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~~~~ ~) MILK ING DATA THROUGH BIASED REGRESSION TECHNIQUES

Webster and R.F. Gunst, Southern Methodist University

The recent—interest in biased estimation One method of handling this problem is to
procedures in multiple linear regression arises use a biased estimator whicb in e.seng. is the
from the large variances of the least squares es— same as (3) except replace ‘V~ with W~’V~ as the
timators (unbiased ) of the regression coefficien~~ coefficient of awhen multjcoltjnearjtjes are present. The biased t(0 < W~ < 1). Then the corre—

• estimation procedures greatly reduce this van — sponding term in (4) is W~ c4~ / ~~~~. The idea
ance at the cost of some bias. It is the purpose

is to let Wof this paper to look at this bias with reference £ be small if is small. Some of
to the nature of the specific problem being in— the more co only used biased estimator s have

~~~~~ vestigated. 
of the following forms :For a structure upon which to base this dis-

cussion let the model be of the form Estimator W~if~ 
Y. B + B X.  + B x. + ... + ~ x. + ci o lil 2i2 p

Simple Ridge A
t/(kt+k) k>0st—1.,2,.. . ,p

or ‘1 1 8  
1, 2, ..., n

+ X B + £ (1) Generalized Ridge A
t/(At+kt) 

)c~)O;& l,2,...,p

~~~~ where Y’ (‘V , ‘V , ..., ‘V 3 ;  1 is an nxl vector Principal Componentl 0 or 1; £—1,2,...,p .‘~ t.- 1 2  n
of ones; B and 8’ ~ (Bo 1’ B2~ 

... , 8 1  are un— Shrunken c Occ<l; £—l,2,.. .,p

known parameters; x ~ (X ~~ }, an nxp matrix of The bias of this estimator of B would then
be 0 (• known values of rank p with X’l ~ and the dia~~ \ p

coal elements of XIX equal to one; and c’ E (l—W ~)y~~~.

• In addition to selecting the W so that the van - +
t~ 

~~~~ c i  with a random variable, E(c~)— 
t l

O,E(c2) ~2 and E(c.c.,) # 
ances of the resulting estimat~rs are not cx—

There are basically two questions addressed tr~~~ly large, we wish to choose the W so that

I

in a multiple linear regression analysis: i) The the bias is not great. Since is kn~wn andestimation of B, and ii) the estimation of ‘1, a p 2future value, when X1, X2 ... X are given. The not null, in fact E — 1, information is
SaT answers are not necessarily the same as will be-—

• J come apparent in our discussion . We shall in needed on the ‘V~ in order to insure that these
essence be looking for a solution to i) but also biases are not so large that the benefits of

~~ show that a poor solution to i) may still be a variances reduction are counteracted.
good solution to ii) in a restricted sense. Prom (4) we see that we wish to choose

C..D 1. A Decomposition of B small if is small but from (5) this would in—• a f late thC When problems with multicollinearities arise, 
e bias unless ‘V~ is also small. Keep in

a tool often used is to express B as a linear mind that when is small ‘V~ has a large van —
2• function of the latent vectors of X ’X (e.g. Hock- ance, a /X

~
; hence ‘V~ is of limited value in de—

ing et al. (19763):
terming whether ‘V is small. This will be illu.-

• B ‘Vl~ l + ‘V 2!2 + ... + ‘V 0 (2) trated in the following data .p-p
where is the latent vector of X ’X associated 2. The Mesquite Problem
with the latent root A~ . Placing this form of B This data was furnished by R.J. Preund of
into model (1) yields Texas A & H University . The purpose of the study

was in part to determine an estimation equation
• 

~~~ 
+ ‘V l5l + ‘V Z + ... + ‘V Z + £ , for the total production of aerial photosynthetic2-2 p-p -

biomass of mesquite from easily measured parc—where z~ — X u ~~. The z~ are mutually orthogonal 
meters of the plant . M identification of the

hence the ‘V~ • z~Y/z~ z~ are uncorrelated , Un- variables i. given in Table A.l and the data from
biased estima tors of ‘V~ with variance • 

20 trees in Table A.2.

