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Abstract

In this paper we consider the optimal control structure for multi—shop

(Part I: Parallel, Part II: Series) systems, where the input to the shop

system is random and the ghop output is determined by the number of workers

in the shop. The number of workers available to the system is held constant,

while control is exercised in discrete t ime by adjusting the allocation of

workers to the various shops in the system. There is a cost for transferring

workers. Additionally, there is a cost of holding backlog in the system.

The control objective is to minimize the sum of these costs over an infinite

horizon.

It is shown that for some “regions” of the system’s state space the

optimal control policies are known exactly without resorting to computational

methods . For other “reg tons” it is shown that the problem can be decomposed

into subproblems of reduced complexity. Finally, an inertia (hysteresis)

property is established which reduces the number of policy combinations which

must be considered in some cases, and completely eliminates the necessity

to determine policy in other cases. The net result is a substantial reduction

in the computer storage and computational effort required to solve for the

optimal control policy .
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PART I

Introduction

Consider a multi—shop system. Work (measured in man—hours) arrives at

the system periodically , say once a week. The amount of work arriving , to

each shop per period is assumed to be random variable which can be described

by a stationary probability density function . The amount of work processed

out of a shop during a period is proportional to the number of workers in

the shop. The number of workers in the system is constant. Control can

be exercised by adjusting the allocation of workers to the various shops

in the system.

A multitude of paper ’s have dealt with the characteristics of shops

(queues) under output control. Roward [14], Wolfe and Dantzig (26], and

Manne (18] developed numerical techniques to establish optimal control

policies for Markov processes. The method , although general, established

the basic analytic structure for determining optimal control policies for

Markov queues with variable servers. Many other researchers, ‘including

Heyman [13 ], Sobel (24], Yadin and Naor [27], Magazine (16], [17], McGill

[19], Crabill (7], (8], Beja (3], Blackburn [6], Balachandran (1], (2],

Rata (22], Reed (23], Faddy [10], [11], Dab (9], Bell [4] ,  (5 ] ,  Winston [25],

Odkenyi (20], (21], and Lippman (1.5 ] have contributed to the field . The

shop system considered here is unique in that man power (i.e., a server) is

treated as a shared resource available to several shops (queues).

[ 

The motivation for this study comes from observations of a Naval Air

Rework Fhcility (NARF). A NARF is a large job shop devoted to depot level

repair of naval aircraft and aircraft spare parts. NAR~ maintain both

extensive work standards on all jobs performed and extensive data systems

which pinpoint each job ’s location in the shop system. As a consequence,

1 
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at any time, the amount of work backlog in any shop (in man—hours)

is known. Control of the shop backlogs can be affected by transferring workers

between shops. This is generally easier than authorizing overtime from

managements’ point of view.

There is a cost of maintaining backlog in the system which is roughly

proportional to the amount of backlog. The backlog in the NARF shops can ’t

be used by the fleet as spare parts. As a consequence , the higher the NARY

shop backlogs, the higher the Navy ’s investment in spares must be. There

is also a cost (primarily administrative) of transferring a worker from one

shop to another . Clearly, the act of transferring workers implies that the

worker involved has the prerequisite skills ~or that shop to which he is

transferred. It follows that a NARY, for control purposes, can be broken

into sub—systems of shops with similar worker skills.

There is no claim here that this description of the shop control problem

of a NARY takes into account all facets of what is an extremely complex

real—life control problem. It does, however, capture the essence of the

system. In this paper, an analytic model of a shop system is developed.

The system is modeled as a discrete time Markov—Decision process. Character-

istics of the optima]. control structure for the system are derived.

In Part 1, we approach the parallel shop case. In Part 2, the series

shop case is considered. In both cases, the development is for two shop

systems. The extensions to N—shops are straight—forward, but lengthy. The

interested reader is referred to Raas [12] which is available from the

authors.
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The Two Shop System (Parallel)

Let us now address the problem of determining general properties

for the optimal control structure of a system with 2 parallel shops which

are controlled by transferring workers from one shop to the other.

At equally spaced point s in time (surge points) a quantity of work

may enter the shop. These quantities , measured in work units , are independ-

ently , but not necessarily identically , distributed random variables . Work

which cannot immediately be processed is held as backlog for the shop it

entered. The transfer of backlog from one shop to another is prohibited.

In addition , the flow of work through each shop does not pass through the

other shop. Thus, the system may be thought of as two shops in parallel

(See Figure 1).

The total number of workers in the system is W. A worker may be

transferred at specific points in time (those points to be defined shortly)

from one shop to the other at a cost of T. Each of the W workers (while

working in shop i) produce R~ work units over an interval of time between

two consecutive input surges . Note that the couching of input in terms of

‘work imits ’ rather than ‘man—hours’ and using an efficiency rating of R1

allows for differences in shop operational characteristics.

There is a backlog holding cost of H per unit incurred immediately before

a surge point to the shops. So, if Bi is the backlog in shop i immediately

before input surge n, the total backlog holding cost in period n is H(B1 + B2)

Control of the system is exercised by transferring workers from shop

to shop immediately after each surge point (see Figure 2 where the transfer

of a worker from one shop to the other results in a change in the slope of

the backlog function). The objective is to exercise control so as to minimize

the total of holding and transfer costs over some horizon.

/
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If the process is imbedded immediately after each surge point, it

can be formulated as a Markov—Decieion process. In order to formulate the

optimization as a dynamic program, the state of the system at stage K is

defined as a four dimensional vector ( d). This vector may also be

written as (B1, B2, d1, d2),  where B1 is the backlog in shop i at stage

K and di is the number of men in shop i at stage K + 1. It is easy to

convince one’s self that the state definition satisfies the Markov property .

Before continuing, the following two definitions are required :

+(~, a) = the minimum expected discounted cost over an infinite

horizon, given that there are now B units in the backlogs

and there were d men in the shops during the previous

transition (0 < B ~ < ~, d~ = 0 , 1, 2 , .. ., W , i = 1, 2) .

f d (;1~~) d the probability that the backlog at the end of the

transition is between in and rn + dm given that backlog

at the beginning of the transition is B and , that policy

a is in effect during the transition (0 < in . <

Let T be the cost of transferring a worker from one shop to another .

Let ~ — (p1, p2) be the present worker allocation and a (d1, d2) be the

worker allocation during the previous transition. The recursive equation

can now be written. It includes the transfer cost and backlog holding cost

for the limnediate transition plus the discounted expected cost over an

infinite horizon . Thus,

2

~~ a) — mm {T 1p 1 
— d1I + H ~ B~

~~~~~~ i—i

+ ~ ~ ( I~
) + ( ,  ~

) d } .

(Note: O<a<l is the discount factor)
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The Structure of the Optimal Control Policy

In this section four fundamental properties of the optimal control

policies for an infinite horizon will be determined. These properties

will allow one to determine a great deal about the structure of the optimal

control policy.

Property 1:

The first property, stat ed and proved in the theorem below , shows

that when shop backlogs are high enough the optimal policy is known

immediately. Before beginning the proof for property 1, two necessary

lenmias will be established.

Lemma 1

+ 0 , 
~~~ 

d) — ~(B1, B2, d) < 1

(The same property holds in B2.)

