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SECTION 1
INTRODUCTION

T road i -2 al o S h T e R R

The purpose of this document is to provide the design engineer with the

Tty

information required to determine the heating environments and certain dynamic

characteristics of sounding rocket payloads r »r to launch. Depending upon

the particular mission, there are certain modirications that can be made to i

e e T Lh

an existing design. These modifications could possibly eliminate or at least

prr e

Z;, . considerably reduce certain dynamics and heating problems associated with the
3 ‘ reentry payload. The ability to determine these potential problems prior to g
launch gives the engineer a certain amount of time and flexibility in consid- '
ering possible design change to the vehicle to prevent these prablems from

occurring during flight.

The reentry problem that must be addressed by tha design engineer is E
complex. Various center of gravity locations combined with certain release F
attitudes can often result in complex payload attitude dynamics which have a
pronounced effect on the reentry heating environment. Because of these vari-
ations in attitude, constant trim methods cannot be used alone to adequately
predict the trajectory or the heating environment for the vehicle. This makes
it necessary to use a combined sophisticated analysis to obtain the vehicle
dynamics and heating environment. The results from these types of sophisti-
cated methods in many cases are too complex to use effectively and apply only
in particular situations. A considerable amount of effort was spent to assure

that the results presented could be easily used and general enough to be appli-

|
cable to numerous reentry heating problems. j
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1.1 Scope of Contents

The results presented in the following sections are applicable to the
geometric configurations and range of parameters shown in Table 1.1. The
results are directly applicable only to cylinder and cone-cylinder configura-
tions with a C.G. offset range of 10% of the vehicle length forward and aft
of the volumetric C.G. location. The initial release attitude or angle of

attack range is from 90 to 180 degrees referenced to the earth's local ver-

tical vector. The handbook results cover a range of 75 to 350 statute miles
in release altitude and consider cylinder diameters from 22 to 38 inches.
The skin material is consi 'ared to be aluminum with skin thicknesses of .125,
.250 and .500 inches. Vehicle fineness ratios of 2.5 to 5 are considered

for the Tylinder configurations while fineness ratios of 3 to 7 are consid-

E ered for cone-cylinder configurations. The resultant ballistic coefficient
* range for the vehicles is between 10 and 250 1b/ft2. The results presented

in the following sections consider neither roll nor tumble moments imparted to

the vehicle at release. |
! i
GEOMETRIC CYLINDER CONE-CYLINDER __ i
CONFIGURATION L ® k3 ‘\\I 14 }
.& ......__0’{ ......... . 2 S [,’
Cn Go Offset -|]0< CIG. < 010 “l]O( c.Gl .]0 :
Fineness Ratio 2.5 <p/d< b J<pfd <7
Release Attitude | 90° <aj < 180° 90° < oy < 180°
Release Altitude | 75 mi, < Hy < 360 mi. 75 mi. < Hi < 350 mi. f
Diameter 22 in. < d < 38 in, 22 in. < d < 38 in, !
skin Thickness 126 in. < & <.500 1n.| .125 in. < § < .500 in. j
Cone Half Angle 12° < 0 < 18° H
g i
!
Table 1.1 Range of applicability of the handbook results ’

i

S PR PSR S,
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The handbook is comprised of essentially eight separate sections and four

appendices. A concise description will be given for each section and appendix:

i ] Section 1, in addition to the Scope of Contents Section, contains

(R the procedures to be followed when solving a problem with the hand-
i} ne book. The solution to a sample problem is presented and can be
followed as an example when solving a reentry for an actual flight
case,

P (] Section 2 provides all the necessary information required to de-

termine the trim attitude and ballistic coefficient for the re-

i 1
E& o entry payload. This assumes, of course, that the configuration

type, cross-sectional area, weight and C.G. location have already

been spectfied for the vehicle,
° Section 3 contains the results from the constant trim integrated
51 heating load analysis., This heating load must be determined in

order to obtain the surface temperatures of the reentry vehicle.

° Section 4 presents the oscillation and tumble correction factors.
These factors are multiplied by the constant trim heating loads :
presented in Section 3 to correct for vehicle oscillations and ;
tumbling during reentry. E

0 Section 5 provides all the necessary information required to detar- :
mine the surface temperature of the reentry vehicle once the tumble
corrected heating load has been obtatned.

] Section 6 deals specifically with the dynamics of the reentry vehi- I

cle. Two distinct types of reentry trajectories are considered,

e i

f.e., the trajectories wiich exhibit normal stable flight at a

constant trim attitude and those which consider vehicle oscillations

T e .

e

BB s
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and tumbling., Methods and procedures are presented 1n order to
determine both types of trajectories,

Section 7 presents the heating rates versus altitude and velocity
for the configuration types being considered. From the figures
presented in Section 7, the heating history for the reentry vehicle
can be determined once the trajectory for the vehicle has been
specified,

Section 8 presents the reentry guidelines that should be followed
when using the handbook to solve a vehicle heating or dynamics
problem.

Appendices A-D discuss all the theoretical methods and procedures

used in determining the results presented in the following sections.

1.2 Handbook Usage Procedures

There are basically three types of analyses which can be performed with

the handbook. In addition to the heating load and surface temperature analysis

which will undoubtedly be the most important to the design engineer, trajec-

tory and heating rate analyses can also be performed. The basic procedures

involved in using the handbook are outlined by the flowchart presented in

Fig. 1.1

A certain amount of required information is needed to begin a reentry

analysis.

This information includes:

(1) The payload geometric configuration type and fineness
ratio

(2) Cone nose bluntness ratio 1f cone-cylinder geometry

(3) The welght of the payload
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(4) The C. G. location and cylinder cross-sectional area
(5) The initial surface temperature of the vehicle at release
(6) The initial attitude and altitude of the payload at release

(7) Initfal roll, tumble or yaw moments imparted to the vehicle
at release

The initial attitude of a reentry vehicle may not be known with any degree
of confidence for certain missfons. In these situations, engineering judgement
and knowledge of the problem must be used to come up with the best estimate of
this attitude since 1t 1s an important factor in the analysis.

The figures in Section 2 are to be used to determine the trim attitude and
the resultant drag coefficient for the vehicle type, fineness ratio and C. G.
location given. Once the drag coefficient has been established, compute the
ballistit coefficient using Eqn. 1.1.

Ballistic Coefficient = W/CpA 141
where
W = weight of payload
Cp = drag coefficient based on cylinder cross-sectional area
A = cylinder cross-sectional area

In order to determine the surface temperature on a vehicle, the integrated
heating load must be obtained. With the constant trim ballistic coefficient,
vehicle trim attitude, and release altitude already established at this point,
determine the heatiny load from Figs. 3.1 - 3.10 for the base and cylinder
regions of the vehicle. Table 3.1 is provided in order to determine the heat-
ing load for the cone section when considering a cone-cylinder geometry.
Heating load magnitude charts are presented in Tables 3.2 and 3.3 for the con-

figurations, C. G. locations, and release attitudes considered in the 6 DOF

trajectory and tumble heating analyses. The heating levels presented are for

5
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a release altitude of 200 miles. While the magnitude of the heating loads
presented in Tables 3.2 and 3.3 change with altitude, the distribution does
not. From Tables 3.2 and 3.3 the engineer can determine what C. G. offset and
release attitude combinations promote the highest levels of heating in relation

i ' to other C. G. offsets and release attitudes.

The heating loads obtained in Section 3 are for a constant trim reentry

b situation. A tumble correction factor must be applied to the load to account

for vehicle oscillations and tumbling. Determine this tumble correction factor
i from Figs. 4.1 -4,14 for the configuration and initial conditions being con-
: sidered. This factor 1s multiplied times the load obtained in Section 3 to

determine a tumble corrected heating load. If this factor is less than 1, it

: should npt be applied unless the initial release attitude is known with a high
%5 degree of certainty.

The tumble corrected heating loads obtained in Section 4 will be used

along with the figures presented in Section 5 to determine the surface tempera-

ture of the reentry vehicle. Adjust the tumble corrected heating load for sur-

face temperature variations using Fig. 5.1. If the cylinder diameter Tor the

configuration varies from 24 inches, correct the heating load for diameter
change using Fig. 5.2, If the vehicle 1s rolling, correct the stagnation
line heating load on cylinder section by the roll average heat transfer

coefficient using Fig. 5.3, Determine the vehicle surface temperature using :

P T P R I S S

this corrected load and Fig. 5.4, The surface temperature obtained from Fig, 5.4 |
considers a constant heat capacity for the vehicle material. Correct this

surface temperature for variable heat capacity using Fig. 5.5,

The results presented in Section 6 are used to determine the vehicle

trajectory once the ballistic coefficient has heen established., The ballistic

L e E

(=]
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coofficient for the mission can be compared to those presented in Table 6.1 in

order to have a check on the ballistic coefficient calculation. The next step

in determining the vehicle trajectory is to consider the results in Table 6.2.
A tumbling or oscillating trajectory can be related to a constant trim
trajectory using these results., Determine the percent of variation from Table
6.2 for the configuration type and initial conditions being considered.
Calculate an equivalent ballistic coefficient using the constant trim ballistic
coefficient and this percent of variation. This calculation can be performed

by considering the following relationship.

(‘%‘) eq " (#)c? T%U (#) cT "
where
(C%I) eq = The equivalent ballistic coefficient for an oscillating
or tumbling trajectory
(C%I) ¢t ™ Constant trim ballistic coefficient
V = Percent of variation (from Table 6.2)
The smaller the percent of variation the more closely the trajectory resembles
a constant trim trajectory. The reentry trajectory of the vehicle can now be
determined by using the equivalent ballistic and the release altitude (from
Figs. 6.1 = 6.9). The attitude dynamics for the reentry vehicle can be
established for the particular configuration and set of initial conditions by
considering the information provided in Table 6.3. From Table 6.3 1t {is
pos:ible to determine if the vehicle is oscillating or tumbling or whether it
is trimmed during reentry. It is also possible to determine if these oscilla-
tions are small in amplitude or whether they are large and unstable. Fig. 6.10
has been provided in order for the engineer to be able to determine the maxi-
mum descent velocity for the vehicle. The equivalent ballistic coefficient

along with the release attitude can be used in Fig. 6.10 to obtain the maximum

B b b o B e e S TN i SR SR £33
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descent velocity of the reentry vehicle at two selected recovery altitudes.
Section 7 deals spacifically with the heating rate environments for the

reentry payloads. If a heating rate analysis is being considered, examine the

; magnitude of the percent of variation determined in Section 6. If the absolute
' value of this percentage is greater than 5%, this is an indication that vehicle
I oscillations or tumbling will occur. The heating rates presented in Figs, 7.1 -

7.10 are for constant trim attitudes. The heating rate history for a vehicle

% cannot be determined using these figures {f the vehicle attitude 1s not known

at each specific time point which 1s the case 1n an oscillating or tumbling

i
o
?i
g

trajectory. If the parcent of variation is larger than 5% and the heating rate
history of the vehicle is required, a complete 6 DOF trajectory analysis and a
tumbling heating analysis must be performed for these results. If, however,

the absolute value of the percentage 1s less than 5%, this means that the

vehicle is essentially trimmed at a constant attitude. For these types of
situations, selaect a heating rate plot from Figs. 7.1 = 7.10 which 1s closest

to the trim attitude of the vehicle and superimpose the reentry trajectory

T T A R R T A k. RN oS AT

that was determined in Section 6. The heating rate history can then be

determined for both the cylinder and base regions of the payload. Table 7.1 is

provided in order to determine heating rates on the cone section for the cone-

cylinder configurations., Fig. 7.11 1s also presented in order to show the
altitude cutoff 1imits for the heating rate analysis, These are the altitudes
at which aerodynamic heating ends and cooling begins.

The reentry guidelines are presented in Section 8. When potential heating
or dynamic problems are indicated for a particular f1ight case, follow the

reconmendations presented in Section 8 prior to changing the vehicle design.

!
I
I
)
|
|
;‘
|
|
{
?
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2‘ : reentry Vehicl.e_‘:“ Are vehicle surface No
i ' T | temperatures required?
ll Yes
-i . Compute Qggg from
' _I_iixso 301_3110-
i |
1 , Yes | Determine tumble f
3 Is a tumble corrce- correction factor
: tion factor needud? from Figs. 4.1 to
i g No 4,14 and multiply
-jf Lorrect Qgeq for var- | times Qgeo-
1 fable surface tempera- B
8. tures using Pig, 3.1, 7777
& = 1Adjust for A;Ilnder
¢ diameter variation
from Fig. 5,2.
:zlthfgle No »Datermine surface
L temperature from
Yes [EiR., 5~‘;-
_ y : Adjust Hﬁffncu &3@&5&«
i peter@lne factor ture for heat eapacity
and multiply —
times Qggp- [Analvsis Completed}*
3 Fig. 1.1. Flow diagram for handbook usage.
9
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1.3 Sample Problen

A detailed step by step solution to a sample problem 15 presented in this
section. The problem 11lustrates the techniques and procedures that a user
should follow in solving a problem. This problem is representative of the
types of problems which will most 1ikely be encountered while performing a

flight reentry heating analysis.

PROBLEM:

Determine the maximum descent velocity at 60K feet, the attitude dynamics,
maximum heating rate and surface temperature on the cylinder region of a blunt

cone=cylinder configuration,

CONFIGURATION AND MISSION CHARACTERISTICS:

ltem Symbol Value Units

Configuration type cone-cylinder
Cylinder diameter d 37.5 in.

Vehicle length L 158 in.

Vehicle weight W 1742 1bs.
Nose bluntness ratio SalR¢ 0.132

Skin thickness a 0.250 in.

