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ABSTRACT

In El] and (2), algorithms were introduced for adaptively computing

smooth piecewise polynomial approximations using uniform, least-squares (1.2),

and restricted range uniform approximations. This paper deals with the intro-

- 
• duction of £~ adaptive curve fitting. Adopting the least-squares algorithm,

a package has been developed that will compute smooth piecewise polynomial

approximations to data and/or precise mathematical functions (in discrete

form) allowing the user the option of using best or best £2 approximations.
• (The code for this newly developed L1~~L2 adaptive curve fitting package

supercedes the code listed in [1] for the old least-squares package.) The

adaptive curve fitting algorithm used in this package is described in detail

in section II. Section III involves a discussion of the £1-approximation

problem as a linear prograrrining problem , as well as a description of the £1
algorithm used in the computing of the £1 approximations. In section IV,

the FORTRAN program that has been developed for this Ll~
L2 adaptive curve

fitting algorithm is discussed, and numerical results are presented in an

effort to illustrate how the £1 version of this algorithm may be used most

effectively.
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I. Introduction

Let X be a finite set of real points and let f be a function defined on X,

or let data be given in tabular form. In the case of data given in tabular

form, say ((t1, y1)}!’..1, we shall let X = {t1}~~1 and define f on X by f(t1)

~ 
y1, I = 1, 2, ..., M, so that the functional notation may be used in what

follows. Let a = min (x: x C XI and b = max{x: x CXI and for any function g

defined on X denote max (g(x): x LXI by 11
~’1~ 

Finally, let N, SMTH, and TOL

be parameters supplied by the user where N and SMTH are integer values wi th

N > SMTH > -l and 101 is a positive number. In this setting, the adaptive

curve fitting algorithm presented here will calculate a piecewise polynomial

approximation p to f and a set of points (knots) Cx1}~...0 CX with a = x0 < x1 <

< Xk = b such that: :1

(1) p restricted to [x
~
_ i, x1] is a polynomial p1 E 11N— l = (q: q is a

real algebraic polynomial of degree < N-i),

(2) p has SMTH continuous derivatives , and

(3) h f  - PII > < TOL.

II. The Adaptive Curve Fitting Algorithm

We shall begin with a somewhat brief description of the algorithi~, in an

attempt to Illustrate the basic logical flow. This shall be followed by an

in—depth discussion of the algorithm ’s various components. Again , it should

be mentioned that the input to the algorithm consists of the function to be

approximated (in the discrete form as described above), and the values N , SMTH,

and 101.

The algorithm begins by finding the largest point 
~ 

in X such that:

(i) [a, 
~~ 

(1X contains at least max(2, N+l ) points , and
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(11) the best (1.1 or £2) approximation p1 E 11N 1  to f on [a, 
~~ 

(1 X meets

the presdribed tolerance (i.e., II~ - l’1 hI (a ,~1]flX ~~~~~

If 
~ 

b, then since p1 is a piecewise polynomial satisfying (l)-(3), the

algorithm is successfully terminated. If < b, then the right endpoint of

the first subinterval (i.e., the knot x1) is generally determined by “backing

off~ from to a point in (a, ~
] (1 X selected in such a manner (to be explained

later) so as to add to the stability of the algorithm.

Having thus determined the first subinterval (a, x1) and corresponding

best (Li or £2) approximation p1 C to f on (a, x1] (1 X, the algorithm goes

on to determine the remainder of the piecewise polynomial approximation p.

However, for the remainder of the approximation , the probl em of meeting the

• smoothness constraint SMTH at the interior knots x1, x2, ..., xk_l must be con-

sidered. Thus, the next step is to find the largest point 
~2 

in X such that:

(I) (x1, x2]fl X contains at least max(2, N-SMTH) points , and

(ii) the best (1.1 or £2) approximation P2 € ~N l  to f on [x1, 
~~ 

(I X

subject to the constraint that l4”~ (x 1) = 
~~~~~~~~~~~~~~ j  = 0, 1 ,

• SMTH, satisfies h f  - 

~2”(x1, x~2 ] f l X  ITOL.

• Again , If 
~2 = b, p1 and p2 constitute a piecewise polynomial p satisfying

(l)-(3) and the algori thm is successfully terminated. If < b , then the knot

Is determined in the same manner as x1, in order to establish the second sub-

interval [x1, xe].

The algori thm continues in the same manner to its completion by finding

successive subintervals [x i, x3], (x 3, x4], ..., (X k l ,  b], and corresponding

polynomial approximations 
~~ •

~~~
•
~~ ~ 

11N-l to f such that the 101 and

SMTH constraints are met.

At this point , a more detailed description of the various components of

the algorithm is in order, beginning with how the are determined. Suppose

ILk • ~~~~~~~~~~~~~~~~~~~ - - • ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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some knot x1_ 1 has been established. (This may be the Initial knot x0 = a or

some Interior knot.) The process of finding 
~ 

is initiated by computing the

best (Li or £2) approximation (subject to the smoothness constraint SMTH If

Is an interior knot) to f on (x
~..i, 

b] AX. If this approximation satis-

fies the prescribed tolerance 101, then = b. Should this approximation not

satisfy 101, the algorithm sets = b. In what follows, ~ shall denote the

current smallest point fn X such that the appropriate best approximation to f on

• 
- 

-. [x 1_1 , ~~)fl X does not satisfy TOL. Next, the appropriate best approximation to f

on [x1_1 , t] r~ X is computed, where t = inf{x C X :  [x 1_ 1 , x] f l X  contains at

least max(2, N-SMTH) points}. If this approximation fails to satisfy TOL, the

algorithm cannot meet the desired accuracy and fails. Otherwise, the algori thm

sets = t. In what follows , ~ shall denote the current largest point in X

such that the appropriate best approximation to fan [x 1 1 ,  ~
] C) X satisfies 101.

