)t 2

+ cit + (16 .2a—0.5) t C [1,2 1.

- -—- - - -  —- -. ———~~~~——~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -===— —~~ — -—
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Using the fact that —ci  = x~(2), we obtain ~

Since we know a priori that prob l em (c?) has a urni qile solution

(section 9), these necessary conditions imply that it is given by (x~ ,u~) as

defined above. Consequently the optima ] cc~s t 
~~ is ~- ‘i;en by

2 -

= (1/2)[x~ (2)i
2 

+ ( 1/ 2 )  u t  t )idl

0

= (l/2)44.8a2

= (23.5)
2
/89.6

= 6.1635.

Selected values of ~~~~, u~ are given in Tab le  I .

We have computed numerical solutions of t h e  corrcs~~~u id i ng p rob lems  
~~~~~~~~

for N 4, 8, 16, 32, 51i  and 128. A summa ry of he r-e -;ot ’ s is included in

Table I. Observe that in this examp le the qu an t i ti e s n
11

(x ( 0) ,x0), A ( N ,i ,1)

and D (N ,i,j) were computed exactly. In part icular ,

1 ~ 1 0 and a l l  hi , i ,

A( N ,i ,j )  = -

I (6i+3)/U j V 1 and a l l  N , i ,

D (N ,i ,j )  = 0 Y N , i ,

The same general behavior is observed for this exnt:up le as f or the autono-

mous systems discussed above . In comparin g t b i ~ approx i m a t e  s o l u t i o n  for

N = 128 to the analytical solution , we see that ti-to relative error in the

control values is less than 2%, except at time 0. 7~ where it i~ about 3%. The

relative error in the payoff (f or N = 12R) is 1 i -’s~ than fl .7~ .

L
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13. The Chemostat - a Biochemical System

In this section we present numerical results for an optimization problem

based on the dynamics of the chemos tat. This device controls th~ growth of

a microorganism population by regulating the supply of one essential nutrient ,

while providing all other nutrients in excess. Equations (13.1), (13.2) below are

similar to models of the chemostat which have appeared in the literature (see

- 

- 
[SI, [17]). The nonlinearities in these eq ua ti ons a re an a logous to th ose

appearing in the initial velocity approximations (u sually associated with the

nar~ s of Henri , Michaelis—h4enton , and Briggs—ifaldane) wii~ ch are used to model

enzyme catalyzed reactions (see [1, Ch. 1]).

Let x and s represent the microorganism popul ation rl.’nsi ty and nutrient --

concentration iii the growth chamber , rcspect :ivelv. Let t h e  statt-’ of the system

be given by (x,s)E C (-l,3; P.2). Then we have

0
V
1
x (t) J s(t O ) - y ( O ) d O

k ( t )  = _________________ - D ( t  )x ( t ) t El 0 ,3] , (13.1)

1< i- 
/ 

s(t+0)y(O)dO
— l

V x(t)s (t)
Mt) = D(t)[s0

-s(t)I - K +  ~ (t) 
t E [0,3], (13.2)

where s0 denotes the 
nutrient concentration in th~ i n c o m i ng  medium , D ( t )  the

washout rate , K the saturation constant for the rate of 4Ip t~1~e of nutrient ,

V
1 

the maximum growth rate , and V7 
the max imum uptake r—i t

~~. The function

y E L2 (-l ,O; R )  is used to weigh t  the d i s t r i b ut e d  e f f e c t  nf the nutrient con-

centration on the growth rate.

- - - — - 
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In the case to be considered below , we made no attempt to assign physi—

cally meaningful values to the above constants ; rather , we arbitrarily set the

values s
0 

= 2, K = 1, V~ 1 , V 2 
1/2 , and defined y((~) 1, 0 E [—1 ,0].

The optimization problem (~~~) was formu l-ited 
a.-; f ollows. A control

D E L2
(0,3; R) was emp loyed to force the  sy s t em  awa y from an initial steady

state. The system was then linearized about the resulting trajectory ,

denoted as z = ( (~~(t) ,~~~), (~~( t ) ,~~1
- ) )  E C( 0 , 3; l~

2 xl
7
(_ l ,0; R

2
)). The cost

function ~: ~k L
2
(0 ,~~; R ) -

~ R was defined a’

~(u) 5f~z ( t ) I 7dt + soIIz (t) [
~
(2)

~~
(t)1

~
2dt + c f f u (t ) l

2dt

+ ~~~~~~~~~~~~~~~~~~~~~~~~~

where z = ( x— x ,s—~ ) and u D—D represent the stai.e and control functions

respectively for the linearized system. ‘l’his par ticul ar definition of ~ was

motivated by the objectives: 
-

( 1)  keep z and u smaU along the  tra~ ect o r y , so t h a t  t h e  l inea r i za -

tion is fairly accurate ; and

( i i)  force (x ,s) to the new steady state (x (t) ,s(t)) =

t E [2 ,3].