A consequence of multicollineanities ts some The concept of volume suggests a multipli-
cative model; hence an analysis of the loganitft small (Mason et al (1975 1) ;  hence, aCIDS ‘V~ of the variables would be .ppropriat.. A linear

will have large variances. The least squares regression of the raw data yielded approximately
estimator of B will also have some elements with the sane coefficient of determination, R2 , as a
large variances as can be seen from linear regression of the logarithms. For the

purpose of this paper we will use the analysis of
b — (X ’X) 4X’! — + ‘I 2!2 + ... + ‘Vp!p; ~~ the raw data since the interpretation of the re—

2 gression coefficients i. less confusing .
giving Var(b~) + + The residuals of the least squares fit of

thu data indicate th. second tre. to be an out-
P
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liar. Physically this tr.e also stands out fro. visnalized through a plot of r
~ 

is. z~ . Figures
the other s with X5 9 primary stems. We die- 

~ j  ~~ &jg~ AS show this for th. five x’s of thiscarded this tree as an outli.r and continued
our analysis using the remaining 19 data points. ~~~~These had a co f fj ~j ent of determination of R2 =
• 868. FIGURE Al. PARTIAL RESIDUAL P101

Table A. 3 contains the standardiaed X ’ X or FIRST PRINCIPAL C0I~~OWENTmatr ix. The latent roots of this matrix are
— ~~~~~~ A~ — .89, 13 • .57, 14 — .12 ,
— .09 , indicating two multicollinearities, 0 r

although they are not as severe as One often en-
counters. The variance inflation factors. diag—

—l C) 600ona l of (X ’X) (5.90. 4.58, 6.02 , 5.03 , 1.37) ,
also point out the existence of some multicol- 0
linearitjes and further indicate that plant den— 

~.00 -sity, X~, is not involved in them. 
0

The “total variance” of b, the sun of th~ 
0

variances of these five estimators, is 200

o2 Ith. s~~ of the diagonals of (X’X)~~1—22.90o
2. 0 o

L I I I 0 i i i iThis can also be found from
-6 — .1• •2 0 0 .2 0 0.i, 62 —l 0a L A  . —

t l  u 00
0Prom this second form we note that if V V

50, the resulting biased estimator of 8 ~~00has total variance o
a2 

1 
~~~ — 3.46 ~~ soo - 0

Thus there is room for a considerable reduction 0
in variance using an estimator of the form

• 
~
‘l~l ~ 

+ + + W
5y5a5

. 16)

With this in mind, the question then is how ?IGUPZ A2. PARTIAL RESIDUAL P101’.
much bias would be introduced . The latent vec- or sxcoi~ PRINCIPAL c~~ owxirr
tore a4 and are given in Table A.4. Note that
the f ifth element in 0

4 
and a5 are both relativ-

ely small: thus the introduction of small V
4 

and r

V5 will have little effect upon 85. Also the

variance inflation factor of 1.37 indicates that 600
there is little room for improvement on b

5. o
3. An Investigation of the Bias ~00

The bias is affected by both y and y • We 0
200~~ 0have already noted that y — !z  /z~z is an un-

biased estimator of T with variance a /1 . 0
i i O i  ~ I I

Since ‘v 4 and y~ are both quite small, ~~~ 
~•6 

—
~~~~ •2(b 0 •2 .“ 6

both have exceedingly large variances. What 0
this means can be shown graphically. 200 -

~~~Due to the orthogona lity of the x
~
, and 0 ACCESSION W 

~
—_ P

since z’ 1.0, 
— 

.~~~ ° NTiS

a
Th. long expression in parentheses on the right 600 . ____________

is Y adjusted for the intercept and all the s’s — 
—

except z • Call this partial residua l vector

Then — r~!1/ g s 6 is th. least squ ares

slope of r~ 
versus a slope that is easily 

D~t. AVA~L ai~f1 ______
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FIGURE A3. PARTIAL RESIDUAL P101’ FIGURE AS. PARTIAL RESIDUAL PLOT
Or THIRD PRINCIPAL cos~ow~rr 0? FIFTH PRINCIPAL COIG’ON~~IT I

r .

600 
600

400
~00

0 0
0 0

200 - 0
0

• 
~~~00 0 0 0
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~~6 .1 . 2 Q  0 •2 -14 6 Z 