X

Release altitude 175 statute miles
C. G. location }z 645
Release attitude af 90 degrees
cone half angle 0 14 degrees
Vehicle roll rate .5 rps
=t T
R =t et
| " T
o_ 3 — db' _ —I‘
I ¥
|t~ 2 e o]

|

-
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SOLUTION FOR SURFACE TEMPERATURL :

Step No.
1 Calculate fineness ratio 1/d = 4.2]
: 2 From Fig. 2.2 determine volumetric C. G. x/e = ,620
: , location
|
’ 3 Calculate vehicle C. G. offset from C. G, Offset = ,025 ¢
volumetric C. G. AFT of Vol, C.G.
4 From Fig. 2.3 determine planform area Ah‘/ch = .99
. ratio Hadbddk results are
; ' valid (Section 2)
5 From Fig. 2.4 determine trim attitude ar = 161°
6 From F1g. 2.5 determine drag coefficient  Cy = 1.9
7 Calculate cylinder cross-sectional area A= 7,67 fté
8 _ Calculate ballistic coefficient Wgpa v 119.5 Tom/ft?
9 From Fig. 3.8 and 3.9 linearly inter- Queo = 207 Btu/ft?
polate for heating load
10 Calculate attitude offset parameter P = «,44)
*11 Calculate vehicle fineness ratio as if L/d = 4,48

the vehicle were a sharp cone-cylinder
geometry, i3 = 0

! 12 Determine from Fig. 4.6 and 4.7 tumble Qu/Qct » 1.87
i correction factor (1inearly interpolate
with vehicle fineness ratio from

‘ Step 1)
; 13 Calculate tumble corrected heating load Queo® 387 Btu/ft?
: 14 Determine from Fig. 5.1 variable surface  Q = 360 Btu/ft? f
temperature corrected load !
15 Determine diameter adjustment factor Factor = ,91b j
from Fig, 5.2 @
16 Adjust load from Step 14 for diameter Q = 329 Btu/ft’
change
17 Determine the factor Fr/hey from Fig. Qego = 145 :
5.3 for ay and multiply t?mes Qeso :
18 Determine constant heat capacity surface  Tgo = B43°R
temperature from Fig. 5.4
1

L
LGML's(-*?i.'»'-'q‘-v:-)'»ls«lu. SR o AT 'wmm.'w-nwmmmmmmmmwmmmmmmmmmmmmmm«mm‘-'-’\ri-‘a'lfﬂ'xﬂ?ﬁ.‘mm‘vmwv}mz:::-r:WGA.WJ



SOLUTION FOR SURFACE TEMPERATURE (Continued):
Step No.

w19 Correct surface temperature for
variable heat capacity using Fig. 5.5

RTR 027-1

T = 833°R

SOLUTION FOR MAXIMUM VELOCITY AT 60K FEET:
Step No.

20 Determine percent of variation from
Table 6.2 (11nearly interpolate between
fineness ratios using fineness ratio
from Step 11)

Percent = .7 g%

21 Calculate equivalent ballistic coeffi-
cient (use Eq. 1.2)

(Wgyaleq = 110

22 From Fig. 6.4 determine maximum
velocity at 60K feet

Maximum velocity
« 4000 ft/sec

SOLUTION FOR ATTITUDE DYNAMICS:
Step No.

23 From Table 6.3 determine attitude
dynamics

Vehicle oscillations
are less than 25° about
or. Vehicle is re-
entering aft end first

SOLUTION FOR MAXIMUM HEATING RATE:
Step No.

24 The percent of variation from Step 19 is
7.8% which is greater than the 5% 1imit
imposed. An approximate maximum heating
rate will try to be obtained even
:hgugh the vehicle is not at constant

rim

25 Superimpose the trajectories from Fig.
6.4 onto the heating rate plots for the
cylinder section in Fig. 7.8

26 Determine maximum heating rate

Maximum heating rate
= 20 Btu/ft2-sec

12
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*This calculation must be performed since the results in Section 4 were
determined for sharp cone-cylinder geometries and blunt cylinder geometries

i only. Datermine the length of the cone-section from its theoretical apex

(see Fig. 2.1 and Eq. 2.1).

R
Lc * tang * 75.20 in.

Wede Aaeti e e ooy

Calculate cone length

-

e

ta = 1324 * 9.926 In.

-

Determine vehicle length from theoretical apex
L+ %, = 158 +9.926 = 167,926 In,

e TR b

Calculate fineness ratto from theoretical apex
f = 167.926/37.56 = 4.48

i
L
}A

**This is the final estimate of the surface temperature on the cylinder section.

This value assumes an initial surface temperature at apogee of 660°R.

i A e G oy GEauuds
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SECTION 2
AERODYNAMIC CHARACTERISTICS

The data based theoretical methods discussed in Appendix A provide the
necessary aerodynamic coefficients used in both the s{x-degree-vf-freedom tra-
Jectory simulation analysis and the three-degree-of-freedom ballistic reentry
analysis. The normal force, axial force, and pitching moment coefficients were
computed using these methodologies. The damping coefficients which were an
integral part of the 6 DOF trajectory analysis were computed using Ref. 1. The
aerodynamics computed using these theoretical methods consider a sharp cone
geometry for the cone section of the cone-cylinder configurations., The sharp
cone georfletry considered in the handbook analysis can be defined as one in
which the cone tip and theoretical apex coincide. While it is true that the
aerodynamics are not directly applicable to blunt cone-cylinder geometries,
there are certain degrees of nose bluntness for which the handbook results are

valid. In order to define nose bluntness consider the schematic in Fig. 2.1.

L e
.‘-...
PP
Pl
e —— —— e

Fig. 2.1 Cone-cylinder configuration with cone nuse bluntness

14
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The nose bluntness ratio will be defined as the distance from the theoretical
apex to the actual nose ratioed to the distance from the theoretical apex

Lo the ¢one base.

R uhnm‘_}l 2.1
e ta fat

where

tc * distance from the theoretical apax of the cone to the cone base
Ly = distance from the theoretical apex to the hemisphere-flat face
tangent point
In order to maintain consistency in the application of the handbook results to
both sharp and blunt cone cylinder geometries, the vehicle fineness ratio will
always be defined unless otherwise stated as the distance from the nose of the
vehicle to the base of the cylinder afterbody.
A votumetric C. @. location must be determined for the reentry vehicle as
a first step 1n the reentry analysis regardless of the vehicle geometry. Fig.

2.2 presents the volumetric C. G. locations for cone-cylinder geometries with

nose bluntness ratios ranging from zero for a sharp cone-cylinder geometry to

e Rl T A

one for a cylinder geumetry. When a blunt nose cone geometry 1s being con-

siderad in a reentry analysis, the nose bluntness ratio is first determined by ;

using eyuation 2.1. The volumetric C. G. location can then be determined for {

the vehicle fineness ratio and specific nose bluntness ratio using Fig. 2.2, i
As the cone nose bluntness increases the vehicle aerodynamics begin to 1

chanrge.  Theve are certain nose bluntness cutoff limits that must be considered. S

Beyoid these l1imits the vehicle aerodynamics have chanyed to the extent that
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T O

the handbook results are no longer valid for the particular geometry. When

considering a blunt cone-cylinder configuration, the bluntness ratio determines

R Ll SN it P = il A%
EFOO S N R

whether the aerodynamics are more closely associated with those of a sharp coné
geometry or those of a cylinder geometry. Therefore, basically two cutoff

limits exist. One Yimit would be the bluntness ratia that would render the

i

sharp cone-cylinder results invalid, and the other 1imit would be that blunt-

ness which would make the cylinder results invalid. These limits will change,

‘

of course, with vehicle fineness ratio. It 1s not possible to determine these
exact 1imits without performing an in-depth analysis. It is possible, however,
to make some generalized approximate statements regarding these 1imits. The
aerodynamics for a vehicle are direct functions of the planform area of that
vehicle. _As the planform area changes there are corresponding changes in the

aerodynamics. Fig. 2.3 presents the planform area for a blunt cone-cylinder

geometry ratioed to the planform area of a sharp cone-cylinder geometry. This

; ratio (Ap./Agc) s presented versus fineness ratio and nose cone bluntness

ratio. The fineness ratio for this specific case will be the distance

from the theoretical cone apex to the base of the cylinder afterbody. When con-

sidering a blunt nose cone-cylinder geometry for a specific flight case, it is

generally felt that the handbook results should be valid and accurate {f the

planform area ratio is greater than 0.95. The data book will become less and

1

'J less accurate for planform area ratios less than 0.95. A generalized statement ;
g i
§ regarding a practical cutoff limit for a cylinder configuration cannot be made q
! 1
\ as easily however. It has been experimentally determined and theoretically %

verified that the addition of a hemispherical cap to one end of a cylinder can

RN e

greatly alter the aerodynamics of the cylinder. For this reason, it 1s recom-

mended that blunt cylinder configurations be separately analyzed as to their

reentry characteristics. 16
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A trim attitude is established for a reentry vehicle when its C. G. location

and aerodynamic force center concide, This is the point at which there are zero

o moments and torques on the reentry body. The aerodynamic force center versus

angle of attack can be computed using the following equation.

e

Xac . ( Y Cn) 4

T \T gl 2.2 g
where |
‘ 5%5 = Aerodynamic force center location non-dimensionalized by the
vehicle length
é? = P1tch1n? monent reference point location non-dimensionalized by
the vehicle diameter
Cn = Pitching moment coefficient
CN = = Normal force coefficient

% = Vehicle diameter to length ratio

Aerodynamic force centers were computed using Equation 2.2 for the configuration

types and range of fineness ratios presented in Table 1.1. An angle of attack

range of 5 to 175 degrees was considered in the calculations. The aerodynamic
force center is undefined at 0° and 180° when Equation 2.2 is used. This is
die to the fact that both the normal ferce and pitehing moment coefficients are
zero at these angles of attack. The aerodynamic force centers versus fineness

ratio for constant trim attitudes are presented in Fig. 2.4 for the cone- i

cylinder configurations. The sam2 results are presented in Fig. 2.6 for the
cylinder configurations. Aerodynamic drag coefficients for the cone-cylinder

configuration versus trim attitude and fineness ratio are given in Fig. 2.5

while similar results are presented for the cylinder configuration is Fig. 2.7.
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SECTION 3
INTEGRATED HEATING LOADS

The heating loads discussed in this section fall basically into two cate-
gories. Ballistic, or constant trim entry heating loads, are discussed in Sec~
tion 3.1. Relative heating load magnitudes for a number of trajectories which
include, not only constant trim entries, but also oscillating and tunbling

type entries are discussed in Section 3.2,

3.1 Constant Trim Entry Loads

Integrated heating loads were computed using the Bentry Computer Program
(Ref. C.1 =~ Appendix C) for each of the constant trim ballistic trajectories
presented in Figs. 6.1 - 6.9 of Section 6. The heating loads were computed for
a release altitude range of 50 to 350 statute miles, The results, presented
in Figs. 3.1 ~ 3.10, are applicable to the base and cylindrical sections of
both the cylinder and cone-cylinder configurations.

The heating load results presented in Figs. 3.1 to 3.10 were calculated
for a reference diameter of 24 inches, for angles of attack of 90 to 180 de-
grees using a reference temperature of 660°R.* The heating load may be adjusted
for diameter varfations using Fig. 5.2, To compute a load for trim angles be-
tween 0 and 90 degrees use the following relations:

Cylinder: oy = 180 - o

Base: ar = 90
A wa'l temperature adjustment to the heating load is provided in Section 7 by
Fig. 7.1.

*660°R was assumed to be a nominal estimate of the wall temperature at apogee.
Differences in wall temperatures at apogee are discussed in Section 8.
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- The heating load to the cone section of a cone-cylinder body may be calcu-
" lated using the algorithm given in Table 3.1 where the cylinder is used as a

reference,

NPT T e T e TP T

3.2 Oscillating and Tumbling Entry Heating Levels

R e L M

é : The Bentry program has the capability of determining heating rates and

; ‘. integrated loads on tumbling reentry bodies once the trajectory for the tum-
bling body has been established. The matrix of runs considered in the 6 DOF
trajectory analysis is presented in Table 6.2 of Section 6, Integrated heat-
ing loads were computed using the Bentry program for each of these trajectories
_ which included those with vehicle oscillations and tumbling, as well as the

i . constant trim reentries. While these Bentry runs for heating loads were per-
formed nfAinly for determining the oscillating and tumbling corraction factors
presented 1n Section 4, they are also used in determining relative heating load
‘ magnitudes for various combinations of C.G. offsets and initial release atti-

{ tudes for the payload configurations considered in the analysis. These results

are shown in the heating load magnitude charts presented in Tables 3.2 and 3,3

A number of trajectories were determined with the 6 DOF analysis for initial :
release altitudes other than 200 miles. From these trajectory runs, it was a
determined that the vehicle dynamics with respect to the attitude of the ve- |
hicle during an oscillating or tumbling reentry were essentially constant for
the ﬁeIgase altitudes examined. The extensive trajectory analysis in which C.G.
locations and release attitudes were varied and for which the heating load cal-
culations were performed considered a 200 mile release altitude. Therefore, ‘
only the overall magnitude of the heating loads presented in Tables 3.2 and 3.3
would change with release altitude and not the distribution since the vehicle
attitude dynamics are essentially constant with release altitude.

27
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A number of trends can be established and a number of conclusions made
regarding the results presented in Tables 3.2 and 3.3. It is obvious from
Table 3.2 that the base load environment {s considerably higher in practically
all cases where the C.G, offset is aft of the volumetric C.G. location. This
occurs since the base region is subjected to the flow in situations where the
vehicle 1s trimmed or is oscillating aft end first during reentry. Notice
that the maximum loads on the base occur for the 4, 5 and 7 fineness ratio
cone-cylinder configurations at C.G. offsets of 2.5% forward, 2.5% aft and 5%
aft, respectively. These maximum levels are essentially independent of inftial
release attitude. For the cylinder section of the cone-cylinder configuration,
a totally different heating load level distribution s observed. The 10% for-
ward location gives the highest load levels and the distribution is highly
dependent on the {nitial release attitude, but essentially independent of fine-
ness ratio. For the base and cylinder regions of the cylinder confiqurations,
the maximum load levels occur for a 10% C.G. aft offset. Notice the difference
in the load levels on the base region between the cone-cylinder -configurations
of fineness ratios 4 and 5 and the same fineness ratio cylinder configurations.
Maximum heating loads occur on the base region of both types of configurations
when the vehicle is trimmed aft at 140° angle of attack. This 1s not necessar-
i1y the case, however, when a vehicle 1s oscillating about a 140° trim point
since the base may be subjected to flow more often at angles of attack which
vary -from 140°, These variations are dependent upon the amplitude of the oscil-
lations. It is entirely possible during an oscillating trajectory that oscil-
lations about a 130° or 150° trim attitude, for instance, could give the highest
heating levels since the base would then be subjected more often during the tra-

Jectory to the 140° maximum load attitude. For the cone-cylinder configurations

with fineness ratios of 4 and 5, with C.G. offsets of 2.5% forward and 2.5% aft,
28
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respectively, the constant trim attitudes (from Figs. 2.2 and 2.4 in Section 2)
are 147° and 158°, These C.G., offsets result in the highest load levels for
the 4 and 5 fineness ratio cone-cylinder configurations. Similarly, constant
trim attitudes of 132° and 138° for 10% aft offsets in C.A. give the largest
loads for the 4 and 5 fineness ratio cylinder configurations.

A number of other comparisons can be made and trends established concern-
ing relative heating levels with Tables 3.2 and 3.3 for each of the cases and
configurations considered in the analysis. The results presented in Tables
3.2 and 3.3 should prove to be valuable to the engineer in that he can deter-
mine very quickly and without any calculations the relative magnitude of the

heating levels anticipated for his particular mission.
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, TABLE 3.1
L CONE HEATING LOADS

The procedure for computing heating loads to the cone of a cone-cylinder

A

d

configuration 1s as follows:

(1) Determine the angle of attack of the cone's windward surface

%eone * %yt * O
o = Angle of attack of cylinder

cyl
0 = Semi-vertex angle of the cone
NOTE: If Gone 180°, agone = 180°

‘ (2) Determine the heating load for a cylinder at %onc from Figs. 3.1
. to 3.10.