Proof:

Take two starting points in backlog space ,

Point 1 — (B1, B2, ~ ) and Point 2 = (B1 + 0 , B2, a) .
For both points take a specific input realization. For that input

realization and starting Point 1, there are a set of optimal policies

which will, be enforced at each stage. For the same input realization,

assume that these policies will be enforced for the sequence of points

starting at Point 2. Then for each stage the separation between the

j sequence of points starting at Point 1 and those starting at Point 2 is

no more than 8. Thus, diff erences in holding costs at each stage are

no more than HO. Transfer costs are equal at each stage. For the infitite

horizon this implies that the total difference in cost must be less than

or equal to ,

_ _ _ _ _  _ _ _ _
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The actual expected cost under optimal control must be less than or

equal to this . Thus the lemna must hold (it should be noted that in

the limit (as B~ + o~) it is easy to see that the lemma inequality becomes

an equality) .

Q.E.D.

Lemma 2:

•(~, ~
) — 

~~ a~
)
~ < ~d1 

— d~ iT

Proof:

Let

‘I’~~ , ~
) — cxJJ f~(i ~

) 4’( ,

Let p be the optimal. policy for (~, 
a). If ~ is made the policy for

(i, ~~~ then the expected discounted return for that state is just,

•P(~, a ’)  — Tip1 
— d~I + H(B1 + B2) + ~(i, ~

)

< T~p1 — d1J + T 1d1 — d~ I + H(B1 + B2) + ‘Y (B , ~
)

-~~~ T~d1 
— d~I + ~~~ ~).

The superscript, ~~~, on •P(j, ~‘) indicates that ~~~, the policy for which

the return is calculated, may not be optimal at (B , i’). Rearrangement of

the above gives ,

T( d 1 — d~I > ~~~~~~~ a’) — •(~, ~) .

since

•P(j , ~‘) > •(i, a’),
this implies that ,

T 1d1 
— d~l .~. ~(B , ~ ‘) — •(i, ~

)

8
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A similar argument shows that,

TI d ~ — d1f > •(I, ~) 
— •(i, ~ ‘)

- 

- Hence,

TI d ~ - d11 > ~(B , d) - $(B , d’ ) !.

Q . E .D.

With the foregoing results established, one may prove the existence

of property 1. for the infinite horizon.

Theorem 1: Let R2 > R.1. Define

n n 1+ n 2, and

(la) 0 — (T + n~R2H/(l —

1. When —

(ib) T < H(R 2 
- R)ct/(l - a)2,

if n2 is selected such that

(Ic) R2 — R 1
2R2~~~R.1~~~ct

n+ 1 n
E(R2 — R . ~,) a ( l — c g  2 a 2 R H

(ld) 2 — T >  2
2, and

(1—ct) - (1— ct ) -

n2— 1
(le) T < R(R 2 — R~,) ~ j a~

i—i

Then when
n2—l

(if) T < H( R2 —. H1) ~~ j ct~ — 0 , and
i—i

. 

L 
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B2 ~ R2 
. W, it is optimal to place all workers in

shop 2 for the next n1 stages .

2. When

(ig) T > H(R2 — H1) a 1(1 — ct)2

if n2 is selected such that

_ _ _  

n2-
- (ic) 2~~~_~~~,

1a , and

n+i  n
- R(R2 — R 1)c~(l—u 

2 ) ct 2 2R2H
(lh ) T —  2 2(1 — a) (1— ct)

Then when

(ii) T > H(R
2 — H1)a/(l — c~)

2 + 0 , and

Bi > nR1,W for ail i, it is optimal to maintain the worker

allocation from the previous stage for the next n1 stages .

In other words when

T > H(R 2 
— R1)c t/ ( l  — ct) 2

There will always be an n such that there is a region Bi > n R~

for all i where it is optimal to maintain the worker allocation from the

previous stage.

Furthermore, since as n2 + the term in (if) , ~ j ct~ + 2 ’
i—i (1 — a )

when

T < H(R 2 — R 1) c t ( 1 — c t )2

/
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there will always be an n large enough that there is a region

B2 
> n • H.2 • W where it is optimal to place all workers in shop 2.

Proof:

The method for completing the proof will be as follows:

It will first be assumed that it is never optimal in the first

stages to decrease the number of workers in shop 2 , and that for the

first n.j, stages it is. only optimal to increase the number of workers in

shop 2 at the first stage.

In part 1, it will be shown that given the above assumption and given

that (li) holds it is always optimal to maintain the number of workers in

the previous stage. In part 2 (also given the above assumption) , the

optimality of a complete transfer of workers to shop 2 will be shown for

the case where (if) holds . In part 3, the proof will be completed by dem-

onstrating that the initial assumption must hold.

Part 1: Assume that inequality (ii) holds . Fix a specific input realization.

The expected cost when no policy change is made for n1 transitions is

U
(2) O’(i , ~

) — C~~, 
+ ci 1Cn1+i

where is expected discounted holding cost up through n1 transitions and

C~~,+1 is the expected discounted cost (under optimal control) after

transitions. By assumption, there is no transfer cost , C~ , through the

first n1 transitions .

The expected cost (when a transfer of X workers from shop 1 to shop 2

is made at the current stage, the allocation is held constant over n1 stages,

and the system is optimally controlled thereafter) is,

/ 
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(3) !“(L ) — c~
’ + c~ +

- where c~ is the expected discounted transfer cost through n1 transitions
1

n1 is the expected discounted holding cost through n1 transitions, and

C~~~1 is the expected discounted cost (under optimal control) after

transitions.

For any input realization there can be no more than n1 X R~ separating

the individual shop backlogs for one control policy (~
) versus the other

G’) after n1 stages of the process . Thus ,

Ic~,+1— C~ +1I — k(B1 + 0l,~ B2 
— O 2~ ~

) — ~(B1, B2, i’) !

. 

~~, 
k(B1 + 0

~~
, B2 

— 02~ ~
) — ~(B1, B2, ~) l

+ I~ (B1, B2, ~
) — ~(B1, B2 , 

~ ‘)I~

< 6  < n X R 2

Using Lemma 1, it is easily shown that -

n H XH
(5) I~ (B1 + 01, , B2 

— O 2~ ~
) — ~(B1, B2, ~)l < l

1
—

2
a

It is also known from Lemma 2 that,

(6) I~ (B1, B2, ~
) — 4’(B1, B2, ~‘) I < 1p1 — P~IT < X T

• Thus from (4) , (5) , and (6)

n R ~~~(7) I C~~÷1 
— C

~~ 1I ~ ~
1

—
2
~ 

+ I~~

/
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Rearranging (la)

- n R H
(8) T —  1 2

a U
1,

- a

Substituting (8) into (7) ,

C — C ’  < —
h1l4’l n1+l —

Removing the absolute value sign and multiplying by a gives ,

(9) ciSC < x e + a ~~~~ c’n1+1 — n1+l

Now consider the relationship of C~ and C~ . Since neither shop can run
1 1

out of work, is ~~(R2 
- B1

) ~ j a~~g:eater than ch . Thus

(10) — ch’ + XH(R2 
— 

~~ ja~
1 ~l i—i

Adding (9) and (10) together yields,

n~-l
a ~ Cn~~1<  X(e + a(R 2 — jci’~) .t C~

+ 3 1

Using inequality (ii) and noting that ~ ja~ — a/(l  — a ) ,
.1—i

U , U
(11) c1~ + a ~~’ C  < X’T + C~ + a 1’ C’

U
1 

n + i — U
1 

n1+l

13 
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But since C~ — XT it is inmiediate from (11) that,
U
i

U , I
- - C’~ + a 1 C < c~ +c

h + a ~~’ C ’
Ui n1+l n1 n1 n1+1 —

or simply

4 ’( ~
) 4 ” ’(B, a).