We have computed numerical solutions for t h e  corresponding problems

for N = ~~~ 8 , 16 . A summary of l hr ’ result’~ is include d in Table

II .  The magni tude of x~ ( t ) , s~ (t) for t E [0 ,2 1 and for each value of N is

less than 0.1, except for x~(1.75) and x~(2.0). Thes” magnitudes are less

than 0.2. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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TA}3Lr: II: CIIflF-IOSTAT t4oDI;L

N 8 1 6

0.2022 0.2283 0.211 07

TIME u~i I 
‘
~16

0.0 0. 0000 0 .0673 0. 06 1 1;
0 . 2 5  — 0 . 0 1 6 6  0 . 0 0 7 7  (1 . 0 17 1
0. 5 — 0.0286  —0 .0215 — 0 . 1)0 2 ’)
0.75 —0.0 39 0  — 0 . 0376 —0 .0115
1.0 —0.0501 ~0 .0’t ’ )2 —0 .01813
1.25 —0.0610 —0.0617 _0 .030t;
1.5 — 0 . 0 7 3 8  — 0 . 0 7 5 6  — 0 . 0 0 ) 3 2
1 .75  ~~0 . 0 8 14 9  — 0 . 0 8 0 7  — 0 . 0 6 0 7

2 . 0  — 0 . 1 6 1 7  — 0 . 1 5 3 3  -0 . 1 2 2 0
2 . 2 5  — 0 . 1 6 0 5  — 0 . 1 1 3 6 2  — 0 . 1 8 7 3

2 . 5  — 0 . 1 2 7 8  — 0 . 1 6 5 7  — 0 . 18 3 2
2. 75 — 0 . 0 8 7 0  — 0 . 12 ’ l ’4  _ 0 . 1t 4 8 1
3.0 —0.0870 —0.1012 —0.1116

TIME x~ —x X~’-x X~~5
_X 

-

2.0 0.1312 0 .0031 0 .0 802
2.25 - 0 . 1 0 2 2  0.0673 0 .0565
2 . 5  0 .0 8 5 6  0 . 00 00  0 . 0 3 8 2
2 . 7 5  0 . 0 7 61  0 . 0 36~t 0 . 0 2 3 7
3.0 0.0727 0.0268 0.0081;

TIME se-S ~~~~~~~~~~ 

~ 16~~
2 .0  — 0 . 0686 _ 0. 0I 13 14 — 0 . 0 2 2 5
2.25 —0.0538 —0.0278 —0.0056

— . 2 .5  — 0. 00 55 — 0 . 0 2 0 0  0.0018
2.75 — 0 . 0 0 1 0  — 0 . 0 1 6 0  0.00117
3 .0 _0. OIIOO - — 0 .0 107 0.0053 

- -- - - - ————-
~~~~~~
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The runs displayed in Table II required much more time to execute than

those appearing in Table I.. A rough estimate (exact figures are not available)

of the total CPU time required for N 0, 8, 16 is 020 seconds. A run was

made with N = 32. Numerical errors appear to have become significant here, for

the CPU time required to meet the convergence criterion was greater than

expected and the results differed slightly from what had been anticipated

(based on an examination of earlier runs).

The rather lengthy execution times for this example show

that batch processing is advisable in some cases. The program loaded into

less than 256 K bytes of storage, and used five disk files with total length

under 90 K bytes.

10. Concluding Remarks

The theory we have presented generalizes the work of Banks and Burns

(see [2], [3]) on autonomous systems in two ways:

i) nonautonomous systems are treated , and

ii) the approximating systems are governed by difference , as opposed

to differential , equations .

The primary practical advantage of (ii) is that it leads directly to algorithms

which may be implem ented on a computer , whereas the theory developed in [21,

[3] requires a numerical approximation of the approximating ODE systems .

The use of averaging approximations in the study of hereditary systems

is not at all new . For a detailed bibliography and commentary on the literature ,

we refer the reader to section 5 of [3].

As mentioned earlier , the approximation scheme discussed in section 5

has previously been studied . Delfour [7] investigated its convergence and 

-~~~
- - - -—— ---- ~~~~~~~~~~~~~ 
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applicability to the linear quadratic optimizati~n proLlem . The techniques

he employed are substantially different from those we have chosen. For

purposes of comparison we shall use our notation to briefly describe his work .

(The symbol A° below denotes a space similar to our A ,,.)

Delfour defines piecewise constant Re-valued

functions by means of the solutions of the difference equations obtained

from the first component of equations (5.2). These functions are shown

[7 , Prop.. 3.2] to converge in the supremum norm to the solution of equations

(2.1), (2.2). Having asserted [7, Thm . 2.1] equivalence of equations

(2.1), (2.2) and the corresponding abstract ODE in Z for (~~,X ,f )  E W x A
0 x F, he

restates [7, prop. 3.0] the approximation results in operator notation in

spaces similar to Z
N
. Corresponding theorems are presented for solutions

of the adjoint and Riccati equations , which lead to his treatment of the

optimal control problem.

The major difference between Delfour’s approach and that represented

by [2], [3] and our own efforts is that (for the linear regulator problem)

Delfour approximates not only the state equation in Z, but the infinite-

dimensional adjoint and R-iccati equations as well. The method of [2]-, [3]

and this investigation involves immediate approximation of the state equation in Z

by a finite-dimensional problem (either an ODE or difference equation) and

then employment of standard numerical methods to solve the approximate

problem.
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