An iterative procedure then ensues to find the largest possible . The

algorithm sets t = infix C X: (
~~ 

- ~)/2 < x < b}. If this set is empty, the

algorithm sets t = sup{x C X: ~ < x < (
~~ 

- ~)/2}. In effect, a “halfway point”

between the current values of ~ and ~ is being sought. If t = 
~~, then thi s

• procedure has converged and~ 1 = 
~~ . Otherwise , the appropriate best approximation

to f on [x 1_ 1 , t) (iX is computed . If this approximation satisfies TOL, we
I’, . .have a new value for a , namely a = t. If thi s approximation does not satisfy

TOL, then we have a new va lue for ~~, namely ~ t. This process is continued ,

essentially drawing the values of the largest “good” cand idate for 
~ 

(the

• current 
~~

) and the smallest “bad” candidate for 
~ 

(the current 
~~

) closer

together. When - ~ is less than or equal to some user definable prescribed

tolerance (ETA ), or when ~ and ~ are adjacent elements of X (which ever occurs

first), the process is completed and is accepted as a good approximation to

- • - ~~~~~~~~~~~~~~~~~~~~ 
•~~~~~~~~~
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Remaining in the setting just outlined , i.e., having j ust established an

the method of “backing off” mentioned earlier used to determine the knot

location x1 (and thereby establish the subinterval fx 1_ 1 , x1]) will now be
• explained. (It should be noted here that if SMTH = -l or 0, the following

procedure is bypassed, and the knot location x,~ is simply the point ~~~~~~

First, the error function f(x) - p1(x) Is examined for those points

~~ ~~ ~~~~~~~ ~ 
in (xI_ l, ~

] (1 X at which relative extrema occur. That Is,

is such that Jf ( ,) — 

~1(ç,)I .~~. 
If(x) - p~(x)I for x = max{t LX :  t <

and x = min{t C X: t ç,). (Note that p1 is the appropriate best approxi-

mation to f on (x11, ~~]fl X computed in the previous process.) In a process

to be subsequently described , one of the ç Is chosen for the knot-location x1 .

The motivation for choosing x1 in this manner is as follows: If f were differ-

entiable and X = [a, b], then choosing the knot x.~ to be an interior extreme

point of f — p1 on [x1_1 , ~
) would ensure that f’(x1) p~(x1). That is , the

slope of the function f and its polynomial approximation on [x 1_ 1, ~
], p .,

would match at x1. This becomes advantageous when joining the next polynomial

piece of the approximation to p1 at x.~ when the approximation is required to

be at least continuously differentiable. When the next polynomial piece, p.141,

• is smoothly joined to p.~ at x1 , it follows that the function f and both of the

polynomial pieces p.~ 
and p1÷.~ shall have the same slope about the knot x.~. If

we simply joined the polynomial pieces p1 and p~~1 at 
~
, this is generally not

the case and severe oscillatory problems tend to set in. This process of

“backing off” from to a smaller x1 € contributes significantly to

the stabil ity of the algorithm.

In determining which should be chosen for the knot location x1 , steps

must be taken to alleviate the fact that f (in the discrete form input to the

algorithm) is In fact not differentiable. The values ~
(
~

) are
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calculated where Is the derivative of the quadratic Interpolation of f ~~~~
—

centered at ç
~
. Then, x1 Is chosen to be the largest 

~ 
such that

- is less than some user defi nable prescribed tolerance (EPS).

If there does not exist such a ç,, then x1 Is chosen to be the largest ç,at
which Jf,~(ç,) - p

~(ç,)J is a minimum. (It should be noted here that in the

Implementation of the algorithm , it is generally not the case that all of the

relative extreme points of f - p.~ on (x11 , ~ j ) A X are considered, but rather

only the largest N-SMTH-1 of them.

This “backing off” procedure has proven to be invaluable for dampening

oscillations for those approximation in which SMTH > 0. However, If no conti-

nulty is required of the approximation (SMTH = -1) or if the approximation is

simply required to be continuous (SMTH = 0), this proceaure serves no purpose

and is overridden . (Again we note that in these instances x1 = = 1, 2, ....)

Another aspect of the algorithm that merits attention is the process of

determining the last subinterval of the approximation. Suppose that the sub-

intervals [a, x1), [x1, x2), ..., [x
~...2, x

~_ 1) and corresponding polynomial

approximations p1, p2, ..., p1 .~ 1ff have been determined. If [x 1_ 1 , b]fl X

contains at least max(2, N-SMTH) points , the algor it hm goes on to determine ~cj

precisely as outl ined earlier. However, if [x1_1 , b) AX  contains fewer than

max (2, N—SMTH) points , a process is initiated that, i f successful , will deter-

mine the last subinterval of the approximation . In this instance , the knot

Is replaced wi th some in ~~~~ x1 1 ) A X chosen such that ~ j l ’  b)flX

will contain at least max(2, N-SMTH) points. Specifically, the algorithm

chooses to be that point in X closest to (b — x1 2 )/2 suc h that :

(1) N1,~ b) A X contains at least max(2 , N-SMTH ) points , and

(Ii) the best (Li or 1.2 ) approximation p1 e 
~N-l to f on 

~~~~ 
b] fl X

subject to the constraint that ~~3) (~ 1 1 ) = p~~~(~~_ 1 ), j =O,l, ...,SMTH,

satisfies hI ~ 
- Ih r .  b~1X 

< TOL.
‘ i— l ’ ~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~ -- --=—-—~ — ~--~ -~~
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It Is most often the case that such a point 
~~~ 

is readily available , in which

case the algorithm $s successfully terminated. (Here, the- last two subintervals

and corresponding polynomial approximations to f are , respectively, (x 1_2, 
~~~~

~~~~~ 
b] and p1_1 , p1.) If a satisfactory 

~ii 
cannot be found, the algorithm

Is terminated and an appropriate error message is generated.