Part 2: Assume that inequality (if) holds .

For this part of the theorem the definitions for (2) and (3)

still hold. The argument given in part 1 showed that

Ic — c ’ < L.
n1+l n1+l — n1

Thus,

Ui Ui(12) a~~~C’ < O X + a  C—

Since shop 2 cannot run out of work through ni transitions,

ni
_i

(13) C~~ ~ 
— XH(R

2 
— H1

)

(Note: if shop 1 does not run out of work during the first n1 stages,

the above inequality becomes an equality.)

Adding (12) and (13) gives

n1—l

+ ~ 
1 c~~41 I x(e — H(R2 

— 

~ 

j3i ) + c~~, 
+ ~ 

1 c~~1.

• but (if) req~,res that:

n1-l
T < H ( R 2 — R 1) Z ja~~— e

i—i

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Thus,

1~~t 
U .~_ U1

X T + C~ + a 1C’ < C ~ + c t~~~ C
* U

1 Ui+l — Ui
or simply,

~~~~~~ a) I •‘(~ , ~) .

Part 3: The proof is completed by showing that the optimal policy at stage

1 will remain optimal through the first Ui stages and by showing that it is

never optimal to decrease the number of workers in shop 2. This will be

shown by considering two cases separately .

Case 1: In case 1 it will be shown that when the conditions in the proof

statement hold it is never optimal in the first n1 stages to decrease the

number of workers in shop 2.

Let the optimal policy at stage Z be to transfer X workers from shop 2

to shop 1. If d = (d1, d2) is the policy of the previous stage, the policy

at stage Z is (d1 + X, d2 
— X). The system is optimally controlled thereafter.

The shop system with this control policy will hereafter be designated option 1.

Consider a second system which is identical to the first except that the

policy in force at stage Z is (d1, d2) .  All policies before and after stage Z

are identical to those of option 1. Call this second system, option 2.

Now fix an input realization and compare the expected return for the two

options . It will be shown that option 2 provides the lowest expected return ,

and therefore that the postulated decrease is never optimal .

For option 2 , since shop 2 will not run Out of work for at least the first

n1 + n2 stages, the holding cost is at least

n1+n2—Z
XH(R2 — j +Z— 1

-i—i

~1

_ _ _ _  -~- ~~~~~~~~~~~~~ - -



less than for option 1. Transfer costs for option 2 are less than or equal

to those for option 1. Thus,

U +fl —z
(14) ~~~~~ + C~~+~2 

I C~~,+~2 
+ C~1~~2 

— XR(R2 — j +Z—i

where

h’CUi.~~ — Option 2 holding cost for the first n1+ n2 stages

~~~~~ — Option 2 transfer cost for the first n1+n2 stages

— Option 1 holding cost for the first n1+n2 stages
Ui 2

C~ ~~ — Option 1 transfer cost for the first Ui~~2 stages
“1 2

At the end of Ui~~2 stages if the system state for option 1 is (B1, 
~~~ 

a) ,
the system state for option 2 will be (B1 — eR1 B2 + ~~2’ ~~ ~ < X. Le=a (1) can

be used to show that the maximum possible difference in expected cost for the

ensuing stages will be

n1+n2
XR R.1 — a 2

Thus if

C
Ui~~~+1 — Option 2 total expected cost for -stages n1+n2+l on

c 
~~ 

— Option 1 total expected cost for stages n1+n2+l on

nl+n.,
“ f l u

(15) C’ < C  + 2
1 -

Combining (14) and (15) gives 
-

-- 

16
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(16) cb .,,~ + c~~÷~ + C~~~~+j I ClI~~~ + ~~~~~ + C
Ui~~~+l

n +n —Z n+n

— f l (R2 — H 1 )  ci — 

~~~~~~~ 
XR2H.

Now from (16) , so long as

fl1+n2 n1+n2-Z
O 

~~ 
— 

~~ 

XR2H — xH(a2 — H1~ 
-

~~~~~~~~ , 

~~~~~~~~~~~~~~~~~

total option 2 expected cost will be less than that for option 1. Certainly

this will be true for any policy changes occuring in the first n~ stages if

n
1+n2 n2

O > ~~
1 — ci XR2H — XH(R

2 
— H1) 

~ 
j+n1 1

j=l

Or simplifying if ,

U
2 

a2
0 .

~ ~ 
~~ 

H2 
— (a2 

— H1~ j— l 
•

But this is equivalent to condition (ic) in the theorem statement.

Case 2: Now to conlude the proof it will be shown that it is never optimal to

increase the number of workers in shop 2 at any but the first stage. Assume

that at some stage Z (not the first stage) the policy is to increase the number

of workers in shop 2 by X. So that if a — (d1, d2) is the policy of the pre—

vious stage the policy at the current stage is (d1—X , d2+X) . The system is

optimally controlled thereafter. The shop with this control policy will be

designated option 1.

Consider a second system with a policy at the previous stage, Z—l , of

(d1—X, d2+X) and policies which are the same as option 1 for all stages before

and after Z—1. Now fix an input realization and compare the expected return

17
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I
for the two options , Let the system costs for this case take the same symbols

as those for costs in Case 1.

It is i~~~diate1y clear that

(17) Ct — + ~~Z’2 (1 — ct)T.
Ui~~2 ~l4~2

Furthermore,

n + n -Z+l
(18) 1 n1+fl2 

— — 
1 2

- 

- 
Also,

(19) ~~~~~~~ ~ ~~~~~~~~ 
+ 

~i — ~~ 

-

Adding (17) , (18) , and (19) gives

(20) C
~~+n2 

+ C~
1
~~
2 
+ C~~+~2+i I C

~i
+n.2 

+ 
~~~~~ 

÷

- - 

Ui”~z+ ~~Z—2 (1 — a)T + i — 
fl 211 — XR(R2 

—

1—1

Now from (20) , so long as

U -I’fl U +fl ‘Z+l
(21) 0 > 3Z 2 (1 — a)T + ~ 1. 2 

~~~ — fi(R2 
— H1~ 

1 

~ 

3J+Z—2

total option 2 expected cost will be less than that for option 1.

Inequality (21) may be rearranged to read

n1+n2— Z+l
0 ~~

, a~
—2 [(1 — a)T — H(R2 — H1~ 

cz~ ] + ~ — 

~~ 

a2a

Note that

18 
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n1+n2-z+l al+n2
3Z—2 ((1 — ci)T — H(R 2 

— H1~ i~ l 
ci~ 1 + 

~~ 
— 

~~ 

R2H

n2+1 n1+n2
I 

2—2 [(1 — a)T — H(R 2 
— a1) + 1 .R2H.

