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This report presents a brief analysis and comparison of two
cand idate approaches to the imp lementation of a multiple access
Emergency Position Indica ting Radio Beacon (EPIRB) system for
mar itime use. One approach’~ implemen ted by the Federal Republic
of Germany and tested b~~

_
~h?European Space Agency (ESA) during the

1974-1975 ATS-6 tests ,~ uses frequency-shift-keyed (FSK) audio tonepairs for user iden ti fication , with detection employing a bank of
narrow-band filters. False alarm probabilities and other parameters
arc calculated for this approach. An alternative to this approach ,
p romising improved performance in the presence of multiple interfering
EPIRBs , is also described . This alternative uses orthogonal Pseudo-
Noise (PN) spread-spectrum sequences to identif y each EPIRB uniquely.
These sequences are eas ily generated using linear shift registers ,
and the resulting receiver structure is comparable in complexity with
that needed for the FSK approach. It is concluded that the acquisi-
tion and detection performance of the two approaches is about equal ,
bu t that the spread-spectrum method has advantages in a multiple-
access environmen t .
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PREFACE

A signaling technique for Emergency Position Indica ting Radio
Beacons (EPIRBs) using FSK modulation , with detection employing
a bank of narrow-band filters , was designed and implemen ted by the
Federal Republic of Germany for ESA tests with the ATS-6 satellite.
An alternative signaling scheme using spread-spectrum pseudo-noise

(PN) modulation with phase-locked loop demodulation and correla-
tion detection was felt to give improved performance in a multiple
EPIRB environmen t. This report presents a description and com-

parative analysis of the two designs .
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1. INTRODUCTION

I

This report analyzes an existing L-band distress buoy design ,

• 
and recommends al terna tive designs which should be cons idered .

a

1
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2. ANALYSIS OF SYSTEM TESTED BY ESRO* WITH ATS~6

A current distress buoy system i.s descr ibed in “European
Commun ications Experiments in L-Band with ATS-6 ,” Vol. 6 Dist ress
Buoy , System Design , Instrumentation and Experiment ; European

Space Research Organ ization , October The disucss ion of th i s
section is based on the system description given in the document .

2.1 GENERAL DESCRIPTION

The system transmits a 64-bit message which is Miller (delay

modula tion) encoded. The bit rate is 64 bits/sec so that the

mess age repeats once per second .

The data stream is used to deviate the transmitted L-band

frequency. The separation between Mark and Space frequencies is

either 240 or 480 Hz (480 Hz is used in only one mode of operation) .

Thus , the transmitted output is an L-band frequency shift keyed

(FSK)  s igna l  wi th 64 b it s/ sec transm itt ed by dev iat ing the ca rr i er
1 120 or + 240 Hz. The carrier center frequency is assumed stable

to 1 part in 106. So an m s  center-frequency error of roughly
+1600 Hz should be anticipated.

The rece iver converts the received L-band signal  to h aseb a n d .
Spec i fically, a band which is roughly 3000 Hz wide about the

received carrier is translated down to the audio region. This

band is analyzed by a bank of 48 bandpass filters. These are

spaced every 60 l I z across the band , and each is 75 I-l i wide.

Detecti on occu rs when two of the bandpass filters ind i cate
the presence of a signal. The two filters must be separated by

the [5K deviation to indicate a valid si gn a l .  Thus , the probabil-

ity of detection of the distress message is given by

=

* The  name of the European Space Research Organization has been
c hanged to European Space Agency (nSA) .

2 0 
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~here Pd is the probability of detection on one of the baseband

f i l t e r s . I t should be noted that one filter sees only half of

the received signal power assuming a reasonably balanced binary

message as should be produced by the use of Miller encoding.

In order to create a false alarm due to noise , two filters

with the appropriate spacing, say , 240 Hz , mus t e r r o n e o u s l y
in d i cate the presence of a pair of si gnals. Assuming 48 channels
and a 4-channel separation between Mark and Space frequencies ,
the probabil it y of false alarm , P~~ is app roxima te ly

— 2 46
F 

— ~~ (Pf) ( 1 - P f)

where I
~ 

is the probability of noise causing the threshold to be

exceeded in a g iven channel f i l te r .  The expressio n above is
approximate , in that it excludes the possibility that more than 1

pair of filters exceed s the thr eshold due to no ise.

Now , the received carrier-to-noise density , C/N , wors t case ,

is on the order of 20 dB Hz. This assumes the link budget given

in Table 1.

