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ABSTRACT

In [1] and [2], algorithms were introduced for adaptively computing
smooth piecewise polynomial approximations using uniform, least-squares (ié),
and restricted range uniform approximations. This paper deals with the intro-
duction of 2 adaptive curve fitting. Adopting the least-squares algorithm,
a package has been developed that will compute smooth piecewise polynomial
approximations to data and/or precise mathematical functions (in discrete
form) allowing the user the option of using best %y or best L5 approximations.
(The code for this newly developed 2129 adaptive curve fitting package
supercedes the code listed in [1] for the old least-squares packagg.) The
adaptive curve fitting algorithm used in this package is described in detail
in section II. Section III involves a discussion of the %y-approximation
problem as a linear programming problem, as well as a description of the 2
algorithm used in the computing of the 2 approximations. 'In section 1V,
the FORTRAN program that has been developed for this 21-%o adaptive curve
fitting algorithm is discussed, and numerical results are presented in an
effort to illustrate how the %1 version of this algorithm may be used most

effectively.
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I. Introduction

Let X be a finite set of real points and let f be a function defined on X,
or let data be given in tabular form. In the case of data given in tabular
form, say {(ti, yi)}?=], we shall let X = {ti}?sl and define f on X by f(ti)
= ¥y i=1,2, ..., M, so that the functional notation may be used in what
follows. Let a = min{x: x € X} and b = max{x: x €X} and for any function g
defined on X denote max{g(x): x € X} by [lng. Finally, let N, SMTH, and TOL
be parameters supplied by the user where N and SMTH are integer values with
N > SMTH > -1 and TOL is a positive number. In this setting, the adaptive
curve fitting algorithm presented here will calculate a piecewise polynomial
approximation p to f and a set of points (knots) {xi}';=0 C X with a = x5 < %y <
e« < X, = b such that:

(1) p restricted to [xi_], xi] is a polynomial p; € My_; = {q: q is a

real algebraic pd]ynomial of degree < N-1},

(2) p has SMTH continuous derivatives, and

(3)  IIf - plly <TOL.

II. The Adaptive Curve Fitting Algorithm

We shall begin with a somewhat brief description of the algorithm, in an
attempt to illustrate the basic logical flow. This shall be followed by an
in-depth discussion of the algorithm's various components. Again, it should
be mentioned that the input to the algorithm consists of the function to be
approximated (in the discrete form as described above), and the values N, SMTH,
and TOL.

The algorithm begins by finding the largest point ?1 in X such that:

(i) [a, %1] N X contains at least max(2, N+1) points, and




(i11) the best (1] or 12) approximation Pl € My to f on [a, %]] N X meets
the preséribed tolerance (i.e., ||f - p]ll[a.}ﬁllﬁx < TOL).
If ?] = b, then since Py is a piecewise polynomial satisfying (1)-(3), the
algorithm is successfully terminated. If Y] < b, then the right endpoint of
the first subinterval (i.e., the knot x]) is genera]]y'determined by "backing
off" from ?1 to a point in (a, ?1]11 X selected in such a manner (to be explained
 later) so as to add to the stability of the algorithm.

Having thus determined the first subinterval [a, x]] and corresponding
best (2] or 12) approximation p; € My.p to fon [a, x]] N X, the algorithm goes
on to determine the remainder of the piecewise polynomial approximation p.
However, for the remainder of the approximation, the problem of meeting the
smoothness constraint SMTH at the interior knots x, X5, ..., X, _; must be con-
sidered. Thus, the next step is to find the 1érgest point ?2 in X such that:

(1) [x], ?2](1 X contains at least max(2, N-SMTH) points, and

(i1) the best (z] or 22) approximation p, € My-q to f op [x], ?2] Nn X
subject to the constraint that péj) (x]) = p{j)(x]), R P e
SMTH, satisfies ||f - p2”[x], ;2]{\X < TOL.
Again, if *2 = b, M and P2 constitute a piecewise polynomial p satisfying
(1)-(3) and the algorithm is successfully terminated. If %2 < b, then the knot
X5 is determined in the same manner as Xqs in order to establish the second sub-
interval [x], 22]. '

The algorithm continues in the same manner to its completion by finding
successive subintervals [xZ’ x3], [x3, x4], R [xk_], b], and corresponding
polynomial approximations P3s Pgs ++es Py € My 4 to f such that the TOL and
SMTH constraints are met.

At this point, a more detailed description of the various components of

the algorithm is in order, beginning with how the %i are determined. Suppose
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some knot x; ; has been established. (This may be the initial knot Xg = aor
some interior knot.) The process of finding ?i is initiated by computing the
best (z] or zz) approximation (subject to the smoothness constraint SMTH if
X1 is an interior knot) to f on [xi_], b] N X. If this approximation satis-
fies the prescribed tolerance TOL, then %i = b. Should this approximation not
satisfy TOL, the algorithm sets B =b. In what follows, 5 shall denote the
current smallest point in X such that the appropriate best approximation to f on
[xi.1» B1n X does not satisfy TOL. Next, the appropriate best approximation to f
on [xi_], tln X is computed, where t = inf{x € X: x5y x] N X contains at
least max(2, N-SMTH) points}. If this approximation fails to satisfy TOL, the
algorithm cannot meet the desired accuracy and fails. Otherwise, the algorithm
sets 3 = t. In what follows, 3 shall denote the current largest point in X
such that the appropriate best approximation to f on [gi_], 3](1 X satisfies TOL.

