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Abstract

This paper is concerned with the band-
limitedness of the output of a nonlinearity
with a random input. The input is taken to be
a contaminated Gaussian process. It is shown
that, if the nonlinearity is not a polynomial,
or if the Gaussian input component is not band-
limited, then the output is not bandlimited.

I. Introduction

In statistical communication theory, as
well as other areas of engineering, we are
frequently interested in nonlinearities with
random inputs. Also, in the context of signal
transmission, the bandwidth occupied by a ran-
dom signal or noise is of concern. The effect
of a linear system upon the bandwidth proper-
ties of a random process is well understood;
however, such is not the case for nonlinear
systems. In this paper we will consider the
effect of a nonlinearity upon the bandwidth of
a class of random processes.

By the term nonlinearity we will refer to
a time invariant zero memory nonlinearity.
That is, the output at time t is a function
only of the input at time t. Such nonlineari-
ties are frequently encountered in the form of
quantizers, companders, limiters, power law
devices, etc.

In the next section we will precisely
state our assumptions, and we will review some
established results. Then in the succeeding
section we will develop the principal result
of the paper.

II. Preliminaries

The parameter set of the random processes
will be the real line, and the parameter will
be associated with time. Let N(t) be a second
order random process, and assume that N(t) is
second order stationary; that is

PIN(t;) <n; , N(t)) <ny}=
P{N(t;4ty) < n; , N(ty+t)) < ny}

for all tos t1s tys My, and ny. Thus the auto-

correlation function E{N(t) N(s)} is a function
only of the time difference, R(t-s). The ran-
dom process is mean square continuous if, for
all t,
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lin E{[N(s)-N(t)]%} = 0 .
s>t

This is equivalent to the autocorrelation func-
tion R being continuous at the origin.

If N(t) is mean square continuous, the
spectral representation of N(t) is of the form

jut

N(t) = [7 eI aN(w) ,

where the integral is defined as a limit in the

mean and ﬁ(w) is a random process with ortho-
gonal increments. It follows that for wy > Wy

E([N(wp) - Nw))1%} = F(w,) - Flo))
and

R(D = [7 3T aF(w) .

The function F is called the spectral distribu-
tion function. The spectrum of the random pro-
cess N(t) consists of all the numbers in whose
neighborhood F is actually increasing; that is,
the spectrum is the set of all numbers wo such
that

P(w0+t) - F(wo—c) >0

for all € > 0. These numbers are the frequen-
cies that enter effectively in the harmonic
analysis of both the autocorrelation function
and the sample functions of the random process.
The above properties are well known and can be
found developed in [1, chapter 10] and

[2, chapter 11].

Let X(t) be a second order stationary
Gaussian random process with a positive variance.
Assume that X(t) and N(t) are independent random
processes that are mean square continuous. Let

Y(t) = X(t) + N(t) . 1)
Then Y(t) is a contaminated Gaussian process.

Consider the class of all Baire functions

g(+) such that E{(g[¥(t)])?} < =. All non-
linearities will be assumed to belong to this
class. The nonlinearities 31(') and gz(') will

be regarded as identical if 31[Y(t)] and gzlY(t)]
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are equivalent random processes. Throughout
the sequel it will be assumed that g(:) 1s not
a constant.

The random process Y(t) will be taken as
the input to the nonlinearity and the output
glY(t)] will then be a well defined second
order random process that is second order sta-
tionary. We will be concerned with the spectral
properties of the output, and thus we should
insure that the output possesses a spectral
representation. This property is established
by the following two theorems.

Theorem 1: A second order random process that

is second order stationary possesses a spectral
representation if and only if it is mean
square continuous.

This theorem is proved in [1, pp. 482-
483).

Theorem 2: Let S(t) be a second order random
process that is first order stationary and mean
square continuous. Let g(:) be any Baire func-~

tion such that B{(s[S(t)])z) < @, Then
g[S(t)] is mean square continuous.

This theorem is proved in (3].

A random process is said to be bandlimited
if it has a bounded spectrum; that is, if there
exists a finite number M such that the absolute
value of any point in the spectrum is less than
M. 1If the Gaussian process X(t) possesses a
spectral density function (i.e. the spectral
distribution function is absolutely continuous),
the following theorem completely characterizes
the bandlimitedness of the output when the
input is X(t). The nonlinearity in the fol-
lowing theorem is assumed to belong to the
class described earlier when N(t) is iden-
tically zero.

Theorem 3: Assume that the Gausaian process
X(t) possesses a spectral density function.
Then g[X(t)]is bandlimited 1if and only if
A. X(t) is bandlimited,
and

B. g(*) 1s a polynomial.

This theorem is proved in [4].

Notice that Theorem 3 does not hold in
general if we drop the Gaussian assumption.

