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1 AAR—138

Numerical Determination of Minimum Mass Structures

with Specified Natural Frequencies1

by

A. MIELE2, A. MANGIAVACCHI3, B.P. MOHANTY4, and A .K. WU5

Abstract. The problem of the axial vibration of a cantilever

beam is investigated both analytically and numerically. The

mass distribution that minimizes the total mass for a given

value of the frequency parameter ~ is determined using both

‘This paper was presented at the ASME Energy Technology Con-
ference and Exhibition , Session on Structural Optimization
Methods, Houston, Texas, 1977. This research was supported
by the Office of Scientific Research, Office of Aerospace
Research , United States Air Force , Grant No. AF-AFOSR-76-3075 .
The authors are indebted to Dr. V.B. Venkayya , Wright-Patterson
AFB, Ohio, for suggesting the topic and stimulating discussions.
This paper is an extension of the investigations presented inRefs. 1-2.
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5Graduate Student, Department of Mechanical Engineering and
Materials Science , Rice University , Houston , Texas. 
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the sequential ordinary gradient-restoration al gori thm ( SOGRA )

and the modified quasilinearization algorithm (MQA). Concern-

ing the minimum value of the mass, SOGRA leads to a solution

precise to at least 4 significant digits and MQA leads to a

solution precise to at least 6 significant digits.

Comparison of the optimal beam (a variable-section beam)

with a reference beam (a constant-section beam) shows that the

weight reduction depends strongly on the frequency parameter 1~.

This weight reduction is negligible for ~~~~ is 11.3% for

~ = l , is 55.3% for B = l . 4 , and approaches 100% for ~ -~~i/2.

Key Words. Structural  opt imizat ion , dynamic optimization ,

axial vibrations, freauency constraint, fundamental frequency

constraint, optimal structures, cantilever beams, bars, sequen—

tial gradient-restoration algorithm , modified quasilinearization

algor ithm , numerical methods, computing methods.
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1. Introduction

Under the sponsorship of the Office of Scientific Re-

search, Of f i ce  of Aerospace Research , United States Air Force,

the Aero-Astronautics Group of Rice University has developed

in recent years several algorithms dealing with the numerical

solution of optimal control problems on a digital computer .

Noteworthy among those algorithms are the sequential

ordinary gradient—restoration algorithm (SOGRA, Ref s. 3-4) and

the modified quasilinearization algorithm (MQA , Ref S.  5-6).

For a survey of these algorithms, see Ref. 7.

The algorithms discussed in Refs. 3—7 are general, all—

purpose algorithms. As far as aerospace engineering is con—

cerned , these algorithus can be applied to a variety of fields,

for example, optimum trajectories, optimum aerodynamic shapes,

and optimum structures. With reference to optimum structures,

two categories of problems can be identified : (i) static op-

timization problems, for example, minimization of the weight

of a structure for a given load distribution; and (ii) dynamic

optimization problems, for example, minimization of the weight

of a structure for given frequency constraints.

This paper is the first of a series dealing with dynamic

optimization problems and is being written at the suggestion

of Dr. V.B. Venkayya, Flight Dynamics Labora tory , Wright

Patterson AFB , Ohio. The questions posed by Dr. Venkayya were

II
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as follows: can SOGRA and MQA be usefully applied to the

solution of dynamic optimization problems? How reliable and

precise are the solutions obtained with these algorithms under

realistic engineering conditions?

At Dr. Venkayya ’s urging, the problem of the axial

vibration of a cantilever beam was investigated , with the

following objective in mind : to find the mass distribution

that minimizes the total mass for a prescribed fundamental

frequency . This problem was studied first, because a closed-

form solution, due to Turner (Ref. 8), is available. Hence,

it constitutes an ideally suited test problem for checking

the accuracy and reliability of SOGRA and MQA in the dynamic

optimization of structures.

Outline. This paper is divided in three parts: physi-

cal problem (Sections 2—4), optimization problem (Sections

5-6), and numerical results (Sections 7-9). The first part

contains a description of the physical problem , both in di-

mensional form (Section 2) and in dimensionless form (Section

3); a reference solution, that pertaining to a constant—section

beam, is given in Section 4. The second part contains a des—

cription of the mathematical problem (Section 5); Section 6

presents several alternative formulations and an essential

simplification: the elimination of a redundant constraint.

The third part contains the description of the algorithms

(Section 7), the experimental conditions (Section 8), the

numerical results (Section 9), and the conclusions (Section 10).
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Notation. Throughout the paper , the following notation

is employed.

Physical System

A Cross—sectional area, ft2

E Modulus of elasticity , lb ft 2

Fe Elastic force, lb

F. Inertia force, lb

L Length of the beam, ft

—2 2M Mass per unit length, lb ft sec

M0 Tip mass, lb ft~~ sec2

M~ Total mass of the beam, lb ft 1 sec2

t Time, sec

U Axial displacement, ft

x Axial coordinate, ft

Y(x) Displacement function , ft

Z(t) Temporal function , dimensionless

c Normal strain , dimensionless

p Density, lb ft 4 sec2

Norma l stress, lb ft[ Natural frequency, sec~~

j Subscripts for the Physical System

x Derivative with respect to the axial coordinate

t Derivative with respect to time

I
I
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Normalized System

I Total mass of the beam , I = M ~ /M0
m Mass per unit  length , m = M L / M 0
t Axial coordinate , t = x / L

u First derivative of the displacement, u=y

w Second derivative of the displacement , w = y

y Axial displacement, y=Y(x)/Y (L)

z Auxiliary variable, z=mu

Frequency parameter , ~= wL/(p/E)

Superscript for the Normalized System

Derivative with respect to the axial coordinate t

(for example, ~ =d y/dt)
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2. ~~y~4cal System

We consider the problem of the axial vibration of a can-

tilever beam or bar, that is, a beam having a fixed end and a

free end. Attached to the free end is the concentrated mass

M . The beam has variable cross section; hence, it has va-

riable mass per unit length M. The total mass of the beam is

given by6

M~~= l  Mdx , ( 1)J o
where x denotes an axial coordinate, measured from the fixed

end of the beam, a:id L is the length of the beam. Note that

x= 0  at the fixed end and x=L at the free end .

Assume that the system composed by the masses M0 and M~
is excited by some external axial disturbance. Then, the beam

vibrates axially under the combined effect of the elastic for-

ces and the inertia forces. These forces are in equilibrium.