(3) Determine the cone radius at the midlength of the cone.

e
| i (WZA -“J
! — |

(4) Determine the load adjustment factor for the cquivalent cone dia-

rcy1

meter, 2r., by using Fig. 5.2,

(5) Make additional adjustments as required for a cylinder calculation.

r———
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l SLCTION 4
: OSCILLATING AND TUMBLE CORRLCTTON FACTORS

As discussed in previous scctions, various C. G. locations and initial
: retease attitude combinations cause Targe vehicle oscillations and tumbling

during reentry for the types of geometric configurations being considered in

this analysis, The effects of these types of dynamics on the vehicle's entry

trajectory as to its ultitude, velocity, and time history were discussed in

Section 6. The acrodynamic heating un a reentry vehicle is determined not

l
only by the vehicle's velocity and altitude, but also its attitude. Although E§
the vartations in the vehicle's descent velocity changes the hcating load, the ig
vidationg in attitude have a wore pronounced offect,  This can be scen by |§
examining the heating load plots given in Figs., 3.1 - 3.10 in Section § for %&

the range of 90 to 180 degrees in reentry angle of atlack,

LT e
PRSP =5 Tl

During typical large vscillating trajectories, the angle of attack may

vary 180° for one complete oscillation of the reentry vehiclie.  This variation

could be 360Y when the vehicle comploetely tumbles,  The heating rate on the
reentry vehicle can vary from a very small rate to a tremendously targe rate :
during one complete oscillation. Thevefore, in ovder to adequately perform a
hedating analysis, the integrated heating load wmust be determined which considers
this large variation in vehicle attitude. This is the rationale in using a
tunbling entry heating program such as the Bentrey Computer Program for the
heating analysis,

Tables 3.7 and 3.2 in Scection 3 present the relative levels of heating for
the contiguration types and €. G, offset and attitude combinations considered

in this analysis.  The trajectories. for which these loads were obtained, cover

43 *
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practically all possible types of constant trim, oscillating, and tumbling
reentry trajectories. The heating loads computed with the Bentry Program for
these trajectories were non-dimensionalized by the loads obtained for a constant
trim ballistic reentry. Thesu non-dimensionalized values which are called
tumble correction factors were plotted versus attitude offset parameter, P, and
presented in Figs. 4.1 - 4,14, The attitude offset parameter is defined by
equation 4,1

' a, uT

pea— 4.1

a I3
i

where
ag = The initial vehicle release attitude (Deg.)
ap = The vehicle trim attitude determined from Section 2 (Deg.)

It is obvious from equation 4.1 that P is equal to 0 if the vehicle were released
at its trim attitude and that the value of P becomes larger the further the
release attitude is from the vehicle trim attitude.

It 15 important, in order to correctl; apply the tumble correction factors,
that the philosophy behind the development of these factors be discussed. A
trim attitude can be established for a reentry vchicle by the methods presented
in Section 2 if the aerodynamic force center and C. G. location is known for the
vehicle, If the vehicle trims, it will always trim at this attitude and 1f the
vehicle oscillates or tumbles, it will always oscillate or tumble about this
trim attitude. Therefore, regardless of what type of vehicle attitude dynamics
are involved, a reference heating load can be computed as if the vehicle were
trimmed at its theoretical trim attitude. This is precisely the manner in which
the constant trim loads were computed in order to non-dimensionalize the heating
Toads computed with the Bentry Program and to form the tumble correction factors

presented in this section.
44
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The tumble correction factors presented in Figs. 4.1 - 4.14 were deter-

% . mined for all the cases and configurations considered in this analysis. If

the fineness ratio, C. G. location, or initial release attitude for a flight

case varies from the cases considered, 1inear interpolate in order to determine

the tumble correction factors for that casec.

o e g

Tumble correction factors of 20 are not uncommon for a number of cases
considered. Even though these factors are large, the resultant tumble corrected
heating loads obtained when using these factors are small, This is due to the

fact that the constant trim load, Qct' is very small. For instance, notice

in Fig. 4.1 that a factor of 21 is obtained for the base region of a 7 fineness

ratio cone-cylinder configuration with a 2.5% offset forward in C. G. location

released at an attitude of 180°. The constant trim load for this case is

9 Btu/ft?, The tumble corrected load 1s then equal to this load times the tumble

correction factor of 21 which is equal to 189 Btu/ft? which is a comparatively
small heating load.

- .. e met T ot e e ke datemEE mSgte o PP IaRpe = e
. e o e L T R T T B Rt | T R T T e S e T e ey Eam—
B

This 1s usually the case when large factors are obtained.

Even though the tumble correction factors are presented for use in the section,

one should exercise great care in thefr application. This is especially true in

applying tumble correction factors less than one. For engineering design purposes,

the following guidelines are recommended. Apply the correcticn factors only when

they are greater than one. Use a factor of one in situations where the tumble

correction factor is less than one.

In this way a certain amount of conservatism
{s maintained 1n the results since the heating load is never reduced to a value

T e N e Be R TR

less than the constant trim heating load.

e
O JOC Y
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Fig. 4.5 Tumble correction factors, Qi/Qct» for base and cylindrical sections of cone-

cylinder configuration fineness ratio, £/d, of 7 versus attitude offset
parameter, P.
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SECTION &
SURFACE TEMPERATURE CALCULATIONS

o T TV 2 Ty gl it

A considerable amount of discussion concerning reentry trajectories

and heating rates, and loads on reentry vehicles has been presented in the
preceding sections. This section deals with the methods and procedures
involved in using the heating loads determined in these sections to obtain

vehicle surface temperatures during reentry. The maximum vehicle surface

temperatures are of main concern to the design engineer. From these tempera-
11 tures he can determine whether the vehicle structure and skin can withstand
{ the reentry environment. He could also determine if the surface temperatures f

{l would be«of great enough magnitude that the vehicle could not be safely reused
il in future missions.

§ As discussed in Section 3, and more thoroughly discussed in Appendix C,

i the integrated loads presented in Figs, 3.1 - 3.10 consider a reference
| surface temperature of 660°R in the 1oad calculation procedures. In reality,
the actual heating load varies with vehicle surface temperature. Since the f

surface temperature is a function of the vehicle skin thickness, the heating

|

Joad becomes a function of skin thickness. Fig. 5.1 presents the actual E
heating load (Q) versus the heating load computed at the reference temperature- d
of 660°R (Qgeo) for wall thicknesses of .125, .250 and .500 inches, After ﬁ
a heating load 1s obtained in Section 3 and then corrected for a possible %
3

oscillating or tumbling reentry in Section 4, the variable surface temperature

fi
:

correction can be made and the actual load determined by using Fig. 5.1. N

spr gyt ey 1 ym.re s
DU ft b copppe T T 7 ST ST (ORI I | O TR AR E R e hi AT o
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The aerodynamic heating rates and subsequent loads on reentry vehicles
are dependent on the vehicle radius or diameter. In general, the heating
analysis was performed for a cylinder diameter of 24 inches for both the
cylinder and cone-cylinder configurations. Both the laminar and turbulent
diameter correction factors versus cylinder diameter are presented in Fig, 5.2,
The difference in the laminar and turbulent curves stems from the fact that the
Taminar heating methodology 15 a function of the cylinder diameter to the 0.5
power, whereas the turbulent heating 1s a function of the diameter to 0.2 power.
An adjustment is made to the corrected heating load obtained from Fig. 5.1 for
the cylinder diameter variation by multiplying this value times the adjustment

factor presented in Fig. 5.2. In order to determine which curve, whether laminar

or turbulent, is to be used for the adjustment factor, use the following procedure.

For the cylindrical sections of both configuration types, use the laminar curve
for the constant trim attitude range 85° ¢ ap & 95°. The turbulent curve is
used for all other trim attitudes. For the base section, use the laminar curve
for the range 175° & wy <180° and the turbulent curve for the remaining trim
attitudes,

In many situations 1t may be determined that the payload rolls during
reentry. If this is the case the heating load may be reduced to the cylinder
section of the configuration by multiplying the factor Ar/hgs from Fig, 5.3
times the diameter adjusted heating obtained using Fig. 5.2. This factor is to

be applied only to cylinder section of the configuration since vehicle roll does

not reduce base region heating.

After the cylinder diameter adjustment has been made, the vehicle surface
temperature can then be determined using Fig. 5.4. Fig. 5.4 presents the

vehicle surface temperature versus the corrected heating load. This surface

€1

(LR D TISIE LR TR S I
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" temperature assumes no variation with temperature in the heat capacity of the
vehicle's skin material. Although the variable heat capacity correction is not
very significant, these corrections can be made for the surface temperature

using Fig. 5.5.
Although the methods and procedures for determining surface temperatures

on reentry vehicles from heating loads presented in this section seem comparatively

simple, an in-depth analysis was performed to verify these methods. The method

presented in the form of Fig. 5.4 is a "heat dump method" in which the vehicle

surface, because of the material type and thickness, 1s assumed to react

instantaneously to a heat load input by an increase in surface temperature.

A conduction heating analysis using a thermal analyzer was performed to verify

the validity of this assumption. Detailed discussions of this analysis arc b
presented in Appendix D.

This section presents the explanations and procedures for determining

B TR T e T

vehicle surface temperatures from the heating loads obtained in previous

sections. The value of the surface temperatures obtained after the variable

heat capacity correction is made is the best estimate for the surface temperature

i L awiemn

on a reentry vehicle that can be obtained using the results presented in this i

handbook.

62
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Quso, Heating Load at T, = 660°R, (Btu/ft?)
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Variable Surface Temperature Correction at Constant Wall Temper-

ature Load, Qe¢so. for Three Wall Thicknesses (8).
63

o - \ - o 5
o~ 5 — — i qE— S —— ST o |
P SN - it — s : o ]
NN NNl T T 7
L W ¥ L W DS\ £}
RN — N : — =
N\ — X\ : o——
e — b : : o
2 EaN\ e N e
bt .\, W5 X H
—~ q b Y. Y iy P '
= N\ K -
: /hﬂf TN
+ ~——N — \— —
— . |,/l’rw|lll T 3 . &
T T A pa— 3
o e N T et i F
b TN\ Iz “F - | T T >
= ——
T N et X : m
3 - - T - . pubey s + - T -
= TN T e T = 5
1 ) o = ad ———— E i \\ v —————r [ =]
< = +— — . © £
: R =
© : — — = N\ T pus mm
T b\, T it
T ” — i m
N\ == = =
= = o :
o - -~ ¥ o I
Ed - . N bl ~ i
: : - v
- $ =5
T . o -
, = i N o — E
o : - T = b . - E
o~ 3 + - - N .. — uw umm
T L - 3 - = ¢ 4 B A
* n T + = ]
T T T - $ — % o E
- — - 1 g e - /ﬁ. 1 i . -r 2
o - — c o [ E
o -3 = =) =) P =Y o o =) > =) P b
= o o -2 (=4 -3 o o o = (=] (=3
o -~ o o L] ~ © @ = m o —
— - —

(.13/m1g) peo] buijesy °P

,
G
Muﬂu.mv.:'unn-'('x‘.-nm.-n [NV




{X{uo uo13I9s JapuyiAd

9yl 03 S}Insad 9sely Alddy) yoejzy jo
3(buy snsJ4ap op1ey JU92}4430) duy uojjeubers
03 JU2§313J30] Jajsuea} jesy IbesaAy (16 €°G "6y

(-53q) © *yoe33y Jo 2ibuy

RTR 02741

obi o9t o8l
g

¥Sysuy

or 174
T ¢
v.
— i «\-
_ u:w?.fﬁ.l\.ﬁ AW |
T T JeugEe I -
& s R T w
T T TN YN
- R W
IR IR I W T
I REERS EENEN. YA
] IR W i
Tt T T T oy IR Y
3 Py R R
i “V_—h—_
= 18
} [ T 17
7 T
. B A
1K ! i [
T T | I
T 1 IR
I R H R EE
A RN EEEEEEEEREEE
EEREERE ] [ [ IR o.—.

juangin] g/[> ©
Jeu jwe) m%—. <D caseg
. g> ®
Juarqany g6 < @
Jeujwe] 66> D> GO :t43puEih)

furjesy 403
103524 Junsnipy sa3aweyq 43pupify 2°g °Biy

{-ul) a933uelq J43puj|£)

403004 JuaUSNfpY 4933WRLQ 93VY puv peo’




RTR 027-1

{ peo] buirjesy snsusp .um» Sauanjeuadwa] 9adeyuns -6 -6y

{z33/mg) peoq burieay “p
00/ 009 005 00¥ 00€ 002

——32e3ang L3ro2de) 129 IUELISUO] = I : . e e

1,) W..Euwuu&uu.ﬁ

IS —— . -

(SeTouT) SSewOTYL TETIONER = 9 L o T T

a3 /n3 eo] SuUTIedl{ =
(;33/m3g) PeOl H uma

099 + 9/BSSTIED = 1

1 ooe

1 000l

3 -

[— e e e e -

¥

0C9

[}
[go]
~
a4

008

i
1
1
\i.

) aunjeaadus] adegung A3poede) jevy juelsue)y ¢

65




RTR 0271

o
o
— - > Lo ]
SN = ==

=y b —— S —. A ST -

N : :
= — -

N e =t
-1 Q
1 O
—
—

1000

0

40

900
Tge °F Constant Heat Capacity

T T i e N S ST D T e on e £ Tt

Variable heat capacity adjustment to constant
66

heat capacity surface temperature, Tec*

o

o

™~
wy
o
>

o —

o .

LEs ]

f1oedey 33y aqeLaep Y, )




RTR 027-1

. SECTION 6
LR PAYLOAD REENTRY DYNAMICS
3. The payload configurations considered in this analysis may either tumble

and oscillate or exhibit normal stable flight at some constant attitude.

