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I Some Qualitative Considerations on

the Numerical Determination of Minimum Mass Structures

I with Specified Natural Frequencies”2

by

1 3 4
A. Mangiavacchi. and A. Miele

Abstract. The problem of the axial vibration of a cantilever

I beam is investigated analytically. The range of values of

the frequency parameter having technical interest is de—

I
I
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I Notation

E Modulus of elasticity , lb ft 2

L Length of the beam, f t

I in Normalized mass per unit length , in~~ ML/M0
M Mass per unit length, Lb ft 2 sac2

Reference mass, lb ft~~ sec
2 (Sections 2-3)

I M0 Tip mass , lb f t~~ sec2 (Sections 4—5)

M~ Total mass of the beam , lb ft~~ sec2

I x Normalized axial coordinate, x=X/L

X Axial coordinate , f t

u Normalized axial displacement, u~~Y(X)/Y(L)

I Y Axial displacement, ft

3 Frequency parameter, 3~~wL/(p/E)I p Density, lb ft 4 sec2

Natural frequency , sec 1

Superscript

I Derivative with respect to the normalized axial
coordinate x (for example, u ’ — du/dx }
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1. Introduction

1 In this memorandum , we consider the problem of the axial

I vibration of a cantilever beam. With reference to a con-

stant-section beam, we determine the range of values of the

frequency parameter 8 having technical interest. This

range of values of the frequency parameter is important in

I the solution of a subsequent problem: the determination

I of the mass distribution that minimizes the total mass of

a beam for a given fundamental frequency constraint.
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I 2. Nonoptimal Beam without a Concentrated Mass

Let m denote the normalized mass per unit length, u the

normalized axial displacement, and B the frequency

I parameter. Let x denote the axial coordinate, normalized

so that x=O at the base of the beam and x=l at the tip of

I the beam. Let the prime denote total derivative with re-

i spect to the axial coordinate x. With this understanding,

the fundamental equation to be solved is the following:

(mu ’)’+ B2mu 0 . (1)

I In this equation, the frequency parameter 8 is related to

the natural frequency w , the length L, the density p, and

the modulus of elasticity E by the relation

B = wL/(p/E). (2)

In the absence of a concentrated mass attached at the

tip of the beam, the boundary conditions for Eq. (1) are as

follows:

u(0) = 0, m(l)u’(].) = 0 . (3)

I If the mass distribution

I m=m(x) (4)

I is prescribed a priori, then (1) is a second-order differential

I 5Equations (3) must be completed by the normalization condi-
tion u(l)—l.

I
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I equation, to be solved in conjuction with the boundary

conditions (3).

I Constant Section. Next, we consider the particular case

of a constant-section structure, that is, a structure with

I a constant mass per unit length:

I m=const . (5)

For this particular case, the differential equation (1) and

the boundary conditions (3) simplify as follows:

u” + 82u = 0 , ( 6 )

u(0) = 0, u’ (1) = 0 . ( 7 )

The solution of (6) consistent with the initial condition

(7—1) is the following:6

u = A sin(Bx) , (8)

with the implication that

u ’ = AB cos(Bx) . ( 9 )

I
From (9) and the final condition (7-2), we conclude that

I cos 3 = 0 , (10)

so that

I ( 2n+l) n / 2 , n 0 ,1, 2 (11)

I 6The constant A has the value A=l/sin3 .

‘ H
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I Therefore, for this problem , the smallest nontrivial value

of the frequency parameter is

I 
B ir / 2 . ( 12)
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1 3. Optimal Beam without a Concentrated Mass

Now , suppose that a constant-section structure has

I been studied in accordance with Section 2. Suppose that

the frequency parameter B which allows satisfaction of the

I boundary conditions (7) has been determined, namely-

I 3=-ir/2. The total mass of the structure studied in Section 2

is given by 7

I ~•1
Mt/MO = ~ mdx , m = const . (13)

I Therefore, it is natural to pose the following question:

I for the same value of the frequency parameter 3= r/2, is

there a better beam, that is, one having a smaller total mass?