Equilibrium Equation. Let Fe denote the elastic force at

station x; let F denote the elastic force at station ~~~x+dx ;

let F — F denote the net elastic force acting on the beame e

element having length dx; and let dF
~ 

denote the inertia force

associated with the mass element Mdx . The equilibrium condi-

tion between elastic forces and inertia forces requires that

F —F =dF . , (2 )e e

6Note that M=M(x) .
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where

F = aA , ( 3— 1)

F = a A + ,~1dX , (3-2)

dFj = M t i tt dx . ( 3 — 3 )

In the above equations , a denotes the normal stress, U the axial

displacement, U.~ the axial velocity, ~~~ the axial acceleration,

and t is the time. From (2)— (3), the equilibrium condition takes

the form

~
(aA)/

~
x=MU tt . ( 4 )

The left—hand side of Eq. (4) can be expressed in terms

of M and U if two observations are made. First, the mass per

unit length M, the cross—sectional area A , and the density of

the material p satisfy the relation

M = p A  . ( 5 )

Second , on account of Hooke ’s law, the normal stress a, the

normal strain c= U ~ , and the modulus of elasticity E satisfy

the relation8

o = E c = E U ~ 
. ( 6 )

Therefore , upon combining Eqs. ( 4 ) - ( 6 ) ,  the equilibrium condition

7Note that A=A(x) .

8 1fl Eq. (6), a one—dimensional state of stress is assumed .

Ii

- - - 
. . .-
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takes the form

( E/p )  (~~/~ x) ( M U
~~

) — MU tt = 0 . ( 7 )

Boundary Conditions. The partial differential equation

(7) must be solved subject to appropriate boundary conditions.

( i )  At the fixed end of the beam , the displacement must

vanish. Therefore,

U = 0  at x = 0  . ( 8 )

( ii)  At the free end of the beam , the elastic force act-

ing on the cross section A must balance the inertia force

associated with the concentrated mass N0 . Clearly,

F + F ~~= O  at x = L  , ( 9 )

where

F = aA = ( E / P ) M U X , (10)

F. = M U  . (11)
i o t t

Therefore, upon combining Eqs. (9)—(ll), we see that

( E/ p ) M U + M U tt~~~
O at x = L  . (12)

(iii) The spatial boundary conditions (8) and (12) must

be completed by appropriate temporal boundary conditions.

I
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However , these temporal boundary conditions are not specified

here : we are only interested in the spatial behavior of the

system.

Separation of Variables. We assume that the nature of

the temporal boundary conditions is such that the technique of

separation of variables is applicable to the system composed

of Eqs. (7), (8), (12). Therefore, we write the unknown function

U(x,t) in the form

U(x,t) =Y(x)Z(t). (13)

Upon substitution , we see that the previous differential system

splits into a spatial system and a temporal system, each des-

cribed by ordinary differential equations.

(i) For the spatial system, Eqs. (7), (8), (12) can be re-

written as

(E/p) (d/d x) (MY ) + w 2M Y =  0 , (14)

Y = O  at x = O  , (15)

(E/ p ) MY - w 2M Y = 0  at x=L , (16)

where w denotes any of the natural frequencies of the system

under consideration.
9 

Clearly, the solution Y(x) of (l4)-(l6)

depends on the mass distribution M(x) as well as on several

constants characteristic of the system (L ,E,p,w ,M0).

9Note that is the separation constant , that is, the constant
which allows the separation of the spatial system from the
temporal system .
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(ii) For the temporal system, Eq. (7) implies that

zu. + w 2 z = o  . (17)

Of course, this equation must be completed by appropriate and

consistent temporal boundary conditions.

(iii) In the remainder of this paper, we focus our atten-

tion on the solution of the spatial system (14)—(16) . For

problems where the function N (x) is prescribed a priori (for

instance , the study of the axial vibration of a constant section

beam), the system (l4)-(l6) is linear. For problems where the

function M(x) is to be determined (for instance, the optimiza-

tion problem described later on in this paper), the system

(l4)—(16) is nonlinear. In either case, the system (l4)—(l6)

I 
is homogeneous in the unknown function Y(x), a circumstance to

be exploited later on in the paper.

I

I

t

I
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3. Normalized System

The equations describing the spatial system can be re-

written in a simpler form if the following dimensionless

quantities are introduced :

t=x/L , m=ML/M , y=Y(x)/Y(L), (18)

~ = wLv’(p/E) , I=M ~/M . (19)

With these definitions, the mass integral (1) becomes

t.l
1= 

~ 
mdt (20)

~ o

and Eqs. (14)—(16) become1°

(d/dt) (mi) + ~
2my= 0 , (21)

y(O) = 0 , (22)

m(l)�’ (l) = ~2 
, y(l) = 1 . (23)

The quantity ~~, which is proportional to the natural frequen-

cy w, is called the frequency parameter. The additional bound-

ary condition (23-2) is due to the fact that the displacement

function Y(x) has been normalized in terms of Y(L), the value

assumed by the displacement function at the free end of the

beam. This is possible, owing to the fact that the spatial

system (l4)—(l6) is homogeneous in the displacement function

Y(x).
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Note that, for problems where the function m(t) is pres-

cribed a priori (for instance, the study of the axial vibration

of a constant section beam), the system (21)—(23) is linear.

On the other hand , for problems where the function m(t) is to
I 

be determined (for instance, the minimum mass problem described

f in Section 5), the system (21)—(23) is nonlinear .

I ___________________________________________
10Equation (23-2) is a normalization condition for the dis-
placement function y(t).

(

t..

I
• .- -

— ,— — — —-~~~~~~~~ ~~-•-- Q~’If~ ~~~~~~~~~~~~~~~~~~~ — ~_ _ ._
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4. Constant-Section Beam

In this section, we consider the solution of the system

(2l)—(23) for the particular case of a constant—section struc-

ture. For

m=const , (24)

the mass integral (20) reduces to

I=m (25)

and Eqs. (2l)-(23) become

(26)

y(0)=0 , (27)

rn~ (l) = ~2, y(l) = 1. (28)

The solution of (26), (27), and (28-2), valid for any value of

the frequency parameter ~~, is given by

y= sin(~ t)/sin~ . (29)

The mass per unit length m corresponding to the frequency

parameter ~ can be computed from (28-1):

m = ~~tan8 . ( 3 0 )

Therefore, the mass integral is given by

- -- -- -- -
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I = ~tanB . (31)

In order to understand the sign i f i cance  of ( 3 1) ,  recall

that I is the ratio of the beam mass M~ to the tip mass M0

and consider two limiting cases: (i) negligible mass ratio and

(ii) infinite mass ratio.

If I = 0 , then the solution of (31) is

n 0 ,l,2 . (32)

On the other hand , if I=cz , then the solution of (31) is

~~-
= ( 2 n + l ) r r / 2  , n= 0 ,l,2 (33)

Since the first natural frequency or fundamental frequency

corresponds to n= 0, we conclude that, for any mass ratio in

the range

0< I ~~~ , (34)

the smallest value of the frequency parameter ~ consistent

with the transcendental equation (31) lies in the range

0<~~ < 7r/2 . (35)

We shall recall this result in the optimization problem

formulated in Section 5. Specifically, we shall pose the fol—

lowing problem . For a given value of the frequency parameter
U
I

I

I
~1
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~ in the range (35),  is there a beam yielding a smaller value

of the mass integral (20)  than the value (31) associated with

the constant—section beam? In particular, is there a variable—

section design yielding the smallest value of the mass integral

(20) among all the designs satisfying the feasibility equations

(21)—(23)?
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5. Optimization Problem

In the previous section, the solution valid for a

constant—section beam was given. Here, we consider a variable-

section beam and formulate the following optimization problem:

For a given value of the frequency parameter ~~, find the mass

distribution m(t) and the displacement distribution y(t) such

that the mass integral is minimized , while the feasibility

equations are satisfied. This is a problem of the calculus of

variations or a problem of optimal control , depending on the

formulation being employed (Ref s. 9-10).

