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Abstract. The problem of the axial vibration of a cantilever
beam is investigated analytically. The range of values of
the frequency parameter having technical interest is de-

termined.
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Notation

Modulus of elasticity, 1lb £r2

Length of the beam, ft
Normalized mass per unit length, m=ML/M°

Mass per unit length, lb ft 2 sec?®

Reference mass, 1b ft T sec? (Sections 2-3)

Tip mass, 1b £t™! sec® (Sections 4-5)

Total mass of the beam, 1b ft™1 sec?
Normalized axial coordinate, x=X/L

Axial coordinate, ft

Normalized axial displacement, u=Y(X)/Y(L)
Axial displacement, ft

Frequency parameter, 8 = wL/ (p/E)

Density, 1b ft~ ¢ sec?

Natural frequency, sec~1

Superscript

Derivative with respect to the normalized axial
coordinate x (for example, u' =du/dx)
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1. Introduction

In this memorandum, we consider the problem of the axial
vibration of a cantilever beam. With reference to a con-
stant-section beam, we determine the range of values of the
frequency parameter 8 having technical interest. This
range of values of the frequency parameter is important in
the solution of a subsequent problem: the determination
of the mass distribution that minimizes the total mass of

a beam for a given fundamental frequency constraint.
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2. Nonoptimal Beam without a Concentrated Mass

Let m denote the normalized mass per unit length, u the
normalized axial displacement, and B the frequency
parameter. Let x denote the axial coordinate, normalized
so that x=0 at the base of the beam and x=1 at the tip of
the beam. Let the prime denote total derivative with re-
spect to the axial coordinate x. With this understanding,

the fundamental equation to be solved is the following:

(mu')' + Bzmu = 0 . (1)

In this equation, the frequency parameter B is related to
the natural frequency w, the length L, the density p, and

the modulus of elasticity E by the relation
B = wLY(p/E). (2)

In the absence of a concentrated mass attached at the
tip of the beam, the boundary conditions for Eq. (1) are as

follows:5

u(o0)

0, m(l)u'(l) =10 . (3)

If the mass distribution

m = m(x) (4)

is prescribed a priori, then (1) is a second-order differential

SEquations (3) must be completed by the normalization condi-

tion u(l)=1.

o
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equation, to be solved in conjuction with the boundary
conditions (3).

Constant Section. Next, we consider the particular case

of a constant-section structure, that is, a structure with

a constant mass per unit length:
m = const . (5)

For this particular case, the differential equation (1) and

the boundary conditions (3) simplify as follows:
u" + g2u =0, (6)
u(0) = 0, u'(l) = 0. (7)

The solution of (6) consistent with the initial condition

(7-1) is the following:6

u = A sin(Bx), (8)
with the implication that

u' = AB cos(Bx). (9)
From (9) and the final condition (7-2), we conclude that

cos g =0, (10)
so that

B = (2n+l) n/2, n=20,1,2,... (11)

('rhe constant A has the value A=1/sing.
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Therefore, for this problem, the smallest nontrivial value

of the frequency parameter is

B =n/2 . (12)




3. Optimal Beam without a Concentrated Mass

Now, suppose that a constant-section structure has
been studied in accordance with Section 2. Suppose that
the frequency parameter 8 which allows satisfaction of the
boundary conditions (7) has been determined, namely,
B=mn/2. The total mass of the structure studied in Section 2
is given by7
1

M*/Mo = S mdx , m = const . (13)
0

Therefore, it is natural to pose the following question:
for the same value of the frequency parameter B=w/2, is
there a better beam, that is, one having a smaller total mass?
In particular, is there a beam which yields the smallest
total mass for the given value of B8? This question leads
to the following variational problem: Minimize the total
mass
1
M*/Mo= so mdx , m=m(x) , (14)

with the understanding that the following constraints must

be satisfied:8
2
(mu')' + B"mu =0 , (15)
u(0) =0 , m(l)u'(l) =0, (16)

and with the further understanding that B8=n/2. Owing to




the fact that the problem (15)-(16) is homogenous, the

obvious solution under the physical constraint

m(x)>0
is

m(x) = 0,
with the implication that
M*/Mo =0 .

In order to avoid the occurrence of the above trivial so-

lution, Ineq. (17) could be changed as follows:
m(x)z__mo

Then, the solution would become

To arrive at solutions other than constant mass so-

(17)

(18)

(19)

(20)

(21)

lutions, it is necessary to postulate some different physical

situation (e.g.,a concentrated mass attached at the end of

the beam). In turn, this results in a change in the boundary

condition (16-2), and this change makes it unnecessary to em-

ploy inequality constraints of the form (17) or (20).

7The symbol Mo denotes a reference mass.

8Equations (16) must be completed by the normalization condi-

tion u(l) =1.




4. Nonoptimal Beam with a Concentrated Mass

In this section, we assume that a concentrated mass M,
is attached at the tip of the beam. Using the same ter-
minology as in Section 2, we see that the governing

differential equation (1) still holds:
't 2
(mu')' + B mu = 0. (22)

On the other hand, the boundary conditions (3) are modified

as follows:9

u(0) = 0, m(l)u'(l) = 82. (23)

Constant Section. Again, we consider the particular

case of a constant-section structure. Under condition (5)

and after observing that
M,/M_=m, (24)
then problem (22)-(23) becomes
" - A
L i SRR (25)
2
u(0) =0, u'(l) = (M/M)B" . (26)

The solution of (25) consistent with the initial condition

(26-1) is the following:

gﬁquations (23) must be completed by the normalization condi-

tion u(l) =1.




10 WP-2
u = A sin(Bx)., (27)
with the im;‘lication that
u' = AB cos(Bx) - (28)

From (28) and the final condition (26-2), we conclude that

A cos B = (M/M,)B . (29)
Owing to the fact that

u(l) = A sin B8, (30)

elimination of A from (29)-(30) leads to the following

transcendental equation:

B tan B =(M*/Mo)u(l), (31)
which, for u(l)=1, reduces to

B tan B = M*/Mo . (32)

This equation supplies the frequency parameter B8 in terms
of the mass ratio (ratio of beam mass M, to tip mass M) -
In order to understand the significance of (32), let us
consider two limiting cases: (i) negligible mass ratio and
(ii) infinite mass ratio. If M,/M = 0,then the solution of

(32) is

B=nn., n = 0,1,2,... . (33)




11 WP-2
On the other hand, if M*/Mo=°° » then the solution of (32) is
B= (2n+l)m/2 , ey (0l mdl P L (34)
which is identical with (11). Since the first natural
frequency corresponds to n=0, we conclude that, for mass
ratios in the range
051\1*/Mo§°° v (35)
the smallest frequency parameter R consistent with the
trascendental equation (32) lies in the range
0<gsm/2. (36)
™ AT L
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5. Optimal Beam with a Concentrated Mass

As in Section 3, we can formulate the problem of finding
the optimal mass distribution. The problem is as follows:
Minimize the total mass

1
M,/M_ = somdx, m=m(x), (37)

with the understanding that the following constraints must

be satisfied:10

2

(mu')' + B"mu 0

' (38)
w(0) =0, m(l)u'(l) = 82, (39)

and with the further understanding that the frequency para-

meter 8 has some fixed value in the range

0<B<7/2. (40)

10
Equations (39) must be completed by the normalization con-
dition u(l) =1,
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