An iterative procedure then ensues to find the largest possible X The

il
inf{x € X: (B - 3)/2 < x < b}. If this set is empty, the

algorithm sets t

algorithm sets t = sup{x € X: a £ X 5.(3 - 3)/2}. In effect, a "halfway point"
between.the current values of 3 and B is being sought. If t = 3, then this
proceduréhasconvergedand%i : d Otherwise, the appropriate best approximation
to f on [x;_y, t]1 N X is computed. If this approximation satisfies TOL, we
have a new value for 3, namely 3 =t. If this approximation does not satisfy
TOL, then we have a new value for B, namely 5 =t. This process is continued,
essentially drawing the values of the largest "good" candidate for %i (the

current 3a) and the smallest "bad" candidate for Qi (the current B) closer
together. When B - 3 is less than or equal to some user definable prescribed
tolerance (ETA), or when 3 and b are adjacent elements of X (which ever occurs

first), the process is completed and 3 is accépted as a good approximation to ;i'




Remaining in the setting just outlined, i.e., having just established an

Yi. the method of "backing off" mentioned earlier used to determine the knot
Tocation x, (and thereby establish the subinterval [xi_], Xi]) will now be
explained. (It should be noted here that if SMTH = -1 or 0, the following
procedure is bypassed, and the knot location X; is simply the point Yi.)
First, the error function f(x) - pi(x) is examined for those points
Eps Eps -oes §) in (xi_], %i] n X at whichvrelative extrema occur. That is,
g, is such that ]f(gv) - Pi(Ev)l.l |f(x) - p;(x)| for x = max{t €X: t < £}
and x = min{t € X: t > gv}. (Note that Ps is the appropriate best approxi-
mation to f on [xi_], %i]rw X computed in the previous process.) In a process
to be subsequently described, one of the gv.is chosen for the knot location X; -
The motivation for choosing X; in this manner is as follows: If f were differ-
entiable and X = [a, b], then choosing the knot x; to be an interior extreme
point of f - p; on [xi_], }i] would ensure that f'(xi) = p;(xi). That is, the
slope of the function f and its polynomial approximation on [xi_], %i], Pis
would match at X This becomes advantageous when joining the next polynomial
piece of the approximation to P; at x; when the approximation is required to
be at least continuously differentiable. When the next polynomial piece, Pi+1*
is smoothly joined to P; at Xi» it follows that the function f and both of the
polynomial pieces p; and Pi+] shall have the same slope about the knot Xje 11

we simply joined the polynomial pieces P; and p at ?i, this is generally not

i+l
the case and severe oscillatory problems tend to set in. This process of
"backing off" from }i to a smaller x; € {gv}t=] contributes significantly to
the stability of the algorithm.

In determining which £, should be chosen for the knot location Xj» steps
must be taken to alleviate the fact that f (in the discrete form input to the

N
algorithm) is in fact not differentiable. The values ?i(:]). A fi(al) are
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rl
calculated where f; is the derivative of the quadratic interpolation of f <&—

centered at sv. Then, x.

i is chosen to be the largest g, such that

|¥;(£v) - p%(sv)l is less than some user definable prescribed tolerance (EPS).
If there does not exist such a £, then x; is chosen to be the 1argest.§vat
which [¥!(€.) - pi(g,)] is a minimum. (It should be noted here that in the
implementation of the algorithm, it is generally not the case that all of the
relative extreme poirts of f - p, on (xi_], ?i] N X are considered, but rather
only the largest N-SMTH-1 of them.

This "backing off" procedure has proven to be invaluable for dampening
oscillations for those approximation in which SMTH > 0. However, if no conti-
nuity is required of the approximation (SMTH = -1) or if the approximation is
simply required to be continuous (SMTH = 0), this proceaure serves no purpose
and is overridden. (Again we note that in these instances X; =?('i, 8L 2 us)

Another aspect of the algorithm that merits attention is the process of
determinihg the last subinterval of the approximation. Suppose that the sub-
intervals [a, x]], [x], X2]’ cres [xi-Z’ xi_]] and corresponding polynomial
approximations Pys Pos «ees pi;] if f have been determined. If [xi_], bln X
contain§ at least max(2, N-SMTH) points, the algorithm goes on to determine Xj
precisely as outlined earlier. However, if [x;_ ;> bl N X contains fewer than
max(2, N-SMTH) points, a process is initiated that, if successful, will deter-
mine the last subinterval of the approximation. In this instance, the knot
xj.1 1s replaced with some X; ; in (x;_5» Xj_;) N X chosen such that [X;_;» bINX
will contain at least max(2, N-SMTH) points. Specifically, the algorithm
chooses X;_; to be that point in X closest to (b - x;_,)/2 such that:

(1) [ii_], b] N X contains at least max(2, N-SMTH) points, and

(i1)  the best (2, or %,) approximation p; € Ty.q to f on [ii_], bl n X

subject to the constraint that pgj)(ii_]) = pgég(ii_]), j=0,1, ..., SMTH

satisfies |If - pyll ;. 1obInK < TOL.
‘- ]




It is most often the case that such a point x;_; is readily available, in which

case the algorithm s successfully terminated. (Here, the last two subinferva]s
and corresponding pd]ynomia] approximations to f are, respectively, [x;_,» %;_;1
[ii-l’ b] and Ps-1» Py-) If a satisfactory ii-l cannot be found, the algorithm
is terminated and an appropriate error message is generated.