The bulk of the discussion thus far has been centered around the manner

In which the knots a x0, x1, ... , xk = b of the piecewise polynomial approxi-

matIon p to f are determined. This is due to the fact that the algorithm ’s

adaptive nature, whic h allows it to calculate the total number and locat ion of

knots needed (as opposed to most data fitting splIne techniques that require

that the total number and location of the knots be specified in advance), is

one of the main features of the algorithm. We shall now direct attention to

the actual computation of the polynomial pieces p1, p2. p~ that comprise

the approximation p to f on X , this having thus far been taken somew hat for

granted.

Suppose that some knot x1 1  has been established , and the procedure that

determi nes is currently in progress. Suppose further that some point

t € (x~~1, b] C) X is being considered as a candidate for x~. Thus , the next

step is to determine the appropriate approximation to f on (x1_ 1 , t] A X

(which we shall denote by ~ j ). Let [x 1 1 ,  t) C) X = {t1 < t2 < ... < tI . If

t1 
= a , or If SMTH = — 1 , there are no continuity constraints involved and the

following over-determi ned system is constructed :

0 0 ... 0 c.( f(t 1)
1 (t2-t1) (t2-t1)

2 ... (t2-t1)~~ c2 f(t2)

.1 (t~-t1) (ta~
ti (ta_t l)

N_l
. c

~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _
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The solution of the above system (in the Li or £2 sense) yields the coefficients

(c
~
J
~~1 

of a polynomial in the form ~1(x )  = Z C V
(X - t1)

”’1 . If t1 is an

Interior knot (in which case a previous polynomial p1_1 has been established)

and SMTH k ‘ —1 , the smoothness constraint at t1 must be considered and the

following over-determined system is constructed: - - -

k~~~~~(t)(t2-t1)~~~ ck+; f(t2)=~~ 
1 
(i~~t )~

=

• . ~(i)( )
(t~—t1) (t~~t~) 

— 
. f (t )= 1 

~

The solution of the above system (in the Li or £2 sense) yields the coeffi-

- 
d ents 

~
CV }V...k+2 and a polynomial of the form

Ci)k p1 1(t 1) . N i= 
.
~~ j! (x - t1)~ + ~ 

c~,(x -• j0 v k+2

If the error of approximation , f f by 
~ on [x 1~1 , t] f i X  is greater than TOL ,

b smaller candidate for 
~ 

(and corresponding polynomial approximatior~ is sought.

If 
~ 

satisfies TOL, the next step depends on t. If the process used for

finding 4 has not converged yet, a larger candidate for ~ (and corresponding

polynomial approximation) is sought. If the process has converged , t is

accepted as and the polynomial approximation ?~ is accepted as p1 .

III. The L1-Approximation Problem

The general L i (linear) approximation problem can be stated as follows:

Suppose we are given a real-valued function f (to be approximated) defined on a

finite set of real points X = (x 1, x2, ..., xml. Let ~~~~ (where n <m) be
a set of real-valued functions defined on X. Then, for any set of real numbers

_ _  A
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C {c1, C2, ..., c,~} we can define a linear approximating function of the form
n 

-

A(C, x) = - Z  C.$j(X). The L1-approximation problem is to find a best approxi-j=1 J

mation A(C*, x) (i.e., a set C~ = {cj r , c~, ...~ c~}) that minimizes
m 

-

(1) I If(x 1) — A(C , x
~)f

1=1

It is well known that at least one best approximation always exists.
- The connection between the t1-approximation problem and linear programing

Is well established , and has become the basis for many of the more effective

£1 algorithms. In the adaptive curve fitting package presented here, the

algorithm used for determining the t
~ 

approximations was developed by Barrodale

and Roberts [3]. It is a modified version of the simplex method of linear

programing and empirical evidence indicates that it is computationally superior

to any other known algori thm for solving the £1—approximation problem (see

Barrodale and Roberts [5] for comparative results). Unlike many 1.1 al gorithms

that require that the set of approximating functions 
~~~~~ 

be l inearly inde-

pendent on X, or sat i sfy the Haar condi tion on X , thi s algor i thm can be used
wi th any ~et of approximating functions.

Before going into a description of this algorithm , we note here that

familiarity with the standard form of the simplex method is being assumed on

the part of the reader (see the Appendix , or [7]). Al so, it should be pointed

out that the description presented here is somewhat superficial and that the

papers by Barrodale and Roberts that are relevant (see [3] for references) are

reconinended for further details.

For the general L1 -approx imation problem outlined earlier , let

= •~(x~)~ f~ = f(x~), and define non—negative variables u1, v1, a~ and b~

by putting f~ - ~~~~~~ u1 — v.~, I 1, 2, ..., m, and c~ = a~ - b~ for

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
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j  1, 2, ... , n. Then a best £~ approximation to f on X corresponds to an

optimal solution to the linear progranin4 ng problem : 
-

In
(2) MInimize z = I (u1 + v1)

1—1

(3) subjet t to f 1 ~~1
(a~ - b~)s~,1 + u1 — V

1 
1 1, 2, ...,

(4) and ~~ ~~ u1, v.~ > 0.

The formulation of the above correspondence appears in Barrodale and Roberts

(6].
The main modifi cations to the standard form of the simplex method as

presented in [3] resul t in an algorithm that exploits the above linear

programing version of the L1—approx imation problem in such a manner that

reduces the number of iterations required to arrive at an optimal solution

(i.e., a best Li 
approximation). Basically, the algori thm allows for the

passage through several neighboring simplex vertices (basic feasible soluti:’

extreme—point solutions) in a single iteration, thus reducing the number o ’

time—co nsuming simpl ex transformations needed to arrive at an optimal sol~~ ’or .

To begin our description of the algorithm, we note that an initial basic

feasible sol ution to the linear programing probl em (2) is imediately avail-

able. That is , if we denote the columns of the simplex tableau correspond1n~

to (2)-(4) by ~~ ~~ j = 1, 2, ..., n, and U .s, V i, i = 1, 2, ... , m, an

Initial basis is provided by U1, U2, •.., Urn (provided that  each f 1 is non-

negative). Below is the resulting initial simplex tabl eau:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —---~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
- -  - - • -
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A1 ... A

1,, B1 ... B,,, U1 .
~~ 

U
~ V 1 ... Vm 

____

U, •~ ~ 
•.. — +~ ~ 

•.. —, i 1 —1I I p i  fl~ 1 i ,,  fl ,1. . . :
S • . . - S
• • . S 

- f
~~ 1l,m ~n,m l,m n,m 1 —l m

m In m m
I ~~~ I 

— I •i . •.. — 
~ ~ 

0 ... o —2 ... —2 ~lzl ‘ 1*1 ‘~ 1=1 ~ i=l “~ I~1

Here, the col umn to the left of the tableau is used to indicate the basis ,

which initially consists of the vectors U1. The upper portion of the tableau

corresponds to the constraints (3), and the bottom (objective) row is a repre-
- • sentatlon of the objective function (2). That is, If we consider (2) in form

IC—u j — v1) +
•
z = 0 -

then it follows that

J1 ~~ 
- b~)s~~ - 1Z1

vj - 
1I1~i

} - 
1Z1

vi + z = 0

or - 

-

1
Z
1
a1s1,1+

1~1
a2 ~2,i+...+j Z

1
an$n,i I b l+l iI b 2$2 i . . . Ibn$n i

..2 I v i+z~~~
fi

which is equivalent to
(
1~1~1,i)ai + 

