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~!~16U U t~ !LJ\ Abstract lim E{(N(s)-N(t)]2} — o . ~~~~~~~~~~~~ B
This aper is concerned with the band—

limitedness of the output of a nonlinearity This is equivalent to the autocorrelation func—
with a random input. The input is taken to be tion R being continuous at the origin.

~~ 
a contaminated Gaussian process. It is shown
that, if the nonlinearity is not a polynomial, If N(t) is mean square continuous, the
or if the Gaussian input component is not band— spectral representation of N(t) is of the form
limited, then the output is not bandlimited.

I. Introduction N(t) — J~ e~~
t d~(w)

In statistical comsunication theory, as where the integral is defined as a limit in thewell as other areas of engineering, we are
frequently interested in nonlinearities with mean and I1(w) is s random process with ortho—
random inputs. Also, in the context of signal gonal increments. It follows that for 

~2 
‘

transmission, the bandwidth occupied by a ran-
dom signal or noise is of concern. The effect E((~(w2) — ~kw1)] 2 J — F(w2) — P(w1)of a linear system upon the bandwidth proper—
ties of a random process is well understood; and

systems. In this paper we will consider the R( r) — f ~~~ dF(w)effect of a nonlinearity upon the bandwidth of

however, such is not the case for nonlinear

Q a class of random processes.
C••) The function F is called the spectral dietribu—By the term nonlinearity we will refer to tion function. The spectrum of the random pro—a time invariant zero memory nonlinearity. cess N(t) consists of all the numbers in whoseThat is, the output at time t is a function neighborhood F is actually increasing; that is,• only of the input at time t. Such nonlineari—

3 LI... ties are frequently encountered in the form of the spectrum is the set of all numbers such
thatP quantizers, companders, limiters, power law

devices, etc. F(w09.e) — F(w0—c) > 0

3 In the next section we will precisely
state our assumptions , and we will review some for all £ > 0. These numbers are the fruquen—
established results. Then in the succeeding cies tha t enter effectively in the harmonic

I4II~~~~~~ section we will develop the principal result analysis of both the autocorrelation function
of the paper. and the sample functions of the random process.

g The above properties are well known and can be
II. Preliminaries found developed in [1, chapter 10] and

12, chapter 11].
The parameter set of the random processes

will be the real line, and the parameter will Let X(t) be a second order stationary
be associated with time. Let N(t) be a second Gaussian random process with a positive variance.
order random process, and assume that N(t) is Assume that X(t) and N(t) are independent random
second order stationary; that is processes that are mean square continuous. Let

P{N(t1) < , ~~ n2} — Y(t) X(t) + N(t) . (1)

Then Y(t) is a contaminated Gaussian process.P(N(t1+t0) < n1 , N(t2+t0) < n2}

Consider the class of all Baire functions
for all t0, t1, t2, n1~ and n2. Thus the auto— g(~) such that E{(g(Y(t)1)

2} < — . All non—
correlation function E(N(t) W(a)1 is a function linearitie. will be assumed to belong to this
only of the time difference, R(t—s). The ran— class. The nonlinearities g1() and ~~~~ 

will
dom process is mean square continuous if, for be regarded as identical if g1(Y(t)J and g2IY(t))all t,
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are equivalent random processes. Throughout For example, let G(t) be a bandliaited Gaussian
the sequel it will be assumed that g(.) is not process possessing a spectral density function.
a constant. Then Jet arc tan [G(t)J be the input. By

Theorem 3 this input is not bandlimited; and if
The rando. process ‘1(t) will be taken as g(’) is a polynomial, the output also will not

the input to the nonlinearity and the output be bandlisited. However, if g(x) — tan x, then
gtY(t)) will then be a well defined second the output will be bandliaited, even though the
order random process that is second order eta— nonlinearity is not a polynomial.
tionary. We will be concerned with the spectral
properties of the output , and thus we should III. Development
insure that the output possesses a spectral
representation. This property is established In this section we will establish necessary
by the following two theorems, conditions for the output to be bendlimited when

the input is the contaminated Gaussian process
‘1(t) given by (1).