Note f rom the conditions of the theorem statement (i.e., (lb) and (lc) , when

(i - a)T - H(R2 _ H 1) Z a~~< O
i—i

U
2 
must be selected so that

a2+l
(1 — a)T — H(R2 

— H1~ .
~~~ ~~‘ < ~
3 1

Thus,

n2+1 n
1+n2

3Z—2 ((1 — a)T — H(R2 
— ~ ~i ) + ci

i — ~~ 

R2H
- 

i—i

a n2+1 fl ]~+fl
2

.I3 ’[(1_ a ) T _ H(R2 _ H 1 )  ~~~au ] + ci
1_ 3 R2H.

i—i

To st~~ arize, this argument shows that if n1 and a2 are selected so that

(ib) and (lc) hold, then

n+n a+n -Z+].
Z—2 (1 — ci)T + 

~~~~~~~~~~ 

ffl~ — R(R
2 

— 

i 2 j+Z—2
i—i

n+ 1a 2 . 1 2

1c1 1’ [(1 — a)T — H(R2 — R 1) ~~ a~] + 3
1 _ 3 R2H < O

1—1

This means that option 2 expected cost is less than option 1 expected cost.

Thus when (lb) and (ic) hold it is never optimal to increase the number of

workers in shop 2 at any stage but 1 (or if it is optimal to increase the

/
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number of workers at a stage other than 1, an alternative opt {m-~1 policy exists

at that stage which does not increase the number of workers in shop 2.)

When (le) does not hold then of course,

T > H(R2 — R1)a/(1 — )2

In this case the nonoptimality of a shop 2 worker increase at any stage

other than 1 can be shown with a similar argument . Here such an increase is

postulated at stage Z. It can then be shown that when (lg) holds the expected

cost is reduced by delaying the worker increase by one stage .

Q.E.D.

Property 2:

Just as backlog can be so large that an optimal policy at stage k is known

i ediately, backlog levels may be so low that the optimal policy is known

is~ ediate1y .

Before proving this property, it is necessary to note that the

discounted system cost function is increasing in B
~
.

Lemma 3:

For the two shop system;

+ 0, B2, a) — ~(B1, B2, a) >H0 and 
-

•(B1, B 2 + 0, ~~) — ~(B1, B 2, ~~) 
>H0

Proof : The proof is obvious :

/
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Theorem 2: If the state of the system (L a)
— 

~~~ 
B2, d1, d2) is such that B1 I d1 H1 and

B2 I d2 • R2, the optimal policy is to maintain the

manpower allocation of the previous stage, d.

The above restriction on the state space merely requires that if the

manpower allocation of the previous stage is maintained, before the next

input surge both shops will become idle. Given the stated restrictions on

the state space , a change in worker allocation can only increase the backlog

in the shops . Thus, a change in policy is premature. It is better to wait

until one knows where the system will be after the next input surge , and then,

if necessary, make a policy change.

Proof: Suppose that the state of the system satisfies the requirements immediately

above. Then, since B1 I d1 
. and B2 ~ d2 • R2,

d df (m.~,, m~~B1,, B2) f (m~~ m2 J 0 , 0).

From this and Lemma 2 it is clear that;

JJ ~~m1, m2, a) f~’(in,1,, m2 J B 1, ~~ ~~~], ~~2

> JJ $(m,~,, m2, ~~) fd
(~~~

, 
m2 j B1, B2) 

~~~~

Also, from Lemma 3:

21
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( 23) TIp1 
- d11 + ~~~~ m21 ~~) > $(m~, in2~ 

a) .