The bulk of the discussion thus far has been centered around the manner
in which the knots a = Xgs Xps eees X = b‘of the piecewise polynomial approxi-
mation p to f are determined. This is due to the fact that the algorithm's
adaptive nature, which allows it to calculate the total number and location of
knots needed (as opposed to most data fitting spline techniques that require
that the total number and location of the knots be specified in advance), is
one of the main features of the algorithm. We shall now direct attention to
the actual computation of the polynomial pieces Pys Pos =oes Py that comprise
the approximation p to f on X, this having thus far been taken somewhat for
granted. _

Suppose that some knot Xi.1 has been established, and the procedure that
determines xi is currently in progress. Suppose further that some point
t e [xi_], b] N X is being considered as a candidate for X; - Thus, the next
step is to determine the appropriate approximation to f on [xi-l’ tINnx |
(which we shall denote by Bi). Let [xj_1» tINX = {t; < t; < ... <t} If it
t] = a, or if SMTH = -1, there are no continuity constraints involved and the

following over-determined system is constructed:

1 0 0 0 rey ] [
boftety) dten) o end™ Llies ] )
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The solution of the above system (in the 2 or 2, sense) yields the coefficients
N

{c }v 3 of a polynomial in the form pi(x) = I]cv(x - t])v'l. If t; is an

vl
interior knot (in which case a previous polynomial Pi-1 has been established)
and SMTH = k > -1, the smoothness constraint at t, must be considered and the

following over-determined system is constructed:

o)
o e - k 1(ty) j-
(tz-t,)"” (tz-t,)N " ckJ f(tz)=jZ —--r]—(t2 -t,)’
4 ; : (3)
k piti(ty) ;
et e et Loy ] e 1 St
. s

The solution of the above system (1n the 2 0r %, sense) yields the coeffi-

cients {Cv}v=k+2 and a polynomial of the form

(J)
k pily(ty) ; N -1
P;(x) = & —_j'l—(x - )+ \,.EQC (x - t,)"7".

If the error of approximation of f by Bi on [xi 1° t] N X is greater than TOL,

a smaller candidate for x (and corresponding polynomial approximation) is sought.
If pi satisfies TOL, the next step depends on t. If the process used for
finding %i has not converged yet, a larger candidate for ?i (and corresponding
polynomial approximation) is sought. If the process has converged; t is

accepted as ;i and the polynomial approximation 3i is accepted as P

III. The &,-Approximation Problem
The general 29 (1inear) approximation pfoblem can be stated as follows:
Suppose we are given a real-valued function f (to be approximated) defined on a
finite set of real points X = (X5 Xps -evs X2} Let {¢j}2=1 (where n < m) be

a set of real-valued functions defined on X. Then, for any set of real numbers




Cs= {c]. Cos +nes cn} we can define a linear approximating function of the form

n
A(C, x) = jZ]cj¢j(x). The ¢,-approximation problem is to find a best approxi-

mation A(C*, x) (i.e., a set C* = {c}, c3, ..., cj}) that minimizes
S ; :
) I I£(x;) - A(C, x;)]
i=1

It is well known that at least one best approximation always exists.

The connection between the 21-approximation problem and linear programming
is well established, and has become the basis for many of the more effective
z] algorithms. In the adaptive curve fitting package presented here, the
algorithm used for determining the 9 approximations was developed by Barrodale
and Roberts [3]. It is a modified version of the simplex method of linear
programming and empirical evidence indicates that it is computationally superior
to any other known algorithm for solving the E]-approximation problem (see
Barrodale and Roberts [5] for comparative results). Unlike many 2 algorithms
that require that the set of approximating functions {%}3=1 be linearly inde-
pendent on X, or satisfy the HSar condition on X, this algorithm can be used
with any cet of approximating functions.

Before going into a description of this algorithm, we note here that
familiarity with the standard form of the simplex method is being assumed on
the part of the reader (see the Appendix, or [7]). Also, it should be pointed ?
out that the description presented here is somewhat superficial and that the
papers by Barrodale and Roberts that are relevant (see [3] for references) are
recommended for further details.

For the general z]-approximation problem outlined earlier, let

b5, = ¢j(xi)’ fy = f(xi), and define non-negative variables Ujs Vi 3y and bj

n

b ing fj - 7§ c, = - Voo T 20, 2y voes Wy .= a, - b,
y putting fy jﬁ]CJ¢j’i uj = vy 1= ], 2 m, and cJ aJ bJ for
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j=1,2, ..., n. Then a best 2 approximation to f on X corresponds to an

optimal solution to the linear programming prcblem:

m
(2) Minimize z = ] (u; +v,)
: i=1
= :
(3) Subjétt to fi = jz](aj -~ bj)¢jai + Ui - vi i= ]’ 20 esey W
(4) and a;, by, uy, vy > 0.

The formulation of the above correspondence appears in Barrodale and Roberts

[6].