~6 .l. -2 2 ~. .6 Z

0 200 -
0 0 200~~~

~~ 0, 
0

600 - 600 -

FIGURE A4 . PARTIAL RESIDUAL PLOT look at Figures A6 and Al. (Figure A6 is the
OF FOURTH PRINCIPAL COi~ 0NENT composite of Figures Al and A5. Figure Al is

the composite of the reflection of Figure Al
and Figure A~~. Both of these are caispatable
with Figure AS and either one could be the re-

r sult of data for z outside of * .2. The crux
of the matter is tLt the available data gives
us little or no information on and

600 - FIG. A6. PARTIAL RESIDUAL P101’ 0? FIFTH PRINCIPAL
C0IW0N~~T AU~~~~ITED WITH POINTS FR~ 4 FIGURE Al 4

~00 -

•~ 0 0
0 (0

t i i i 0~~9 I I I I

~~6 •~i ~~2 •2 -‘ •6 g 600

200 p 0

C I
~00

0 0 0
~1,00 - 0 0

~~
•
0

~600 
I I I I 4 o % I I

•6  -
~~~~ ~~~ ~ -z~7

D.i~ •€ 5

For a moment ignore the source of this aata 20D~ .~
and conlider that each of these five plots was 0 c0 

~brought to you separately and you were asked to
fjnd a predictor for each. We believe that for —

~~o
C

Figures Al and AS you would quits politely say
that there is not enough information to establish
a relationship between the two variables. There 600 0
may or may not be a relationship but data is
needed outside the range of ± • 2 • For example 0

9
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FIG. Al. PARTIAL RESIDUAL PLOT OF FIFTH PRINCIPAL description of the variab les is given in Table
COMPONINT AUGI~~ft~~ WITH 

B. 1 and the standardized x’x matrix in Table H. 2.
This X X  matrix has three small latent ~oot~POINTS PROM FIGURE Al

1
13 .0387, 112 .0415, A ll .0506

r Their corresponding latent vectort are given in
Table 8.3

For this example wearing the hat of the cx-
600 perimenter is more difficult so let us COI:cen-

trate on X
1 and X2, the top diameter of the propand the length of the prop. One would expect

the greater the diameter, the greater the
strength; hence, B should be positive. With

0 the same line of thinking, the longer the prop
0 0 the less its supporting strength: hence 8..
0 should be negative.

— — 2 
~ 
0
01
0 0 

Now look at and
I I I I 

____________________

2 -4  •6  Z
0 0

20O~ 
- 

~l3 
— — .57 + .58 62 + •

D~~~ 
0 From the contr ibution of 81 and 82 one would cx-

—4oo~ pect y~2 and ~l3 not to be small. Thus small
values of V and V in ~ could lead to con-
siderable bI~s in the estimator of 8.0 600 - —

- 5. The Effect of W~ on the Prediction of Y
0

Up to this time we have been concerned with
the estimation of 0. Now let us consider the

There is, ~~~sver, one other avaliani e use of this estimate to predict ‘1 at a point X.
source of information: the problem itself ~~~ (Note that the X ’ s in this vector are scaled in

the experimenter knowledgeable in the area. ~~ the game manner as those in our X matrix. ) Writ—

cause of the simplicity of the measurements in in the form 
-

this problem we can perhaps wear his hat, keeping
in mind that the variable for prediction is the B W1Y1a1 + W2y2a2 + .. .  + V y np p-p
amount of leaves .

Looking at the nature of through x4 we 
the predictor will be

see that all four are size measurements and in— — ‘~ + W
1
y~~ X ’ n~~+ W

2
’y

2
X’ a

2
+ . + V y X ’ u . (7)pp- -p

creasing any one should indi cate more leaves • The bias in the predictor is
Thus 61 through 84 should all be positive . Fur-

• ther , the change of scale using the standard- (l—W 1)y 1X’~~4- ( l—W 2)y2X’ a2+.. .+( l-w )y x’s
p p— -p

ized x ’s suggest that and 82 may be of the

same magnitude , as should perhaps B~ and 84 . The bias will be small if for each small

Now let us look at and s~ . Multip lying either or X’ a1 is small. Let us say that

both sides of (2) on the left by s~ yields Was small, indicati ng a multicollinearity with
coeff icients identified in s • V is then chosen

p •

to be small in order to reduce the variance of B
so that V 4 — .620l

_ .4782
_ .S2 83+.3384+.036 5 

—

but, unfortunately, suppose y~, is not near zero.

V 5 — — .4481+.4282 .5463+.55849.l7B5. The pth term in the bias will still contribute
From what this problem suggests about these B’ s little if 