Neither roll nor yaw type autorotative motions were considered in the results
presented in this section since the geometry and initial conditions of the payload
f g _ at release did not indicate that these types of motions would occur. In Section

6.1, ballistic reentry (reentry at a constant trim attitude) is discussed while

the oscillating and tumbling trajectories are discussed in Section 6.2,

6.1 Ballistic Reentry Trajectories

e BT e T e T TR

The most important concept behind ballistic reentry is that the tra-

Jectory of a ballistic reentry body is a function only of the body's ballistic

o et SOt

coefficient and its initial altitude. If a reentry body's weight to drag ratio,

W/CpA, (commonly defined as ballistic coefficient) 1s known as well as the
release altitude, then the body's reentry trajectory can be determined from

Figs. 6.1 = 6.9, These figures present the reentry trajectories for ballistic

coefficients ranging from 10 to 250 1b/ft* for the initial release altitudes
of 75 to 350 statute miles,

T i emamnris

A given payload's geometry (efther cylinder or cone-cylinder) with a

trim attitude (See Section 2) for ballistic reentry. A number of trim attitudes
and ballistic coefficients are presented in Table 6.1. This information 1s to be

used along with the information provided in Tables 6.2 and 6.3 to compute the

{
|
!
|
! .
specific fineness ratio, diameter, and C. G. location specifies a constant f
|
|
|
i

equivalent ballistic coefficients for the cases considered in the analysis.
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This coefficient then specifies the ballistic reentry trajectory for the specific

configuration type and case.

6.2 Oscillating and Tumbling Trajectories

In many situations, a certain C. G. location combined with an initial
release attitude will promote large and small amplitude oscillations aboyt a
trim attitude which can be predicted. In many other situations certain combina-
tions will result in a complete tumbling of the vehicle, Ballistic trajectories
can be used in situations where the vehicle oscillations are small. Although
these are not constant trim attitude entries, the ballistic trajectories closely
approximate the small ampiitude oscillating trajectories without inducing
any appreciable error, In the other situations, however, where the vehicle
oscillations are large or where the vehicle tumbles, a ballistic trajectory
approximation can result in significant errors in the actual trajectory. Large
vehicle oscillations or tunbling result in large variations in the vehicle drag
force. Since the descent velocity of a vehicle 1s dependent on its drag force,
this results in large variations in the vehicle's descent velocity and thus its
entry trajectory. This section addresses the problem of determining the reentry
trajectories for the payload confiqurations considered in the analysis whose
variety of C. G. locations and initial release attitudes result in large vehicle
oscillations and tumbling during reentry.

A six-degree-of-freedom trajectory simulaticn computer code (Ref. d)
was used extensively in determining the effects of variations in C. G. Tocation
and initial release attitudes for the various payload configurations. This

computer code is discussed in detail in Appendix B, Graphical prescntation

68
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of the rasults of the total matrix of 6 DOF runs is not practical since the

total number of graphs describing this matrix are too numerous. The results

from a condensed form of the matrix of runs will be presented, however, in

tabular form in Tables 6.2 and 6.3. From the 6 DOF trajectory runs, an equivalent

ballistic coefficient was obtained 1In si;uations where the trajectory varies

from a constant trim entry ballistic trajectory. The percent of variation of

equivalent ballistic coefficients from the constant trim ballistic coefficients

were determined, These results are shown in Table 6.2, While Table 6.1 gives

the ballistic coefficients for normal stable constant trimmed entries of the

payload configurations and cases being analyzed, Table 6.2 gives the variations

from these coefficients when initial vehicle attitudes combined with various

C. G, offsets are considered. If this variation is positive, zero, or negative,

this indicates that the equivalent ballistic coefficient for the specific case

is efther greater than, the same, or less than the constant trim ballistic

coefficient by the magnitude of the percent shown. Table 6.3 specifies the

payload dynamics as to whether 1t tumbles, oscillates, or is trinmed during entry.

From Table 6.3, it 1s possible to determine if the vehicle 1s reentering

forward or aft end first. If a payload 1s oscillating, it 1s also possible to

determine the degree of severity of these oscillations, i.e., whether the payload

oscillations have small amplitudes or whether the amplitudes are large and unstable.
Perhaps the main criticism in presenting data in a tabular fashion as in

Tables 6.2 and 6.3 1s how the data is supposed to be applied when the payload

geometry, C. G. location, or initial release attitudes vary from the cases

presented, 1t is possible, for instance, although unlikely, that a cone-cylinder

configuration of fineness ratio 4 1/2 may exhibit reentry dynamics which are

drastically different from the dynamics exhibited by the cone-cylinder geometrics

69
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with fineness ratios of 4 and 5 which are presented in the tables. Of course,
this will always be a possibility since there is no way to increase the 6 DOF run
matrix to include all fineness ratios. It is possible to observe certain trends
in Tables 6.2 and 6.3 when considering different fineness ratios. Notice that,
in general, C, G, locations aft of the volume C. G. promote reduced hallistic
coefficients for the cone-cylinder configurations whereas forward C. G. locations
tend to increase the ballistic coefficients. This is, of course, with the
exception of the 2/d equal to 3 configuration which 1s essentially identical

to stable ballistic reentry no matter what combination of C. G. offset or initial
release attitude 1s being considered. With the exception of the 10% forward |

C. G, offset and the 180° initial release attitude combination, C. G. locations
from the volumetric C. G. to 10% forward for the initial release attitudes of
150° to 1§0° in general, promote the largest increase in ballistic coefficients
for the cone-cylinder geometries. The reason for the large increase in ballistic
coefficients for these combinations is due primarily to the large increase in
descent velocity which results from large decreases in drag force. Large varjations
in the vehicle attitude during a vehicle nscillating entry allow the vehicle to
fly at some attitudes where the drag force is very small, thus, creating large
descent velocity.

Similarly , decreases in ballistic coefficients can be understood when
considered in this manner. A number of other trends can be established and
rationalized for both the cylinder and cone-cylinder configurations. The data,
although not necessarily linear between fineness ratios, C. G. offsets, and
initial release attitudes, i1s cunsistent and can be applied in situations

when a flight case and a case presented in Table 6.2 do not coincide. When this

70
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situation occurs, first determine the bounds for the flight case. These include
the configuration type, and the upper and lower bounds on fineness ratio,
C. G, location, and relecase attitude. The percent of variation of the ballistic
coefficient is then determined for these bounds. The percent of variation
should be weighted more strongly to the rosults which are clasest to the flight
case. This weighting can be performed by using lincar interpolation or by
considering the case in more detail and determining a weighting factor based
on angineering judgement.

The equivalent ballistic coefficients discussed in this section rolate only
to the dynamics of the vehicle., They are not to be confused with or applied
to th» heating envivonment for a vehicle during an oscillating or tumbling
reentry. In addition to the figures and tables presented in this section to
determine~trujectorios for reentry vehicles, Fig, 6.10 has been provided in
order to assist the engincer in the acrial recovery af payloads. The maximum
decent velocity of a vehicle 1s presented versus ballistic coefficient and release
altitude for two recovery altitudes. This should provide the engincer with a
quick indicator of possibie dynawic problems that could arise and effect the

successful recovery oi the vehicle.
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HJI G S O UV e —
“ Geometry of Cone- Cylinder Confiqurations ‘
; e ] i
d e Body 1, &/d = 7 ‘x
R 3
| R Body 2, %/d = & ;
[ o — Body 3, £/d = 4 i
| §
| o = Body 4, %/d = 3 \1
i
0 Volumetric C. G. Location k
1. i
i Conditions: Density assumed constant and = 23,23 1b/ft?; diameter = 2.5 ft. F
) i
C.G. Trdn Dra Ballistic I
E Body Location Attitude (uT)° Wetght (1b)  Coef. ?CD) Coef. (1b/ft?) i
) ] 10 F 37 1614 2.35 140 ‘
B 2 104 F 44 1044 2.40 89 i
o8 3 10% F 45 759 1.95 79 b
E 4 10% F 30 474 0.7 138 §
v 1 5% F 64 1614 7.2 46
b 2 5% F 73 1044 5.7 37 :
Al 3 % F 85 759 5.0 31 ;
) 4 5% F 180 474 1.6 60 ;
1 2.5% F 90 1614 10.1 33 ¢
3 2 2.5% F 107 1044 6.3 34 !
: 4 2.5% F 180 474 1.6 60
; 1 Vol C.G. 115 1614 8.2 40 ‘
} 2 Vol C.G. 137 1044 3.7 57
' 3 Vol C.G. 180 759 1.6 97
4 Vol C.G. 180 474 1.6 60
1 2.5% Aft 138 1614 4.6 A ,
2 2.5% Aft 158 1044 2.1 101 ;
3 2.5% Aft 1680 759 1.6 97
N 4 2.5% Aft 160 474 1.6 60
4 1 5% Aft 166 1614 2.5 132
£ 2 5% Aft 168 1044 1.8 118 \
g 3 5% Aft 180 759 1.6 97
b 4 5% Aft 180 474 1.6 60
3 1 10% Aft 168 1614 1.7 193
B 2 10% Aft 18 1044 1.6 133
N 3 10% Aft 1oV 759 1.6 97
. 4 10% Aft 180 474 1.6 60
g
’ Table 6.1a Information tor determining the Ballistic Trajectories
] for particular cone-cylinder configurations
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GEOMETRY OF CYLINDER CONFIGURATIONS

-‘a‘ % ‘ - ‘ ” —

" e

L FEE Body 5, %/d = 2.5

, s ] Body 6, %/d = 4
k 8 Body 7, %/d = §

® Volumetric C. G. Location

Conditions: Density assumed constant and = 23.23 1b/ft ; diameter = 2.5 ft,

C.G. Trim Dra Ballistic

Body  Location  Attitude (or)° Weight (1b)  Coef. ?CD) Coef.

5 10% F 59 499 3.6 28

6 10% F 48 980 4.0 50

7 10% F 42 1225 3.9 64

5 5% F 74 499 4.2 24

6 5% F 66 980 5,9 34

7 5% F 62 1225 6.6 38

5 2.59 F 82 499 4.3 24

6 2.5% F 78 980 6.5 3

7 2.5% F 75 1225 8.0 3]

5 Vol C.G. 90 499 4,4 23 :
6 Vol C.G. 90 980 6.7 30 p
7 Vol C.G. 90 1225 8.4 30 b
5 2.5% Aft 98 499 4.3 24 ;
6 2.5% Aft 102 980 6.5 31 3
7 2.5% Aft 105 1225 8.0 3 :
5 5% Aft 106 499 4.2 24 !
6 5% Aft 114 980 5.9 34 §
7 5% Aft 118 1225 6.6 38 ]
5 10% Aft 121 499 3.6 28

6 10% Aft 132 980 4.0 50

7 10% Aft 138 1225 3.9 64

Table 6.9b Information for determining the ballistic trajectories for particular L
cylinder configurations. I
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SECTION 7
CONVECTIVE HEATING RATES

Convection heating rates versus altitude and velocity for angles of
attack ranging from 90 to 180 degrees are presented in Figs. 7.1 - 7.10.
These heating rates are applicable to the base and cylindrical sections of
both the cylinder and cone-cylinder configurations, A method for using the
plots for the cylinder heating rates to compute heating rates for the cone
of the cone-cylinder configurations 1s given in Table 7.1. Detailed dis-
cussions of the convection heating methodologies used in the analysis are

presented in Appendix C.

These heating rates are presented in this section in order to familiarize
the design engineer with heating rate environmants for reentry payloads. It is
entirely feasible that certain pieces of hardware on board a reentry payload
could be heating rate sensitive, i.e., the piece of hardware is unable to withstand
an extremely high heating rate for a short time period. Certain types of in-
strunentation could possibly fall into the category of being rate sensitive
when subjected to high reentry heating rates.

There is an additional benefit to the design engineer in being able to
determine the heating rate history for a vehicle. If the altitude, velocity,
time and angle of attack history are known for a reentry payload, an integrated
heating load calculation can be performed. A surface temperature for the reentry
payload can then be determined from the integrated hcating load. If the vehicle
is reentering at a constant angle of attack, a heating rate at specific time
points can be obtained by superimposing the payload trajectory onto the correct

angle of attack figure (Figs., 7.1 - 7.10). A num.. .cal integration of the heating
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rate over a certain time interval can be performed in order to determine an
integrated heating load. This 15 essentially the same method by which heating
loads were comouted in Section 3 of this handbook except, of course, the
methods were computerized in order to cut down on the amount of work required
and increase the accuracy of the calculation. If the payload is not trimmed
during entry, but rather osciilating or tumbling, an integrated load can still
be determined in similar fashion provided the vehicle attitude is known at a
number of selected time points during the peak heating portion of the entry
trajectory.

The heating rate history of a reentry vehicle can also be useful in other
areas, The conduction heating from the surface to various structural members
inside the vehicle reduces the surface temperature. This reduction in surface
temperature can be determined using a thermal analyzer conduction program
once the heating rate history and a model of the structural members are obtained,
This type of analysis is recommended when the handbook results indicate excessive
surface temperatures beyond the safe limits of the material. The analysis is
difficult, time consuming, and requires a thorough knowledge of conduction
heat transfer and thermal analyzer computer programs. Even though this is the
case, the analysis should be considered in these situations.

During a vehicle reentry there is an altitude at which the aerodynamic
heating ends and cooling begins. Fig. 7,11 presents this altitude versus
ballistic coefficient for three release altitudes of the vehicle. The altitudes
presented in Fig. 7.11 provide cutoff 1imits for the heating rate analyses.
These same 1imits were used in determining the loads presented in Section 3.

The heating rate plots (Figs. 7.1 to 7.10) are based on a 24-inch reference
diameter. The flow regime transition from laminar to turbulent flow is built

in the plots since the transition criterion is independent of diameter. The
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heating rate from the figures (Fig. 7.1 to 7.10) may be corrected for diameter

changes using
d a
9" ig (21 Tnches )

where

Q¢qg = heating rate from Figs. 7.1 - 7.10

a = 0.5 laminar
a = 0.2 turbulent

In order to determine a value for the constant, a, in the above expression
the flow regime must be established. The free stream Reynolds number per foot
: (Rew/ft) will be used to indicate whether the flow is laminar or turbulent at
% the particular altitude velocity point where the heating rate is desired. The

expression for Re/ft is
- P.n!m '
Req/ft ™

where
pw w free stream density (lbm/ft‘;
Vo = free stream velocity (ft/sec
Moo » free stream viscosity (1bm/ft-sec)

The free stream velocity in the Reynolds number expression 1is known. The
free stream density can be obtained at the given altitude from Fig. 7,16, Ir
order to determine e, Sutherland's law for viscosity will be used along with
the free stream temperature from Fig. 7.14. The expression for Sutherland's
law is

' Moo = 7.3035 x 1077 ,zrlgﬁégg-g 1bm/ft-sec (Tw in °R)

Once Rew/ft has been computed the flow regime (laminar or turbulent) may be
: determined from Fig. 7.12. In general, the flow regime will be laminar for
altitudes greater than 300K feet and turbulent for altitudes less than 50K feet.
Certain angles of attack will promote laminar or turbulent flow regardless of

the altitude and velociiy.
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Cylinder: B85 < ar < 95 Always laminar
Base: or 2 176 Always laminar

If angle of attack, ay, 1s less than 90 degrees, the following procedure

1s used
Cylinder: If ar < 90, compute the heating using 180 - ap
Base: If ay < 90, compute the heating using ay = 90.