The main modifications to the standard form of the simplex method as
presented in [3] result in an algorithm that exploits the above linear
programming version of the 1]-approximation problem in such a manner that
reduces the number of iterations required to arrive at an optimal solution
(i.e., a Best 2 approximation). Basically, the algorithm allows for the
passage through several neighboring simplex vertices (basic feasible solutions,
extreme-point solutions) in a éingle iteration, thus reducing the number of
time-consuming simplex transformations needed to arrive at an optimal solution

To begin our description of the algorithm, we note that an initial basic
feasible solution to the linear programming problem (2) is immediately avail-
able. That is, if we denote the columns of the simplex tableau corresponding
to (2)-(4) by Aj, Bj, =12, ...,nand Uy, Vi, 21,2, ..., m, an
initial basis is provided by U], U2' e Um (provided that each f; is non-

negative). Below is the resulting initial simplex tableau:




S

- which initially consists of the vectors U;. The upper portion of the tableau

10
A' see A" B] s ee Bf.‘ U‘ cee um VI ev e v

m
Bita - % [ e h -1 L
o : : - i . P
Un % .m T ¢n’m -¢,,m i -¢n’m 1 -1 m
I TR ) 4
e & i Do w2 T
121 7 a4 f _ 12, i

Here, the column to the left of the tableau is uséd to indicate the basis,

corresponds to the constraints (3), and the bottom (objective) row is a repre-

sentation of the objective function (2). That is, if we consider (2) in form
m
Z]("ui ‘Vi)+z=0

then it follows that |

m n m m

m
{ (@; - b:)é: s - Jvi- VTF}- Tv.+2z=0
&4 jgl R LD R R !
or
m m m
‘§]a1¢1 , Z CE T g e LS Z U zif Vi *Z°,Z{i

which is equivalent to
m m m m m
(1§]¢1’1)a] + (iZ]¢2,i)a2 +oo+ (1Z]¢"’i)a“ - (i§]¢1,i)b] - (i£]¢2’i)b2 ¥
(5)

..om , m
- (1§]¢n,i)bn S vy - -2yt s 1£]fi'

Thus we see that the objective row of the initial simplex tableau is a repre-

RN

sentation of the objective function as shown in (5). If any of the f; are

negative, the sign of the corresponding row is changed, and U; is replaced in
the basis by Vi' Note also that Aj = -Bj, ™ Gy Bs asvy Uy Ui = ‘Vi’
i=1,2, ..., my the sum of the entries in the objective row corresponding to

each pair of Aj and Bj is 0, and the sum of the entries in the objective row




n

corresponding to each pair of Ui and Vi is -2. This is utilized by the FORTRAN
program of this algorithm which economizes on storage by using a condensed
form of the simplex tableau (see [4]). '

The algorithm consists of two distinct stages. Stage 1, which begins
upon the establishment of the initial Simplex tableau, restricts fhe choice
of the pivotal columns during the first n iterations td the vectors Aj and Bj.
The vector to enter the basis is chosen to be that which has the largest non-
negative entry in the objective row. (We note two things here: Choosing a
vector to enter the basis is equivalent to selecting a variable to enter the
set of basic variables. Also, with regard to the choice of vectors to enter
the basis (i.e., variables to enter the set of basic variables) in Stage 1,
choosing from among those with non-negative entries in the objective row
clearly serves to decrease the value of the objective function, given the
formulation of the objective row.) The vector to leave the basis (or equi-
valently, the variable to enter the set of non-basic variables) in Stage 1 is
chosen from among the basic vectors U; (and Vi) by selecting that vector which
causes the maximum reduction in the objective function.

At the end of Stage 1, the resulting simplex tableau represents an approxi-
mation that interpolates at least K of the data points, where K is the number
of vectors Aj or B‘j in the basis. (This results from the fact that K of the
vectors U, (or'vi) have been removed from the basis.) If the approximation
determined by the simplex tableau of the end of Stage 1 interpolates more than
K points, this is an indication that the tableau is degenerate. (This does not
cause any problems in practice, however.)

During Stage 2, the non-basic Ui and Vi vectors are interchanged with the
basic U; and V;. The basic A, and B; vectors are not allowed to leave the

J J
basis during this stage. At each iteration, the vector chosen to enter the
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basis is that (among the non-basic Uy and Vi) with the most positive entry in
the objective row, and the vector to leave the basis is again chosen to be that
(among the basic U; and Vi) which causes the maximum reduction in the objective
function. The algorithm terminates when all of the entries in the objective
row are non-positive. (Although this normally occurs in Stage 2, should it
occur in Stage 1, the second stage becomes unneccesary;)

Each vector that enters the basis during Stage 2 determines a data point
to be dropped from the interpolating set while the corresponding vector leaving
the basis determines a new point of interpolation. Thus assuming nondegeneracy,
the number of data points interpolated by the approximation resulting from
Stage 1 is preserved. The final simplex tableau at the end of Stage 2 may
contain basic vectors Aj or Bj that have negative values associated with them,
thus resulting in an infeasible solution. This solution is made feasible (and
hence optimal) by interchanging such basic vectors Aj (or Bj) with the corres-
ponding non-basic vectors Bj (or Aj). Given the nature of the Aj and Bj vectors,
this is a simple matter of changing the sign of the appropriate row.

