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The recent-interest in biased estimation
procedures in multiple linear regression arises
from-the large variances of the least squares es-

timators (unbiased) of the regression coefficients

when multicollinearities are present. The biased
estimation procedures greatly reduce this vari-
ance at the cost of some bias. It is the purpose
of this paper to look at this bias with reference
to the nature of the specific problem being in-
vestigated.

For a structure upon which to base this dis-
cussion let the model be of the form

B =Bt By P Bt e P B X R

or Y=18 +XB+e¢ (1)

where Y'= [Yl, Yor cces Yn]; 1 is an nx1 vector
of ones; B° and B' = [81. 82, eeios Bp] are un-

known parameters; X = (xij}. an nxp matrix of

known values of rank p with X'l = ¢ and the diag-"\

onal elements of X'X equal to one; and ¢' =

[el,cz, Ao cn] with €, a random variable, E(ei)s

D) =0, i p#i’.

There are basically two questions addressed
in a multiple linear regression analysis: i) The
estimation of B, and ii) the estimation of Y, a
future value, when xl, x2 Cieh xp are given. The

answers are not necessarily the same as will be-
come apparent in our discussion. We shall in
essence be looking for a solution to i) but also
show that a poor solution to i) may still be a
good solution to ii) in a restricted sense.

i
O,E(E:) =0 and l-:(eici

1. A Decomposition of 8

When problems with multicollinearities arise,

a tool often used is to express § as a linear
function of the latent vectors of X'X (e.g. Hock-
ing et al. [1976]):

8= ¥i9) * Vgly ¥ e + NG, (2)
where ey is the latent vector of X'X associated
with the latent root Xl.
into model (1) yields

Placing this form of B

! = }BU + 7151 + 1252 P ens, WY R P €,

PP
where zZ, = XG!. The El are mutually orthogonal
hence the Yy = Y/z are unco:related, un-

biased cltilators of y with variance o /A!.
A consequence of multicollinearities is some
small Al (Mason et al. [1975)); hence, some Yy

will have large variances. The least squares
estimator of 8 will also have some elements with
large variances as can be secn from

wl -
b= (X'X) X'Y = '1 1 * 72 gt et YAy 3)
2 2
s a a
qivinqvu(b)-uz-j—1++ ...+-12 (4)
b Al 2 Ap
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One method of handling this problem is to
use a biased estimator which in essenge is the
same as (3) except replace \ with "lvl as the

coefficient of a,(0 < Wy < 1). Then the corre-
sponding term in (4) is W2 “;l / \y. The idea
is to let "l be small if Xl is small. Some of
the more commonly used biased estimators have
¥y of the following forms:

Estimator l w,

l,./(xlﬂn k>0;8=1,2,...,p
Xl/(kl+kl) k1>0;l-1,2,...,p
Principal Components{0 or 1; &=1,2,...,p

Simple Ridge
Generalized Ridge

Shrunken c O0<c<l; 2=1,2,...,p

The bias of this estimator of g would then
be
P
I (1-w,)yv,a,.
0=1 R 2 )
In addition to selecting the "2 so that the vari-
ances of the resulting estimators are not ex-

tremely large, we wish to choose the W, so that
the bias is not great. Since a, is known and

P
not null, in fact I a? = 1, information is
=1 3%
needed on the Yg in order to insure that these
biases are not so large that the benefits of
variances reduction are counteracted.
From (4) we see that we wish to choose W

small if xl
flate the bias unless Yl is also small.

L
is small but from (5) this would in-

Keep in
mind that when Xl 13 small Yl has a large vari-
ance, O /A ; hence Yl is of limited value in de-

terming vhether Y, is small. This will be illus-

trated in the folioving data.
2. The Mesquite Problem

This data was furnished by R.J. Freund of
Texas A & M University. The purpose of the study
was in part to determine an estimation equation
for the total production of aerial photosynthetic
biomass of mesquite from easily measured para-
meters of the plant. An identification of the
variables is given in Table A.l and the data fro-
20 trees in Table A.2.

The concept of volume suggests a multipli-
cative model; hence an analysis of the logarithms
of the variables would be appropriate. A linear
regression of the raw data yielded approximately
the same coefficient of determination, RZ, as a
linear regression of the logarithms. For the
purpose of this paper we will use the analysis of
the raw data since the interpretation of the re-
gression coefficients is less confusing.