~~~~~~~~ 
+ ... + (

1~1
4n,i)a n — ( .Z1si,~

)bi — (
1~ 1~2,i)b2 ...

(5) 
-m - in

- ( I  • 4 )b - 2v1 - 2v, - ... - 2v + z = I f..n in 1=1 1

Thus we see that the objective row of the initial simplex tableau is a repre—

sentatlon of the objective function as shown in (5). If any of the f1 are

negative, the s ign of the corresponding row is changed , and U1 is replaced in

the basis by V1. Note also that A~ = -B~ j  ~ 1, 2, ..., n, = -V 1 .

I = 1, 2, ..., m, the sum of the entries in the objective row corresponding to

each pair of A~ and B~ is 0, and the sum of the entries in the objective row
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corresponding to each pair of U1 and V .~ is -2. This is utilized by the FORTRAN

program of this algdri thm which economizes on storage by using a condensed

form of the simplex tableau (see [4]).

The algorithm consists of two distinct stages. Stage 1, which begins

upon the establishment of the initial simplex tableau, restricts the choice

of the pivotal columns during the first n Iterations to the vectors A~ and B~.

The vector to enter the basis is chosen to be that which has the largest non-

negative entry in the objective row. (We note two things here: Choosing a

• vector to enter the basis is equivalent to selecting a variable to enter the

set of basic variables. Also, with regard to the choice of vectors to enter

the basis (I.e., variables to enter the set of basic variables) in Stage 1 ,

choosing from among those with non-negative entries In the objective row

clearly serves to decrease the value of the objective function, given the

formulation of the objective row.) The vector to leave the basis (or equi-

valently, the variable to enter the set of non—basic variables) in Stage 1 is

chosen from among the basic vectors U~ (and V1) by selecting that vector which

causes the maximum reduction in the objective function.

At the end of Stage 1 , the resulting simplex tabl eau represents an approxi-

mation that interpolates at least K of the data points, where K is the number

of vectors A~ or B~ in the basis. (This results from the fact that K of the

• vectors U1 (or V1) have been removed from the basis.) If the approximation

determined by the :implex tableau of the end of Stage 1 interpolates more than

K points, this is an indication that the tableau is degenerate. (This does not

cause any problems in practice , however.)

During Stage 2, the non-basic U1 and V1 vectors are interchanged wi th the

basic U1 and V1. The basic A~ and B~ vectors are not allowed to leave the

basis during this stage. At each iteration , the vector chosen to enter the

~

_ iJ

~

_ 
-
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basis Is that (among the non-basic U1 and V 1) wi th the most positive entry in

the objective row, and the vector to leave the basis is again chosen to be that

(among the bas ic U1 and V1) which causes the maximum reduction in the objective
function. The algorithm terminates when all of the entries in the objective

row are non-positive. (Although this normally occurs in Stage 2, should it

occur in Stage 1 , the second stage becomes unneccesary.)

Each vector that enters the basis during Stage 2 determines a data point

to be dropped from the interpolating set while the corresponding vector leaving

the basis determines a new point of interpolation. Thus assuming nondegeneracy,

the number of data points interpolated by the approximation resulting from

Stage 1 is preserved. The final simplex tableau at the end of Stage 2 may

contain basic vectors A~ or B~ that have negative val ues associated wi th them,

thus resulting in an infeasible solution . This solution is made feasible (and

hence optimal) by interchanging such basic vectors (or B~) with the corres—

pondIng non-basic vectors B~ (or Ad). Given the nature of the A~ and B~ vectors,

this Is a simple matter of changing the sign of the appropriate row.