Theorem 1: A second order random process that
ia second order stationary possesses a spectral For the moment, consider two zero mean
representation if and only if it is mean mutually Gaussian random variables X and ‘1,
square continuous, with correlation coefficient p, and each with

variance > 0. If p
~ < 1, then a bivsriate

This theorem is proved in (1, pp. 482— density function f(x,y) exists. Using the
I4ehler formula, we can write483J.

f (x ,y) =

Theorem 2: Let S(t) be a second order random —l 
(x2—2pxy+y2)process that is first order stationary and mean exp I

square continuous. Let g(’) be any Baire func— 2~02/ c?  120 2 (l_02) I —

tion such that E{(g[S(t)))2} < ~~ . Thea
g(S(t)J is mean square continuous.

p(x) p(y) ~ p1
~ 0n(*) ~~~~n O

This theorem is proved in (3j.
where

A random process is said to be bandlimited 1if it has a bounded spectrum; that is, if there p(x) — — exp
exists a finite number H such that the absolute ,,~~ovalue of any point in the spectrum is less than
N. If the Gaussian process X(t) possesses a H ~ 

)spectral density function (i.e. the spectral a a
distribution function is absolutely continuous), 0n(~~ 

— 

1’T ‘

the following theorem completely characterizes
the bandlialtedness of the output when the
input is X(t). The nonlinearity in the fol— Hn(’) is the n—rh Hermits polynomial given by

lowing theorem is assumed to belong to the
class described earlier when N(t) is iden- I x \
tically zero. 8n~~

) — (—1)” ~~ 
~~2

) 

2

a 
exp 

~

— -
~ /

dx

Theorem 3: Assume that the Gaussian process and th. series ii convergent pointvise as veil
X(t ) possesses a spectral density function . as in an sense (51. Let z~( )  and g2 (’ )
Then g(X(t) 1 is bsndllisi ted if and only if

be any Baire functions such that

A. X(t) is bandlimited,
E((g~(X)J

2) C — , i — 1,2.
and

I. g() is a polynomial. Then 
~~~~~~ 

admits the expansion
-1ACCtSSIO$ 1ev P

(x) — ~ b 8 (x)This theorem is proved in (41. ~l n nn0
DOC luff 0Notice that Theorem 3 does not hold in where i,rn~l01iNCE~ 0general if we drop the Gaussian ass* ption.
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process N(t), and therefore, without loss of
bn — L. g1(x) 0n~~ 

p(x) dx generality, assume that X(t) has zero mean,

Let o~ denote the variance of X(t) , and let
and the convergence is in the sense that p(t—s) denote the correlation coefficient of

X(t) and X(s). Using the results outlin*d

lim r [g (x) — ~ b~ ~n~~
]2 p(x) dx — 0. 

above, we have that the conditional expectation
is almost surely given by

n 0
E{g[Y(t)) g(Y(s)J~N(t),N(a) } —

Similarly,
a

— 
~ 

C 8 (x) ) (p(t—s)f 1 bn(N(t)l b~ IN(s)1
na0n—0

where where

• J ’ g2(x) 0 (x) p (x) dx b~ (y) — f” 0~(x) g(x9y) p(x) dx.

and the convergence is in the same sense. ~~ 
Thus we see that the output autocorrelation

then follows in a straightforward fashion that function is given by

E~g(Y(t)] g(Y(s)1~ —

E{g1(X) g2(’1)j = 
~ 

b ~
n—O ~ 

E~ ~ (p(t—a)j~ bn(N(t)1bntN(s)1~Now assume that p•i. Using the Sc)iwarz n0
inequality, it follows that X=Y with probability
one. Then we get that Notice that

E(g1
(X) 

~~~~~ 
— E{g1(X) g2(X)) 1(p (t—s)j~ b~ (N(t )] b~(N (s)1I ~.

S

— b c 
(b (N(t)])2 + (b (N( a)]) 2

n—C 
a a

and
Now assume that p —l . It then follows fro, the 

~ [(~~c~~~~j )2 + (b~(N(s)J)2J~ =Schvarz inequality that X—Y with probability 
~n—Oone. Then E{g1(X) g2 (T)1} — E(g1(Z) g2(—X)}.

However, since 6 (x) is even for even n and 2 Eug(Y(t)J) 2) < a,n
odd for odd a, we get that

fies exchanging the expectation and the inf i—1’ g2(_x)0~(x)p(x)dx_ (_l)fl £ 82(Z)On 
Thus the Dominated Convergence Theorem juati—

(x)p(x)dx . nite s~~~ation. Therefore, we have that

E{g(Y(t)J g(Y(s)J} =
Using this, we then get that

I [p(t—s)J~ E(b (N(t)Jb (N(s)J3.
E{g1(X) g2(Yfl — ~ (_ 1) fl b c . n0

n 0  n ~
Notice that b

Now we return to the problem at hand. We ~(‘) can be interpreted as a

will first calculate the autocorrelation fuac— nonlinearity, and thus b~(N(t)] is a second

tion of the output of the nonlinearity. Thus order random process that is second order
we are interested in the quantity statio nary . Thus , E(bn[N(t )J bn[N(s )J ) is a