— 
Substituting ( 2~ into 2 2 and multipl ying through by ci gives

(24) aT~p1 — d11 + cifJ •(m~,, in
2
, ~~) f

1’(m1, m2!B1, B2) ~~~~

> afj s(in,~, ~~~~~~~ 
a) f a (~1, m2 f B1, 

~~~ ~~~~ ~~2

Inequality (24) is unchanged if a 1 1 is removed from the transfer term

in the equation and H(B1 + B2) is added to both sides . But the resulting

expression is Just an inequality relating the expected cost of the system under

policy ~ and policy ~ . Thus, a must be optimal.

Q.E.D

• Property 3 (The Inertia Property)

The third property to be established is the inertia property for the two

shop system. It is in a sense a generalization of Heyman ’s [12] main result

to the two shop case. The inertia property for the two shop case is established

by the following theorems :

Theorem 3: Consider two distinct points in the shop state space

(L a) and (L a’) . Let ~ be optimal at (L a) and let ~~‘,

be opt imal at (~, a ’) . Furthermore, let d1 > d~ > p1 and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Then~~~is also optimal

at (L a’), and ~~
‘ is optimal at (B, a) .

Proof:

Once again, let

Y( ~~) 
— aJJ fP ( 1 ~ ) ,(I~)d.

Since p is optimal at (i , ~~~~

/
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( 25) H(31 + B2
) + T 1d1 — p11 + ~(L 

~~) I H(B1 + B2)+ T 1d 1 
— p
~I

+ V(i , i ’) .
Likewise, since p’ is optimal at (B, d’)

(26) H(B1 + B2) + T I d ~ - + !(B , P ’) IH ( B1 + B2)+ T I d ~ -

+ ‘V(i , ~).

Observe that when,

(27) d1 > d~ > p1 and d~ >

- p11 - ~d1 
- p1~ + (d~ - d1) and Id~ - - I d 1 - P~I + (d~ - d1).

When

(28) d1 ~~, 
d~ I p1 and d~ I P~,

I d~ — p11 J d 1 — p11 — (d~ — d1) and Id~ — p
~I — I d 1 

— p~ — (d~ — d1).

Since p1 and p~ must satisfy either equation (27) or (2a), inequality (26) may

be written,

(2 9) H (B1 + B2) + T J d 1 
— !jI + ‘Y(B , ~‘) I H(B1 + B2)

+ T!d 1 — p1~ + Y(~ , ~ ) .

Inequalities ( 25) and (29) imply that,

(30) H(B1 + B2) +T1d1 — P~,I + ~~~~~~~~~~~~~ — R(B1 + B2
) + T 1d 1 — p11

• + V(i , ~).

• Since the left hand side of (33) is the expected return with a policy choice

of ~~
‘ ; since the right hand side is the expected return with ~ worker allocation,

and since ~ is optimal at (~ , d); p ’ must be optimal at (B, d) as well. The -

- 

- 
same argument can be used to show that ~ is optimal at (B , ~~) .

Q.E.D.

23
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Theorem 4: Fix some point i in backlog . Let ~ be the optimal policy

when the number of workers in shop 1 at the previous transition

is S. Let p’ be the optimal policy at B when the number of

workers in shop 1 at the previous transition is S + Q (Q > 0).

Then, -

p1 I Pj .

Proof:

The proof is executed by considering four possible cases,

Case l: P1~~,S and p~~~,S + Q

Case 2: p1 I S and p[ .5, S + Q

Case 3: P1I S a n d P ~~~, S + Q

Case 4: p1 >Sand p~~I S + Q

The following arguments show that for each case p1 ~ , p~,
,

Case 1: If S + Q > p1, then < S + Q .5, Pj. If S + Q 5, p1 
then p

1 
—

by Theorem 3.

Case 2: If S < p~, then p1 I S < p~,. If S > p~,, then p1 — p~, by theorem 3.

Case 3:

Case 4 : For case 4 the fact that p1 I p~ is shown by contradiction. Assume

the opposite,

p1 > p~

Since ~ is optimal at (~, 5, W — 5),

(33) a(B1 + B2) + T~P1 — sJ + !(~~, ~~) 
I B(B

1 
+ B

2
) + T I Pj  —

+ ‘V(i , i’).

Since ~~‘ is optimal at (~~, S + Q, W — (S +Q) )

24
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(32) H(B1 + B2) + T ip 1 — (S + Q) + ‘V(i, ~) > H(B1 + B2) + TIP~ 
— (S + Q) I

+ ‘V(i, j i’).

With slight rearrangement and the elimination of ll(B1 + B2) on each side of the

inequalities , ( 31) and (32) can be written as,

(33) Y(B , ~~) I T f p ~ — si  — TIp1 
— si + ‘v(~, ~‘)

(34) r(i , ~) > ~~~ — (S + Q) i — T ip 1 
— (S + Q )I  + w(~ , ~ ‘)

Subtracting (33) from (34 ) gives,

— sI — 1p1 — si ~~. IPj — (S + Q)I — I~ 
— (S + Q)I

But it is easily shown that for case 4

— SI — li’1 — si < 
~ — (S + Q) J — 1p1 — (S + Q)i.

Therefore a contradiction exists and p1 must be less than or equal to pj,.

Q.E.D.

Property 4:

When the backlog in one shop, say shop 2, becomes very large while the

backlog in shop 1 is relatively low, certain simplifications in the control

structure occur . The optimal policy structure for the system is. sensitive only

to the backlog level of the lightly loaded shop (shop 1). Consequently , the

determination of optimal policies can be achieved by determ{n{ng optimal policies

for an equivalent single shop system. This result is described in the following

theorem.

Theorem 4: As B~ becomes large, the optimal policy structure asymptotically

approaches an optimal control structure which is def ined by -‘

4 single shop formulation. (The precise form for this single shop

problem is given after some motivating development in the proof.)

/
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Proof,

The recursive equation for the system is of course ,

(35) •(1, ~
) — min{T1d1 

— d~I + H(B
1 + B2) + af f

a
(1 ~) •( ,  a’) d~}.

0Cd~ (W

Now consider the integral in detail. If r
2 

is a random variable representing

the input to the highly loaded shop (shop 2) during a transition then,

a2 
— B2 + (d.~ 

— W) + r
2
.

—

Substituting these values into the integral in (35 ) yields ,

( 36) f’ ?d (m~, B2 + (dj - W) + E2IB) •(mi, B2 + (d~ - W) + r 2, ~‘) din1 d~2

Once a worker allocation is selected for a particular period, the operation of

the two shops for the period are independent, thus, the transition function may

be broken into two parts. That is

d’ —
,

t ‘( B~ + (d~ — W) + r2I~) — gd (
~ ,I B )  f 2 (r 2)

where

f~(.) — the input distribution to shop i, and

R.Ldj_Bl
g (m1IB 1) — 

J f 1(r 1) dF1, for m~, — 0

+ d~R _ B
1)~ for m~ > 0

Now (36) may be written,

(37) 
~~ 

g
d~ ( ~B )  f 2 (r 2) $(~~~, B2 + (d~ - W) + r2, a~) 

~~ 
dr2.

7

26 

~ ~~~~~~~~~~~~~~~~~~~~~~ ~1:. T T I~~~~~~~ -~~A



In Lemma 1 it was noted that , for in
2 sufficiently large ,

- 
- (38) •(m~, in

2 + 0 a’) ~~~~~ ~~~ d ’) + _____

Using (38), (37) may be rewritten as follows:

d’ (d’ — W + r ) H -
( 39) J g ‘(m1IB1) f2(r2)1~~,, B2, a’) + - 1 

1 — ~~ 

2 
~ din1, d~2.

Integrating through by r2 and taking independent terms out , (39 ) becomes ,

~ w d’ 
— 

d’ — W ) R E ( r ) H
g ~‘(m1IB1) ~(m1, B2, d’) din1 + 1

~ + 1

Substituting (40) into (35 ) yields

(41) ~~~~ a) — mm {T 1d 1 — d~ I + H(B1 + B 2)
0cd ’<W1 d’

+ a J g ~‘(m.~jB1) ~~m1, B 2, ~ ‘) din ,

(d’ — W )  B E(r
2

) H
}

+ 
1 +1 — a  1 — a

Constants on the right hand side of (41) have no effect on the minimization

process so that , insofar as policy determination is concerned , an equivalent

expression is

- d ’ H
(42) ~(i, d) — mm 1T141 

— d~ l + H(B1 + B 2) + 1
- 0 , 1 W

+ a f g~~ (m1lB 1) •(m1, B 2, a’) dm 1,~.

~ 
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Furthermore , the minimization process is independent of the value for B2 .

Thus the dependence on B2 can be dropped and (4 2) becomes ,

d’ H
(43) •(B1, ~~) 

— mm {TId1 
— d~ I + a(81) + ~~~~

‘

o<d~<w a

~ d’
+ a g 1 (iii1JB) ~~~~ ~‘) din1) .

Finally note that ~ can be completely described by a single vector element

(since d2 — W — d1) and of course the same is true for a’ .

Thus, in the limit the two shop minimization problem may be reduced to

a single shop formulation where the costs associat ed with the system can be

thought of as:

— a cost of turning a worker on or off (T 1d1 
— d~~l)

— a backlog holding cost

— and a cost of employing a server d~ (1, 
W )~

In this “imaginary system” control is exercised by opening or closing a worker ’s

station. Note that what the conversion to a single shop formulation does is

translat e the holding cost for backlog in shop 2 into a cost of employing a

server in shop 1.

Q.E.D.

Property 5:

One property of the optimal control system which at first seems obvious ,

is as follows:

At any stage, (f or a given number of workers at the previous stage) the

optimal number of workers in shop i either remains the same or increases as

the backlog in shop i is increased and backlog in the other shop is held

L ~~~~~~~~
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constant , this conjectured property will hereafter be called the “increasing”

property. Conversations with other researchers have revealed that this is a

topic of considerable interest.

Despite its intuitive appeal, the increasing property for single shop sys-

tems does not always hold. In Haas [12] a counter example is given for a nofl

stationary single shop system with transfer costs. Winston [25 ] proved that

the increasing property does hold for a one shop (queue) stationary system

which includes a control option of 0, 1, or 2 workers (servers) and transfer

costs.

For stationary undiscounted parallel shop systems our computational exper—

ience has shown that the increasing property rarely, if ever, fails to hold .

However, for the discounted system, it is possible to find cases where the in-

creasing property does not always hold (see discussion in next section). For

series shops, counter examples to the increasing property are abundant even for

undiscounted systems (see Part 2: Series Shops). If there are shop (queueing)

systems where the optimal control rules can be shown to exhibit the “increasing

property, ” we suspect that the systems are parallel (as opposed to series)

systems and that discounting is not used in the cost structure of the system.

Geometric Interpretation and Computational Efficiencies

With these properties established for the 2—shop infinite and finite hori-

zon case, it is possible to indicate geometrically the nature of the optimal con-

trol structure. Figure 3a shows an example structure for the case where the man-

power allocation (5 workers in the system) for the previous stage was d — (3 , 2)

and where T > H(R 2 — R1) a/ ( 1 — a)2. The rectangular region with one corner at

the origin is the “do nothing” region required by property 2 . The other “do

nothing” region is a consequence of property 1. At relatively large values of

B1 and B2, the position of the isopols can be determined by the one shop formu—

lation described in property 4. For heavily discounted systems (on the order of

29 
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Figure 3a. Graphical Representation of Optimal Control
Structure for 2—shop, 5 worker System.
When the Previous Poli9 is (3, 2) and
‘T>H (R

2 — R~)ci/ (1 — a)

I

I / - 

• 

.

, 
- 

-
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Prop. r~ y 1 (Plies All Work ~ rt, In Sho p 2)

- 

- 

I -

(1~4) 
- .

o
~1 • ,>,

,~
�i4

~~~~~~~~~

• Figure 3b: Graphical representation of optimal control.
structure for 2—shop, 5—worker system when
the previous policy is ~3, 2) and -

T < H(R2 — R,)a/(1 — a)

• .4

•

~ 
. . 