~~~~~~~~ 

is near zero , conteract ing the
we would not expect either of these y ’s to be
large: i.e • note that the signs on $ and 62 

nonzero vi,. Thus, if the point of prediction

$ and 84) are opposite , yet we expe~t them to satisfies this siulticollinearity of the original
hive the same sign and roughly equal magnitude— - data, a small W~, 

will induce little bias in the
their effects should there fore cancel in ~ and predictor .

-: ~~~ . Thus to est imate ~ using (6) with ssiafl V4 
To s%~~~ r ize this last paragraph , consider

aM V would greatly reduce the varianc es with that the W~ are chosen small only when A
~ 

is

the iP~troductioi% of littl , bias . small. Then, regard1ess~of the magnitude of th.

4. The Pitpr oc Data V1 (within reason) , the Y of (7) will have little

ieffers ( 19671 presented data on the aaai.~a bias if the point of predicti on , H, satisfies

c~~~r ssive strength of t imers used in mines. A the multi colli n.arities of the original data.

I -
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For example a prediction equation from the
pitprop data using small W 12 and V13 could be

quite satisfactory for props with multicollin- TABLE A. learities designated by 
~l2 and ~l3 

However in-

terpretation of the B~ in this equation cou ld be MESQUITE DATA : RESPONSE AND PREDICTOR VARIABLES

misleading . On the other hand interpretation of Variable Descriptionthe B from the mesquite data using small V4 and
V (LERFWT) Total We ight (GRAMS ) of Photosyn-V5 sh~uld be informative . 

thetic Material
6. Conclusion

In biased linear regression techniques, X 1 (DIAM1) Canopy Diameter (METERS) Measured
A long the Longest Axis of the Treesmall W 1 are desired in order to reduce the van - Parallel to the Ground

ance of 3 in the presence of multicolljnearjtjes.
X

2 
(DIAM2) Canopy Diameter (METERS) Measured

This will introduce considerable bias in ~ if the Along the Shortest Axis of the Treecorresponding y
~ 

are large. The basic point of Parallel to the Ground
this paper is that when A~ is small the data it—

X 3
(TOTHT ) Total Height (METERS) of the

self generally gives little information on V t . Mesquite Bush
• This is well illustrated by the graphs of the

mesquite data. Some informatic:~t may be available, X 4 (CANHT) Canopy Height (METERS) of the
however, if is expressed as a linear function Mesquite Bush

• of the elements of B and the nature of the spe- X5 (DENS) Plant Unit Density (NUMBER OF
cific problem is carefully analyzed. PRIMARY STEMS/PLANT UNIT)

We feel that in practice a complete in-
vestigation of the properties of a set of
regression data, as suggested above , is son~~imes
hampered by the lack of computer programs.
Robert Pierce, while at SMU, has written a pro-
gram, REGRESS, which will simultaneously do a
least squares, ridge, latent root and principal
component analysis as well as furnish a ~ runken
estimate. The latent roots and vectors of X’X
are a portion of the printout. A copy of this
program is available upon request. TABLE A. 2
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TEILI A.3 TABLE 8.1