E(g(T(t)J g(T(s)J} — 
nonnag.tivs def in ite function of (t—s) ,  say

and we see from Theorem 2 that

E(g(X(t)’Hl(t)j g(X(s)4~(s)J}. is continuous. Therefore ,

Associate the mean of X(t) with the random
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E(g(Y(t)] g(Y(s )] } — t~~~_5)l
n R~~t—s . F1(u) * F2(w) — J” F~(w—X) dF2(~)

Letting r(’ ) denote the autocorrelatiom func— and (]*n denotes multifold convolution.
tion of the output, we get that

Recall that to any spectral distribution
n function there corresponds a sy~~~tric non—r ( r )  — 

~ (p(t)] R~(r) . (2) negative definite function (2, pp. 519—522],
n=0 and to any such sy etric nonnegative definite

function there corresponds a stationary second
Since order random process [2 , p. 72]. Thus, for any

a spectral distribution function F, def ine 1(F)
r(0) • 

~ 
&~(O) < , as the supremum of the spectrum of the aaso—

n 0 d ated rando. process. Notice that —1 (F) is
then the infimum of the spectrum of the asso—

we see that the convergence in (2) is uniform. ciated random process. Thus a random process
having a spectral distribution function F is

Let C(w) be the spectral distribution bandlimited if and only if 1(1) < . For two
func tion corresponding to r(r). That is , spectral distribution functions F

1 and F2, it

follows in a straightforward fashion that
r(r) = f’ e~ dG(w). B(F1*F2) — 1(F1) + 1(F 2).

If we require G(—~) — 0 and G(’) to be right Notice that if R~(O) — 0, then bnIN(t)] = 0
continuous, then G(’) is uniquely determined with probability one. If all but a finite
by r(’) (2, pp. 519—522]. In the sequel all number of the R~(O) were zero, then all but a

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
b~ ~~~umed finite number of the bn(N(t)J would be zero with

infinity. Therefore, we can also uniquely probability one; and in this case g(xIil(t)]
determine the spectral distribution functions would be a polynomial in x (with random coef—
corresponding to p () and R~(.), that is, ficients). Therefore, if g(’) is not a poly-

nomial, then an infinite number of the R~(0)

— J ’ e~Jt d D(m) are nonzero. Notice that if R~(O) is nonzero,
—~~ then Dn(w) is not identically zero.

Rn(T) — r e~’~ d Dn(w)~ Assume that g(’) is not a polynomial.
Notice that for K > 2,

Recall that the spectral distribution function r K 1of the product of autocorrelation functions II ! ((D(w)] ) * D~(W)~ ~~~~~~~~is given by the convolution of the spectral L n 2  J
distribution functions corresponding to each
of the autocorrelation functions. This can and as K approaches infinity, the left hand
be easily seen if one forms the analogy between side of the above inequality increases to
autocorrelation functions and characteristic infinity. This result is si arized in the
functions and between spectral distribution following theorem.
functions and probability distributi on func.
tions.

Theorem 4: Let the random process ‘1(t) be
Due to uniform convergence, we can tran a— give n by (1) and assume that g ( )  is not a

for. (2) term by term to get polynomial. Then g(T(t)I is not bandlimited .

G(u) — D0(w) + D(w) *
Since we are ass* ing that the nonlinearity

• (3) is not constant, then for at least one value of

+ 
~ 

((D(e)]~~) * I) 
n > 1, R.~(O) ‘ 0, and thus D~(w) is not iden—

n 2  n tica lly zero . Thus we see from (3) that if the
Gaussian co~~onent X(t) is not band limited ,

where * denotes convolutio n, that is , then the output will also not be bandli mited.
This observation is s~~~arized in the fo llowing
theore m. 

.1.~.I~I1 T ~11 .. . ~~~~. 
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bn — r g(x ) 0~ (x ) p(x) dx

and (3) becomes

C(w) a b0
2 1(w>O) + b1

2 D(u) + ~n=2

Then we see that if g ( )  is a polynomial, only
• a finit, number of th. be are nonzero . Zn this

case , we see that g(X(t)1 is bandlimited if and
only if 1(t) is bandlimited. Zn the case where
g ( )  is not a polynomial , an infinite number of
the bn ar. nonzero, and thus g[ X(t )) cannot be
bandlimited. Thus we see that Theorem 3 holds
without the ass~~~~t ion of the existence of a
spectral density function.

Using the characterization of spherically
invariant random processe. given in (6], it
can b shown in a straightforward fashion tha t
the results of this paper hold if the term
“Gaussian process” is replaced with th. term
“spherically invariant random process. ”
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