The l i n k  bud get of Table 1 does no t inc lude  a mul ti pa th loss .
Th is effect will be considered as part of the detection analysis.

2.2 DETECTION ANALYSIS

In the absence of multipath fluctuations , the received si gnal-

to-noise ratio (S/N) in a 75-Hz bandwidth filter is

S/N = 24 dB - 3dB - 18.75 dB = 2.25 dB.

The 3-dB reduction is due to the fact that the signal is at each of
the two FSI( frequencies only half the time.

Now assum ing a Rician fading signal with carrier-to-multipath

rat io (C/M) of abou t 6 dB , and assum ing that the fading is

cor related over mos t of the detec t ion int egra ti on , there  is a loss
due to signal fluctuation on the order of 2 dBJ2~ This means
that the available S/N per received bit is on the order of 2.25 dB-

2.00 dB = 0 . 2 5  dB.

• 3
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TABLE 1. DISTRESS BUOY LINK BUDGET*

Transmitted Power +34.8 dBm

Transmitted Antenna Ga in 0.0  dB
Po inting Loss - 4 . 0  dB
Cable and Coup ling Loss -0.8 dB

Effec tive Isotropic Radiated Power (EIRP) +30.0 dBm

Space Loss - 189.0 dB

Rece iver Antenna Gain +18.0 dB

Polar ization Loss -1.0 dB

Po inting Loss -1.0 dB

Cable and Coupl ing Loss -1.0 dB

To tal - 174.0 dB

Received Signal Level at Spacecra ft (SC) -144.0 dBm

Noise Density at S/C Receiver (Assuming

880° K) -169.0 dBm/Uz

R e c e i v ed C/N 0 at S/C +25 dB Hz

Limiter Loss in S/C -1 dB

Receive d C/N 0 at Groun d Stat ion +24 dB liz

*Thj s ~ink budget is similar to that used by ESRO .

4
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Next , the loss through the envelope detection process must

he estimated. Given an 0.25 dB S/N at the input to the detector ,

the output S/N per bit is roughly -1.5 dBJ3~ But 32 bits are

integrated , on the average , over a 1-sec interval. Thus , the S/N
at the output of the integrator is -1.5 dB + 15.0 dB = 13.5 dB

where 15 dB expresses the enhancement provided by the 32 bit

integration.

At tha t level , detection probabilities and false alarm rates

on the order of those shown in Table 2 are achievableJ4~

TABLE 2. RECEIVER OPERATING CHARACTERISTICS

Probability of Probability of
Detection (Pd ) False Alar m (P f)

0.95 1 X l0 6

0.995 1 X l0~~

Using the second set of values in Table 2 , it is found that

the probability of detection , 
~D’ 

of the FSK distress signal is

= (0.995)2 = 0.99 ,

• and the probability of false alarm , 
~F ’ is approximately

~F 
= 44(10 -4

)
2 (1 - 10 4)

46 
= 4.38 X l0~~~.

At one detection decision per second , th is implies a false-alarm

rate of 1 per 264 days. Note that this detection performance is

• ach ieved a t C/N0 = 24 dB H z .

2.3 PERFORMANCE EVALUAT ION

The basic detection-false alarm perfoimance of the system is

quite satisfactory . Following detection; i.e., the determination

that a distress signal is present , the outputs of the two baseband

• S
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filters which indicated signal presence are amplitude-detected

and subtracted to form a baseband bipolar data signal . This

signal is then dig itized and digitally integrated. The message

is 64 b i t s  long , and therefore , repeated every second . Thus , the

integration is performed by superposing 1-sec repetitions of the

received message until enough noise reduc t ion is achieved to
decode the message accurately.

Le t us now consider the opera tion of this sys tem when more
than one distress buoy is energized at the same t ime . In that
case , there will be two tone-pairs in the baseband . As long as

t hese tone pairs do not overlap , there should be no problem s

because the satell ite will pass the two FSK signals in quasi-linear

fashion. However , each signal has a center-frequency uncertainty

on t he order of + 1600 Hz. Thus , a s s u m i n g  a 2 4 0  Hz FSK devia ti on ,

there is a 7.5 percent chance that the two distress messages will

overlap. Ithen they overlap , and neither signal has been previous-

ly detec ted , it is likely that the detection algorithm will fail.

Moreover , data demodulation will be seriously degraded when tones

f rom d i f f e r e n t dis tress sign als  r esi de in the same channel  f i l ter
uni t.