It. is important to note here the main modification to the standard simplex

method that this algorithm introduces. For any given iteration (in both Stage

- 

- 

1 and Stage 2), upon having established the vector to enter the basis (i.e.,

the pivot column), the vector chosen to leave the basis (i.e., the pivot row)

Is not in general that vector which the standard simplex method dictates should

be removed, but rather is that vector (from among the basic UI and v.~ vectors)

which causes the maximum reduction in the objective function . Geometrically,

the simplex transformation which then fol l ows is equivalent to a passage

through several nei ghboring extreme points of the feasible region . The

standard procedure for determining the vector to leave the basis (see the

Appendix or [~]) is modified as fol lows: 

•—~~~~~~~~ --~~~—--. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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First, a tentative pivot row is determined using the standard procedure.
If subtracting twice the value of the resulting pivot from -the entry in the

objective row of the pivot column yIelds a nonposltlve result, then a normal

simplex transformation is performed on the tableau. Otherwise, twice the pivot

row Is subtracted from the objective row, the pivot row Is multipl ied by -1 ,

- 
- and the vector U1 (or V 1) in the basis corresponding to the pivot row is

replaced in the basis by the corresponding V1 (or 1J1). This serves to decrease
- • 

the value of the objective function and change the sign of the pivot. The

- • standard procedure for finding a pivot row is applied again , resulting in a new

tentative pivot. The previous procedure is applied until a pivot is chosen

which cannot be rejected (i.e., a pivot such - that twice its value subtracted

from the entry in the objective row of the pivot column is nonpositive). A

normal simplex transformation is then performed with this pivot.

Remark

In practice, errors due to roundoff can result in a non-basic vector being
chosen as a pivot column , even though there are no positive entries in the

vector (and hence no candidate for a pivot). This is usually due to a loss of

significance that can occur during simplex transformations on a tableau con-

• tam ing entries differing greatly In magnitude . In the FORTRAN version of

this algorithm [4], a small positive tolerance (TOLER) is defined below which
} the magnitude of any quantity is considered to be zero. The algorithm is

terminated prematurely if a pivot column Is encountered that contains no candi-

dates for a pivot that exceeds the value TOLER. This occurence Is rare, and

generally Indicates that the current solution is close to the actual optima l

solution. Thus, the program outputs the current solution as a reasonable

approximation to the actual optima l solution in these instances.

-:

~

•

~ 

~~~~ ~~~~~~~~ .- ::~T-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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IV. Numerical Results

This £
1~~

t
2 
adaptive curve fitting algorithm has been implemented as a

FORTRAN program (standard ASCII code) and has been tested on Colorado State

University ’s CDC 6400 and CDC Cyber 172. A fu 1y documented listing of this

package and complete discussion of the program ’s major components shall appear

In a future paper. Following Is a general discussion of input/output well

as some numerical results . 
-

-

Aside from the function (or data ) f to be approximated (in discrete form),

those values that must be supplied by the user include : IOPT, an integer

value (1 or 2) specifying the choice of approximation (best z~ or best 2.2);

N, the number of coefficients of each polynomial piece; and TOL, the desired

error tolerance. In circumstances where relatively few data points are

availabl e, the program fills in the gaps between the data points by discretizing

a piecewise l inear interpolation of the original data. Should this be necessary,

the number of additional “data points ” to be inserted in this manner (NPTS)

should also be suppl ied by the user.

The output consists of the coefficients of the polynomial pieces (where

the polynomials are in standard form), the knot l ocations of the piecewise

polynomial approximation , and the error of approximation for each polynomial

piece. Al so, all of the appropriate information about the piecewise polynomial

approximation is stored so as to allow the user to evaluate the approximation

at any point (in the interval of approximation) using an available function

subprogram.

Two other values used in the program that are not input but are user

definable are the values ETA and EPS. Recall (section II) that in the iterative

procedure used to determine the location of a parti cular 
~~~

, the values ~ (the

current largest “good” candidate for ~~
) and ~ (the current smallest “bad”

A - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =~~~~~~~~~~~~~~ -—-- --- ______
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candidate for ) are drawn together, and when b-a’ is less than or equal to

the user prescribed tolerance ETA, or when ~ and a’ become adjacent elements of

the data set (whichever occurs first), a’ is accepted as the location for

In the examples that follow, ETA was set to be less than or equal to the mesh

size of the data, thus ensuring that the iterative procedure will continue

until a’ and are in fact adjacent and the resulting 
~
‘
i is as large as possible.

- In the “backing off” procedure used to determine the actual knot locations x1
(see section II), x1 is chosen to be the largest ç, at which 

~~~~~~~~~~~~~~~~~~~~ 
<

Is less than the user-prescribed tolerance EPS (where the are the points

In (x 1.1, ~~~] at which the relative extrema of the error function f(x) - p~
(X)

occur). Empirical evidence indicates that the value of .05 for EPS yields

desirable results.

We now turn to some examples. Using the -adaptive curve fitting program

with best Li approximations (IOPT = 1), the function v’~ on [0, 2] was approxi-

mated on 201 equally spaced points with N = 6, SMTH = 2, and TOL = .01 . Since

this function is diffi cult to approximate by polynomial s near x = 0, the

algorithm ’s ability to automatically decrease the length of the subintervals

near x = 0 and then recover by lengthening them away from the origin is illus-

trated. The results appear below :

Knot locations 0.0 .06 .18 .41 .84 1.49 2.0

Subintervals 7 pts. 13 pts. 24 pts. 44 pts. 66 pts. 52 pts.

(It should be noted here that the purpose of the above example is simply to

Illustrate the adaptive nature of the program and that i n general , the 2.1
version of this adaptive curve fitting algori thm is not particularly suited for

approximating precise mathematical functions.)
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We now turn our attention to some examples that better illustrate how the

£.~ option of this adaptive curve fitting program is most effectively utilized .

As one might suspect, given the nature of L
~ 

approximation , the piecewise

polynomial Lj approximations have shown to be very effective for approximating

on data sets that contain points that are very inaccurate with respect to the

overal l accuracy of the data . For the example in figure 1, the function

Isin(x)I on [0, 2ir] was discretized (101 points ) and “no ise ” was generated

using a random number generator. (The number of “bad” points and a bound on

the deviation was set, but the location and magnitude [within the bound] of the

noise was random.) The pertinent input values appear at the top of the graph

and the execution time (in CPU seconds) appears below. (In all the examples

that follow, the data points are denoted by X’s.) Note that the noise has

virtually no ill effect on the piecewise polynomial 2.1 approximation. That

is, the curve essentially ignores the “bad” points and passes through the

“good” points.

In figures 2 and 3, the function eX on [0, 2] was discretized (101 points),

noise was introduced in the manner just described , and the resulting data set

was approximated on by the adaptive curve fitting program , exercising both the

and 2.2 (least-squares) option. In so much as least squares approximations

have the tendency to dampen the effect of randomly distributed noise , we mi qht

• expect (and in -fact do achieve) desirable results in both instances. However,

note that in figure 3 the approximation was visibly affected by the noise in

the interval (.4, .8) and by the “bad” point near 1.0, whereas in figure 2, the

‘
~ 

approximation again is unaffected by the noise.

We have also had some success in fitting smaller data sets wi th piecewise

polynom ial Lj approximations. The experimenthI data in figures 4 and 5 involves

the bitumen yield and gas and oil yield (as a function of time) from oil shale V

heated to a constant temperature. Si nce relatively few data points were

I - ~~~~~~~~~~~~~~~~~~~~~ - ‘ -- - — - - -~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~ — -~~~~~~

- -
~~~~~~~~~~ 
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available in each data sample (13-20 points), we filled in the gaps between the