CORRELATION MATRIX OF PREDICTOR ~~~ p~~pn~c~ PITPROP DATA: RESPONSE AND PREDICTOR VARIABLES

VARIABLES, HESQUITE DATA (n — 19)
VARIABLE DESCRIPTION

X~ 13 H4
1.00 .88 .73 .68 .32 V Maximum Compressive Strength of

Prop
12 1.00 .64 .58 .20

Top Diameter of the Prop (INCHES)
13 1.00 .88 .39

H2 Length of Prop (INCHES)
14 1.00 .22

13 Moisture Content of Prop (C OP
-
~ 15 1.00 DRY WEIGHT)

14 Specific Gravity of the Timber
(AT TXWE OF TEST )

Oven-dry Specific Gravity of the
Timber

TABLE A.4
16 Number of Annual Rings at Top of

SMALLEST ‘TWO LATENT ROOTS AND CORRESPONDING

LATENT VECTORS OF I’ I, WESQUITE DATA (n - 19) 17 Number of Annual Rings at Base
of Prop

15 — .0904 14 — .1155
H8 Maximum Dow (INCHES)

VARIABLE S a VIF

—— 5 4 19 Distance of the Point of Maximum
Bow from Top of Prop ( INCHES)

-.444 .624 5.9
110 Number of Knot Whorls

12 .420 — .472 4.6
Length of Clear Prop from Top of

X 3 — .544 — .522 6.0 Prop (INCHES)

14 .551 .339 5.0 112 Average Number of Knots per Whorl

15 .165 .026 1.4 H13 Average Diameter of Knots (INCHES)

— -- - —-- ~~~— —-- ----- ~———--.-•-- -—- - - - —a--- ~~~~~~~~~~~~~~~~~~~ 
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TABLE B 2 

—

~ 

_________________________

CORRELATION MATRIX CF PREDICTOR AND RESPONSE VARIABLES, PITPROP DATA
12 X3 14 

1
5 X6 X7 H8 X9 110 X11 H12 ~L3

H) 1.00 .95 .36 .34 — .13 .31 .50 .42 .59 .55 .08 — .02 .13

1.00 .30 .28 - .12 .29 .50 .42 .65 .57 .08 — .04 .14

H3 1.00 .88 — .15 .15 — .03 — .05 .13 — .08 .16 .22 .13

14 1.00 .22 .38 .17 — .06 .14 — .01 .10 .17 .02

1.00 .36 .30 .00 — .04 .04 — .09 — .15 — .21

1.00 .81 .09 .21 .27 — .04 .02 — .33

X7 1.00 .37 .47 .68 — .11 - .23 — .42

1
8 

1.00 .48 .56 .06 -.36 .20

19 1.00 .53 .09 -.13 -.08

110 1.00 — .32 — .37 — .29

H 1.00 .03 .0111
112 1.00 .18

113 1.00

V — .42 — .34 — .73 — .54 .25 .12 .11 — .25 — .24 — .10 — .06 — .12 — .15

TABLE 8.3

SMALLEST TEPEE LATENT ROOTS AND CORRESPONDING LATE NT VECTORS OF X X ,  PITPROP DATA

~i3 — .0387 112 — .0415 — .0506

VARIABLE !l3 !J.2 
___________

xl — .572 — .392 — .005 13

12 .582 .411 — .054 14

13 .408 — .527 .117 12

14 — .383 .585 — .017 12

.118 — .202 .005 3
16 .057 — .080 - .537 7

H
7 

.002 .036 .764 12

1 .018 .053 .026 2S a
• H — .058 — .054 — .051 2 _. ~~~~•... . • -

H .004 -.060 — .318 5 ~~~~~~~~~~~~~~~~

H

10 
- .007 - .005 —.048 2 ‘

~11 — ~~~~~~~
112 .004 — .002 .047 1 

o
- X13 

- .009 - .013 .046 2 
~~~~~~~~ —

I? 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C3~~ •%
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