Once the heating rate 1s computed using the preceding procedure, a surface
temperature correction may be required. The results presented in Fig. 7.1 to
Fig. 7.10 are for a wall temperatur: of 660°R. The heating rate may be
corrected for wall temperature by using the following equation.

sTag-Ts?
q = q“o aw-
where

. RV.2
Taw = T + E‘:g-d' (°R)
ZCng » 12019.2 (ft®/sec?°R)

R = Recovery factor from Fig. 7.13
Te = Free stream temperature from Fig. 7.14
Ts = Surface temperature (°R)
Thus, Fig. 7.1 to 7.10 may be used by making angles of attack, diameter, and

wall temperature adjustments to the reference conditions for a large variety of
problems.

8y
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TABLE 7.1
CONE HEATING RATES

The procedure for computing heating rates to the cone of a cone-
cylinder configuration 1s as follows:
i (1) Determine the angle of attack of the cone's windward surface

%one " %ey1 * %
= Angle of attack of cylinder

Syl
0, = Semi-vertex angle of the cone

NOTE: If aone > 180°, %one * 180°

(23 Determine the heating rate for a cylinder at o
to 7.10.

cone from Fig. 7.1
(3) Determine the cona radius at the midlength of the cone, and cone-
cylinder radius ratio. The reference radius for the cylinder is

'byl = 12 inches in Fig. 7.1 to 7.10.

r.cyl
Vi

—
(4) Correct the heating rate for the radius effect.

q = qcyl(rnl-> )

eyl

where a = .5 laminar
a= 2 turbulent

and where the type of flow can be determined from Fig, 7.12 based

on altitude and velocity. If the angle of attack,a., is between 85

and 95 degrees the flow is laminar regardless of the altitude and i

velocity,

90
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SECTION 8
REENTRY GUIDELINES

In general, reentry problems are coupled problems in that it is impossible

to separate and analyze only the dynamics or heating aspect without considering

the other. This is especially true when considering missions with high initial

release altitudes. The higher the release altitude the more coupled the dynamics
and heating becomes. This {s the reason that certain restraints and guidelines
must be followed when considering a change in the design of & reentry vehicle to

solve a dynamics or heating problem,

8.1 Mission and Configuration Dependent Effects

There are a number of mission and configuration dependent effects associated

with the dynamics and heating of a reentry payload. These include the effects
of (1) C. G. location, (2) release attitude, (3) release altitude, (4) geometric
configuration, (5) skin thickness, (6) weight, and (7) external protuberances.
The mission usually dictates which effects can and cannot be controlled. This
in turn leaves the engineer in many cases with very 1ittle flexibility in
designing around a potential dynamics or heating problem. The inftial release
altitude, configuration type, weight, and certain external protuberances are
generally felt to be mission dependent. The release attitude and the C. G.
location of the vehicle are considered to be more flexible and not totally mission
dependent. If the weight requirements of the mission are not too stringent,
there could possibly be additional flexibility from the design standpoint in

being able to increase the skin thickness of the vehicle in certain areas. In
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many situations, a potentia! dynamics or heating problem can be relieved by
modifying the C. G. location, controlling the vehicle release attitude, or
varying the vehicle skin thickness provided certain guidelines are followed when
doing so.

As previously discussed, a reentry problem 1s a coupled problem in that any
change in the reentry dynamics of the vehicle can and usually does cause a
corresponding change in the heating environment. The converse is also true,
Because of this, the dynamics and heating problems should be solved simultaneously
by an iterative type procedure. In order to demonstrate this procedure, consider
the case in which a dynamics problem has been indicated by the results in the
previous sections. A shift in the C. G. location is a possible solution to
problems since each vehicle has a C. G, location which promotes a vehicle trim
attitude at which maximum drag occurs. This results in a minimum descent velocity
for the vehicle. If this velocity is acceptable for the recovery system being
used then the heating environment for the veﬁic1e should be determined based on
the maximum drag attitude. If the resultant heating environment does not create
any difficulties, then the total reentry problem has been solved by modifying
the vehicle C. G. location. In the event that a severe heating environment
results, then iterate until an optimum C. G. location is determined which will
satisfactorily solve both problems. For a number of missions, particularly the
higher altitude missions, there will be no optimum solution to the combined
problem of reentry dynamics and heating, When a C. G. location 1s varied to solve
a dynamics problem, a severe heating problem will be created. Conversely,
proposed solutions to the heating problem will create severe dynamic problems.
When this situation arises, serious consideration should be given to,performing

a complete theoretical analysis for the particular mission including & 6 DOF
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trajectory analysis and a tumbling heating analysis. These results will be

more accurate than the generalized results obtained from the handbook. If these
results still indicate severe dynamic and heating problems, then another option
should be considered such as inducing some effect by initiating a roll, yaw, or
tumble motion to the vehicle. The induced effects will be discussed in the
following section. If it is not possible to induce certain effects, or if 1t is
generally felt that these effects will not satisfactorily sotve the problem,
then serious consideration should be given to changing the vehicle design or
the method used in recovering the vehicle.

The surface temperature of a reentry payload can be reduced by increasing the
skin thickness, If the skin thickness is increased in a uniform manner, or such
that the vehicle C. G. location {s not changed, this will cause an increase in
the descent velocity of the vehicle due to the added weight, The attitude dynamics
of the payload will remain essentially unchanged. In general, increases in
the skin thickness of a payload such that the vehicle C. G, location remains
unchanged will have the net effects of decreasing the surface temperature and
increasing the maximum descent velocity of the vehicle. If the vehicle skin
thickness is increased in a fashion such that it causes a shift in the C. G.
location, this changes the vehicle attitude, descent velocity and also the heating
environment. When an increase in the vehicle skin thickness is being considered,
a complete analyses should be performed using the results presented in the
handbuok in order to determine the net effect of this increase from both a
dynamics and heating standpoint.

The results presented in this handbook apply specifically to clean skin
reentry vehicles {i.e. vehicles with no external protuberances). Even though this
is the case, a certain amount of information concerning protuberances will be

provided in this section since the presence of external protuberances on a
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reentry vehicle can drastically alter its reentry characteristics. Protub-
erances are pluced on payloads for many functions. Some are required in order
for the payload to perform its mission as would be the case of external equip-
ment used in data acquisition. Other types of protuberances are.placed on the
payload to induce some desired dynamic effect of the vehicle. These types of
protuberances will be discussed in the following section. When external pro-
tuberances are attached to a payload, the aerodynamic characteristics of that
payload can be significantly changed. The extent to which these characteristics
are changed depends upon the size, weight, and 1ocation of these protuberances.
In addition to changing the aerodynamic characteristics, they can also create
additional heating problems because of the increased localized heating in areas
on and around the protuberance, If external protuberances are required for

a payload, a symmetrical circumferential distribution of these protuberances

is desired if at all possible. If the protuberances are placed on the payload
in an unsymmetric fashion, the vehicle will tend to reach an equilibrium

position such that the protuberances are on the leeward side of the vehicle

away from the flow. This is a disadvantage in many circumstances. For instance,
1f an initial roll rate was imposed on the payload at separation in order to
relieve the heating load during reentry, an unsymetrical protuberance distri-
bution could possibly damp out the vehicle roll. This would cause one side of
the vehicle to be subjected to maximum stagnation line heating instead of
distributing the load which was the original aim in trying to induce vehicle
roll. An unsymmetrical distribution of protuberances can also result in
extremely complex vehicle dynamics. Various combinations of rull, yaw and tumble

motions could result which would have significant effects on the heating envi-

ronment and the eventual recovery of the vehicle. External protuberances can create
a whole host of other problems in the recovery phases of a reentry payload.
109
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In general, the effects of protuberances with heights above the external surface
less than approximately 0.5% of the vehicle diameter can be neglected. The
effects of external protuberances larger than this should be determined using

a separate analysis for the particular configuration and mission,

8.2 Induced Effects for Reentry Payloads

Certain induced effects can be applied to contrul the dynamics of &
vehicle in order to obtain a satisfactory solution to a heating or dynamics
problem. Roll, yaw and tumble motions can be imparted to the payload at
separation. These types of motions can also result from the addition of selected
protuberances placed in specific locations on the vehicle. Roll, yaw and tumble
motions and the methods used to initiate and sustain these types of motions are
the subjects of this section,

If a payload can sustain a high roll rate during reentry, the heating load
to the cone and cylinder sections of the vehicle types considered can be signifi-
cantly reduced. This roll rate should be a minimum of 1/2 revolution per
second as initial roll rate can be imparted to the payload at release. This
ro11l rate should continue and the heat load reduced provided this motion is
not damped out by external protuberances. Roll rates can also be initiated and
sustained during reentry by attaching aerodynamic vanes or rotor; to the external
surface of the reentry payload. Reference ] presents data taken in the
University of Maryland wind tunnel which indicates that high roll rates can be
obtained by attaching low aspect ratio fins or rib-type rotors to the external
surface of the vehicle. No matter what method is selected to initiate and
sustain a roll rate, rolling a reentry vehicle is an excellent way to reduce

the heating load on the cylinder and cone sections of the configurations being
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considered., The heating analyses presented in this handbook assumes that no
roll motion has been applied to the vehicle. Accordingly, the heating load is
calculated for the stagnation 1ine. Since the precise roll orfentation of the
body 1s not known during reentry, the entire vehicle must bu designed for this
maximum condition. If, however, a roll rate can be initiated and sustained
during reentry, the heating load may be reduced by considering the information
provided in Fig. 5.3. This figure gives the roll averaged heat transfer
coefficient ratioed to the stagnation line value. This ratio can be used as
a multiplication factor times the stagnation 1ine load computed from the previous
sections. It should be noted that rolling the vehicle will not yield a heating
relief to the base. It {is more desirable to induce a rolling motion as aopposed
to a yaw or tumble motion in that this type of motion is easier to induce and
sustain. It should be noted also that a roll motion will have no effect on
the descent velocity of the vehicle and should be considered only to reduce
the heating environment.

An excellent way to reduce the descent velocity of a reentry vehicle is
by initiating a yawing or flat spinning autorotative motion of the vehicle.
This motion wili allow the vehicle to maintian a high angle of attack during
reentry. This high angle of attack will create a maximum drag force which will
significantly reduce the descent velocity and aid in the recovery of the vehicle.
Recently, experiments have shown that flaps and fins strategically placed on
cylinder and cone-cylinder type configurations allow a vehicle to sustain
this type of motion during reentry. Even though these types of motions could
greatly aid in the recovery of a payload, consideration must be given to the
heating environment which results from the vehicle flying at these angles of

attack during reentry. Consideration must also be given to the increase 1n

m
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localized heating due to addition of flaps and fins to the external surface
of the vehicle,

Another method of reducing the heating environment is to initiate a
tumbling motion of the vehicle. If no vehicle roll is considered, a tumbling
motion results in distributing the heating load to both sides of the vehicle
instead of only heating one side which is the case for a constant trim entry
with no roll. The descent velocity of a vehicle cannot, in general, be reduced
significantly with tumble unless the trim attitude of the vehicle is such that
minimum or near minimum drag force results. A tumble motion can create addi-
tional problems from the standpoint of parachute deployment for recovery.
These possibilities must be considered before initiating a tumble motion to

reliave a heating problem.

8.3 Material Selection

The handbook procedures and tables for computing a surface temperature in

Section 7 are based on using aluminum as the vehicle skin. If another material

1s used or the heating load is sufficiently high to require a different material,

an alternate procedure is required. In these events, the surface temperature

may be estimated using the following equation.

Tg = AT + 660 8.1
AT = Q/pC$ 8.2
where
Q = heating load C = specific heat
p = material density § = materfal thickness

Equations 8.1 and 8.2 are applicable only to homogeneous materials and should

not be applied to any type of nonhomogencous material such as a honeycomb

12
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structure for instance. This relation alsc assumes that the material 1s
sufficiently thin to respond instantaneously to the heating rate input and

negligible surface reradiation.

TABLE 8.1
TYPICAL HEAT SINK MATERIALS
Specific
Melting | Density | Heat (Tw)max
Material Point°R 1bm/ft Btu/1bm°R °R
Aluminum 1680.1 168,7 0.215 1020
St. Steel 3030 494.2 0.108 2310
23015
Magnesium 1662 108.8 0.25 1002
Copper 2441 1 559, 0.092 178

Alternate heat sink materials are listed 1n Table 8.1 If the material
thickness for any of those 1isted in Table 8.1 exceeds 0.50 inches, the temper-
ature lag through the surface may be significant. This would viclate the
assumptions inherent in using Equations 8.1 and 8.2. A trunsient analysis is

then required.

8.4 Initial Vehicle Surface Temperature

The maximum surface temperature of a reentry vehicle is dependent upon 1ts
initial surface temperature due to ascent. A heating analysis was performed
on an Aries I payload (cone-cylinder configuration) for three typical ascent

trajectories. These trajectories, obtained from Ref. 3, were typical of

N3
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future missions to be flown. They also represent extreme cases from an ascent
velocity and heating standpoint. The ascent heating results are presented
in Table 8.2 below.

Mission 2§3$i2° Tys8(°R) Ty/4(°R) Ty/2(°R)
Light Cylinder 723, 637. 590.
marmiaa | ey | g T
Hemi sphere 1002, 790, 665.
Heavy Cylinder 696, 623. 583,

Table 8.2  Initial surface temperatures on an Aries I payload for three
ascent trajectories

The three typical trajectories are designated as 1ight, heavy, and inter-
mediate missions. The 1ight mission considers higher ascent velocities and
heating while the heavy mission considers ascent velocities and heating which
are significantly lower. The intermediate trajectory results are between
these two extremes. The initial surface temperatures denoted at T1/8’ T]/4.
and T]/2 are for wall thicknesses of 1/8, 1/4 and 1/2 inches respectively.
It 1s apparent from Table 8.2 that the initial surface temperature 1s more
highly dependent on the vehicle skin thickness than its ascent trajectory.
From Table 8.2 1t 1s also apparent that the intermediate results provide
adequate nominal estimates of the initial surface temperatures attained during
ascent for each section of the reentry vehicle.

The surface temperatures provided in Table B.2 consider no cooling due

to radiation losses from the vehicle surface that would occur when the vehicle
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!
1s outside the sensible atmosphere, Calculatinns were performed which indicate

that these losses are negligible. The ascent analysis also considers no
reduction in the initial surface temperature due to conduction heat transfer
from the surface to various structural members and bulk heads located inside
the vehicle. The reduction in the initial as well as the maximum surface
temperature can be considerable dependent upon the size, placement and material
charactevistics of these structuai members.