Formulation (Fl). In this formulation , the optimiza-

tion problem has the following format:11

1= % mdt , (36)
Jo

my + rn~’+~~
2my=0 , (37)

y(0) = 0 , (38)

y(1) = 1 , m(1)~’(l) = ~2 (39)

Clearly, the unknowns are the functions m(t) and y(t).

Formulation (F2). Let the following auxiliary varia-

bles be introduced :

u= y, w=y . (40)

The dot denotes derivative with respect to the independent
• variable t.

1



18 AAR—138

With the aid of these variables, the problem (36)-(39) can be

rewritten in optimal control format as follows:

1= 
~ 

mdt , (41)
J o

U W , (42)

y(O) = 0 , (43)

y(l) = 1 , m(1)u(1) = ~2 (44)

In this formulation, the unknowns are the state variableE y(t),

m(t), u(t) and the control variable w(t). Note that the control

appears linearly in the differential equations. Hence, the

Hamiltonian is linear in the control w(t), and the problem is

singular. Also note that the system (4l)-(44) is autonomous,

since the independent variable t does not appear explicitly on

the right—hand side of Eqs. (41)-(42). As a consequence, the

Hamiltonian is constant along the interval of integration.
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6. Alternative Formulations of the Optimization Problem

In this section, we present some alternative formula-

tions of the optimization problem, having important computa-

tional implications.

Formulation (F3). Let the following auxiliary variable

be introduced :

z=mu . (45)

Let the variable m(t) of Formulation (F2) be eliminated

and replaced by z(t). With this understanding , the problem

(4l)-(44) can be reformulated as follows:

1= ~ (z/u)dt , (46)
Jo

2
y=u , z=-~~ yz/u , U = W , (47)

y ( O ) = O , (4 8)

y(l) = 1 , z(l) = ~2 (49)

In this formulation, the unknowns are the state variables y(t),

z(t), u(t) and the control variable w(t). After these functions

are determined , the function m(t) can be computed a posteriori

with the relation

m=z/u . (50)

I
_ _  _ _ _ _  __ _ _ _ _ _ _  - • -
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A characteristic of this formulation is that all the

boundary conditions are linear . The Hamiltonian is linear in

the control w(t), and hence the problem is singular . Once

more, the system is autonomous, and the Hamiltonian is cons-

tant along the interval of integration.

Formulation_ (F4). Inspection of (46)—(49) shows that

the control w(t) appears only in Eq. (47—3). Also , both

u(0) and u(1) are free. Hence, one surmises that the differential

constraint (47-3) might be redundant. This can be shown as follows.

Assume that the problem (46)-(49) is solved bypassing Eq.

(47—3); with the solution y(t), z(t), u(t) known, one can al-

ways determine a posteriori the function w(t) in such a way

that the feasibility equation (47—3) is satisfied . This simple

but important observation leads to a new formulation of the

optimal control problem:

1= ~ (z/u)dt , (51)
JO

~~= — ~
2yz/u , (52)

y(0)=0 , (53)

y(l) = 1 , z(1) ~2 (54)

In this formulation, the unknowns are the state variables y ( t ) ,

z(t) and the control variable u(t). After these functions are
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determined , the functions m(t) and w(t) are computed a post—

eriori with the relations

m=z /u , w = u .  (55)

A characteristic of this formulation is that all the

boundary conditions are linear. In addition , the state varia-

ble u(t) of Formulation (F3) becomes the control variable

u(t) of Formulation (F4). The Hamiltonian is nonlinear

in the control u(t), and hence the problem is nonsingular.

Once more, the system is autonomous, and the Hamiltonian is

constant along the interval of integration.

Formulation (F5). This formulation is a slight modif i-

cation of the previous one and is obtained by eliminating the

control variable u(t) and replacing it with the new control

variable m(t). On account of (55—1), Eqs. (5l)-(54) become

I=~~ twit , (56)
J o

(57)

y(0) = 0 , (58)

y(1) = 1 , z(1) = ~2 (59)

In this formulation , the unknowns are the state variables y(t),

r z(t) and the control variable m(t). After these functions are

F
I

• - ~:-~ •~ •
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determined , the functions u(t) and w(t) are computed a post—

eriori with the relations

u = z /m , w = u  . (60)

A characteristic of this formulation is that all the

boundary conditions are linear. In addition , the Hamiltonian

is nonlinear in the control m(t), and hence the problem is non—

singular . Once more, the system is autonomous, and the Hamil-

tonian is constant along the interval of integration. Note

that this formulation can be obtained directly from (20)-(23)

after consideration of the relation

z=my . (61)

Remark. The analytical justification for the passage

from Formulation (F3) to Formulation (F4) is as

follows. With reference to Formulation (F3), let

X 2(t), A 3 (t) denote variable Lagrange multipliers associated

with the differential constraints (47). Let

H=z/u— A 1u + A 2~
2yz/u—A 3w (62)

denote the Hamiltonian of the system (46)-(49). The condition

optimizing the control w(t) of Formulation (F3) takes the

S

-J
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form

0 < t  <1 (63)

which implies that

A
3
(t) =0 , O < t < 1  . (64)

Note that both u ( 0 )  and u ( l )  are f ree ; hence , the transversality

condition requires that

X 3 (0) =X 3 (l) = 0 , (65)

and these relations are consistent with (64). From (64)—(65),

it is natural to infer that the differential constraint (47—3)

is redundant, a circumstance which has important analytical

and computational implications.

I
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7. Description of the Algorithms

With the sequential ordinary gradient-restoration al-

gorithm (SOGRA , Refs. 3—4), numerical solutions can be obtained

using any of the optimal control formulations of Sections 5-6.

This is because SOGRA can be applied regardless of whether the

problem is singular or nonsingular . On the other hand , with

the modified quasilinearization algorithm (MQA, Refs. 5-6),

numerical solutions can be obtained using Formulations (F4)

and (F5), but not Formulations (F2) and (F3). This

is because the optimal control problem is singular with the

latter formulations, while it is nonsingular with the former.

For these reasons, the experiments reported here refer to

Formulations (F4) and (F5).