data points with 20d equally spaced points by the manner previously described

(input NPTS = 200). In the exampl e in figure 4, TOL was set to a rather

liberal 5.0 so as to al low the approximation the freedom of passing through the

scattering of data points, rather than forcing an fnterpclatory type fit that

would have resulted if the tolerance were set smaller. For the example in

figure 5, TOL was set to 2.0, which still gives the algorithm a great deal of

freedom but results in a fit that follows the data more closely.

Remark

It should be noted here that the L
i 
version of this adaptive curve

fitting algorithm should be used with some discretion. For data containing

noise (particularly large data sets), it has proved to be a very effective

approximating scheme. In general , however, It should not be used for approxi-

mating precise mathematical functions , or for approximating “good” data sets

for which an interpolatory type fit would be des i rable. -

Al so, a future paper is anticipated in which all of the adaptive curve

fitting programs that have been developed thus far (restricted range, ç, L
~~
,

and £2) shall be compared in an effort to offer some insight into how they

• may be used most efficiently. 
- 

—-~~~~~~~~~~~~ - -~~~• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—-
~ -~ -• •~~ - -~~-
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• - APPENDIX 
.

A. The General Linear Programming Problem

The - general linear programming problem may be stated as follows:

OptImize (i.e., maximize or minimize) the linear form

(A.1) z = c1x1 + c2x2 + ... + ~~~
subject to the constraints

(A.2) X
j 

= 0, j = 1, 2, . . .,  n

and a11 x1 + a12x2 + ... + a11~x,~ < (‘. ) b~

a21x1 + a22x2 + ... + a~flxfl < (‘) b~~ -

amlxl + a~~x2 + ... + amn xn < (>)  bm
where the a 1~ 1 b

~ 
and cj are given constants.

The linear form (A.1) to be optimized is called the objective function.

Here we assume that at least one coefficient a.~ is nonzero in each row and

that every variable appears in some nontrivial inequality wi th a nonzero

coefficient. We make no special assumptions about the b1 , they may be

positive, negative, or zero. It should also be pointed out here that the

minimum of an objective function occurs at the same set of values as the

maximum of the negative of that objective function. Thus , regardless of

the constraints , the problem of minimizing z = k1x1 + k2x2 + ... + knxn is

equivalent to maximizing -z = -k1x1 — k2x2 — ... —k~x~. Also , any i nequality

a11 x1 + a12x2 +~ ... + a in xn b1
is equi valent to

—a 11 x1 - a12x2 — ... - a 1~x~ -b~.

A feasible solution to the linear programming problem is a vector

X (x 1, x2, . . . ,  x~) that satisfies conditions (A.2) and (A.3). The set of

-— -—~~~ V —V. - - — ~V V ~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~ -



all feasible solutions to the linear programing problem is a convex region In

n—dimensional Eucl idean space and is referred to as the feasible region,

or region of feasibility . The feasible region can either be void (in which

case no sol ution to the problem exists), a convex polyhedron, or a convex

region which is unbounded in some direction .
y

(0,12
Example 1 -

Maximize z = 3x + 2y
(0,7

Subject to x > 0, 
~ ~ (0,5

and x+ y <  7

x + 2y< 10 / 
~
7’°1(~~~ ) 

x

2x + y < 12 feasible region

Exam~~:: 

z = 3x + 5y (0,6
Subject to x > 0, y > 0 (0,5 

W~
?

~~
e
~~

i
’
b1e region ’.

and 

2 E E 3
~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

By introducing non-negative slack variables x
~+1~ 

xn+2, . . .,  ~~~ we can

express the problem (A.l)-(A.3) in the equivalent form:

Optimize (i.e., maximize or minimize) the linear form

(A.4) z = c1x1 + c2x2 + ... + ~~~ + OXn+- + ... +

subject to the constraints

(A.5) Xj  
= 0, ,j = 1, 2, ...,  n + m

-- — V  

-

- _I VV 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~ --~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~ -- -
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and a11x1 + a12x2 + ... + ~~~ + (-) x~~1 — b1

(A.6) 
a21x1 + a22x2 + ... + ~~~ + (-) ~~~ — b

2

- - 
amixi + am2x2 + ... + ~~~ 

- 

+ (-) ~~~ = . 
V

A basic solution to (A.6) is a solution obtained by setting n variables

equal to zero and solving for the remaining m variables (provided the solution

is unique). The m variables are called basic variables; the n that are pre—

specified as zero are called non-basic variables. A basic feasible solution

Is a basic solution which also satisfies (A.5); i.e., all the basic variables

are non—negative. An optimal feasible solution is a feasible solution which

also maximizes or minimizes (A.4).