-
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10% per period or week) , the position of the isopols changes (see dotted line

in Figure 3a) revealing situations where the increasing property does not hold.

However , for realistic discount rates (say 20% per year or less) we have found

little change from the undiscounted systems for the optimal policy set.

When T < H(R 2 — R
1) ct/(l 

— a)2 the optimal control structure takes on a

different form. In this case , property 1 no longer requires the “do nothing”

region shown in figure 3a. Instead, property 1 requires that for shop 2,

whenever the backlog in what shop exceeds a given level , the optimal policy

is to place all workers in that shop . The optimal control structure for such

a system is shown in figure 3b.

In figure 4 the consequences of the inertia property for a 3 worker system

are noted . The four planes shown give examples of isopol configuration when

the number of workers in shop 1 at the previous stage are 3 for the top plane,

2 for the plane below , 1 for the plane below that, and 0 for the bottom plane. -

£

Note that in those regions of the state space where the optimal policy is to

increase the number of workers in shop 1 isopols correspond to those in the

bottom plane. When the optimal policy is to decrease the number of workers

in shop 1, isopols corr espond to those in the top plane.

To see why , consider the following example: Suppose that the optimal

policy at point (i, 3, 0) is (1, 2) .  Then points (i, 2 , 1) and (
~, 1, 2)

fulfi l l  the first requirement of Theorem 3 (i.e., d1 > d~ > p1) .  Now if the

optimal policy in any of the three points is to decrease the number of workers

in shop 1, the second condition of Theorem 3 (d~ > ~~ is sat isfied and p1
must equal p~ . This does not yet guarantee that p1 — Pj . The only way to

establish this is to show that the second condition of Theorem 3 is indeed

satisfied .

Theorem 4 can be used to do this. Suppose that d~ < p~ then p1 < d~ < pj, .

But Theorem 4 stipulates that p1 > p~, , a contradiction. Thus, d~ > Pj and

~



- .••—fl,.__•_ ._-_.__ - -_•,_-•_j
-- -- —---. — - - --- ---•-- - - - -

- • (3 ,0)

- 
lOCattOU W~~

I
/W’

Po1jcj~~ whia
- - undi~ur~in.d ~~~~~~~~~ wo rks i

: - 
rs$ion rn aCion w

— 

: _ —I~~~
_ _ 

~~ ~~

/ 
- 

Po1t~~,, ~~~~
L. • i~dsCsr ~jn.d pr*vj o.j s vork s~- rsston - £l1oeatjo ~ vi~

I - (1.2)

• _ _ _ _  
_ _

(0,3) 