It is important to note hére the main modification to the standard simplex
method that this algorithm introduces. For any given iteration (in both Stage
1 and Stage 2), upon having established the vector to enter the basis (i.e.,
the pivot column), the vector chosen to leave the basis (i.e., the bivot row)
is not in genefa] that vector which the standard simplex method dictates should
be removed, but rather is that vector (from among the basic Uj and V4 vectors)
which causes the maximum reduction in the objective function. Geometrically,
the simplex transformation which then follows is equivalent to a passage
through several neighboring extreme points of the feasible region. The

standard procedure for determining the vector to leave the basis (see the

Appendix or [7]) is modified as follows:
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First, a tentative pivot row is determined using the standard procedure.
If subtracting twice the value of the resulting pivot from the entry in the
objective row of the pivot column yields a nonpositive result, then a normal
simplex transformation is performed on the tableau. Otherwise, twice the pivot
row is subtracted from the objective row, the pivot row is multipiied by -1,
and the vector U; (or Vi) in the basis corresponding to the pivot row is
replaced in the basis by the corresponding V, (or Ui)' This serves to decrease
the value of the objective function and change the sign of the pivot. The
standard procedure for finding a pivot row is applied again, resulting in a new
tentative pivot. The previous procedure is applied until a pivot is chosen
which cannot be rejected (i.e., a pivot such that twice its value subtracted
from the entry in the objective row of the pivot column is nonpositive). A

normal simplex transformation is then performed with this pivot.

Remark
In practice, errors due to roundoff can result in a non-basic vector being
chosen as a pivot column, even though there are no positive entries in the .
vector (and hence no candidate for a pivot). This is usually due to a loss of
significance that can occur during simplex transformations on a tableau con-
taining entries differing greatly in magnitude. In the FORTRAN version of
this algorithm [4], a small positive tolerance (TOLER) is defined below which
the magnitude of any quantity is considered to be zero. The algorithm is
terminated prematurely if a pivot column is encountered that contains no candi-
dates for a pivot that exceeds the value TOLER. This occurence is rare, and
generally indicates that the current solution is close to the actual optimal
solution. Thus, the program outputs the current solution as a reasonable

approximation to the actual optimal solution in these instances.




IV. Numerical Results

This 2%, adaptive curve fitting algorithm has been implemented as a
FORTRAN program (st&ndard ASCII code) and has been tested on Colorado State
University's CDC 6400 and CDC Cyber 172. A fully documented 1isting of this
package and complete discussion of the program's major components shall appear

in a future paper. Following is a general discussion of input/output is well

. as some numerical results.

Aside from the function (or data) f to be approximated (in discrete form),
those values that must be supplied by the user include: IOPT, an integer
value (1 or 2) specifying the choice of approximation (best 27 or best 22);
N, the number of coefficients of each polynomial piece; and TOL, the desired
error tolerance. In circumstances where relatively few data points are
available, the program fills in the gaps between the data points by discretizing
a piecewise linear interpolation of the original data. Should this be necessary,
the number of additional "data points" to be inserted in this manner (NPTS)
should also be supplied by the user.

The output consists of the coefficients of the polynomial pieces (where
the polynomials are in standard form), the knot locations of the piecewise
polynomial approximation, and the error of approximation for each polynomial
piece. Also, all of the appropriate information about the piecewise polynomial
approximation is stored so as to allow the user to evaluate the approximation
at any point (in the interval of approximation) using an available function
subprogram.

Two other values used in the program that are not input but are user
definable are the values ETA and EPS. Recall (section II) that in the iterative
procedure used to determine the location of a particular ki’ the values a (the

current largest "good" candidate for }i) and B (the current smallest "bad"
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candidate for ?i) are drawn together, and when B-3 is less than or equal to
the user prescribed tolerance ETA, or when B and 3 become adjacent elements of
the data set (whichever occurs first), & is accepted as the location for %i'
In the examples that follow, ETA was set to be less than or equal to the mesh
size of the data, thus ensuring that the iterative preccedure will continue
until 3 and b are in fact adjacent and the resulting ;i is as large as possible.
. In the "backing off" procedure used to determine the actual knot locations X;
(see section II), x; is chosen to be the largest g, at whichAlgt(;v)-p%(zv)l
is less than the user-prescribed tolerance EPS (where the gv are the points

in (xi_], ?i] at which the relative extrema of the error function f(x) - pj(x)
occur). Empirical evidence indicates that the value of .05 for EPS yields
desirable results.

We now turn to some examples. Using the adaptive curve fitting program
with best ¢; approximations (IOPT = 1), the function vx on [0, 2] was approxi-
mated on 201 equally spaced points with N = 6, SMTH = 2, and TOL = .01. Since
this function is difficult to approximate by polynomials near x = 0, the
algorithm's ability to automatically decrease the length of the subintervals
near x ; 0 and then recover by lengthening them away from the origin is illus-

trated. The results appear below:

Knot locations 0.0 .06 .18 .41 .84 1.49 2.0
Subintervals "7 pts. 13 pts. 24 pts. 44 pts. 66 pts. 52 pts.

(It should be noted here that the purpose of the above example is simply to
illustrate the adaptive nature of the program and that in general, the 2
version of this adaptive curve fitting algorithm is not particularly suited for

approximating precise mathematical functions.)