The p roble m of s ignal  ov e r l ap can be reduced by rand om i z in g
the t rans mi ss ion t imes of th e buoy s . Fo r example , each buoy can
be designed to transmit for 1 minute then remain off for , say ,  10

minutes. In that case , the probability of overlap is reduced by
a factor of more than 10. Thus , the probability of acquisition

failure due to overlap will be less than 0.75 percent. Implemen-

tation of this approach implies that the mean tA me to first

acquisition of the distress message is 5 minutes.

(~1
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3. ALTERNATIVE DESIGN APPROACHES

a

A l te rna t ive design approaches were investigated to determine

if high rel iabi l i ty d is t ress  buoy operation could be achieved
w hen more than one buoy is in operat ion at the same time .

A number of techni ques were considered. The cons tra ints on
the design are that (a) the transmitter system remain as simple

or s im p ler  than the ba sic des ign d iscussed above , and , (b) high
reliability detection and data demodulation performance are

obtained when two or more buoys are opera ted simul taneously.

3.1 TilL PN-PSK TECHNIQUE

The pseudo-noise phase shift key (PN-PSK) approach has

ach ieved wide acceptance as a spread spectrum-multiple access

technique for satellite communication systems. It should be

con sidered for  the d istress buoy ap p l i c a t ion because i t ha s the
potential for meeting the design constraints defined above.

3.1.1 PN-PSK Transmitter Design
a

A block d iagram of one possible distress buoy-transmitter

i mplemen tati on is shown in Figure 1. The system is somewha t

• simpler than the basic FSK design , and will provide a more stable
carri er frequency because it use s a fixed crys tal osc i lla tor
rather than a Vol tage Cont rol Osc i lla tor (VCO) as its frequency
reference.

The opera tion of the device is as follow s : The crystal
oscilla tor output is multiplied up to L-band and mixed with the
L-band VCO output in a phase detector. The output of the phase
de tector , wi th the PN-PSK baseband signal , is passed through a
loop compensa tion network , and appl ied to the voltage control
input of the L-band VCO to close the loop. The PN-PSK baseband

signal is added to the phase error output , so that the L-band VCO
output is phase-modulated b~ the PN-PSK data stream . Phase

7
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FIGURE 1. PN-PSK TRANSMITTER

deviation is controlled by adjusting the PN-PSK amplitude level
at t he phase error summing point. The PN-PSK encoded message is
genera ted by digital logi c wh ich is clocked from the crys tal
oscillator.

3. 1.2  Message Format

Typ ically, t he PN-PSK approach is implemented so that one
data hit is transmitted during each PH period. That is , a Mar k
is t ransmit ted as one complete period of t he PN sequence , and  a

Space is t rans mitt ed as the complement of the PN sequence. For
H ease of comparison , we will assume the same message format and

data rate as were used by the ESA distress buoy. The message for-

mat for the PN sys tem i s def ined in Table 3.

S
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TABLE 3. MESSAGE FORMAT

a

Data Rate 64 bits/se c

Message Length 64 bits

Message Repe tit ion Rate 1/sec

Number of Sync hronization Bits 22

Number of Informat ion Bits 42

Pseudo-Noise Sequence Length 127 bits

Each bit is represented by a 127-bit PN sequence , so that the

actual transmitted bit rate is 64 X 127 = 8128 bits/sec . The

phase modula tion deviation is chosen so that there is considerable

ca rrier power in the transmission. In particular , the deviation

is set at + 45 degrees. Thus , res idual carrier power is 3 dB down

from the total transmitted power output.

3.2 ACQUISITION PROCEDURE

The firs t s tep in acquiring the dis tress message is the

detection of the presence of a carrier component at the receiver.

Given that the worst-case C/N0 
= 20 dB Hz as before , the residual

carrier power- to-noise density will be 17 dB Hz , worst case.

Let us assume that the search for the residua l carrier is

accomplished by a phase-locked loop (PLL). The maximum sweep rate

Wmax for a 90 percent probability of detection is approximately~
5
~

IN Bi o n  2wmax = [1 - 

C ~ 
Bn

where B~ is the double-sided noise bandwidth and C/N0 is the

9 
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carrier- to-noise density.