-

_ _ _ __

•
~1

• Figure 4: The Effect of Inertia on a Two—Shop
- 

- Three Worker Para llel
System

‘4-’-,

33

- - - — ——---— - - -  - - :  ~~~~~~- - - ~~~~~~~~~~~~~ _~___ 
~~~~~~~~~~~~~~~~~ _ - .



- - ~---- - -~~~~ -- -~~~~ - - i

must equal. p~ . To summarize , if ~ is optimal at (B , 3, 0),  and if 3 > d ~ > p 1,

then ~ is optimal at (~~, ~~ di) . Similar logic shows that if p is optimal. at

(i, 0 , 3) and if 0 < d~ < p1, then p is optimal at (~~, ~~~ di) .

The “undetermined” regions are undetermined in the sense that the 
- - - -

inertia property itself cannot be used to determine the policies in the

regions. Properties 1 and 2 can be used to fix portions of the “undetermined”

regions. In addition, it is easy to see that if the increasing property

holds , the “undet ermined” regions are do nothing (i.e., maintain the present

worker allocation) regions. Assuming that the increasing property holds (when

the shop system is modeled as an undiscounted stationary process) an efficient

algorithmic approach can be used to determine optimal strategies.

Consider a 2—shop W—worker system where the objective is to minimize the —

total. discounted operating cost over an infinite horizon. Appl ying the well

known Howard (13] policy iteration technique in a straight—forward fashion

requires at each iteration, for each state, a search over aLl possible policies.

Assuming (for the moment) the existence of the increasing property a policy

iteration may be completed in the following manner . Determine policies for

the states

(
~, 0 , W),  (~~, W , 0),  ~ > 0 .

Policies for the states

(B , 1, W—l) , (~~, 2 , W—2) , ..., (~~, W—1 , 1) ~ > 0

are determined directly by applying the inertia and increasing properties.

Use of this property reduces computatio!lal effort  from one which is quadratically

expanding in V to one which is linearly expanding . In addition, further

economies can be effected . Starting the iteration at states (0 , 0 , W) and

(ö , W , 0) and moving to states with successively larger backlogs the increasing

property can be used to limit the policy search for the (B , 0 , W) and (~~, W , 0)

states.

34
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Once the algorithm converges, one additional iteration checking for poten—

tial. optimal (decreasing) policies insures the existence of the increasing

property. It should be noted parenthetically (recall the earlier discussion

of Property 5) that instances where the property does not hold (for the sta—

tionary undiscounted system) are rare, and possibly non—existent.

It is possible to quantify precisely the inertia property’s ability to re-

duce the size of a problem. Suppose that a two shop system has a limited state

space where

0 < B1 < 1000 mhrs. and 0 < B2 < 1000 mhrs.

(Of course the problem as formulated assumes that the backlog may take on any

value no matter how large. However, it is not unreasonable to place an upper

bound on allowable backlog thereby making a computational solution possible.)

Suppose, further, that for computational purposes the state space has been

divided into 40x40 manhour blocks. For a fixed previous stage worker allo—

cation there will , therefore , by 25x25 or 625 states associated with that

allocation alone. If , for example, there are 30 total workers in the system,

there will then by 625x30 or 18,750 total states. But by utilizing the inertia

property the problem can be reduced to one where only 625x2 or 1,250 states

must undergo policy search.

It should be noted that, for computational purposes, it does not appear

necessary to be overly concerned with the existence of the increasing pro-

perty. Our experience has been that the inertia property, and Property 2

account for as much as 95% or more of the policies in the interior states.

Extensions of Results to N—Shop Systems

Extensions of the results presented here to N—shop systems are generally

straightforward. The reader is referred to Haas (12] which contains a complete

discussion of the extension to N shops.
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Summary

To sunmiariz e, we have shown that parts of the state space for the two

shop optimal control problem can be sudivided into regions where either;

the optima]. control policy is known exactly (as with properties 1 and 2),  or

• where the process for finding a solution is of reduced complexity (as with

property 4).  Furthermore Property 3, by showing that all optimal policies

- 
- are complet ely det ermined when optimal policies are known for only (B , W , 0)

and (~~, 0, W), drastically reduces computer storage and time requirements

when solution of a problem by computational methods is necessary. This infor—

• mation should prove to be more and more useful as production facilities move

to higher degrees of systematic or automated control.

Even if policies are not determined precisely, a general knowledge of

the layout of the control structure can be used to advantage. The two fund-

amentally different forms (described by Property 1) which the optimal control

structure may take are a case in point . By utilizing the information in

Property 1, the sho:~ system controller can determine from shop paramet ers

which basic form of control to apply to a system, and then act accordingly.

S*i-h insights into control structure can be very valuable when exercising

shop control .
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PART II

- Introduction

Before beginning this discussion of the formulation of series shop systems

the reader is referred to the introductory and formulation discussion in Part 1

(parallel shops).

The formulation for the series shop system is quite similar to that for

the parallel system. In fact, the cost structure for the series system is

identical to the parallel system. The only difference in the two is the flow

of work from shop to shop. In the series system, work which exists one shop

enters the next shop in the series as input where it awaits processing in that

• shop (see Figure 1). It is assumed that work completed in shop 1 during the

period is not available to shop 2 until the beginning of the next period.

There are no backlog limitations for any shop, and input to the first shop is

the only stochastic element of the system. 
-

The difference in workflow (parallel vs. series) can be completely ac—

comodated by the transition function f~(;IB) so that the recursive equation

for the series system appears exactly the same as for the parallel system.

That is:

2
•(~, ~) — mm ~TIp 1 

— d11 + H B1 + a J f P ( 1 ~ ) •(, p:drn}.
0~p1<W ii 0

/
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Note that the only difference in the parallel system formulation is the im-

plicit fact that, f9( I ~
) now reflects the workflow movement of a series system.

Otherwise, the symbolism used above , and throughout Part 2 , is the same as that

defined in Part 1.

- 
- The Structure of the Optimal Control Policy

In this section three fundamental properties of the optimal control policies

for an infinite horizon system will be determined. These properties will be

uaed to reveal the basic nature of the optimal control structure for series

system.

Property 1:

The first property to be established shows that if the transfer cost is less

than a specified critical number, then when backlog is sufficiently great, the

optimal policy is to reallocate manpower so that all workers are in shop 2. If

T is greater than the critical number , it is never optimal , no matter what the

backlog level, to transfer workers.

Before beginning the proof for property 1, two necessary lemmas will be

established .

Lemma 1:

+ 0, B2, a) — •(B1, B2, a) < 1 — a  (1)

(The same property holds in B2 .)

Proof:

The proof follows that for Lemma 1 in Part 1. (As in Part 1, it is easy

to show that in the limit as B~ -~ ~~~, the inequality of Lemma 1 becomes an

equality.)
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Ls’mma 2:

j~(L a) — ~(B , a ’) J < Id 1 — d~ J

Proof:

The proof follows that for Lemma 2 in Part 1.

Theorem 1.

Let R — Max {R1, R2 1. (Note that R~ is the period man hour capacity of shop 1)

Define

n Dl + n2 .

1. When Dl can be selected large enough that

n1—l 
i a 1(2n1RB)

ia
i—i i — a  (2a)

tnd U is selected so that

n2+1
2RRri 

2 < T  (2b)
(1 — a)

and so that ,

n1+n2—l n1+n2
T(l — a ) < 0 R 2 z ai _ a

1~~~~~ (2c)
i n 1

Then , when B2 > n R2 W, it is optimal to place all workers in shop 2 for

the first n1 stages. (In other words, if the backlog in shop 2 is big enough , and

T < } j R 2a / ( l — a ) 2 
,

then it is optimal to place all workers in shop 2 .)

/
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2. When

T > HR2a/ (l — a) 2 (2d)

it is always optimal , no matter what the backlog level, to hold the worker

allocation of the previous stage constant.

Proof:

It will first be assumed that it is never optimal in the first n1 stages

to decrease the number of workers in shop 2. Further , it will be assumed that

• if it is optimal (in the first n1 stages) to increase workers in shop 2, that

increase must take place at stage 1. These assumptions leave only two cand i—

date optimal policies, either maintain the worker allocation of the previous

stage , or increase (at stage 1) the number of workers in shop 2. The first two

parts of the proof will involve a comparison of these candidate policies.

In part 1 it will be shown that (given the above assumptions) and given

that (2a) holds it is optimal to increase the number of workers in shop N. In

fact , it will be shown that it is optimal to place all workers in shop 2. In

part 2 it will be shown that given that (2d) holds it is always optimal to

maintain the worker allocation of the previous stage. In part 3 the proof will

be completed by showing that each of the initial assumptions must hold.

Part 1: Assume that inequality (2a) holds. Now fix an input realization and

define option 1 as follows : For the first n1 stages, policy ~~
‘ (d~ ,~ 0) is in

effect. Thereafter, the system is optimally controlled. The expected cost of

the system is

t’ h’s’( B , a ) — c  + C  + a ’C ’a1 n1 n1+l

where C~ is the expected discounted transition cost through a1 transitions,

/
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C1’ is the expected discounted holding cost through a1 transitions, and

+1 is the expected discounted cost incurred for all stages after a
1

For the same input realization define option 2 as follows : The worker

allocation for the first n1 stages is a” . ci” is the same as a’ except that

— d~ — 1 and the worker lost to shop 2 is added to shop 1.

This policy remains in effect for the first a1 stages. Thereafter, the

system is optimally controlled . The expected cost for option 2 is

— — “ h” n
4”(B , d) = ~;t + C + aa1 n~ n1+l

For any Input realization, the backlog levels for option 1 at stage a1 + 1

• and for option 2 at stage a1 + 1 are limited in separation. The limitation is

as follows: If,

B~ — backlog in shop I for option 1 at stage I1l+1~

— backlog in shop i for option 2 at stage a1 + 1,

then,

• IB~ 
— a~I < 2 n 1R

From Lemma 1 it can easily be shown that,

I$(~~
” , a’) — 

~~~~~~ a”)~ < fd~ — c5IT — T

Then,

Ic~41 ç 411 — I~ i’, 
~~‘ 

— .~~~
“. a”) I < 

~~~~~~~~ a’ — 
~~~~~

“ . a ’) !