—
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We now turn our attention to some examples that better illustrate how the
z] option of this adaptive curve fitting program is most effectively utilized.
As one might suspect, given the nature of 9 approximation, the piecewise
po1ynomia! ) approximations have shown to be very effective for approximating
on data sets that contain points that are very inaccurate with reSpect to the
overall accuracy of the data. for the example in figure 1, the function
|sin(x)| on [0, 27] was discretized (101 points) and "noise" was generated
using a random number generator. (The number of "bad" points and a bound on
the deviation was set, but the location and magnitude [within the bound] of the
noise was random.) The pertinent input values appear at the top of the graph
and the execution time (in CPU seconds) appears below. (In all the examples
that follow, the data points are denoted by X's.) Note that the noise has
virtually no i1l effect on the piecewise polynomial 2 approximation. That
is, the curve essentially ignores the "bad" points and passes through the
"good" points. )

In figures 2 and 3, the function e* on [0, 2] was discretized (101 points),
noise was introduced in the manner just described, and the resulting data set
was approximated on by the adaptive curve fitting program, exercising both the
2, and %y (leést-squares) option. In so much as least squares approximations
have the tendency to dampen the effect of randomly distributed noise, we might
expect (and in fact do achieve) desirable results in both instances. However,
note that in figure 3 the approximation was visibly affected by the noise in
the interval (.4, .8) and by the "bad" point near 1.0, whereas in figure 2, the
9 approximation again is unaffected by the noise.

We have also had some success in fitting smaller data sets with piecewise
polynomial 2 approximations. The experimental data in figures 4 and 5 involves
the bitumen yield and gas and oil yield (as a function of time) from o0il shale

heated to a constant temperature. Since relatively few data points were
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available in each data sample (13-20 points), we filled in the gaps between the
data points with 2od equally spaced points by the manner previously described
(input NPTS = 200). In the example in figure 4, TOL was set to a rather
liberal 5.0 so as to allow the approximation the freedom of passing through the
scattering of data points, rather than forcing an interpclatory type fit that
would have resulted if the to]efance were set smaller. for the example in

- figure 5, TOL was set to 2.0, which still gives the algorithm a great deal of

freedom but results in a fit that follows the data more closely.

Remark

It should be noted here that the 29 version of this adapiive curve
fitting algorithm should be used with some &iscretion. For data containing
noise (particularly large data sets), it has proved to be a very effective
approximating scheme. In general, however, it should not be used for approxi-
mating precise mathematical functions, or for approximating "good" data sets
for which an interpolatory type fit would be desirable.

Also, a future paper is anticipated in which all of the adaptive curve
fitting programs that have been developed thus far (restricted range, 2_, 25
and 22) shall be compared in an effort to offer some insight into how they

may be used most efficiently.
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 APPENDIX

A. The General Linear Programming Problem

The general linear programming problem may be stated as follows:
Optimize (i.e., maximize or‘minimize) the linear form
(A.1) Z=CXy + Xy + L.+ Cpxy
subject to the constraints

(A.2) Xy = Qe J =21, 2, cusy i
and ayxy +apXy oo+ agxe < (2) by
- e e R R

auXp * aoXy * oot A, < (>) bm

where the 350 b; and ¢4 are given constants.

The linear form (A.1) to be optimized is called the objective function.

Here we assume that at least one coefficient 35 is nonzero in each row and

that every variable appears in some nontrivial inequality with a nonzero

coefficient. We make no special assumptions about the bi’ they may be

positive, negative, or zero. It should also be pointed out here that the

minimum of an objective function occurs at the same set of values as the

maximum of the negative of that objective function. Thus, regardle;; of

the constraints, the problem of minimizing z = k]x] + k2x2 GG knxn is

equivalent to maximizing -z = -k]x] - k2x2 iy 'knxn' Also, any inequality
A%y *ayXp ¥ . Ay x> by

is equivalent to

't %

A feasible solution to the Tinear programming problem is a vector

-a”X] b ai2x2 = s¢0 = a

X = (xq, Xps +ee xn) that satisfies conditions (A.2) and (A.3). The set of
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all feasible solutions to the linear programming problem is a convex region in

n-dimensional Euclidean space and is referred to as the feasible region,

or region of feasibility. The feasible region can either be void (in which
case no solution to the problem exists), a convex polyhedron, or a convex

region which is unbounded in some direction.

y
(0,12
Example 1
Maximize z=3x +2y
ubject to x>0,y>0 (0,5
and t* yx 7
(7,0)
ErEE® | - 1e,0) T10,0) ki
2+ y <12 feasible region
Example 2
Maximize z = 3x + 5y
Subject to x>0,y>0
and x+3y> 9
x+ y> 5
&+ y= 6
(3507 (50)

By introducing non-negative slack variables Xn+1® Xn+2° **-

express the problem (A.1)-(A.3) in the equivalent form:

Optimize (i.e., maximize or minimize) the linear form

(A.8) Z =Xyt CXy oL e X+ 0xn+] ¥ .os * 02

n+m

subject to the constraints

(A.5) X5 = D 32 1 8y cuns L EM
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(A 6) 32] X-l + azzxz + e aznxn + (‘) xn*z : = bz
Ayt Xy to.. * apxy + (-) Roim ® By -

A basic solution to (A.6) is a solution obtained by setting n variables

equal to zero and solving for the remaining m variables (provided the solution

is unique). The m variables are called basic variables; the n that are pre-

specified as zero are called non-basic variables. A basic feasible solution

is a basic solution which also satisfies (A.5); i.e., all the basic variables

are non-negative. An optimal feasible solution is a feasible solution which

also maximizes or minimizes (A.4).