The residuals of the least squares fit of
the data indicate the second tree to be an out-
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lier. Physically this tree also stands out from
the others with xs = 9 primary stems. We dis-
carded this tree ~ as an outlier and continued
our analysis using the remaining 19 data points.
1 $ These had a coefficient of determination of R =
X .868.
; Table A.3 contains the standardized X'X
; matrix. The latent roots of this matrix are

11 = 3,33, Xz - -89, 13 = .57, A‘ = .12,

Xs = .09, indicating two multicollinearities,

Sul s T T

although they are not as severe as one often en-
q counters. The variance inflation factors, diag-

onal of (x'x)”! = (5.90, 4.58, 6.02, 5.03, 1.37,

also point out the existence of some multicol-
linearities and further indicate that plant den-
sity, xs, is not involved in them.

The “total variance" of b, the sum of the
variances of these five estimators, is

o?- [the sum of the diagonals of (x'X) 11=22.9002.
This can also be found from

(- e T S

From this second form we note that if w‘ = "5 =
0, the resulting biased estimator of 8
has total variance

3
o2 I x;l - 3.46 ¢°.
L=1

Thus there is room for a considerable reduction
in variance using an estimator of the form

-

8273 * 72 *Yy3y H WY, ¢+ Wova,. (6)

With this in mind, the question then is how
much bias would be introduced. The latent vec-
tors (_l‘ and ag are given in Table A.4. Note that

the fifth element in g 4 g are both relativ-
ely small; thus the introduction of small H‘ and
"5 will have little effect upon Bs. Also the

variance inflation factor of 1.37 indicates that
there is little room for improvement on bs.

3. An Investigation of the Bias

The bias is affected by both Yq and Yg- We
have already noted that Yy " !.51/5i51 is an un-
biased estimator of Yy with variance o’/xl.

and a

Since Yq and Yg are both quite small, Ye and s

both have exceedingly large variances. What
this means can be shown graphically.
Due to the orthogonality of the 2

since Ei 1=0,

¥z =(¥-1¥-y

v’ and

The long expression in parentheses on the right
is Y adjusted for the intercept and all the z's
except z,- Call this partial residual vector

E,e Then v, = £z, /2.2, is the least squares
slope of T, versus z,, a slope that is easily

0 600 |

visualized through a plot of r, /s. z,. Figures

Al through AS show this for the five z's of this
example.

FIGURE Al. PARTIAL RESIDUAL PLOT
OF FIRST PRINCIPAL COMPONENT
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FIGURE A2. PARTIAL RESIDUAL PLOT.
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FIGURE A3. PARTIAL RESIDUAL PLOT
OF THIRD PRINCIPAL COMPONENT
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FIGURE A4. PARTIAL RESIDUAL PLOT
OF FOURTH PRINCIPAL COMPONENT

600 |-

For a moment ignore the source of this data
and consider that each of these five plots was
brought to you separately and you were asked to
find a predictor for each. We believe that for
Figures A4 and A5 you would quite politely say
that there is rot enough information to establish
a relationship between the two variables. There
may or may not be a relationship but data is
needed outside the range of ¢ .2. For example

FIGURE AS5. PARTIAL RESIDUAL PLOT
OF FIFTH PRINCIPAL COMPONENT
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L

look at Figures A6 and A7. (Figure A6 is the
composite of Figures Al and AS5. Figure A7 is
the composite of the reflection of Figure Al
and Figure A5 . Both of these are compatable
with Figure AS and either one could be the re-
sult of data for z_ outside of * .2. The crux
of the matter is tgat the available data gives
us little or no information on Yo and Yg-

FIG. A6. PARTIAL RESIDUAL PLOT OF FIFTH PRINCIPAL
COMPONENT AUGMENTED WITH POINTS FROM FIGURE Al
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FIG. A7. PARTIAL RESIDUAL PLOT OF FIFTH PRINCIPAL
COMPONENT AUGMENTED WITH REFLECTED
POINTS PROM FIGURE Al
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There is, however, one other available
source of information: the problem itself and
the experimenter knowledgeable in the area. Be-
cause of the simplicity of the measurements in
this problem we can perhaps wear his hat, keeping
in mind that the variable for prediction is the
amount of leaves. .

Looking at the nature of x1 through X s Ve

see that all four are size measurements and in-
creasing any one should indicate more leaves.
Thus 8, through B‘ should all be positive. Fur-
ther, the change of scale using the standard-
ized X's suggest that 81 and Bz may be of the

same magnitude, as should perhaps 53 and B /e
Now let us look at S, and 8g- Multiplying
both sides of (2) on the left by gi yields
Yy =8
so that Y " .6261-.4782—.52630.336"&.0385

Yg M = 44811‘. 4262- . 5483+ . 558‘+. 1785.