Note that both SOGRA and MQA require the state vector to be

known at the initial point, so that the trajectories in the

state space can be anchored at the initial point. With ref er-

ence to the fourth and fifth formulations (state vector given

at the final point), this situation can be achieved by re-

placing the independent variable t with its complement

T 1—t , ( 6 6 )

that is, by rever sing the sense of integration and inter-

changing the final point with the initial point. Even though

this replacement of independent variable is necessary

________________  - ..•T~ 
- -- - — — —  •—• •—
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ccmputationally, it is not formally executed here, for two

reasons: for the sake of brevity and in order to avoid compli-

cating the description of the problems and the interpretation

of the results. Therefore, in the following sections, we

shall retain the independent variable t, that is, we shall

imagine the trajectories in the state space to be anchored at

the final point at every iteration.

Formulation (F4). With the formulation represented by

Eqs. (51)-(54), the Hamiltonian is given by
12

H = z/u — X
1
u + A 2~

2yz/u , (67)

where X1(t) and X 2 (t) denote variable Lagrange multipliers

associated with the differential constraints (52). Hence, the

optimality conditions take the form
1

A 1 + (z/u~ ) (1 + A 2~
2y)  = 0 , (68)

A 1 = A 2~
2z/u , A 2 

= (1/u) (1 + A 26
2y) , (69)

A 1(0) + p 0 , X 2(0) = 0 . (70)

12
Equation (68) optimizes the control distribution u(t). In Eq.
(70—1), the symbol p denotes a constant Lagrange multiplier
associated with the initial condition (53). 

~~~~~~~~~~~~~~~~~~~~~~~ 
• -

• - - 
. • 

-
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Formulation (F5). With the formulation represented I
by Eqs. (56)-(59), the Hamiltonian is given by

H = m —  A 1z/m + A 2~
2
ym , (71)

where A 1(t) and A 2 (t) denote variable Lagrange multipliers

associated with the differential constraints (57). Hence, the

optimality conditions take the form13

X1z/m
2 + l + A 2~

2y = 0 , (72)

X1 = A 2~3
2
m , A 2— -A 1,’m , (7 3 )

A 1 
(0) + p = 0 , A 2 (0) = 0 . (74)

Auxiliary Functionals. In addition to the functional I,

several auxiliary functionals are of interest in the implemen-

tation of SOGRA and MQA . These auxiliary functionals are

denoted by the symbols J, P, Q, R and have the following mean-

ing : J is the augmented functiona l, that is, the functional I I

13
Equation (72) optimizes the control distribution m(t). In
Eq. (74—1), the symbol p denotes a constant Lagrange multi-
plier associated with the initial condition (58).

j

i- I
‘4  

_.- --_ —— .—
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augmented linearly by the constraints through Lagrange multi-

pliers; P is the constraint error , that is, the norm squared

of the error in the feasibility equations; Q is the optimality

condition error , that is, the norm squared of the error in the

optimality conditions; and R = P + Q  is the total error in the

system composed of the feasibility equations and the optimali-

ty conditions. In the definitions of J, P, Q, R, it is tacitly

assumed that the final conditions (54) or (59) are satisfied at

every iteration of SOGRA and MQA .

Convergence Conditions. The auxiliary functionals P, Q,

R are defined in such a way that

P-= Q=R= 0 (75)

for the optimal solution. For an approximation to the optimal

solution, Eqs. (75) are replaced by the inequalities

Q < E 2, (76)

or

R < c 3, (77)

where c1, e2, 63 are small , preselected numbers. Inequalities

(76) are of interest for SOGRA , and Ineq. (77) is of interest

for MQA .

LI 
• •

.

_  _ _ _ _ _ _ _ _
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I
Sequential Ordinary Gradient—Restoration 

~~~prithm. The

sequential ordinary gradient—restoration algorithm (SOGRA ,

Ref s. 3—4) is an iterative technique which includes a sequence

of cycles having the following properties: (i) the functions

available both at the beginning and at the end of each cycle

are feasible; that is, they are consistent with the feasibi-

lity equations within the preselected accuracy (76-1); and (ii)

the functions produced at the end of each cycle are charac-

terized by a value of the functional I which is smaller than

that associated with the functions available at the beginning

of the cycle.

To achieve the above properties, each cycle is made of

two phases, a gradient phase and a restoration phase. These

phases are now described .

The gradient phase is started only when the constraint

error P satisfies Ineq . (76—1). It involves a single iter-

ation, which is designed to decrease the value of the func-

tional I or the augmented functional J, while satisfying the

constraints to first order . During this iteration , the first

variation of the functional I is minimized , subject to the

linearized constraints and a quadratic constraint on the van —

ations of the control.

The restoration phase is started only when the constraint

error P violates Ineq . (76-1). The restoration phase involves
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one or more iterations. In each restorative iteration , the

objective is to reduce the constraint error P, while the con-

straints are satisfied to first order and the norm of the

variations of the control is minimized . The restoration phase

is terminated whenever Ineq. (76-1) is satisfied .

In summary, the main properties of the sequential ordi-

nary gradient—restoration algorithm can be written as follows:

J < J , P < C 1, (78)

P < P , P > 6 1, ( 79 )

1 < 1 , P < e 1, P < c 1, ( 80)

where (78) hold for a gradient iteration , (79) hold for a

restorative iteration , and (80) hold for a complete gradient-

restoration cycle. In the above relations , I, J, P denote

quantities evaluated at the beginning of an iteration or a

cycle , while I , LI , P denote quantities evaluated at the end

of an iteration or a cycle.

At each iteration of the gradient phase or the restora-

tion phase, a linear, two-point boundary-value problem must be

solved . If the method of particular solutions is employed

(Ref s. 11-12), one must execute q+l independent sweeps of the

linearized system governing the variations associated with the

I
I c

_ _ _ _ _ _ _ _ _ _ _ _ _  _ _  

________________ ____ ___________ I
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gradient phase or the restoration phase, where q is the number

of initial conditions. Since q= 1 for the present problem , each

gradient iteration or restorative iteration requires 2 sweeps

of the linearized system. For the details, see Ref s. 3-4 and

11—12.

Modified Quasilinearization Algorithm. The modified

quasilinearization algorithm (MQA , Refs .  5-6) is an iterative

technique which includes a sequence of iterations having the

following property : the functions produced at the end of each

iteration are characterized by a value of the functional R

which is smaller than that associated with the functions avail-

able at the beginning of the iteration. Therefore, the main

property of the modified quasilinearization algorithm can be

written as follows :

R < R , (81)

with the implication that

< P  and/or Q < Q . (82)

At each iteration, both the feasibil i ty equations and

the optimality conditions are satisfied to f i r s t  order . To

achieve this , a linear , two-point boundary—value problem must

be solved . If the method of part icular  solutions is employed

(Ref s. 11-12), one must execute n + 1  independent sweeps of the

.1
_ _ _ _ _  • - -______________
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linearized system governing the variations associated with

MQA , where n is the number of state variables. Since n = 2 for

the present problem , each iteration requires 3 sweeps of the

linearized system . For the details, see Refs. 5—6 and 11-12.