With the assumption that a particular linear programming problem possesses
an optimal solution, the following holds:

1. ~ There is an extreme point (corner point) of the feasible region at

which the objective function takes on its maximum or minimum.

2. Every basic feasible solution corresponds to an extreme point of the

feasible region.

From the above, we see that it is only necessary to examine extreme-point
solutions (i.e., basic feasible solutions). Since there are at most (;) of
them, we have an upper bound to the number of possible solutions to the
problem (A.4)-(A.6). However, for large n and m, evaluating all the possible

solutions to find one that maximizes or minimizes the objective function is an

unreasonable way to proceed. The simp1exlmethod, devised by G. B. Dantzig,
is a computational scheme that selects, in aﬁ orderly fashion, a small subset
of the possible solutions that converges to an optimal solution.

This algorithm is a method for moving from one extreme point to another

fn such a way that the objective function is always improved, or at the least,
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the same. In a finite number of steps, (usually between m and 2m) an optimal
feasible solution (if one exists) is found. The simplex method also indicates
the existence of alternate optimal solutions, empty feasible regions, and
unbounded solutions. It is an extremely effective tool for solving any linear
programming problem. It should be noted, however, that the proof of its
effectiveness is a result of empirical evidence, rather than underlying

theory.

B. The Simplex Method

It should be noted at the outset that the manners in which the standard
simplex method can be described are as diverse as the forms that linear
programming problems can take on. In so much as most elementary treatises

on the simplex method deal with the "general" 1inear programming problem:

Maximize Z =Xyt CXy ...+ CoXo (B.1)
Subject to Xy 2 0 3= 0,08, i B (B.2)
and a X Fagpxy ... Fag X < by

% + az0% R 0%, g_bz
N 5 E 5 (B.3)

Xyt A2 * et A%y < by

or, introducing non-negative slack variables, the equality form of the general

problem: T _
Maximize Z=CqxptCXy b box +HOX ..+ Ox, (B.4)
Subject to Xy 2 B d =l 2y cocuMBEB (B.S)
and A11X) FaggXy ol a4 XL, "y
ay1X) + A%y ... ¥ ap X, * X2 = b, (B.6)
am;x] 3 améxz 3 b am:txn * Xpem © l;m -




ot

T e

28

we shall proceed along these lines. (Note that since any linear programming
problem can be expressed in the above form, it is in some sense a general
form. )

We begin by illustrating the simplex method with a specific linear
programming problem, this to be followéd by a general descriptioh applicable
to any problem of the form (B.4)-(B.6). Consider the’problem in example 1 of
Appendix A. By introducing slack variables, r, s, and t, this problem can be

expressed as:

Maximize Z2=3x+2y+0r+0s + 0t (8.7)
Subject to x>0,y>0,r>0,s>0,t>0 : (8.8)
and X+ y+p =7
X + 2y +s = 10 (8.9)
2x + y +t=12.

Note'that a basic feasible solution is immediately available. That is, if
we let x = y = 0, then it follows that r = 7, s = 10 and t = 12. This can be
represented in tableau form as

| Xy or B

t
1 S5 A RN S B 7
0

s{1 2 o0 1 10 (8.10)
tl®@ 1 0 0 1l
& w5yl

Here, the column to the left of the tableau is used to indicate the set of
basic variables (or basis) which in this instance consists of the variables
r, s and t. The upper portion of the tableau represents the constraints (B.9)

and the lower portion of the tableau, known as the objective row, is a repre-

sentation of the objective function (B.7) expressed in the form: -3x - 2y + 2

(where we need not keep a column for the z).

0
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Hence, at this stage we have our first basic feasible solution: x = 0,

y=0,r=7,s-= lb, and t = 12. The entry in the lower right-hand corner .
of (B.10) indicates that z

0. Geometrically, this basic feasible solution
corresponds to the extreme point of the feasible region (see example 1,
Appendix A) occuring at the origin. The simplex method consists of employing

Gauss-Jordan elimination to proceed to another basic feasible solution (i.e.,

to another corner point of the feasible region) in such a way that the value
of the objective function (z) shall be increased (or at worst remain the same.) ﬁ

We see that given the way in which the objective function is expressed in

s

the objective row, z can be increased by increasing any variable with a !
negative coefficient in the objective row. Those variables having negative
coefficients in the objective row are x and y. Since the greatest increase
in z will clearly result from increasing that variable with the most negative
coefficient, we choose to increase the variable x. The corresponding column
of the tableau, in this instance the first, is called the pivot column.

We now consider to what extent can the variable x be increased (we wish
to increase x as much as possible without violating any of the constraints).
If we consider the equations in (B.9), or equivalently the tableau given by
(B.10):

r=17-x =,a’0
s=10 - x - jg’o
t =12 - 2x - 0.
We see that (keeping in mind that y is presently equal to 0) if we wish to

incre ‘e x, we can not allow it be greater than 6. This is the smallest of |
the ratios o - %, 82 =-%g, 8y = %?. If we increase x beyond 6, then the last
of the above equations dictates that t will become negative, which is not

permitted by (B.8). te find the e-ratios by dividing the entries in the

SIS e
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right-hand column of the tableau by the corresponding positive entries in

the pivot column. The pivot row is that which yields the smallest non-
negative ratio; in this instance, the third row of tableau (B.10).