With the assumption that a particular linear programming problem possesses

an optimal solution , the fol lowing holds :

1. There is an extreme point (corner point) of the feasible region at

which the objective function takes on its maximum or minimum.

2. Every basic feasible solution corresponds to an extreme point of the

feasibl e region .
- - From the above, we see that it is only necessary to examine extreme-point

solutions (I.e., basic feasible solutions). Since there are at most (~~~~) 
of

them, we have an upper bound to the number of possibl e sol utions to the

problem (A.4)-(A.6). However, for large n and m, evaluating all the possible

solutions to find one that maximizes or minimizes the objective function is an

unreasonable way to proceed. The simplex method, devised by G. B. Dantziq,

is a computational scheme that selects , in an orderly fashion , a small subset

of the possible solutions that converges to an optimal solution .

This algor i thm is a method for moving from one ex treme point to another

In such a way that the objective function Is always improved , or at the least,

___ -
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the same. In a finite number of steps, (usually between m and 2m) an optimal

feasible solution (If one exists) is found. The simplex method also indicates

the existence of alternate optimal solutions, empty feasible regions, and

unbounded solutions. It is an extremely effective tool for solving any linear V

programing problem. It should be noted, however, that the proof of -I ts

effectiveness is a result of empirical evidence, rather than underlying

theory. 
-

B. The Simplex Method

It should be noted at the outset that the manners in which the standard

simplex method can be described are as diverse as the forms that linear

programing probl ems can take on. In so much as most elementary treatises

on the simplex method deal wi th the “general ’ linear programming problem:

I~ex1mlze z c1x1 + c2x2 + ... + c~x~ (B.l)
- 

Subject to x,~ > 0, j  = 1, 2, ..., n (B.2)

and a11 x1 + a12x2 + ... + a1~x~ b1

V 
a21x1 + a22x2 + ~.. + a2,,x,,~ < b~

: : (B.3) 
V

amixi + am2x2 + ... + ~~~ < bm
or, Introducing non-negative slack variables , the equality form of the general

problem: 
- - 

-

Maximize z = c1x1 + c2x2 + .~~. + c~x~ + Ox~~1 + ... + OXm (B.4 )

Subject to Xj  
> 0, .J = 1, 2, . . .,  m + n (B.5)

and a11x1 + a12x2 + ... + aln xn + = b1
a21x1 + a22x2 + ... + a~~x~ + Xn+2 = b2 (B.6)

amjxl + am2x2 + ... + ~~~~ + = bm .

____________
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we shall proceed along these lines . (Note that since any linear programming

problem can be expressed in the above form, It is in some sense a general

form.) 
-

We begin by illustrating the simplex method wi th a specific linear

programing problem, this to be followed by a general description applicable

to any problem of the form (B.4)-(B.6) . Consider the problem in example 1 of

Appendix A. By introducing slack variables , r, s, and t, this problem can be

expressed as:

Maximize z = 3x + 2y + Or + Os + Ot (B.7)

Subject to x > O , y > O , r > O , s > O , t > 0  (8.8)

and x +  y + r  = 7 -

x + 2 y  + s — 1 0 (8.9)

2x+ y + t = l 2 ~
Note that a basic feasible solution is immediately available. That ~s , if

we l e t x = y = 0 , then lt follows thatr =7 , s = l O and t = l 2 .  This can be

represented in tableau form as

x y r 5

r 1 1 1 0 0  7

s 1 2 0 1 0 10 (8.10)

t~~~~~ l 0 0 1 1 2  -

- -3 -2 0 0 0 0

Here, the column to the left of the tableau is used to indicate the set of

basic variables (or basis ) which in this instance consists of the variables

r, s and t. The upper portion of the tableau represents the constraints (B.9)

and the lower portion of the tabl eau, known- as the objective row, Is a repre-

sentation of the objective function (B.7) expressed In the form: -3x - 2y + z = 0

(where we need not keep a column for the z).

V 
- 

-~~ ---—~~-- - ~~~~~~~~~~~~~~~~~ 

-
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Hence, at this stage we have our first basic feasible solution: x = 0,

y — 0, r — 7, s = 10, and t= 12. The entry in the lower right-hand corner

of (B.10) indicates that z = 0. Geometrically, this basic feasible solution

corresponds to the extreme point of the feasible region (see example I,

Appendix A) occuring at the origin. The simplex method consists of employing

Gauss-Jordan el imi nation to proceed to another basic feasibl e solution (I.e.,

to another corner point of the feasible region) in such a way that the value

of the objective function (z) shal l be increased (or at worst remain the same.)

We see that given the way in which the objective function is expressed in

the objective row, z can be increased by increasing any variable with a

negative coefficient in the objective row. Those variables having negative

coefficients in the objective row are x and y. Since the greatest increase

In z will clearly result from increasing that variable with the most negative V

coefficient, we choose to increase the variable x. The corresponding column

of the tableau , in this instance the first, is called the pivot column.

We now consider to what extent can the variable x be increased (we wish

to inc!ease x as much as possible wi thout violating any of the constraints).