For example, let G(t) be a bandlimited Caussian
process possessing a spectral density function.
Then let arc tan [G(t)] be the input. By
Theorem 3 this input is not bandlimited; and if
g(*) is a polynomial, the output also will not
be bandlimited. However, if g(x) = tan x, then
the output will be bandlimited, even though the
nonlinearity is not a polynomial.

III. Development

In this section we will establish necessary
conditions for the output to be bandlimited when
the input is the contamirated Gaussian process
Y(t) given by (1).

For the moment, consider two zero mean
mutually Gaussian random variables X and Y,
with correlation coefficient p, and each with

variance 02 > 0. If |p| < 1, then a bivariate
density function f(x,y) exists. Using the
Mehler formula, we can write

f(x,y) =

1 [ -1 2 2
exp 7 3 (x“-2pxy+y i] =
zﬂoz 4_92 20°(1-p°)

p(x) p(y) nzo o" 6, (x) 6 (y)

where
1 xz
p(x) = — exp (-—2 s
2n o 20
H (%)
8 (x) = o LR e A
n
n!

Hn(') is the n-th Hermite polynomial given by
n xz n xz
Hn(x) = (-1) exp (T) d _ exp (- —2-) »
ax"

and the series is convergent pointwise as well
as in an l..2 sense [5]. Let gl(-) and 32(-)

be any Baire functions such that
2

E(lg,(X)]") <=, 1 =1,2,

Then 31(-) admits the expansion
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b=/ 80 0,() p(x) dx

and the convergence is in the sense that
lim [ [51(*) - I Bn(x)] p(x) dx = 0.
Ko -= n=0

Similarly,

g, (x) = nZO c, 8,(x)

where

c, " £ gz(x) en(x) p(x) dx

and the convergence is in the same sense. It
then follows in a straightforward fashion that

B{Sl(x) 82(‘1)} = 20 bn c, o
ns=

Now assume that p=l. Using the Schwarz
inequality, it follows that X=Y with probability
one. Then we get that

Elg, (X) g,(1)} = E(g, (X) 8,(X))
= b e .
L
Now assume that p=~1. It then follows from the

Schwarz inequality that X=-Y with probability
one. Then E{g,(X) g,(Y)} = E{g, (X) g, (-0 }.

However, since en(x) is even for even n and
odd for odd n, we get that

7 8,6 0p@dx=(-D" [* g,(x)0_ ()p(x)dx.
Using this, we then get that
qusﬂﬂ-gﬁdf%%.

Now we return to the problem at hand. We
will first calculate the autocorrelation func-
tion of the output of the nonlinearity. Thus
we are interested in the quantity

E{g[Y(t)] g[¥(s)]} =
E{g[X(t)+N(t)] g[X(s)+N(s)]}.

Associate the mean of X(t) with the random

process N(t), and therefore, without loss of
generality, assume that X(t) has zero mean.

Let a,z denote the variance of X(t), and let
p(t-8) denote the correlation coefficient of
X(t) and X(s). Using the results outlined
above, we have that the conditional expectation
is almost surely given by

E{g[Y(t)] g[Y(s)]|N(t),N(s)} =

= n
nZo lo(t-8)1" b [N(£)] b [N(s)]

where

b (y) = g 6, (x) g(xt+y) p(x) dx.

Thus we see that the output autocorrelation
function is given by

E'g[Y(t)] s[Y(s)J} -

Bl ] lo(t-8)]" bn[N(t)lbn[N(s)]} .
n=0

Notice that

[tp(e-8)1" b [N(£)] b_[N(s)]1| <

®, N D2 + b (N

and B,nzo [(bn[N(c)])z + (bn[“<°)l)2 ];_

2 E{(g[U) )2} < =.

Thus the Dominated Convergence Theorem justi-
fies exchanging the expectation and the infi-
nite summation. Therefore, we have that

E{glY(t)] gl¥(s)]} =

I [pCe-8)1" Eb [N(t)]b_[N(s)1}.

n=0
Notice that b () can be interpreted as a
nonlinearity, and thus bn[N(t)] is a second

order random process that is second order
stationary. Thus, E{bn[N(t)] bn[N(s)]) is a

nonnegative definite function of (t-s), say
Dh(t-l). and we see from Theorem 2 that 'h(')

is continuous. Therefore,




E{glY(t)] g[Y(s)]} = [ [o(t-8)]" R (t-s).
n=0

Letting r(-) denote the autocorrelation func-
tion of the output, we get that

r@ = ] @I"R (D). @

n=0
Since

@ = ] R0 <=,
n=0

we see that the convergence in (2) is uniform.

Let G(w) be the spectral distribution
function corresponding to r(tr). That is,

r(0) = [© I ac(w).