I In particular , is there a beaia which yields the smallest

total mass for the given value of B? This question leads

I to the following variational problem: Minimize the total

I mass 

1

I M*/M0 = mdx , m = m (x )  , ( 14)
0

with the understanding that the following constraints must

I be satisfied:

I (mu ’ ) ’  + B 2mu = 0 (15)

I u ( 0 )  = 0 , z n ( l )u ’( l)  = 0, (16)

I and with the further understanding that Bair/2. Owing to

II
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I the fact that the problem (15)-(16) is homogenous, the

obvious solution under the physical constraint

m(x)>0 (17)

I is

m(x) = 0 , (18)

with the implication that

M*/M0 = 0 . (19)

In order to avoid the occurrence of the above trivial so—

lution , Ineq. (17) could be changed as follows:

m (x)>m
0 . (20)

Then, the solution would become

I
in = ~~ . (21)

To arrive at solutions other than constant mass so—

I lutions , it is necessary to postulate some different physical

situation (e.g.,a concentrated mass attached at the end of

I the beam) . In turn , this results in a change in the boundary

1 condition (16-2), and this change makes it unnecessary to em-
I ploy inequality constraints of the form (17) or (20 ) .

7The symbol M0 denotes a reference mass.

I 8Equations (16) must be completed by the normalization condi-
tion u (l) = 1.

I
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1 4. Nonoptimal Beam with a Concentrated Mass

I In this section, we assume that a concentrated mass

is attached at the tip of the beam. Using the same ter-

I minology as in Section 2, we see that the governing

differential equation (1) still holds:

I 2(mu ’) ‘ + B mu = 0 (22)

On the other hand , the boundary conditions (3) are modified

as follows:9

u ( 0 )  = 0, m(l)u ’(l) = ~2 ( 23)

Constant Section. Again, we consider the particular

case of a constant—section structure. Under condition (5)

and after observing that

-‘ M
~/M =m , (24)

I then problem (22)-(23) becomes

U ” + 32u = 0 ‘ (25)

u(0) = 0, u ’ (l) = (M0/M~)B
2 
. ( 26)

The solution of (25) consistent with the initial condition

I (26—1 ) is the following: 4

I 9Equations (23) must be completed by the normalization condi-
tion u(l)=l.

I H
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u = A sin(Bx), (27)

with the im~’lication that

u ’ = A8 cos(Bx) . (28)

I
From (28) and the final condition (26-2) , we conclude that

A cos B = (M0/M~)B . (29)

Owing to the fact that -

u(1) = A sin $ , (30)

I elimination of A from (29)-(30) leads to the following

transcendental equation :

B tan B =(M~/M0)u(1), (31)

which , for u(l)=l, reduces to

B tan B = M*/MO . (32)

This equation supplies the frequency parameter B in terms

I of the mass ratio (ratio of beam mass M~ to tip mass M0).

In order to understand the significance of (32), let us

I consider two limiting cases: Ci) negligible mass ratio and

(ii) infinite mass ratio. IfM~/M0=0 ,then the solution of

I (32) is

I B = nir~ n = 0,1,2,... .

I
I
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I On the other hand , if M~/M0=oo , then the solution of (32) is

I B= (2n+1)7r/2 , n = 0 ,l,2,... , (34)

I which is identical with (11). Since the first natural

frequency corresponds to n=0 , we conclude that, for mass

I ratios in the range

I 0<M ~/M0<oo , (35)

i the smallest frequency parameter B consistent with the

trascendental equation (32) lies in the range

0< B <ir /2 . (36)

I
I
I
I
I
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5. Optimal Beam with a Concentrated Mass

As in Section 3, we can formulate the problem of finding

the optimal mass distribution. The problem is as follows:

Minimize the total mass

1
M*/M0= J m dx i m=m(x) , (37)

with the understanding that the following constraints must
10

be satisfied:

(mu’)’ + B2mu = 0 , (38)

u(0) = 0 , m(l)u’(l) = 32 (39)II
and with the further understanding that the frequency para—

meter B has some fixed value in the range

(40)

10
Equations (39) must be completed by the normalization con-
dition u(1) ~ l.

I
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