It 1s recommended that adjustments to the maximum surface temperature of
the reentry vehicle be made based on the initial surface temperatures provided
in Table 8.2. The results presented in Section 7 assumes a 660°R initial
surface temperature. Determine the initial temperature from the intermediate
results for the particular region and skin thickness, Compute the difference
between this value and 660°R. If the initial temperature is less than 660°R,
then subtract this difference from the maximum surface temperature determined
from Section 7. Accordingly, if the initial temperature is greater than 660°R

then add this difference to the maximum surface temperature.
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APPENDIX A
METHODS AND PROCEDURES FOR
CALCULATING AERODYNAMIC COEFFICIENTS

The basic theory used in determining the aerodynamic characteristics used
in this study can be attributed to the methods and procedures proposed by
Allen (Ref. A.1). Jorgensen (Ref. A.2) used Allen's methods in computing the
normal force, axial force, and pitching moment coefficients for certain missile
type configurations flying at angles of attdack between 0 and 180 degrees.

The equations for determining the normal-force, axial-force, and pitching
moment coefficients are presented in Equations A. 1 - A. 5. Sketch (a) is

presented in order .o clarify the sign convention used,

Sketeh (a)

il A

CN = 7? sin 2 o' cos %} + nCd 7@ sin® a'; 0° < a g 180° A

n

= 2 [N ° ©
CA cAa=0° cosc a'; 0° ¢ ng 90 A.2
Cy = Ca cos?a'; 90° < g 180° A.3
a= 180°
V-4, (R-x ) , A X =X
C, ® [*Jm—ﬂ-] sih 2 o' cos S+ nC, —‘{’ (J’a-£> sin? o';

n

0° g wg 9n° A4

and
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V-A, x ' A fx = x
Cy = -(——Kta"—m) sin 2 o' cos 9'2— + Gy -3{)- (..."l..a,_.‘i) sin 'y
n 90° < o< 180° A5

where
o' * a for 0° < o < 90° and a' = 180° -a for 90° < o < 180°

The aerodynamic force center is given by

o - Qn)
X.. = d A6
ac (3 Y

The first terms in tquatfons A.1, A.4 and A.5 come from slender-body
potential theory. The second terms represent the viscous crossflow or cross-

flow attributed to flow scparation.

Crossflow drag coefficient - In the expressions for CN and Cm (equations

A1, A.4 and A.5) Cdn is the crossflow drag coefficient for a section of an
“infinite" length cylinder placed nornal to an airstream. It is a function of
both the Mach number and Reynolds number components that are normal to the
cylinder longitudinal axis, and hence, for a body at angle of attack it is a
function of
My = M, sina A7
and
Rey = Re sin o A.8
My 1s commonly called the crossflow Mach number and Rey the crossflow Reynolds
number.
For circular cylinders, plots have been prepared for the variation of Cd

)

with My and Rey. Figure A1 gives the variation of Cy with MN over the Mach
n

number range of 7 or 8 down to almost 0.
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Fig, A.1  Variation of crossflow dran coeffiniont with crossflow Mach

number for circular cylinders, (Ref. A2)

Crossflow drag proportionality factor - In Equations A1, A4 and ALG
1s the crossflow drag proportionality factor, that is, the ratio of the cross-
flow drag coefficients for a finite length cylinder to that for aninfinite
length cylinder, Cylinder drag coefficients from which values of n can he

dotermined have been measured only at low 50 ]

subsonic Mach numbevs,  In-Fig., A.2, valuus‘ld

by o]

T i "__,..anNV"MMﬁﬂw

of 1 are plotted as a function of length- " B TR g ‘nﬁ. 44
‘ oo 1 | 1

to-dfameter ratio. For reference, n's 4 - B -

] 4.
for flat plates are also presented (p]otted{-’ "”“: «TL“""' TUTTLLL
[ ]

17 16 20 24 2138 31 3 40
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ratio). 1In spite of a dearth of n data Flap plate lngth- 10 -wisth reke
Fig. A2 Ratio of crossflov vay
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(e results afven in Fig. A2 have been an infindte Tenath cyvlinder fop flat
plate), from reforence AL
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used to successfully predict, for most engineering purposes, the aerodynamic
characteristics of bodies of revolution at subsonic Mach numbers. For bodies
at supersonic and hypersonic Mach numbers, n probably can be assumed to be

unity, an assumption indicated as being essentially correct from past investi-

gations,
#- Axial-force coefficients at angles of attack of 0" and 180° - To predict
the variation of CA with angle of attack by Equations A.2 and A.3, either
t computed or measured valucs of axial-force coefficient at o = 0° or 180° can A
:
be expressed by
C, =Cy *+C + C A9 '
A Thy A T Ay

where CAN represents the wave or pressure contribution from the nose or forward-

facing base; Ca ; is the skin-friction contribution; and Ca is the base-
SF B
prassure contribution. There are theoretical expressions presented in Ref. A.2
that can be used to determine C, , C, , C, . For this study however, the
A" Ase’ TAg

experinental data presented in Figs. A.3 and A.4 were used to determine the

axial-force coefficients at 0° to 180°., These values were used in place of
Cquations A.2 and A.3 because of the discrepancy between the theoretical pre-
dictions and the experimental measurenents. K

For the six~degree-of-freedom trajectory analysis, the aerodynamic coefficients

were computed for supersonic Mach numbers only, Since the variation in coofficients

with Mach number in this range was very slight, a constant coefficient assump-
1 tion allowed for many more cases to be considered with the trajectorvy program.
| This was due to the decrease in computer run time because of not having to

consider Mach number dependent coefficlents. This approach was entively valid

for the heating analysis since any significant heating would occur at the higher i

A4
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Mach numbers, The approach was also valid for the vehicle dynamics at super-
sonic Mach numbers. When the crossflow Mach number (MN) becones less than one,
. the approach starts becoming less valid since the aerodynamic coefficients will
vary considerably in subsonic flow.

In Figs. A.3 and A.4, the computed values of CN’ CA' and CM as a function

of angle of attack o are compared with the experimental results for the two
E.} . fineness ratio cylinder configurations and the three fineness ratio cone-cylinder

1t § configurations shown below in Table A.1.

4 im A X A
i s T NN AR ERE R
P g | V| 8| 3 [6:00014.710 ) 3,000 19.63 | Flat
—— 2 | 8| 4 (8.000|6.280 | 4,000 |25.92 | Flat
3 e [ I 3 | 7|3.5/5.500|3.925|4.183|17.31 | Cone
f e . I 4 | 914.5|7.500 |5.495 | 5,200 | 23.62 | Cone
, 5 |11 ]5.5]/9.500 | 7.065 | 6.211 | 29.91 | Cone

A S
[j‘—""'“"“ g = e Table A1

Bodies For Which The Aerodynamic Characteristics Were Computed
Generally, there is good aareement between the computed and measured results,
especially for the variation of CN and CM with o, The agreement between the

values of CA ware not nearly as good, however. Further comments on this

disparity is made in Ref. A2,

A5
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NOMENCLATURE

cross-sectional (reference) area of cylindrical portion of body
body base area (at x =t)

planform arca

surface wetted area £

iYal __a.
axial-force coefficient, TA

R 4

axial-force coefficient,

13

q.nh

a F
crossflow drag coefficient of cylinder section, a;rxgzgja;;
pitching-moment coefficient about station at X from nose,

pitching moment
[N M r
noringl-force cuefficient.m-“ﬂ

pressure coefficient, Eaﬂw
body cross-section diameter
body Tength

nose length

aftersection lenuth

Mach number component normal to body axis, M sin «

free-strean Mach number

pressure

free-stream static prossure

dynamic pressure component in body axis direction, 4, cos® o«
dynamic pressure component normal to budy axis, Q. $in®
frec-stream dynamic pressure, 1/2 p V¥

nose ov body cross-section vadius at base

free-stream Reynolds number based on body cross-section diamcter,

p Vod
W

Reynolds number component normal to body axis, Re sin «
body volume
free-stream velocity
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SUBSCRIPTS

axial distance from body nose
distance from nose to aerodynamic force center

distance from nose to centroid of body planform area

distance from nose to pitching-moment reference center
angle of attack
crossflow drag proportionality factor

base
wave or pressure

RTR 027-1




A

Atz

RIR 027-1

REFERENCES

Allen, H. Julian, "Estimation of the Forces and Moments Acting on
%gg;ined Bodies of Revolutions at High Fineness Ratio," NACA RM A9l26,

Jorgensen, H. Leland, "Prediction of Static Aerodynamic Characteristics
for Space-Shuttle-Like and Other Bodies at Angles of Attack from
0* to 180°, NASA TN D-6996, 1973.

A10




RTR 027-1

APPENDIX B

6 DOF TRAJECTORY PROGRAM DLSCRIPTION
(Program REENTR)

Program REENTR is a versatile six-degree-of-freedom digital simulation
providing a means of investigating the reentry characteristics of uncontrolled
aerodynamic bodies. The program was first developed for and used in an in
depth study of the Space Shuttle External Tank for NASA. It is highly versatile

in that it employs several major program options including:

a. Choice of computers with minimal changes

b. Machine plot option

¢. Choice of sperical, oblate, or Fischer ellipsoid earth models

d.  Print format option

e. Random variable selection
In order to streamline the program, increase its speed and still provide the
needed accuracy, the program was simplified by eliminating the option on the
earth models and choosing a spherical earth, and by locking in the print and
plot option, to reduce computer time in checking cach option for each 1bop.

In this Appendix a brief theoretical overview of the program will be
prasented followed by a brief description of the 3 degrees-of-freedom program
which was derived from it,

B.1 __Program Organization

Program REENTR is. organized into three basic parts: (1) initialization
of parameter (2) Dynamic loop computation, and (3) loop and program derivation,
Each part will be presented in some detail in the following sections.

B.2 Initialization

The program is initialized by first storing all necessary data. This
includes atmosphere model, vehicular aerodynamic coefficients, and initial

Bl
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position state vector. The atmosphere and acrodynamic coefficients are normally
input in tabular form and are used by table readouts as required throughout

the simulation. Position data is input for each case and either re-input with
changes or re-verified for each subsequent case.

The {nitialization portion is geared to determine the state of the vehicle
at t = 0 in altitude, direction, and velocity. This is determined from the
following data inputs:

Altitude (ho)

Latitude (W )

Longi tude (A )

Relative Velocity Magnitude l |

Relative Heading (o rel, )
Relative Flight Path Anq1e (8
Bank Angle (¢ )

Aerodynamic Rol? Angle (¢“o)
Total Angle of Attack (o To )

)
relo

Since a spherical earth is assumed, the initial position vector R; is determined
as follows:
|Ro | = R+ hy

where R is the radius of the earth, then

. . . I
IR | cos Vo cos A RXO

el E] ! = I

Ry IR | cos ¥y sin Ay Ryo (See Fig, B.1)
I‘O | sin ‘io R;‘:OI

The earth centered inertial (1) frame is thus established and a translational
vector to the center-of-gravity of the body determined.

A body centered reference frame is determined as a reference point for
the velocity vector. This reference frame 1s termed the geodetic (D) frame and
is defined as a reference frame with a north pointing horizontal (X) axis
with respect to the inertial (I) frame and having its Z-axis pointing toward

the center of the earth., This frame is always centered on the body and is

always maintained horizontal to the surface of the earth ard oriented as defined.

B2
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This 1s shown in Fig. B. 1.

The direction cosine matrix which transforms points in the D frame to the

PTG g

I frame is determined from
I o
A = Dagls [-90°-v ],

The relative velocity vector (R) frame is determined from |V

R AT

T

relol” “relo, and
Yrely® The vector is determined by:
i
- Y
Ve, | st

| cos ¥ cos o

relg relo relg

See Fig, B-2

relo

P e ST e S R A e e +

In order to transform this to inertial velocity, the rotationof the earth must

? be accounted for., Therefore,

1
0 i RYoI !
| Vb . v‘t*e1c, Y Rxo 1
i 0 ?%
;

Where we 1s the rotational velocity of the earth, the total inertial velocity vector

is then:

1 _ 1D D
Vo ) Ao Vo

The orientation of the body is determined by the given body angles with respect

to the velocity vector. A body (B) to relative velocity vector (R) frame direction

cosine matrix is determined from:
AORB = lopgds lome] [patg] (See Fig. B.3)
The R frame can be related to the D frame by:

AODR ) L“ro10]’ [Yreloj2
The body to inertial transformation then becomes: <

18 _ , 1D , DR , RB
AO AO ‘\O A0

04
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With the body orientation determined, the only other data required is the mass
characteristics of the reentry body including:

Mass

Center-~of-gravity location with respect to a known body point

Moment-reference point (for aerodynamics) from same body point

Body dimensions and body rates
The AoIB matrix is converted to quaternion (to be discussed in more detail later)
‘ and the dynamic moment ann determined:
s (X

B, .
E;:; Ymep~Yeg) / Pres

(2 ) / Dref

The dynamic loop can now conmence.

mm'&g)/omf

mrp'zcg

B.3 Dynamic Loop Computations

As the body reenters the atmospherc, gravitation, atmosphere, and motion

effects must all be updated on a frequent basis. The dynamic loop updates by

determining the derivatives of the primary parameters and then integrating to i
determine the updating increment. The integration method used is a four pass

v Runge Kutler method. The critical derivatives are:

£l-

Rotational acceleration

—

; Translational acceleration

% Position change

o b =)

% Quaternions
g In the First pass through the loop an each case, all of the initial parameters

j are revarified. In order to simplify and compact the simulation, a set of |
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parameters known as Quaternion, from Hamiltonian calculus, are used, The
quaternions are used to represent the main direction cosine matrix alb and
are defined from the initial parametersof that matrix. The calculation of these
parameters is tedious and will not be shown here. Basically they are defined by:

Q1 =asin (¢/2)

Q2 =B8sin (¢/2)

Qy =ysin (4/2)

Qu = cos (¢2)
where o, R and y are eigenaxis direction cosines and & 1s the eigenaxis rotation
angle. Integration and recomputation of components of the AIB matrix allows
continual update of vehicle body orientation and rotation,

Using the above, the program updates on a frequent basis updating position,
velocity, and rates of each body in contact. The forces on the body are
determined based on atmospheric characteristics, aerodynamic characteristics, ctc.
and force coefficients and moment coefficient determined. The final body

torques and forces are:

o
T

Ay

* 9 Sref Dref c“mnr

whare Cimnt is the torques on the body based on all forces supplied,
BL.._ . -
F; 9 Spef 6xyz
is the forces on the body. The derivatives then are

G (TAB-ﬁxI;)

-

where txyz

[ is the inertia matrix for the body

U 1s the rotational rate of the body

BY




RTR 027-1

q, -0, 0]

¥=/2 o, o
-, Q, Q,
] -0, -0, -0,

where
m is vehicle mass
5% 1s the gravitational vector

A1l derivatives are converted to inertial frame for integration.

8.4 Loop and Program Termination

At the completion of each integration step, all parameters are updated
and the program continues until stopped. The computer program checks to de-
termine print and plot intervals and stores all required data or prints it.