If we consider the equations in (B.9), or equivalently the tableau given by

(8.10):
V 

r— 7 - x = .~’° 
V

- V 

s= 1 0 - x - ? 0

t 12 - 2x

We see that (keeping in mind that y is presently equal to 0) if we wish to

Incre -e x, we can not allow it be greater than 6. This is the smallest of

the ratios 81 = -i--, 82 = 
~~~ , 8

3 
= 3~?.

. If we Increase x beyond 6, then the last

of the above equations dictates that t will beco~ne negative , which is not

permitted by (B.8) . We find the e-ratios by dividing the entries in the

~~~~~~~~~~~- - - V—
~~~~~~~~~~ V.~~~V~~~~~~~~V V~~~~~ 
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right—hand column of the tableau by the corresponding positive entries in

the pivot column . The pivot row is that which yields the smallest non-

negative ratio; in this instance, the third row of tableau (B.l0).

The entry in the tableau located in both the pivot column and the pivot

row (circled in (B.1O)) is called the pivot. The first “simplex transformation”
consists of applying Gauss-Jordan elimina tion to the tableau in (B.lO) using

the given pivot. The resulting tableau appears below:

x y r S t - 
V

r o 1 0 -1/2 1

s 0 3/2 0 1 —1/2 4 - (B.ll)
x 1 1/2 0 0- 1/2 6 -

0 -1/2 0 0 3/2 18

Let us reflect upon what has transpired. The variable x, previously equal

to 0, has been increased to 6. Thus x has become a basic variable, or

equIvalently, has “entered the basis ”. The variable t, previously equal to

12, has been decreased to 0. Thus t has become a non-basic variable , or

equivale.~t ly , has “lef t the bas is”. The new tableau represents the basic

feasible solution: x = 6 , y = O , r = 1 ,s = 4 a n d t = O .  The entry in the
V 

lower right-hand corner of (8.11) indicates that z has been increased to 18.

Geometrically, the above simplex transformation corresponds to a transfer to

an adjacent extreme point of the feasible region , and the basic feasible

solution yielded by the tabl eau (8.11) corresponds to that extreme point of

the feasible region located at the point (6, 0).

Since one of the entries in the object row of (8.11) is negative , it

follows that z can be increased further. The pivot column for the next

simplex transformation shall be the second column . (This indicates that y

will enter the basis.) Upon examining the s-ratios (o~ = ..f. = 2, °2 =4~ 
=

2

- - - :V ,~~~~~~~ - - -
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- 

and e3 ‘4- = 12) we see that the pivot row is the first, corresponding to the
7 

- 
-

smallest o-ratio. (This indicates that r will leave the basis.) Performing

- 
a second simpl ex transformation (using the pivot circled in (8.11)) yields :

- 

~x y r  s t _ - 
- 

V

- y 0 1 2 0 -1 2 -

s 0 0 - 3 1 1  2 (8.12)

x l  0 - 1 0 1 5
- 0 0 1 0 1 19
- Since there are no negative entries in the obj ective row, we have arrived

at the optimal solution. The final tabl eau represents the optimal feasible

solution: x = 5, y = 2, r = 0, S = 2, and t = 0. The maximal value of the

objective function is 19. This solution corresponds to the extreme point of

feasible region located at the point (5, 2).

At this point, we summari ze the simplex method as illustrated in the

previous example. If we consider the general linear programming problem as

- 
posed in (B.4)-(B.6), we see that an initial simplex tableau is given by:

- 
x1 x~ ... x~ ... x~ X~~~1 

X~~~2 
Xn+m

- 
- 

x~41 a11 a12 ... a~ ... a1,,~ 1 0 ... 0 Th~~

- 
•
. xfl+2 a21 a22 ... a2j ~~.. a~~ 0 1 ...

. a . . .
V 

X~ .1. 
~~~~ 

a 2 •.. & fj  ~~.; 
~~j 1~ 

0 ... 1 •:s  0 b~ (B.13)

- 
~ fl4~~ aml am2 .

~~ 
a1~,j ... amn 0 0 ... 

• 

1 
m

.c l —C2 ... ~Cj 
... -C~ 0 0 ... 0 0

We assume that xj > 0 for j = 1, 2, ..., 
~~~~~ 

and that b~ > 0 for 1=1 ,2,... ,m.
- Then a basic feasibl e solution is immediately availabl e , namely , X

j  
0 for

j — 1 , 2, ... , n and x~~1 = b1 for I = 1 , 2, ..., m. We then proceed as

follows: 
-

_ _ _ _ _ _ _ _ _  - ~~=~~~~~~~~~~ --  ~~~~~~~~~~~~~~~~~~~~~~~~~
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1. Determine whether the current basic feasible solution is optimal , i.e. , 
V

whether all the entries in the objective row are greater than or equal to V

zero.

2. If there is at least one negative entry in the objective row, choose the

pivot column to be that with the most negative entry In the objective row.

(Assume this to be the ~th column.) In the case of a tie, choose

arbitrarily from among those tied.
b2

3. Determine the 8-ratios (e. = —‘—, i = 1, 2, ..., m) for the positive
J a~

entries in the pivot column .

4. Select the pivot row to be that with the smallest non-negative s-ratio.

(Assume this to be the ~
th row. ) In the case of a tie, choose arbitrarily

from among those tied. (Theoretically, a tie in this step may cause

problems. See the remarks that follow.) -

5. Carry out the simplex transformation by employing Gauss—Jordan elimination

with the pivot 
~~~

6. Return to step 1.

Each Iteration produces a new basic feasible solution. The procedure
V terminates when no suitable pivot column or pivot row can be found. If there

Is no pivot column (i.e., no negative entry in the objective row), then the

current solution is optimal . If there -Is a suitable pivot column , but all of

its entries are either zero or negative, this is an indication that the
solution is unbounded.

Remark

Note that performing a simplex transformation when the choice of pivot

row is made arbitrarily as a result of a tie among potential pivot rows (see

(4) above) resul ts in a basic variable (that corresponding to the row not

m - -—V-- - - ~~~~~~~~~
-
~~~~~~~~~~~~

-
~~~~~~~~~~~~~~~

- — —-—--—
~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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chosen to be the pivot row) turning to zero. The resulting basic feasible

solution (which may or may not be optimal) Is said to be degenerate. As

degeneracy is almost never a computational problem (except In rare instances

when endless cycling around a 1oop of non-optimal degenerate basic feasible

solutions occurs), degenerate solutions are treated as any other while
computing an optimal solution via the simplex method. For a more complete

discussion of degeneracy and cycling, see [7) or any other comparable text

on linear programing.

F .
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