I
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8. ~~perimental Conditions

The problem of determining the mass distribution that

minimizes the total mass for a given value of the frequency

parameter ~ was solved using both Formulation (F4) and

Formulation (F5). The following values were given to the

frequency parameter:

~ = ir/2 . (83)

Computations were performed on the IBM 370/155 computer

of Rice University, Houston, Texas, using both the sequential

ordinary gradient—restoration algorithm (SOGRA) and the modi-

fied quasilinearization algorithm (MQA). Both algorithms were

• programmed in FORTRAN IV, and the numerical results were ob-

tained in double-precision arithmetic.

The interval of integration was divided into 100 steps

for SOGRA and 50 steps for MQA . The differential equations were

integrated using Hamming ’s modified predictor—corrector method,

with a special Runge-Kutta starting procedure . The definite inte-

grals I, J, P, Q were computed using a modified Simpson ’s

rule.

Nominal Functions. For each formulation, two sets of

nominal functions wer e employed , more specifically:

(Nl) y(t) = t , z(t) = ~2 u ( t )  = 1 , (84)

- —~~~~--.~~~~~~~~~~~~~~--- .- - .• -~~ • _ _ _ _-•

~ 

—



I
33 AAR—138

I (N2) y(t) = t2 , z(t) = ~2 , u(t) = 1 , (85)

I and

I (N3) y(t) = t , z(t) = ~2 , in ( t )  = 1 , (86)

(N4) y(t) = t2, z(t) = ~2 m(t) = 1. (87)

I 
The nominal functions (84) and (85) were employed in connec-

tion with Formulation (F4), and the nominal functions

( (86) and (87) were employed in connection with Formulation

(F5). Note that these nominal functions satisfy the bound-

I ary conditions, but violate the differential constraints.

I 
Stopping Conditions. The sequential ordinary gradient-

restoration algorithm was programmed to stop whenever a

I solution consistent with the following inequalities was
12obtained :

I
P<E— 08 , Q<E—04 . (88) *

The modified quasilinearization algorithm was programmed to

stop whenever the following inequality was satisfied :

R<E— 1 0  (89)

12 ~~abThe symbol E±ab stands for l0

I
I
I 

_ _ _ _ _ _ _ _ _ _ _ _ _



34 AAR—138

with the implication that

P< E— lO , Q<E—lO . (90)

Remark 8.1. For the sake of brevity , the computational

details pertaining to SOGRA and MQA (for instance, solution of

the linear , two—point boundary value problem , computation of

the stepsize, safeguards, and nonconvergence conditions) are

omitted , and the reader is referred to Ref s. 3—4 and Ref S.

5—6.

Remark 8.2. Ordinarily, algorithms of the second-order

type require the specification of nominal functions not only

for the state and the control, but also for the multipliers.

This is not the case with MQA . Once the nominal state and the

nominal control are specified , the nominal multipliers X1(t),

p are determined automatically through a subroutine

which supplies the solution of the following auxiliary minimi-

zation problem: minimize the error in the optimality conditions

Q with respect to multipliers A 1(t), A 2(t), ~~~~
. This is an

important feature of MQA , certainly very useful to engineers,

since it circumvents the need for an arbitrary guess of the

multiplier functions . 

Sr
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9. Numerical Results

Under the experimental conditions outlined in the pre-

vious section, 40 computer runs were executed : the minimization

problem was solved for five different values of the frequency

parameter , using two algorithms (SOGRA and MQA) , two formula-

tions [(F4) and (F5)], and two sets of nominal functions for

each formulation [(Nl) and (N2) for Formulation (F4), and (N3)

and (N4) for Formulation (F5)}. Convergence to the desired

stopping condition was achieved in 37 runs. The nonconvergence

occurring in the remaining 3 runs was due to poor choice of the

nominal functions. Incidentally, all the nonconvergence cases

occurred for~~= 1T/2 , which is the upper limit to the range of

values of the frequency parameter investigated . The numerical

results are presented in Tables 1—24.

Tables 1-4 present summary results pertaining to SOGRA

at convergence. For each value of the frequency parameter ~~ ,

the tables show the number of iterations for convergence N,

the computed value of the functional I, the exact value of the

functional ‘e the number of correct significant digits M

(determined by comparing I with Ie)~ 
and the error in the

optimality conditions Q. Clearly, as far as the minimum mass

is concerned , the solutions obtained are precise to at least

4 significant digits; in some cases, they are precise to 6

significant digits .

II
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Tables 5-8 present summary results pertaining to MQA

at convergence. For each value of the frequency parameter ~~,

the tables show the number of iterations for convergence N,

the computed value of the functional I, the exact value of

the functional ‘e’ the number of correct significant digits

M (determined by comparing I with ‘e~ ’ and the total error

in the system R. Clearly, as far as the minimum mass is con-

cerned, the solutions obtained are precise to at least 6

significant digits; in many cases, they are precise to 7 sig-

nificant digits.

Due to the large number of runs performed , it is

impractical to present the convergence history for every value

of the frequency parameter ~~~. However, for a particular value

of the frequency parameter (namely, ~ = r/4), the convergence

history of SOGRA is given in Tables 9-12 and the convergence

history of MQA is given in Tables 13-16. The descent property

in I, characteristic of SOGRA , is apparent from Tables 9—12.

Analogously, the descent property in R, characterisitc of

MQA, is apparent from Tables 13-16.

Due to the large number of runs performed , it is imprac-

tical to present the converged solutions y(t), z(t), m(t), u(t),

w(t) for every case. Therefore, Tables 17-21 present only one

set of converged solutions: these are the solutions corres-

ponding to the lowest value of R achieved computationally for

— —-- . •—- • - • -  —--•  ___
~~~_ . ••~~~~~~

__* -,~~
_

~
__,

~~
_—__--• — — -.
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any given value of the frequency parameter 13 . Even though

the tolerance level set for MQA is R<E -lO , values of the

total error much lower that E-lO were achieved during compu-

tation, more precisely, R<E— 16 for 3 = T r / 5  and R<E— l 8 for

the remaining values of 13.

Table 22 is obtained from Tables 17-21 by normalizing

the mass distribution m(t) with respect to the mass per unit

length at t=0. Therefore, Table 22 shows the ratio m(t)/m(0)

for several values of the frequency parameter 13. Clearly,

the mass distribution of the optimal beam approaches that of

the constant—section beam for 13 -* 0 and deviates considerably

from it for 13 -~~r/2. In particular , the ratio m(l)/m(0) of

tip mass per unit length to root mass per unit length approa-

ches 1 for 13 -~ 0 and 1/6 for 13- * ir/2.

Finally, Tables 23-24 show the mass integral for the

optimal beam 1
~~
, the mass integral for the constant—section

beam ‘c as well as the quantities Ic/Ic and ~~c 
— Io)/Ic for

several values of the frequency parameter 3. For 13 -~ 0, the

optimal beam exhibits no weight advantage over the constant—

section beam. For 3= 0.5, the weight advantage is only 0.6%.

For 13 = 1.0, the weight advantage is 11.3%. For 13 = 1.4, the

weight advantage is 55.3%. Finally, for t3-ri/ 2 , the weight

advantage approaches 100%. The explanation for this limiting

result is simple: for 13~~ ii/2 , the mass of the optimal beam is

finite , while the mass of the constant-section beam is infi-

nitely large.

- .. • 

- .