From what this problem suggests about these 8's
we would not expect either of these Y's to be
large; i.e. note that the signs on 8, and Bz (and
8., and 8,) are opposite, yet we c:pc%t them to
hzv. the same sign and roughly equal magnitude--
their effects should therefore cancel in y, and
Y.. Thus to estimate § using (6) with mh H‘
cﬁd W_ would greatly reduce the variances with
the iftroduction of little bias.

4. The Pitprop Data
Jeffers (1967) presented data on the maximum
compressive strength of timbers used in mines. A

10

AR W57

e

description of the variables is given in Table
B.1 and the standardized X'X matrix in Table H.Z.
This X'X matrix has three small latent roots

A13 = .0387, Au = _0415, All = ,3506.
Their corresponding latent vectors are given in
Table B.3

For this example wearing the hat of the ex~-
perimenter is more difficuit so let us concen-
trate on xl and X,, the top diameter of the prop
and the length of “the prop. One would expect
the greater the diameter, the greater the
strength; hence, B, should be positive. With
the same line of tﬁinking, the longer the prop
the less its supporting strength; hence B8
should be negative. ¢

1 :

Now look at Y12 and 713

Vo=~ 398, + .41 8,4 ...
Vg3 = - ST B, + 588, + ... .

From the contribution of 81 and 82 one would ex-
pect 712 and 713 not to be small. Thus small

values of W 2 and W 3 in g could lead to con-
siderable bias in tﬁe estimator of g.

5. The Effect of H" on the Prediction of Y

Up to this time we have been concerned with
the estimation of . Now let us consider the
use of this estimate to predict Y at a point X.
(Note that the X's in this vector are scaled in
the game manner as those in our X matrix.) Writ-
ing B in the form

B = "171‘-’1 + wzyzgz + oo P "pvpgp

the predictor will be

v ' ' = '
Y=Y+ Hlylg 91+ wzyzi_( 52+ see * wpyp;_( Ep' (7)

The bias in the predictor is

-

- ' - . -l [
(1-W,)v,X &Hl W)Y, X g +e ..+ (1 up)ypl( 8

The bias will be small if for each small W,
either vy, or X'a, is small. Let us say that )&p

was small, indicating a multicollinearity with
coefficients identified in a p* up is then chosen

to be small in order to reduce the variance of é
but, unfortunately, suppose Y P is not near zero.

The pth term in the bias will still contribute
little if )_('t_xp is near zero, conteracting the

Thus, if the point of prediction

satisfies this multicollinearity of the original
data, a small W_will induce little bias in the
predictor.

To summarize this last paragraph, consider
that the wl are chosen small only when x,_ is

small. Then, regardless of the magnitude of the
¥y (within reason), the Y of (7) will have little

bias if the point of prediction, X, satisfies
the multicollinearities of the original data.

nonzero .
e Yp

o
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For example a prediction equation from the

pitprop data using small "12 and "13 could be

quite satisfactory for props with multicollin- TABLE A.l

earities designated by 2, and @3- However in-

terpretation of the Bj in this equation could be MESQUITE DATA: RESPONSE AND PREDICTOR VARIABLES
mislgading. On the other hand interpretation of Variable Description

the 8. from the mesquite data using small u4 and s e

W, shduld be informative. Y (LEAFWT) Total Weight (GRAMS) of Photosyn-

thetic Material

6. Conclusion

. X, (DIAM1 Canopy Diameter (METERS) Measured
In biased linear regression techniques, 3t s Alongythe Longest Axis of the Tree

small wlhare desired in order to reduce the vari- Parallel to the Ground

ance of 3 in the presence of multicollinearities.

i < X., (DIAM2) Canopy Diameter (METERS) Measured
This will introduce considerable bias in B if the 2 Along the Shortest Axis of the Tree
corresponding Y, are large. The basic point of Parallel to the Ground
this paper is that when Al is small the data it-
i X., (TOTHT) Total Height (METERS) of the
LY self generally gives little information on Yo+ 3 Mesquite Bush
This is well illustrated by the graphs of the
mesquite data. Some informatica may be available, X 4 (CANHT) Canopy Height (METERS) of the
however, if y, is expressed as a linear function Mesquite Bush
of the elements of B and the nature of the spe- xs(DENS) Plant Unit Density (NUMBER OF

cific problem is carefully analyzed.
We feel that in practice a complete in-
vestigation of the properties of a set of

regression data, as suggested above, is sometimes
hampered by the lack of computer programs.
Robert Pierce, while at SMU, has written a pro-
gram, REGRESS, which will simultaneously do a
least squares, ridge, latent root and principal
component analysis as well as furnish a shrunken
estimate. The latent roots and vectors of X'X
are a portion of the printout. A copy of this