At program termination, the final data is printed and plotted as required.

B.5 Thrqg Degrec-0f-Freedom Program

A 3 degree-of-freedom program was also developed for the Shuttle studies
and used in this study. This program is an adaptation of the six degree-of-
freedom program employing a point mass 1ift/drag model based on vehicle aero-
dynamics.

The primary advantage to the use of this model 1s its high speed (Approx.
1 second per 100 seconds of trajectory) thus allowing the vun of large numbers
of similar cases, perhaps varying one parameter over a large range. MWhere the
reentry bodies trim, this becomes a high speed way of studying the changes

in reentry characteristics with eight variations in atmospheric conditions, etc.
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B.5 CONCLUSION

The two programs described in this Appendix were modified slightly to
provide data useful in computing aerodynamic heating data. Direct type output
of many trajectories could be fed directly into heating calculation programs
to determine heating characteristics. Program REENTR and its derivatives are

currently available in REMTECH's files for future studies of this type.
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MATHEMATICAL NOTATION

!
§ NOTATION DEFINITION

it ad
i XI Vector resolved into I-frame coordinate axes. Axes systems

i used are:

1 - Earth centered inertial

D - Local normal, north pointing

G - Geocentric local normal, north pointing

R - Relative velocity vector, local harizontal
B - Body fixed

A% Dirvection cosine matrix which transforims vectors from the y-frame
: to the x-frame
! Xy Inftial value of X
X dx/dt
3 1 0 o |
] [0}y = 0 cosO  =«sind Direction cosine matrix for x-axis rotation
0 sin® cos 0% through angle 0
rcosO 0 sind ,
[0]2 u 0 ] 0 Direction cosine matrix for y-axis rotation
-5in0 0 cos® J through angle O
~3
| cos) -5ind 0 ]
[@]3 " sind cosO O Direction cosine matrix for 2-axis rotation !
I 0 0 1 through angle 0 :

NOTE: A1l direction cosine matrices used herein transform from the new
coordinate frame to the original coordinate frame, i
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COMPUTER SYMBOL

CA
CM
CN
cLp
cMQ
CNR

CLMNT

CPLMN

CXYZ
DREF
FAB
GMAG

G

GM

!

IXY7
$374!
LRLF
GMASS
MACH
POR(1)
PQR(2)

RTR 927-1

LIST OF SYMBOLS

DEF INITION

v

Aerodynamic axial force coefficient
Acrodynamic pitching moment coefficient
Agrodynamic normal force coefficient

RO11ing moment damping coefficient
~ Pitching moment damping coefficient
Yawing moment damping coefficient

Total aerodynamic moment coefficient
vector with respest to c.qg.

Yota! aerodynamic momunt $oef icient
vector less ¢.g. offset eff

Total aerodynamic force coefficient vector
Vehicle diameter

Acrodynamic force vector

Magnitude of acceleration-of-gravity
Acceleration-of-gravity vector

Larth gravitational constant
Altitude

Vehicle moment of inertia

Inverse moment of inertia

Vehicle length

Vehicle mass

Mach number (VPC]/Vs)

Roll pato (nmx)

Pitch rate (’my)
B3 "
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SYMBOL

P A

0,40,00,.9,

*eg*eg*?ey

xmrp.Ymrp.zmrp

COMPUTER SYMBOL

PQR(3)
QBAR

Q(1),(2),Q(3),Q(4)

R

RS
SREF
TAB
VRMAG
VRELX
Vs

VWX
XCG,YCG,ZCG

XMRP, YMRP , ZMRP

ALPHT
GAMR
LAMDA
RHO
SIGR
PHIA

PHIBK
PSID
OMGE

PQR(I)

RTR 027

DEFINITION
Yaw rate ('“i)
Dynamic pressure
Quaternion parameters
Earth's radius
Kennedy Space Center earth radius
Vehicle reference area
Aerodynamic torque vector
Magnitude of relative velocity vector
Relative velocity vector in X-frame

Speed of sound

Wind velocity vector in x-frame

Reference location of c.q.

Moment reference point location with
respect to c.g.

Total angle-of-attack
Relative flight path angle
Longitude

Atmospheric density
Relative heading

Aerodynamic roll angle

Bank angle
Geodetic latitude
Earth rotational velocity

Vehicle rotational rates

B14
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APPENDIX C
REENTRY HEATING METHODOLOGY

The aerodynamic heating methods used in this study were those contained in
the BENTRY computer code (Ref. C.1) and modifications for this specific class
of problems. A discussion and definition of the aerodynamic heating methods
used for each part of the payload geometry is given in this appendix. The
geometries considered were flat face right circular cylinders and cone-cylinder-

flat face bodies. The heating methods for each geometry is described.

Free stream properties were obtained for each trajectory point using the 1962
standard atmosphere. Al1 thermodynamic and transport properties of air were
obtained using the method of Hansen (Ref. C.2). Equilibrium thermodynamic
properties of alr which include its major components (0., Nz, 0, N, 0%, N*, )
were obtained 1 closed form from a set of approximate partition vunctions. ﬁ
The partition functions and thermodynamic relations were programed such that ﬁ
the total enthalpy, entropy, speed of sound, average molecular weight, heat
capacity and species concentration can be found for a given temperature and
pressure. The calculation of transport properties by Hansen's method .15 based
on simple kinetic theory of hard spheres. The viscosity is a function of
species density, mean velocity and mean free path. The thermal conductivity
1s computed accounting for energy transfer by molecular collision and for energy

transfer by specie diffusion.

A boundary layer transition criterion which ts simple and appropriate for

design work was used. The criterion can be stated as:

c1
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Laminar 1f Re,y < 100000
Transition Transitional 1f 100000 < Re,q < 200000
Criterion
Turbulent 1f Re,q » 200000
The atmospheric properties, air thermodynamic and transport properties and

transition criterion were applied to all geometries.

CYLINDER GEOMETRY

The specific calculations procedure for the cylinder is determined by the
angle of attack and the transition criterion. The following bar chart gives

reference to the heating methods used.

J c,2 ¢
Lant o e
aminar :r'——-'q,—#J Y l ! TJ
a ] 30 0 90 120 150 160
Turbulent \T_ —_~— | l ~— ' i

c.6 ] c.6 4
¢.5 .2 c.
4 C.4

Fig. C.1 Stagnation Line Cylinder Heatiny Methods
The numbers 1n Fig. C.1 refer to tables which define the heating method.
A1l the methods require a recovery enthalpy calculation. The recovery
factor is computed using the Newtonian type theory presented in Table C.7.
In order to utilize these heating methods the local flow conditions are
required. The following steps are used to compute the flowfield.

Zero Angle of Attack Flow Fields

1. Normal shock calculation is made.

2. Total post shock conditions are computed.

3. Using the stagnation entropy, the flow 1s expanded to free stream
pressure.

4, Edge conditions are determined from the stagnation entropy and

edge pressure.
c2
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Angle of Attack Flow Fields

If the angle of attack plus the body angle is greater than 1.0 degrees
[ i an angle of attack calculation 15 made using the following steps:

. 1. An oblique shock calculation is made for a shock parallel to the
i local body angle if the normal component of free stream Mach
number {s greater than one.

: , 2, If the normal component of Mach number 1is less than one, the edge
; \ enthalpy and pressure are computed by

Edge enthalpy he = h_ + Us?,/290
Edge Pressure Pg = Py (1 + .24.2,)%°

h f where the subscript n means normal component. Based on these two
: : properties the remaining edge conditions are computed.

3. If an oblique shock calculation was made (step 1), the edge conditions

are computed by isentropically compressing the normal component of
velocity

Edge enthalpy Sp = S5
Edge enthalpy hg = hg + Us? /299
§ = post shock
Typical results using the preceding heating methods and flow field methods are
conpared with experimental data in Fig. C.1.

Heating Distributions

In order to compute the heat transter coefficient distribution for a
tumbling or rolling case a method based on data was used. This distribution is
given in Table C.8. Thus with the stagnation l1ine value from the previous

methods and the local to stagnation line heat transfer coefficient ratio, the

local value can be obtained. The heating is then computed using
q = h(H.-H,) 3

E]
where .

local heating rate :
Jocal heat transfer coefficient |
local recovery cnthalpy |
wall enthalpy !
Nk
i

*
B o "
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BASE GEQMETRY

The base geometry was approximated as a flat face of a right circular
¢ylinder. The specific calculation procedure for the base is determined by the
angle of attack and transition criterion and 1s shown pictorically below:

4. c.‘ "
1 .9 C.1 0-1
§ Laminar ~ ~ ] ~ -

o= { 3'0 60 ) 120 150 Jo P
Turbulent J -~ w"L
.9 C.4 ’
c.m-—T

Fig. C.3 Base Flow Heating Methods -

The flow field calculations for the different heating methods were made as
described below:

Flow Fields for o < 9g°and o >175°

1. Normal shock calculation 1s made.

2. Total post shock calculations are computed and used as edge conditions

Flow Fields for 95° <o < 175°

1. An oblique shock calculation is made for a shock parallel to the base |
Sﬁrfa?e 1f the normal component of free steam Mach number 1s greater M
than 1.0. |

2. If the normal component of Mach number 1s less than one, the edge
enthalpy and pressure are computed by

et i S

Edge enthalpy hg = h + U? /200

Edge pressure Pg = P, (1 + .ZMhzn)3'5

where the subscript n means normal component. Based on these two 1
properties the remaining edge conditions are computed.

3, If an oblique shork calculation was made (step 1), the edge conditions f

are computed by isentropically compressing the normal component of
velocity

c4
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The heating {s computed to the center of the base and assumed to be constant

over the entire base.

CONE_GEOMETRY

A seperate cone calculation methodology was not required since the cone
} : heating may be related to cylinder calculations. The Stanton number data and
' | theory presented by Ref.C.3, shown in Fig. 3, demonstrates that swept cylinder
heating theory can be used for cone heating calculations. The heating rate
for a cone related to the cylinder is simply a function of the radius ratio.

s - (ReS)"

a= 0,5 laminar

a = 0.2 Turbulent

The tocal cone radius is used.
A1l of the heating calculations for this report were made using reference
conditions. These are
Surface Temperature = 660°R
Cylinder Diameter = 24 inches
Precedures are described in the main text to adjust for diameter and surface

temperature effects on heating rates and load.

c5
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Table C.1
ECKERT's LAMINAR FLAT PLATE HEATING METHOD

Eckert's laminar flat plate heating relation can be expressed as:

h = 0,332 Ye *y
: (1bm/ ft?sac
(PRT# A )
where
R* w OXUgX Reynolds no. avaluated at
e u* reference conditions

The reference conditions are obtained from the reference enthalpy
H* = Hg + 0.5 (Hy = Hg) + 0.22(Hyy = Ha)
and edge pressure. Other reference properties are evaluated as:
p* = f (H¥, Pg)
px s f (H*, Pg)
For geometries other than a flate plate, the Mangier transformation
may be evaluated as:
n Flate Plate

1
= 2 Cylinder
= 3 (Cone

Tm

Nomenclature

32,174 1bm/s1uy

Heat Transfer Coefficient (1bm/ft*soc)
Edge Enthalpy (Btu/1bm)

Adiabatic Wall Enthalpy (Btu/lbm)

Wall Enthalpy (Btu/1bm)

Edge Pressure (atm,)

Edge Velocity (ft/sec)

Surface Distance From Origin to Point of Interest
Reference Density

Reference Viscosity

Mangler Transformation

9
i
Hg

Haw

B ¥ n k"

<
*
8 5 & B no®

c6




RTR 027-1

Table C.2
STAGNATION POINT HEATING

(Ref ?%3gnat1on point heating is based on the theory of Fay and Riddell %
ef.T1). i

2 | q = N 9Pty (U (Hy- !M) é
- e [3*> Fr ;
| . W

. where ?

(] oh 52
- 0.7 Prw(ma> 31 +(lg - 1) Hy
P He

% IZQC (P~ P,) for a sphere and M > 1.22
Pt

= 1 [29 (P - P) for a cylinder and M >1.12
aRY ¢t = o
ot

=

o
b K =
~———

e

U (1.5 - 0.378M° - 0,02625 M* ) for a sphare and M ¢ 1.22
— ] % w

R
= '%g (2.9 - 0.872M2 . 0.328M; ) for a cvlinder and M_ < 1.12 i

and the dissociation enthalpy

Hd - COhO * CNhN |
h? = 6636.26 Btu/Lbm
|

0
h; = 14456.53 Btu/Lbm
i
Nomenclature ‘
|
q +* Heating Rate (Btu/ft’sec.) :
a, = 1 (slug ft./1besec.?) |
9 = 32.174 (Lbm/slug) :
P = Density (slug/ft.?) |
p = Viscosity (Lb,sec/ft?) |
U = Velocity (ft./sec,
P = Pressure (Lb./ft.’ !
H = Enthalpy (Bth/16m) |
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Table C.2 (Cont.)