~~~~~~~~~~

•-
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~~~~~
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Table 1. Summary results, SOGRA ,
Formulation (F4), Nominal (Nl).

13 N I I,~ M Q

ir/6 3 0.3001435E-1-0O 0.3001434E+0O 6 0.85E—07

ur/5 3 O .4495492E+00 0.4495488E+00 5 0.85E—06

ir/4 3 0.7545937E+00 0.7545892E+00 4 0.l5E—04

ir/3 4 0.l560903E+01 0.l5609l8E+01 5 0.28E—04

ir/2 10 0.529595lE+Ol 0.5295977E+01 5 0.88E—03 (*)

(*) Algorithm unable to reach desired stopping condition ;
loss of descent property on I due to numerical inaccuracy .

Table 2. Summary results, SOGRA ,
Formulation (F4), Nominal (N2).

13 N I ‘e M Q

ii/6 4 0.300l435E+00 0.3001434E+00 6 0.85E—07

n/5 4 0.4495492E-t-00 O.4495488E+OO 5 0.85E—06

ii/4 4 O.7545937E+00 O.7545892E+00 4 0.l5E—04

ir/3 5 0.l560903E+0l 0.1560918E+Ol 5 0.28E—04

11/2 11 0.529595 1E+Ol 0 . 5295977E +O l  5 O . 8 8 E _ 0 3 ( *)

(*) Algorithm unable to reach desired stopping condition;
loss of descent property on I due to numerical inaccuracy.

— •
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Table 3. Summary results , SOGRA ,
Formulation (F5), Nominal (N3).

13 N I Te

11/6 19 0.300l453E÷0O O.3001434E+OO 5 O.32E—04

ri/S 14 0.4495573E+00 0.4495488E+00 4 0.84E—04

11/4 10 0.754563lE+00 0.7545892E+00 4 O.36E—04

ir/3 12 0.l56091lE+O1 0.1560918E+Ol 6 0.51E 04

(*) (*) 0.5295977E+Ol (*) (*)

(*) Nonconvergence, failure of initial restoration phase ;
algorithm unable to find a feasible solution in less
than 10 restorative iterations.

Table 4. Summary results, SOGRA ,
Formulation (F5), Nominal (N4).

13 N I 1e M Q

ir/6 21 0.300l449E+00 0.300l434E+00 5 O.25E—04

11/5 14 0.4495525E+00 O.4495488E+00 4 0.38E—04

11/4 10 O.7545679E+0O O.7545892E+00 4 0.26E—04

15 0.l560913E+01 0.l5609l8E+Ol 6 0.54E—04

ir/2 (*) (*) O.5295977E+Ol (*) (*)

(*) Nonconvergence, failure of initial restoration phase;
algorithm unable to find a feasible solution in less
than 10 restorative iterations.