Assuming a double-sided noise bandwidth of say 5 Hz the

- 
- maximum search rate is 2.72 Hz/sec. The total frequency uncer-

tainty reg ion, 3000 Hz , can be swept in 1103 sec at this rate by
a sin gle PLL. A number of PLLs can be used in parallel to reduce

the search time . In particular , let us assume that the ground

sta t ion is equipped w ith 10 PLLs , each of which continuously mon-

itors a 300 Hz portion of the total frequency uncertainty interval.
M o r e o v e r , let us allow 5 minu tes for each sweep ; this correspond s

to the mean acquisition time of the FSK system previously described.
The sweep rate of the 1oops is 1 Hz/sec under these assumed
conditions. The optimum loop noise bandwidth , assuming a second-
order loop compensa t ion , is 5.24 Hz. The wo rs t - case  noise error
assuming a 17 dB res idual carr ier- to-noise density is roughly 13
degrees. At this level, the probability of acquisition will be
well over 90 percent. In particular , if a synch ronous amplitude
detector and a low-pass filter wit h a 2 Hz 3 dB bandwidth are used
fo r detec t ion in conjunction with the PLL , the probability of
detect ion will be 99 percent when the fa lse-alarm rate is
a p p r o xim a t e l y  1 X l0~

6 . This performance is better than that
achieved with the FSK system previously described because C/N0 

=

24 dB Hz was assumed for the FSK analys is wh i le we have assumed ‘

C/N 0 
= 20 dB Hz.

3.3 DATA EXTRACTION

The indication that a signal is present in one of the PLL
f ilters stops the sweep search procedure. At that point , the

- - phase detector output of the indicating PLL wil l  contain the coded
d is t ress  message provided that a val id buoy signal was rece ived .

A bank of code correlat ion detectors  is used to determine
w hether or not the baseband output of the PLL which ind icates
si gnal presence i s a val id dis tre ss message.  A delay line corre-
lation filter must be implemented for each possible 127-bit PN

code format. The output of the correlation detector which is set

up for the received PN code consis t s of posi tive and negative

10
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p u 1-~cs at the d i s t r e s s  message code ra te , 64 b i t s / sec . These can
he de tec te d to produce the d is t ress  message. The message format
g iven in Table 3 is such that there is insufficient energy-to-

no is e densi ty per rece ived dis tress messa ge bit to ensure rel iable
de tec ti on of the messa ge hits. In par t icular , the data power-to-

noise density is equal to the residual carrier-to-noise density,

assuming 45 degrees PSK deviation . Therefore , Cd /No 
= 17 dB , and

the energy-to-noise density per bit is

Lb /NO 
= CdT/ No 

= 17 dB - 18.06 dB = -1.06 dB

where T is the bit duration.

Re l iable hit detection requires E/N0 on the order of 10 to

12 dB . To achieve this level , the outputs of the correlation

detectors can he integrated using digital techniques. For example ,
an 11 dB f l / N0 can be achieved by integrating 30 received data bits

each of wh ich has Lb /N O 
= -1.06 dB; i.e., there is an integra t ion

loss of roughly 2.5 dB.

3.4 DESIGN ALTERNATIVES

Thus far , we have assumed a bas ic message forma t simil ar to
that of the FSK distress buoy system . However , by slow ing the
mess age bit ra te down, we can gain two advantages. First , the

2.5 dB integration loss can , for the mos t par t , be avo ided. Second ,

the use o f a slower da ta ra te makes it easier to implemen t the
en ti re da ta de tecti on process (excep t for the PLLs) in digi tal
comp uter software.

For e x a m p l e , a 2 bit/sec distress message data rate will

provide fl/N0 on the order of 17 dB - 3 dB = 14 dB , which is more
than enough for reliable detection. The 2.5 dB integration loss

will be avoided , provided tha t coheren t detec t ion is employed ,

and this can be done given a suffic iently low da ta rate.

The PN code bit ra te is 2 X 127 = 254 b i t/ sec assuming a
2 b it/sec data rate and a 127 bit code. The PN encoded data signal
mus t be digitized at a rate which provides roughly 5 samples per

11
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PN code bi t. Thus , a code correlation-shift register S X 127 =

635 bits long will be required. A correlation at each poss ible
shif t posi tion requires 6 35 accumula t ion opera t ions , and there
are 635 shift positions. This means that roughly 40 msec are

requ ired to compute the correla tion de tec tor output at each sh i f t
position for each 0.5 sec interval of the input , assuming a 10 MHz
computation rate. Clearly, ample tim e is available for thi s
strai ghtforward operation . Moreover , the digital hardware can be
time-shared , so that several code patterns can be checked simul-

taneously with the same hardware. The correlation detector can

also be implemen ted in digi tal software. In that case , a 1 M h z
c lock ra te is assu med , and thus , 0.4 sec is required to process

comple tely 0.5 sec of input.