L, = Lewis Number
Hy = Dissociation enthalpy of air (Btu/Lbm)
; C1 = Mass fraction of species 1 ({ = 0, oxygen and 1 = N, nitrogen)

R = Nose radius (ft.)
P. =  Prandtl Number

Subscripts

e = Edge
t = Sta?nat1on (post shock)
W = Hal
w a  Fpree stream
g B N
R
i Potential
y bl T Cyl‘inden 1.
i v "' Potential i ' 3 ‘ |
Sls 16| | Potentiar AN e
g e e M |
- o] R B8 — ; [ ‘
i 1 ) | all -~ =
E 1.2 1 ' ' Newt::on1a;n | | ) %Hh \
h -] ' —— i ! ;
< | ' ' i ) i
E bl TN ]
3‘ N : . ; l ' T e
'g 0.8 UQHH NP l 5 .
v § Newtonian|_!
b Cylinder i
oaf T [T 1
| . | DR ,
2 . . ! ; i
ol ! B A
0 0.2 0.4 0.6 0.8
Me
References ﬂ

T1. Fay, J. A, and Riddell, F. R., "Theory of Stagnation Point Heat Transfer f
;g Dgss?c:ated Air", J. Aeronaut. Sci., Vol. 25, No. 2, Feb. 1958, pp. |
-85, 12%.
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Table C.3
LAMINAR STAGNATION LINE HEATING TO YAWED CYLINDERS

The laminar stagnation 1ine heating by the method of Sayano and Greenwald
(Ref. T1) 15 expressed by the following empirical relation.

hhpeo = cosh® A+ (qu/qA.o) sin2A

Pl

whare

s

Mpwo ® 0.707 hpp

Nomenclature

h = Heat Transfer Coefficient

hFR = Fuy and Riddall Spherical Stagnation Point
Heat Transfer Coefficient

9%y * Flate Plate Heating Rate

oo

q = C(Cylinder Heating Rate at Zero Sweep

A = Sweep Angle

e L

Reference

T1 Sayano, S. and G, F. Greenwald, "Approximate Method for Calculating Heat
Transfer to Yawed Cylinders in Laminar Flow", JSR Vol. 10, No. 2, Feb, 1973,
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Table (.4

SPALDING-CHI METHOD MODIFIED FOR REAL GAS HEAT TRANSFER
FOR TURBULENT BOUNDARY LAYER FLOW

(1) Spalding-Chi define Fe, Fp v Fpg (Ref.T1) which are functions of
Mach Number and Temperature alone such that

1/2 Cch = WO(FRBREG) ] WS(FRSRES)

Y -1
o (S ) @)

Where Z,(T)=f (H,P,) & H = K, + (Hy, - Hw)(ﬁi) « (Hyy = He)(ﬁL)’
e e

H 077 sy \ 002
(3) FRe -(A‘i (.E) (Rof.T2)
" Hy

Where ¢g(1) « 9.2808635
g(2) = -4.7340248
g(3) = 6.6858663 10°*
g(4) = -4.1876614 1072
g(B) = -6.5054577 107"
g(6) = 2.83G7291 107"
g(7) = -2.1249608 10°°
g(8) = 8.0162000 10-7
g(9) = -1.5900985 107*
g(10) = 1.3236350 1071

R = B.euas
Es g

Ty Mangler Transformation (Ref.T3)

C10
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Table C.4 (Cont. 1)

Nomenclature,
Cp Skin Friction Coafficient
hTyrB Heat Transfer Coefficient For Turbulent Flow
H Enthalpy
P Pressure
Py Prandtl Number
Re®, Reg Local Reynolds Number Based on Momentum
Thickness © and Characteristic Length s
Respectivel{
‘ S Inverse of Von Karman Reynolds Analogy Factor
i St Stanton Number
' T Temperature
; u Valocity
. Z Compressibility
8 P Density
. Subscripts
: aw Recovery
e Local
i Incompressible
W Wall
References

| Tl. Spalding, D.B., and Chi, S.W., "The Drag of A Compressible Turbulent Boundary
] Layer on a Smooth Flat Plate With and Without Heat Transfer", Journal of
Fluid Mechanics, Vol. 18, Part I, pp. 117-143, Jan. 1964.

T2. Wallace, J.E., "Hypersonic Turbulent Boundary Layer Studies at Cold Wall

Conditions", 1967 Heat Transfer and Fluid Mechanics Institute, La Jolla, CA
June 1967,

T3. Komar, J.J., "Improved Turbulent Skin-Friction Coefficient Predictions Util-
;Eén 938? Sﬁa1d1?gaChi Mathod", Douglas Afrcraft Company, Douglas Report
- s oV,

6.




RTR 027-1

Table C.5
TURBULENT STAGNATION LINE HEATING
NEAR o = O

Beckwith and Gallagher's stagnation 1ine theory predicts zero heat transfer
coefficients at an angle of attack of zero. In order to achieve a transition to

more realistic value the following approximation for turbulent flow is used.

0< o <5 deg.

B=18 (5 - a)
h'hBG¢ha‘081nB

Nomenclature
h = Heat transfer coefficient

h, = Heat transfer coefficient at o = 0, computed using flat
plate conditions processed by a normal shnck and expanded
to edge pressures,

a = Angle of attack

hgg = Beckwith and Gallagher heat transfer coefficient

c1e
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Table C.6

RTR 027-1

BECKWITH AND GALLAGHER TURBULENT REAL GAS
YAWED CYLINDER STAGNATION LINE HEATING

hL = 3.0323 (l;.‘éfﬂ% ¥ (gohit) (%_U_g_) 82 )
x=0
(dUe\ 1,414 (Pe - r;n) e (2)
a;—}x a0 "R Pe
g 32.174 Lbm/sTug
h Heat Transfer Coefficient Lbm/ ft?sec
p Pressure Lbf/ft?
Py Prandtl Number ®edge conditions Dimensionless
R Radius of Cylinder Faet
u Velocity Ft/sec
X Distance from Stagnation Line Feet
A Sweep Angle Degrees
W Viscosity Lbm/ft-sec
0 Density Slugs/ft?
Subscripts:
SL Stagnation Line
e Edge Conditions
° Totaul
Superscript:
* Evaluate at Eckert's Reference Enthalpy & vdge Pressure
Reference:

1. Beckwith, 1. Et., and Gallagher, J. J., "Local Heat Transfer and Recovery
Temperatures on a Yawed Cyltinder at a Mach Number of 4,15 and High Rey-

nolds Number, NASA TR R-104, 1961.
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TABLE C.7
RECOVERY FACTOR DISTRIBUTION

The 1ocal recovery factor or recovery enthalpy is computed using the
following Newtonian type of distribution (Ref. T1).

hy. = b, * [rLsinz o cos2 0 + Fym (stn* & sin?® © + cos? a)]ui/2g0

where

(ho-h,) + Po/" U2/2g0
?‘l?‘a'on<e r e/g
V2/2q0 a=0

r,® 1.0 for 0< 0<90

2
(Hy = A /290 = h,) + P./M Al/2gd

r
Ud/ago

AL = Leeside speed of sound based on total temperature
n =2 for laminar flow b

n =3 for turbulent flow

For subsonic flow " 1.0 for all o. ¥

Nomenclature
he * Free stream static entha1p§ (Btu/1bm)

r = Recovery entha1pg {Btu/1bm |
Hr = Total enthalpy (Btu/ibm) N
U, = Free stream velocity (ft./sec.) 1
g = 32.174 1bm ft./1bs sec
J = 778.66 ft. 1bs/Btu
r = Recovery factor 0.85 lamirar flow

£.897 turbulent flow
o = Angle of attack (degrees)
@ « Angular position from stagnation 1ine (degrees)

c14
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TABLE C.7 (cont.)

The following figures show a comparison of data and the preceding equation.

| | T [ |
1o - ‘ M -"J ® SH-12F SRD
| A \T\‘\L Recovery Factor
5 ‘ 1 ¢ ! \ Data, clean skin
i v N cylinder values,
A
ol ,)F..:: I Ml
=y [ | -
= 'LLi‘ | n HT.
| .
¥ ’ ' 0= 0° ‘
904 1| L 1
0 30 60 90 120 150 180
o — ‘
T
5 -
]! T I T
L A i i
0.95»«:J i !A/.//db | | I 14
5?. 1~+ﬁ [ i ! cv4\N~
< i |
[
! I | o;= 18Q°
o.0oLLLL L] L |
0 30 60 90 120 1560 180
o (Angle of Attack, deg.)
References

T C. 0. Engel, "Tumbling Entry Heating Frograms - Teheat and Bentry Users'
Manual," RTR 011C-1, NAS8-21810, July 1976.
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Table ¢.8
TURBULENT CIRCUMFERENTIAL HEATING

DISTRIBUTION AROUND A CYLINDER

The circumferential heating distribution around a right circular cylinder
has been correlated (Ref. T1) using the following equations

hu/hs1 = 1.0+ Kliﬁil cos A+ (Kz = 2§, +1) cos 24
+ (2K; + Kz - 3)/4

where

Ky = € "% cosh® (3,98 o)

Ka = © =% cosh (a) for 0< o< 0.785398

Ky » © “ cosh (a) [1 + 11.8/(1 +@-10 (@ = 1.309))
for 0,785398 < a < n/2

hu » Undisturbed heat transfer coefficient

hgy ™ Stagnation 1ine heat transfer coefficient

o » Angle of attack resolved into 90 degrees (radians)

A = Circumferential angle from stagnation 1ine resolved
into 180 degrees

A comparison of the correlation with data is given in the following figure.

References

Tl. C. 0. Engel, J. V, McAnally, B. M, Levine, “SRB Data Book Procedure
Documentation", RM 020-2, NASB-31360, March 1976.
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Table C.8 (Cont.)
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TASLE €.9
LEEWARD BASE FLOW

The heating to the base of a cylinder when the base fare 1s leeward 1s

|
| approximated by:
i

Q= h (HyyHy)
where

h L 0-05 hFR

: hgr = Hemispharical stagnation point heating v
3 coefficient for cylinder radius (Table C.2) {

Hyyw ™ 0.85 Hy
Hy = Wall enthalpy

P A P T TSR SR Xy o . =T

Ry

c18
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TABLE C.10
STAGNATION BASE FLOW

The heating to the flat face of right circular cylinder is determined
from the theory of Fay and Riddell together with a velocity gradient modification
from Boison and Curtiss (Ref. T.1). The heat transfer coefficient s expressed as

h = hg (C.46628) @1 4471 Me

where
- Hemisﬁherical stagnation goint heating coefficient
for the cylinder radius (Table C.2)
M< = Free stream Mach number
Refererce

Ti. J. C. Boison, H. A. Curtiss, "An Exper1mental Investigation of Blunt Body
Stagnation Point Velocity Gradient," ARS Journal, pp. 130-135, February 1959,
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APPENDIX D
CONDUCTION HEAT TRANSFER ANALYSIS

The first approach to predicting the surface temperature for the cases
of interest was to use a heat conduction program which accounted for all
possible circumstances such as variable material properties, radiation at
the interior and exterior surfaces, transient effects, and variable convective
heat transfer coefficients. Reference D.1 documents such a program which uses

a finfte difference scheme to solve the heat transfer equations:

he (tRe-te) = cqo (te“-tag*) = - (k%%)e (exterior surface) (01)
3t o (12 -
Q(SEZf (ksf?i (steady-state) (internal point) (02)
3t = 2 (2

pC £ = o3 (ka%) (transient) (internal point) (D3)
hy (tpe-tq) = gt (t44-tyy4) = - (kgﬁ)i (interdor surface) (D4)
where

h =« local convective heat transfer coefficient

th - recovery temperature

t - local material temperature

e - emissivity

¢ =~ the Stefan-Boltzmann constant

ty - temperature to which the point radiates

k™ - conductivity

x = internal distance from the surface

p = density

¢ =~ specific heat

g = time

s = interior and exterior surface

The skin is approximated by an infinite plate and equations D1 - D4 have only
one space dimension -x.
Preliminary afforts dealt with choosing finite increments of space and time
which would give adequate solutions without using computer time unnecessarily.
It was found that use of four internal nodes along with the interior and exterior

node gave results almost identical to those achieved using 8 or more {internal
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nodes. Also time steps of one second produced similar results when compared
to more rigorous time steps of C.5 and 0.1 seconds.

After several test cases were run, it was found that the emissivity of
aluminum, «0.15, was low enough that radiation losses were very small. It was
also found that the temperature gradient through the skin was very small.

These facts led to a considerably simplified equation which assumed no radiative
heat transfer and no internal resistance to heat flow (high conductivity):

q = cpvgg. u hghg (tr-t) (05)

whaere
q - heat transfer
V =« volume
A - area
For the one-dimensiona! case, V/A 1s equal to As/A or &, the thickness.
Solution of the above equation ylelds:

- ~Nue ki .
%;%%h- e Nu = q% f?? . 3%31- to » temperature @ o » 0 (D6)

.
or

t = eMO (ty-tp) + tg (07)
This equation is readily solved using a calculator.

To compare the two methods of solution three cases (Table D1) were run
using 1/4 inch thick aluminum skin. Each method assumes that h and tp are
constant during the time increment involved. The second method calculated the
average h andtp for the time step and uses these values. The first method
integrates h andtp across the step. A listing of the program used to solve

equation D7 with a HP-97 calculator is shown in Table D2.

D2
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The results are compared in Fig. D1. The plots for all practical purposes

coincide proving that the assumption of negligible internal resistance was
correct for 1/4 inch (and therefore thinner) skins.

The effects of thickness on the accuracy of the second method can be
seen {n Fig. D2 where both methods were used to predict the surface temperature
for the worst case (Case 3) when the skin thickness 1s 3/8 inch. The second
method does not respond as quickly as the more correct first method, and 1t 1s
i , anticipated that thicker skins would have to be analyzed using the time-
‘ consuming first method.

The effects of thickness on the peak surface temperature for the three
cases are shown in Fig. D3. As would be expected, the thicker skins provide
additional heat sinking so the peak temperature 1s significantly lowered.

In the second method of calculation 1t was assumed that the response of

the skin to each input of heat during the time step would be slow enough that
the skin would not coma to steady state before a new time increment and thus
a new heat transfer rate began. To check this, an extremely simplified third
method was investigated which assumed steady state response at each time step
using the equation:

q = coV (tg-to) (08)

where, tg 1s the skin temperature resulting from the cumulative heat transferred,

g, to the skin volume, V. The skin volume would be A5 where A s equal to unity
for the one-dimensional assumption made throughout the analysis. Therefore the
temperature at anytime is:

ts "t * s (09)

03
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To compare the first and third method, values of q were obtatned using
BENTRY (Ref. C.1,Appendix C) which assumed & constant 660‘F surface temperature.
These values and values of ¢ and p at 200°C (1118°R) were used to calculate
the peak temperature for the sample cases. The results are shown in Fig. D4
and indicate an almost exact correspondence. Considering that the BENTRY q
calculation assumed a constant temperature {1t was concluded that q had 1ittle
dependence on surface temperature. It was also concluded that transient
conduction effects were negligible.

The surface temperature calculation scheme finally used was a form of the
third method. First, using the temperature at the beginning of the trajectory
time step, q was calculated for each step. Second, the temperature at the end
of each time step (which was also the beginning of the next step) was calculated
using equation D9. This process continued until the skin began to cool (negative
q) = the last calculated skin temperature was therefore the peak. After several
trials were made, 1t was found thut a variable specific heat was needed for
accuracy and the equation:

c » 0.08697 + 3.586 X 107"t - 2,803 X 1077t% + 8.23 X 107!1¢? (D10)
evaluated at the beginning of each time step, was used in all subsequent
calculations.

The simple method of calculation used 1s justified by comparison with the
rigorous method. The method compares well because thin aluminum skins react
quickly to the input heat transfer rates. Use of materials with significantly
Tower conductivities or thicker skins would invalidate the assumptions implicit

in this method, and a more sophisticated approsch would have to be used.

D4
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TABLE D2
PROGRAM FOR CALCULATING SOLUTIONS ON HP-97 CALCULATOR
(Negligible Internal Resistance Assumed)
Initfalization

Store 49
Store h1
Store tRi

Computation

11

1
cpd =

to_
cps

t

Enter with tj (J-l;tj-to)*
Recall h
Enter hyyys Enter tp,,,

1

vy v

Average h for Jth time step, —eei

Nu®
e-Nue

Y

1

Recall tRJ .

Average tgfor Jtn time step, BRIERI e

tj+1 = (tj‘tR)e -Nue + tR -
Finish

* Temp at beginning of Jth time step
D7
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