If we require G(-=) = 0 and G(*) to be right
continuous, then G(-) is uniquely determined
by r(+) [2, pp. 519-522]. 1In the sequel all
spectral distribution functions will be assumed
to be right continuous and to vanish at minus
infinity. Therefore, we can also uniquely
determine the spectral distribution functions
corresponding to p(°*) and Rn(-), that is,

p(r) = 7 " 4 p(w)

R (D) = [T 4 D, ().

Recall that the spectral distribution function
of the product of autocorrelation functions

is given by the convolution of the spectral
distribution functions corresponding to each

of the autocorrelation functions. This can

be easily seen if one forms the analogy between
autocorrelation functions and characteristic
functions and between spectral distribution
functions and probability distribution func-
tions.

Due to uniform convergence, we can trans-
form (2) term by term to get

G(w) = Dy(w) + D(w) * D, (w)

- &)

+ [ (owi1™ *p @ ,
n=2

where * denotes convolution, that is,

Fi(0) * Fy(w) = _[: F)(0-2) dF,(0) ,

*
and [-] ™ denotes multifold convolution.

Recall that to any spectral distribution
function there corresponds a symmetric non-
negative definite function [2, pp. 519-522],
and to any such symmetric nonnegative definite
function there corresponds a stationary second
order random process [2, p. 72). Thus, for any
spectral distribution function F, define B(F)
as the supremum of the spectrum of the asso-
ciated random process. Notice that -B(F) is
then the infimum of the spectrum of the asso-
ciated random process. Thus a random process
having a spectral distribution function F is
bandlimited if and only if B(F) < =, For two
spectral distribution functions Fl and Fz, it

follows in a straightforward fashion that
B(FI*FZ) - B(l’l) + B(Fz).

Notice that if Rn(O) = 0, then bn(N(t)] =0

with probability one. If all but a finite
number of the Rn(O) were zero, then all but a

finite number of the bn[N(t)] would be zero with

probability one; and in this case g[x+N(t)]

would be a polynomial in x (with random coef-
ficients). Therefore, 1f g(-) is not a poly-
nomial, then an infinite number of the lln(O)

are nonzero. Notice that if Rn(O) is nonzero,

then Dn(w) is not identically zero.

Assume that g(*) is not a polynomial.
Notice that for K > 2,

K
n[ )22 (ID@)1*™) » Dn(u)] < BlG(w)],
n.

and as K approaches infinity, the left hand
side of the above inequality increases to
infinity. This result is summarized in the
following theorem.

Theorem 4: Let the random process Y(t) be
given by (1) and assume that g(*) is not a
polynomial. Then g[Y(t)] is not bandlimited.

Since we are assuming that the nonlinearity
is not constant, then for at least one value of
n2>1, %(0) > 0, and thus Dn(w) is not iden-

tically zero. Thus we see from (3) that if the
Gaussian component X(t) is not bandlimited,
then the output will also not be bandlimited.
This observation is summarized in the following
theoren.




Theorem 5: Let the random process Y(t) be
given by (1) and assume that the Caussian
component is not bandlimited. Then g[Y(t))
is not bandlimited.

IV. Comments

Notice that Theorems 4 and 5 hold for any
contamination component N(t) which satisfies
the mild conditions imposed earlier. From the
development of these theorems we see that the
Gaussian component plays a major role in
causing the spectrum of the random process to
be spread by the nonlinearity. Also, it is
impossible for the independent contamination
component to "undo" this effect of the Gaussian
component .

Let G(t) be a stationary, mean square con-
tinuous, bandlimited Gaussian process, and let
N(t) = arc tan(G(t)]. Assume that the Gaussian
process G(t) is independent of the Gaussian
process X(t). Let the nonlinearity be given
by g(x) = tan(x). Then g[N(t)] is bandlimited.
However, on the basis of Theorem 4, g[X(t) +
N(t)] 1s not bandlimited, even though the posi-
tive variance of X(t) can be made very small.

Now assume N(t) is identically zero. Then
(2) becomes

r(t) = [ b“2 o(1”
n=0

where

by = 7 800 8,00 plx) ax

and (3) becomes

G) = by? 120} + b, % D) + {z b 2o 1™
n=

Then we see that if g(*) is a polynomial, only
a finite number of the bu are nonzero. In this

case, we see that g[X(t)] is bandlimited if and
only if X(t) is bandlimited. In the case where
g(*) is not a polynomial, an infinite number of
the b, are nonzero, and thus glX(t)] cannot be

bandlimited. Thus we see that Theorem 3 holds
without the assumption of the existence of a
spectral density function.

Using the characterization of spherically
invariant random processes given in (6], it
can be shown in a straightforward fashion that
the results of this paper hold if the term
"Gaussian process" is replaced with the term
“spherically invariant random process."
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