• 

~~~~~~~
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Table 5. Summary results, MQA ,
Formulation (F4), Nominal (Ni).

13 N I ‘e M R

3 0.3001434E+0O 0.300l434E+0O 7 0.20E—l8

ii/5 3 0.4495488E+00 0.4495488E+00 7 0.74E—16

71/4 3 0.7545892E+00 O.7545892E+O0 7 0.12E—12

17/3 4 0.l560918E+01 O.l5609l8E+Ol 7 0.32E—l8

71/2 (*) (*) O.5295977E-i-Ol (*) (*)

(*) Nonconvergence, stepsize bisection limit reached .

Table 6. Summary results, MQA,
Formulation (F4), Nominal (N2).

13 U I I M Re

3 0.3001434E+00 0.300l434E+00 7 0.17E—18

3 0.4495488E-4-00 0.4495488E+00 7 0.70E—l6

ii/4 3 0.7545892E+00 0.7545892E+O0 7 O .97E—l3

17/3 4 0.l5609l8E+Ol 0.l5609l8E+Ol 7 0.llE—l8

11/2 6 0.5295977E+Ol 0.5295977E+0l 7 0.15E—l5

1 ~
• -• - - - • •
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Table 7. Summary results, MQA ,
Formulation (F5), Nominal (N3).

13 N I ‘e M R

ii/6 9 0.300l433E+00 0.300l434E+00 6 0.79E—lO

ir/5 6 0.4495488E+00 0.4495488E+00 7 0.l5E—14

ii/4 5 O.7545892E+00 0.7545892E+00 7 0.4lE—l8

ii/3 4 0.l5609l7E+01 0.l5609l8E+Ol 6 0.20E—10

11/2 7 O.5295976E+Ol 0.5295977E4-01 6 O.38E—17

Table 8. Summary results, MQA ,
Formulation (F5), Nominal (N4).

13 N I I M Re

ir/6 9 0.3001433E+00 0.300l434E+0O 6 0.59E—l0

ri/S 7 O.4495487E+00 O.4495488E+00 6 0.55E—lO

11/4 4 0.7545890E+00 0.7545892E+00 6 O.88E—il

4 0.l5609l7E+Ol O.l560918E+01 6 0.83E—lO

it/2 7 0.5295976E+Ol 0.5295977E+Ol 6 0.78E—l8

I
I

_____ 
• ~~~~~~~~~~~~
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Table 9. Convergence history, 3=71/4, SOGRA ,
Formulation (F4), Nominal (Ni).

N Phase P Q I

0 0.48E—Ol

1 REST 0.lOE—33 O.2lE—Ol 0.76081

2 GRAD 0. 13E—04

3 REST 0 . 8 2 E — 3 3  0.15E .-04 0 . 7 5 4 5 9

Table 10. Convergence history, 13=71/4, SOGRA ,
Formulation (F4), Nominal (N2).

N Phase P Q I

O 0.36E+OO

1 REST 0.29E—03

2 REST 0 . 9 0 E — 3 3  O . 2 1 E — O l  0 . 7 6 0 8 1

3 GRAD 0.13E—04

4 REST 0 . 2 7 E — 3 2  0 . l S E — 0 4  0 . 7 5 4 5 9
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Table 11. Convervenge history, 13= 71 /4, SOGRA ,
Formulation (F5), Nominal (N3).

N Phase P Q I

0 O.27E+0O
1 REST 0 . l3E+00
2 REST 0.ilE—Ol
3 REST 0.58E—04
4 REST O .37E—08 O.3lE÷00 0.83009
5 GRAD 0.l6E—Ol
6 REST 0.80E—04
7 REST 0.41E—08 0.46E—02 0.75504
8 GRAD 0.25E—05
9 REST 0.26E—l2 O.24E—03 0.75462
10 GRAD 0.95E—08 0.36E—04 0.75456

Table 12. Convergence history, 13=71/4, SOGRA ,
Formulation (F5), Nominal (N4).

N Phase P Q I

0 0.55E+O0
1 REST 0.8lE—0l
2 REST 0.38E—02
3 REST 0.92E—05
4 REST 0.lOE—09 0.28E+00 0.82212
5 GRAD O.l3E—Ol
6 REST 0.48E—04
7 REST 0.15E—08 0.46E—02 0.75503
8 GRAD 0.27E—05
9 REST 0.20E—l2 O.19E—03 0.75461
10 GRAD 0.56E—08 0.26E—04 0.75456

I
I
— -V — - — — -— —
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Table 13. Convergence history, 13=71/4, MQA ,
Formulation (F4), Nominal (Ni).

N P Q R I

O 0.48E—O1 0.32E—01 0.80E—Ol 0.61685

1 0 . 8 4 E — 0 5  0 . 2 3 E — 0 2  0 . 2 3 E — 0 2  0 . 7 5 4 6 3

2 0.48E—08 0.96E—06 0.96E—06 0.75455

3 0.44E—15 0.l2E—12 0.12E—12 0.75458

Table 14. Convergence history, 13=71/4, MQA,
Formulation (F4), Nominal (N2) ~

N P Q R I

o O.36E+00 0.27E—Oi 0.39E+00 0.61685

1 O.27E—03 0.30E—02 O.33E—02 0.74916

2 0 . 7 2 E — 0 8  0 . 7 5 E — 0 6  O . 7 6 E — O 6  0 . 7 5 4 5 4

3 O . l O E — l 4  0 . 9 6 E — 1 3  0 . 9 7 E — i 3  0 . 7 5 4 5 8

i

I

• _en.____ - - - - -• • - -• — — - — —a — — —.------ - -•
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Table 15. Convergence history, 13=71/4, MQA ,
Formulation (F5), Nominal (N3).

N P Q R I

0 O.27E+00 O.20E+00 0.47E+00 1.00000

1 0.48E—01 0.94E—Ol 0.l4E+00 0.75124

2 0.30E—03 0.71E—02 0.74E—02 0.74933

3 0.69E—06 0.26E—04 0.27E—04 0.75419

4 0.21E—lO 0.58E—09 0.61E—09 0.75458

5 0.l5E—l9 0.39E—18 0.41E—18 0.75458

Table 16. Convergence history, 13=71/4, MQA ,
Formulation (F5), Nominal (N4).

N P Q R I *

0 0.55E+O0 0.16E+00 0.72E+00 1.00000

1 0.98E—Ol 0.45E—Ol 0.14E+O0 0.77369

2 0.2lE—03 0.l9E—02 0.22E—02 0.74914

3 0.l4E—06 O.29E—05 0.30E—05 0.75442

4 O.33E—l2 0.84E—ll 0.88E—11 0.75458

I
I
I 

•_ _ _ •
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Table 17. Converged solution, 3=71/6, MQA .

t y Z m u w

0.0 0.0000 0.3126 0.3270 0.9557 0.0000

0.1 0.0956 0.3121 0.3261 0.9570 0.0262

0.2 0.1914 0.3108 0.3235 0.9609 0.0524

0.3 0.2878 0.3087 0.3191 0.9675 0.0789

0.4 0.3850 0.3058 0.3131 0.9767 0.1055

0.5 0.4833 0.3021 0.3056 0.9886 0.1325

0.6 0.5829 0.2977 0.2968 1.0032 0.1598

0.7 0.6840 0.2927 0.2868 1.0206 0.1875

0.8 0.7871 0.2870 0.2757 1.0408 0.2157

0.9 0.8923 0.2808 0.2639 1.0638 0.2446

1.0 1.0000 0.2741 0.2515 1.0897 0.2741

_ _ _ _• - • 
— —
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Table 18. Converged solution ,13 ir/5, MQA .

t y z m u w

0.0 0.0000 0.4753 0.5072 0.9371 0.0000

0.1 0.0937 0.4743 0.5052 0.9389 0.0370

0.2 0.1879 0.4715 0.4992 0.9445 0.0741

0.3 0.2828 0.4669 0.4896 0.9538 0.1116

0.4 0.3788 0.4606 0.4764 0.9668 0.1495

0.5 0.4763 0.4527 0.4602 0.9837 0.1880

0.6 0.5756 0.4434 0.4414 1.0044 0.2272

0.7 0.6773 0.4327 0.4204 1.0292 0.2674

0.8 0.7816 0.4209 0.3979 1.0580 0.3085

0.9 0.8890 0.4082 0.3742 1.0909 0.3509

1.0 1.0000 0.3947 0.3499 1.1282 0.3947

I
I
i 

_ _ _ _ _ _ _ _ _ _ _ _
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Table 19. Converged solution, 13=ir /4, NQA.

t y z m u w

0.0 0.0000 0.8170 0.9037 0.9041 0.0000

0.1 0.0905 0.8145 0.8981 0.9069 0.0558

0 .2  0.1815 0.8071 0.8817 0.9153 0.1120

0.3 0. 2 737 0 .7949 0.8553 0 .9293  0.1688

0.4 0.3676 0.7783 0.8200 0.9491 0.2267

0.5 0.4637 0.7578 0.7775 0.9747 0.2860

0.6 0.5627 0.7340 0.7293 1.0063 0.3471

0.7 0.6652 0.7074 0.6774 1.0442 0.4103 •

0.8 0.7718 0.6786 0.6234 1.0885 0.4761