The entry in the tableau located in both the pivot column and the pivot
row (circled in (B.10)) is called the pivot. The first "simplex transformation"
consists of applying Gauss-Jordan elimination to the tﬁbleau in (B.10) using
the given pivot. The resulting tableau appears below:

X y r S t
rlo @ 1 o -i2|
0

s 32 0 1 -1/72] 4 - (B.11)
x 11 /2 & 0 1/2] 6
0 -1/2 0 0 3/2118

Let us reflect upon what has transpired. The variable x, previously equal
to O, ha; been increased to 6. Thus x has become a basic variable, or
eqdivalently, has "entered the basis". The variable t, previously equal to
12, has been decreased to 0. Thus t has become a non-basic variable, or
equivalently, has "left the b&sis“. The new tableau represents the basic
feasible solution: x=6,y=0,r=1,s=4and t =0. The entry in the
lower right-hand corner of (B.11) indicates that z has been increased to 18.
Geometrically, the above simplex transformation corresponds to a transfer to
an adjacent extreme point of the feasible region, and the basic feasible
solution yielded by the tableau (B.11) corresponds to that extreme point of
the feasible region located at the point (6, 0).

Since one of the entries in the object row of (B.11) is negative, it
follows that z can be increased further. The pivot column for the next

simplex transformation shall be the second column. (This indicates that y

will enter the basis.) Upon examining the 6-ratios (el = ~%— = 2, 8y =-%- = §3
4 Z
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§ and 03 =1 12) we see that the pivot row is the first, corresponding to the
| z - .
f smallest g-ratio. (This indicates that r will leave the basis.) Performing
a second simplex transformation (using the pivot circled in (B.11)) yields:
X o or. st
ylo 1 2 0 -1 2
: 5 10 @4 <3 1 1] 2 (8.12)
A 2 2 B 0. =% 0 | 5
; 0 0 1 o 1119
Since there are no negative entries in the objective row, we have arrived
at the optimal solution. The final tableau represents the optimal feasible

solution: x=5,y=2,r=0,s=2,andt=0. The maximal value of the
objective function is 19. This solution corresponds to the extreme point of
feasible region located at the point (5, 2).

At thi§ point, we summarize the simplex method as illustrated in the
previous example. If we consider the general linear programming problem as

posed in (B.4)-(B.6), we see that an initial simplex tableau is given by:

Xy Xy o) xj cee Xy Xn#1 Xn+2 *** Xnem
X1 1311 22 --- aij cee A0 T [0 TSR b]
X2 |37 3 ... a2j R P 0 1 A 0 b2
x"+i ai] 612 cee a,ij “ie ain 0 -'-a 1 ...-0 bj (8.13)
Xoem | 2m1 LR amj s amn 0 B 1 bm
"C] ‘Cz Ve 'CJ “ee 'Cn 0 0 T 0 0

* Xpem
Then a basic feasible solution is immediately available, namely, Xy = 0 for

We assume that X3 20for =1, 2 ... and that bj > 0 for i=1,2,...,m.

J=1,2, ..., nand Xneg * b1 fori=1,2, ..., m. We then proceed as

follows:
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1. Determine whether the current basic feasible solution is optimal, i.e.,
whether all the entries in the objective row are greater than or equal to
zero.

2. If there is.at least one negative entry in the objective row, choose the
pivot column to be that with the most negative entry in the objective row.

th

(Assume this to be the j column.)_ In the case of a tie, choose

arbitrarily from among those tied.
b
i

3. Determine the 6-ratios (o, = —
J aij

» 1=1,2, ..., m) for the positive
entries in the pivot column.
4. Select the pivot row to be that with the smallest non-negative e-ratio.

(Assume this to be the ith

row.) In the case of a tie, choose arbitrarily
from among those tied. (Theoretically, a tie in this step may cause
problems. See the remarks that follow.)

5. Carry out the simplex transformation by employing Gauss-Jordan elimination
with the pivot a5

6. Return to step 1.

Each iteration produces a new basic feasible solution. The procedure
terminates when no suitable pivot column or pivot row can be found. If there
fs no pivot co]umn (i.e., no negative entry in the objective row), then the
current solutipn is optimal. If there is a suitable pivot column, but all of

its entries are either zero or negative, this is an indication that the

solution is unbounded.

Remark
Note that performing a simplex transformation when the choice of pivot

row is made arbitrarily as a result of a tie'among potential pivot rows (see

(4) above) results in a basic variable (that corresponding to the row not
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chosen to be the pivot row) turning to zero. The resulting basic feasible

solution (which may'or may not be optimal) is said to be degenerate. As “ 4
degeneracy is almost never a computational problem (except in rare instances

when endless cycling around a Toop of non-optimal degenerate basic feasible

solutions occurs), degenerate solutions are treated as any other while

computing an optimal solution via the simplex method. 'For a more complete

discussion of degeneracy and cycling, see [7] or any other comparable text

on linear programming.
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