Once the dis tress messa ge is de tec ted and the PN code
identi fied and synchronized , a much simpler da ta demodula ti on
procedure can be followed. Specifically, a local PN code genera-

tor can be used to “wipe off” the code. Then , an ord inary
integrate-and-dump filter can he used to detect the data. This

allows the shift register-correlation detector to continue its

search for other possible d is t res s me ssa ges if the PLL subsys tem
— indicates that a potential distress message carrier is detected .

A generalized block diagram of a possible receiver configura-

t ion is shown in Figure 2.

PSEUDO-NOISE DISTRESS
RECEIVED PHASE-LOCKED CO DE MESSAGE -—._

~~~ CO RREL ATION —
~~~ TRACKING RECEIVERSIGNALS SUBSYSTEM 

SUBSYSTEM 
SUBSYSTEM

I 
COMPUTE R CONTRO LLER

FIGURE 2. GENERALIZ ED PSETJDO-NOISE-PSK DISTRESS MESSAG E RPC~ I V E R



14• SYSTEM COMPARISONS

The PN-PSK dis tress message system described here provides

• code division-multiple access capabi l i ty .  This added capab i l i t y
provides for a lower probabil it y of mutual interference when two
or more buoys are in operation simultaneously, relative to that

achieved wi th the FSK apporach.

Of cou rse , the added modula ti on c o m p l e x i ty necess it a tes a
more complicated receiver structure . However , the de tec t ion
performance achievable with the PN-PSK technique is very similar

to that achievable with the FSK approach.

The added comp lex ity of the ground s tati on is not considered
a serio us disadvan tage bec ause only a few ground s tat ions are
con templated for the system. The additional costs of the

elec tron ics requ i red  are ne g l igible compared with overall ground
• 

— s tation cos ts. Moreover , the addit ional cos t of the ground
station electronics for the PN-PSK approach is certainly negligible

compa red wi th overa l l  sy stem cos ts.

• Overall system costs are critically dependent on transmitter

costs bec ause m any transmi tters w i l l  be deployed in the sys tem.
The PN-PSK app roach results in a transmitter configuration which

is somewhat simpler than that of the FSK approach , given that
crys tal-stabilized frequency operation is required . In particular ,

it is rela tively easy to phase modula te a fixed tuned crys tal
osc i llator output , while frequency modulat ion requ ires ei ther a
vol tage controlled oscillator which has poorer frequency stability

or an add itional up-conversion operation .

Table 4 show s a comparison of the performance factors of the

fiSK and PN-PSK approaches.

13 
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TABLE 4. SYSTEM COMPARISONS

PERFORMANCE FACTOR fiSK PN-PSK

Transm itter Complexity moderate low
Receiver Complexi ty moderate high
Probabili ty of Detection 0.99 0.99

Probabili ty of False Alarm 0.4 X 10 6 1 X lU 6

Acquisi tion Time 5 mm (mean) S mm (max)

S imultaneous Transmi tter Capabil ity good very good
T ime to Decode Message 30 sec 32 sec
Probabil ity of Bit Error in 30 sec . poor* good
Assumed Carrier-to-Noise Density 24 dB Hz 20 dB Hz

*European Communica tions Experiments in L-Band with ATS-6 ,
Volume 6--Distress Buoy , System Design~ Inst rumentati on and
Exper iment ESRO , Oct. 1975 , Fig. 7b.16)
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5. CONCLUSIONS AND RECOMMENDAT IONS
1

The PN-PSK approach offers the potential for better data

• performance , be tter mult iple transmi tter capab ility, and slight ly
simpler transmitter configuration. These performance advantages

we re obtained by increasing the complexi ty of the transmi tted
waveform , and hence increasing ground s tation receiver processing
complex it y.

The PN-PSK system design presented here was tailored for ease

of compar ison w ith the exis ting FSK sys tem desi gn. It is
rec ommended tha t fur ther conside rat ion be given to the PN-PSK
app roach in order to (a) optimi ze perfor mance for the distress
buoy mission , and (b) adap t the design for comple te d igital

computer signal processing of the received distress messages .

•
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