0.9 0.8832 0.6482 0.5688 1.1395 0.5448

1.0 1.0000 0.6168 0.5150 1.1976 0.6168

L

- - 
_ r

~
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Table 20. Converged solution , 13= 71 /3, MQA .

t y z m u w

0.0 0.0000 1.7549 2.0937 0.8381 0.0000

0.1 0.0839 1.7453 2.0709 0.8427 0.0920

0.2 0.1688 1.7171 2.0044 0.8566 0.1851

0.3 0.2556 1.6717 1.8999 0.8798 0.2803

0.4  0.3451 1.6114 1.7654 0.9127 0.3785

0.5 0.4385 1.5390 1.6103 0.9557 0.4808

0.6 0.5366 1.4576 1.4443 1.0091 0.5885

0.7 0.6407 1.3700 1.2760 1.0736 0.7026

0.8 0.7517 1.2791 1.1123 1.1499 0.8244

0.9  0.8711 1.1873 0 .9584  1.2388 0 .9552

1.0 1.0000 1.0966 0 .8l75  1.3413 1.0966

I
I
1

I__I 
- 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Table 21. Converged solution , 13 = 7 1 / 2, MQA .

t y z m u w

0.0 0 .0000 6.1911 9 .0703  0 .6825  0 .0000

0.1 0 .068 5 6.1155 8.8501 0 .6910 0.1691

0 . 2  0 . 1 3 8 7  5 . 8 9 7 7  8 . 2 3 0 9  0 . 7 1 6 5  0 . 3 4 2 4

0 . 3  0 . 2 12 4  5 . 5 6 2 0  7 . 3 2 0 7  0 . 7 5 9 7  0 . 5 2 4 1

0 . 4  0.2913 5.1422 6.2573 0 .8217 0.7188

0.5  0 .377 -i 4 . 6739 5.1695 0.9041 0.9313

0 .6  0 .4729  4.1888 4.1521 1.0088 1.1668

0.7 0.5800 3.7 118 3.2603 1.1384 1.4312

0.8  0.7015 3 .2600 2.5149 1.2962 1.7310

0 . 9  0 . 8 4 0 3  2 . 8 4 3 6  1.9134  1 . 4 8 6 1  2 . 0 7 3 5

1.0 1.00 00 2 . 4 6 7 4  1.44 06 1.7126 2 .4 6 7 4

‘ I  •
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Table 22. Optimal mass distribution m(t)/m(0) for several
values of the frequency parameter 13

t 13 = 0 13 = 71/6 13 = 71/5 13 = 11/4 13 = 11/3 (3 = 71/2

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.1 1.0000 0.9972 0.9960 0.9938 0.9891 0.9757

0 . 2  1.0000 0. 9891 0 . 9 8 4 3  0 .9757  0 .9573  0 . 9 0 7 4

0.3 1.0000 0.9757 0.9652 0.9464 0.9074 0.8071

0.4 1.0000 0.9573 0.9394 0.9074 0.8431 0.6898

0.5 1.0000 0.9344 0.9074 0.8603 0.7691 0.5699

0.6 1.0000 0.9074 0.8703 0.8071 0.6898 0.4577

0.7 1.0000 0.8768 0.8290 0.7496 0.6094 0.3594

0.8 1.0000 0.8431 0.7845 0.6898 0.5312 0.2772

0 . 9  1.0000 0.8071 0.7378 0.6294 0.4577 0.2109

1.0 1.0000 0.7691 0.6898 0.5699 0.3904 0.1588

1~
I

II
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Table 23. Comparison of the optimal beam (subscript o)
with the constant section beam (subscript c).

(3 1~ ‘c Is/I (I c
_I

o )/ Ic

0 0.00000 0 .000 00  1.0000 0 .0000

ii/6 0.30014 0.30229 0.9929 0.0071

0 .44954  0 .45650 0.9848 0.0152

ir/4 0.7 5458 0 .78539 0.9608 0 .0392

rr/3 1.56091 1.81379 0.8606 0.1394

ii/2 5.29597 0 .0000  1.0000
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Table 24. Comparison of the optimal beam (subscript o)
with the constant section beam ( subscript c ) .

(3 1~ ‘c b o~’Ic c~~ o )
~”I c

0 .0  0 .0000  0 .00 00 1.0000 0 .0000

0.1 0.0100 0. 0100 1.0000 0 .0000

0 .2  0 . 0 4 0 5  0 .0405  0 .9999  0 .0001

0.3  0 .0 927 0 .0928  0 . 9 9 9 2  0 .0008

0 .4  0.1687 0.1691 0 .9976  0 .0024

0 .5  0.2715 0.2731 0.9941 0 .0059

0. 6 0 .4053 0.4104 0 .9874  0.0126

0.7  0.5754 0 .5896 0 .9760  0 . 0 2 4 0

0.8 0 .7887 0 .8237  0 .9575  0 .0425

0.9  1.9 537 1.1341 0.9291 0 .0709

1.0 1.3 810 1.5574 0 .8868 0.1132

1.1 1.7839 2 .1612 0 .8254 0. 1746

1.2  2 . 2 7 8 4  3 . 0 8 6 5  0 . 7 3 8 2  0 . 2 6 1 8

1.3 2 . 8 8 4 5  4 . 6 8 2 7  0 .6160 0 .3840

1.4 3 .6263  8.1170 0 .4468  0 .5532

1.5 4.5338 21.1521 0.2143 0.7857

ii/2 5. 2959 0 .0000  1.0000

I
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10. Conclusions

In this report , we have investigated the axial vibra-

tion of a cantilever beam both analytically and numerically.

We have determined the mass distribution that minimizes the

total mass for a given value of the fundamental frequency

using both the sequential ordinary gradient-restoration al-

gorithm (SOGRA ) and the modified-quasilinearization algorithm

(MQA). Concerning the minimum value of the mass, SOGRA leads

to a solution precise to at least 4 signif icant  di gits and

MQA leads to a solution precise to at least 6 sign i f ican t

digits.

Comparison of the optimal beam (a variable—section beam)

with a reference beam (a constant—section beam) shows that the

weight reduction depends strongly on the frequency parameter 13.

This weight reduction is neg ligible for ( 3 ÷ 0 , is 0 . 6 %  for

( 3 =  0.5 , is 11.3% for 3 = 1 , is 55.3% for 3=  1.4 , and approaches

100% for (3÷71/2.
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11. Appendix: Anal yt ical  Solutions

In this appendix , we summarize the analytical solutions

available in two limiting cases: the constant-section beam

and the optimal beam .

Constant—Section Beam. For this structure, the func-

tions y(t), z(t), m(t), u(t), w(t) are given by

y= sin((3t)/sin (3 , ( 9 1— 1 )

z =  l32cos( 13t ) / cos( 3  , ( 91—2)

m= t3tan (3 , (91—3)

u= (3cos((3t)/sin(3 , ( 9 1— 4 )

w= -(32sin((3t)/sin (3 . (91—5)

The associated mass integral is given by

1= (3tanB . ( 9 2 )

~ptimal Beam. For this structure, the funct ions y ( t ) ,

• z(t), m(t), u(t), w(t) are given by (Ref. 8)

y =  sin h ( 13 t ) / s i n h ( 13) , ( 93—1 )

z = (3 2cosh(~~~/cosh( 13t )  , ( 9 3 — 2 )

2m =  (3 s inh((3)cosh(~~~/cosh ( ( 3 t )  , ( 9 3—3 )

(
I

- — - -~~~
-
~~~-
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u= (3cosh( (3t)/sinh( (3) , ( 93—4 )

w= (32sinh((3t)/sinh( (3) . ( 9 3 — 5 )

The associated mass integral is given by

I=sinh2(13 ) . ( 9 4 )

Limitinq Case. For 1 3= 0, Eqs. (91) and (93)  reduce to

y = t , z = 0 , m = 0 , u = l , w = 0 , ( 95)

and the mass integrals (92) and (94)  yield

1= 0 .  (9 6)

Therefore , for 3=  0 , the constant-section beam and the

optimal beam are identical.

-
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