PRIMARY STEMS/PLANT UNIT)

program is available upon request. TABLE A.2
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TABLE A.3 TABLE B.1
CORRELATION MATRIX OF PREDICTOR AND RESPONSE PITPROP DATA: RESPONSE AND PREDICTOR VARIABLES
VARIABLES, MESQUITE DATA (n = 19)
VARIABLE DESCRIPTION
| b - X Xy
X 1.00 .88 .73 .68 .32 Y Maximum Compressive Strength of
i 1 Prop
1]
: x, 1.00 .64 .58 .20 :
f X, Top Diameter of the Prop (INCHES) g
! X, 1.00 .88 .39 f 4
xz Length of Prop (INCHES) { ’
x, 1.00 .22 : N i .
)(3 Moisture Content of Prop (% OF .
Xg 1.00 DRY WEIGHT)
x‘ Specific Gravity of the Timber
(AT TIME OF TEST)
'{ xs Oven-dry Specific Gravity of the
q Timber
TABLE A.4
xs Number of Annual Rings at Top of
SMALLEST TWO LATENT ROOTS AND CORRESPONDING Prop
LATENT VECTORS OF X'X, MESQUITE DATA (n = 19) x., Number of Annual Rings at Base
of Prop
Xs = ,0904 X‘ = ,1155
)(e Maximum Bow (INCHES) :
VARIABLE a a VIF
=3 =4 : Xy Distance of the Point of Maximum
Bow from Top of Prop (INCHES) b
xl -.444 .624 5.9
)(m Number of Knot Whorls
Xz .420 -.472 4.6
xn Length of Clear Prop from Top of
X, -.544 -.522 6.0 Prop (INCHES)
X, .551 .339 5.0 X, Average Number of Knots per Whorl 3
xg .165 .026 1.4 X3 Average Diameter of Knots (INCHES)




TABLE B.2

CORRELATION MATRIX OF PREDICTOR AND RESPONSE VARIABLES, PITPROP DATA

X X2 s Xs 5 Xe Ry Xg X9 o - e
X, 1.00 .95 .36 .34 -.13 .3 .50 .42 .59 .55 .08 -.02 .13
X, 1.00 .30 .28 -.12 .29 .50 .42 .65 .57 .08 ~-.04 .14
X, 1.00 .88 -.15 .15 -.03  -.05 .13 -.08 .16 .22 .13
X, 1.00 .22 .38 17 -.06 .14 -.01 .10 .17 .02
i
i Xg : 1.00 .36 .30 .00 -.04 .04 -.09 -.15 ~-.21
i
i L 1.00 .81 .09 .21 .27 -.08 .02 -.33
|
X, 1.00 .37 .47 .68 -.11 ~-.23 -.42
i ; Xg T R S SR T
{ Xy 1.00 .53 .09 -.13 -.08
1.00 -.32 -.37 -.29
i X 1.00 .03 .01
| 11
%y 1.00 .18
§ xu 1.00
Y -.42 -3¢  -.73 -.54 .25 .12 A1 -.25 -2 -.10 -.06 -.12 =15
TABLE B.3
SMALLEST THREE LATENT ROOTS AND CORRESPONDING LATENT VECTORS OF X'X, PITPROP DATA
Ayy = -0387 Ay, = -0415 Ay, = -0506
S %13 %12 308 .
X, -.572 -.392 -.00S 13
X, .582 411 -.054 14
X, .408 -.527 117 12
X, -.383 .585 -.017 12
X .118 -.202 .005 3
. Xg .087 -.080 -.537 7
‘ x, .002 .036 .764 12 .
i Xy .018 .053 .026 2 ;
Xy -.058 -.054 -.051 2 e AR AN,
s .004 -.060 -.318 s |- SER— ]
x -.007 -.005 -.048 R s Riits Stiog }v’y {
11 L3 Rt secnen [ |
X, .004 -.002 .047 1 S a
X4 - -.013 045 2 SSTIFICATIE T
M ORGSR PRI
|
[ | S L ek
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