- 

+ J”~”, a~) — 
~~~~~~~~ a”) I
2n RH

~ i..~a + T .  (3)

42



-—--
~~~~~

- - -
~~

-
_

~~~~
.

Removing the absolute value sign , multiplying by a and rearranging yields,

n a a 2n RB
a 1C” +1 > a ic e 

n1+l — a ( 1—a + T) . (4)

Because shop 2 cannot run out of work for a1 stages,

- + 
~~~ 

iai • (5)

Adding (4) and (5) ,

a -l
~,,, n, ,.. e a, n 2n ,RR 1

C + a ‘C” > C” + a ‘C ’ — a l( + T) + HR ~ ict~. (6)a n+ 1 — a n -I-i 1-a 2
— 1 1 1 1. 1=1

At this point it has been assumed that it is never optimal to decrease

the number of workers in shop 2. Thus, It is only necessary to consider the

case where selection of policy a’ results in an increase in the number of

workers in shop 2. Therefore,

t” t ’C — C  — T. (7)
a1 n1

Adding (6) and (7) yields,

a 
~~~
, , a, n 2n,RB

C + C~ + a 1C” > C’ + C~ + a ‘C ’ — a + T) (8)a1 a1 n1-I-l — r~1 n~ n1+l 1—a —

n1—1 
~+ H R 2 ~ ia — T.

i—i

Now recall inequality (2a)

n1—l a
~ icli — a 1(2n1RB)

i—i I

( 2a)

l + a 1 -j
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Multiplying by the denominator gives,’

nn - i  3.a1 1 a (2n 1RB)
T ( l + a  ) c HR2 ~ Ia —

i—i

Rearranging yields,

a -ln1 2n RH 1
a -

~~~~ 1—a + T) HR2 Z Ia — T. (9)
i—i

(8) and (9) imply that ,

~
_ ,, ~~~ h ’ ,

C + C’ + a ~C” > C + C’ + a ‘C’ . (10)n1 n1 a1 
— a1 a1

Eq. (10) shows that if the policy selected at stage 1 is maintained for the

f irst a1 stages , and if (2a) holds policy a’ provides a lower expected

cost than policy d” . Repeated application of this result shows that if

the policy selected at stage 1 is i~.aintained for the first a1 stages, and

if (2a) holds , the expec ted return when all W workers are placed in shop 2

at stage 1 is less than or equal to the expected return with any other

policy selected.

Part 2: Note that HR2 ~ represents an upper bound on holding cost
i—i

reduction which can result from the transfer of a single worker. Clearly ,

then, if

T > HR
2 ~ in

1 
— HR2a/ ( l—a) 2 ,

i—i

it is never optimal to make a worker transfer.

Part 3: The validity of the initial assumptions will now be established.

This is done by comparing the assumption with the alternative policy ,

using the relationships in the theorem statement.
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Assumption: Any policy change at stage 2 through a1 which increases the

number of workers in shop 2 is nonoptimal .

Fix an input realization. Suppose that stage X+l, 2 < X+l <

is the first point where the optimal policy is to increase the number of

workers in shop 2 , and suppose fur ther that the shops are optimally control-

led thereafter . Define this as option 1. Define option 2 as follows:

Option 2 is the same as option 1 except that the increase in shop 2 is

made one stage earlier , at stage X.

Since shop 2 cannot run out of work,

n + n -1
ci” — c~

” — HR 
1 2 

(11)n1~ 12 fl
1
4i1

2 
2

— 
The difference in transfer costs for - the two options can be- expressed by

t I’ t~ xlC < C + Ta — 

(1—a). (12)— fl~~2

By arguments similar to those used earlier, it is easily seen that

n +n
a
’
~
1
~~
2 C” < l~~2 

~~
, + a 

~ _
2
a

2RB (13)

Adding (11) , (12) , and (13) gives

c1”,.,~ + c
t”
.~ + a

n1~~2 C
~~ .~~+j ~ 

+ ~t
_~~ (14)

n i-n
ni-n 1 21 2 , a 2BHi - a  C + 1 — a  —

a + n~-11 2
+ T a  ( l — a ) - H R 2 L a

i-x
Since X is never larger than a1, inequality (2c) implies that

n + n -ln + n  1 2
a ~ 2 2RH + Ta~~

1(l— a) < HR 2 ~ a1. (15)
1 - a  i—X

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- - (14) and (15) imply that

1” t” “l~~2 “ h’ t’ -

C~~+~ + C~~~~ + a ~~~~~~~~ ~~. C i-,~ + C +~

n i-n
i- ct ’ 2~~,n1+n2+l

Assumption: Any policy change at stages 1 through n1 which decreases

the number of workers in shop 2 is nonoptimal.

Fix an input realization.

Define option 1 as follows: At stage X policy a’ is in effect .

Policy a’ decreases the number of workers which were in shop 2 at the
previous stage and increases the number of workers in shop 1. Option 2

is defined as follows: At stage X the policy in force is ‘d’ — (d~ — 1, d~ + 1).

Since sho; 2 cannot run -out of work, 
--  -

~~ 

-

n + n -l
— ch’ — HR 

1 2 
ai. (16)

nh—n2 ~~~~ 
2 i—x

Difference in transfer costs for the two options

C~ < C~ — Ta~~’(1—à) (17)
n1+n2 fl1+n2

By arguments similar to those used earlier, it is easily seen that

an i - n  n i -n  1 2
~ 

i 2 C” < a ~ 2 c’ + a 2RH (18)
n1+n2+1 

— n1+n2+l 1 — a

Adding (16) , (17) , and (18) together and using (2c),the same logic used in

the previous assumption shows that

1” t” ‘
~1 2  h’C i-~ + C + a c;+~~+1 

< C i-~ +

a i-n
i - a 1 2~~,,

U

Q. E.D
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Property 2:

Just as backlog can be so large that the optimal policy is specified,

backlog levels also may be so low that the optimal policy 1 s a 1 s o

specified.

Before proving this property, one lemna must be established.

Lemma 3:

•(1, a) < ~~B1 + ei, B2 
— 8

~ 
+ 02~ 

a) , 0 
~~
. 

0i 
< B~, i — 1, 2. —

Proof: Define

— (B, d)

ii ’ = (B
1 + 01, B2 — + e2, ~~)

It is easy to show that for any given input realization, if the optimal

policies generated for starting at point u ’ are used, the total backlog

(ZB~) at any stage of the sequence starting at point i.i will always be the

same or less than the total backlog level generated from starting at point ii ’ .

Thus, the total expected cost of operating the system for any input

realization must be more if the system is presently at ~t ’ .

- 

Q. E.D.

With this lenuna established, it is possible to proceed with the

following theorem:

Theorem 2:

If the state of the system (B , a) is such that B1 < diRi V i, the

optimal policy is to maintain the present allocation d.

Proof:

Consider what happens to the backlog levels at a point in time ininediately

before the upcoming input surge. Assume that with policy a the backlog level
would have been I immediately before the input surge.

/
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If a worker from shop 1 is removed, the net effect is to increase the

backlog in a shop 1 by 0
~

(O < a1 < R1) and to decrease the work in shop 2

by 
~~ 

If a worker is removed from shop 2 the backlog in shop 2 is increased

by 02(0 < O~ < R2) but shop l’s backlog is not affected. The backlog in the

shop which received the removect worker will remain unchanged since, by the

theorem assumption , each shop has enough workers to complete all work which

was in the shop at the previous transition.

T~ius, for any policy j which is different than a , the backlog immediately

before the upcoming input surge will take the form :

(B1 + 01, B2 — 01 +

Thus, from Lemma 3, it is easy to see that

~ f”(I ~
) d > ( .  a) fd(- 1~) d .

Since policy p also entails transfer costs, it follows that it is cheaper to

maintain the present policy a.
Q.E.D.

Property 3:

Property 3 is established for the series system in exactly the same

way as for the parallel system. Theorems 3 and 4 of Part 1, which established

property 3 for parallel shops, are restated here.

Theorem 3:

Consider two distinct points in the shop state space (I, a) and (I, a ’) .

i

/
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Let p be optimal at (B, d) and let p ’ be optimal at (B , d ’ ) .  Furthermore ,

for all I, let either

d1 < d ~~< p 1and d ~~< p ~

or d~ > d~ < p1 and d~ > p~

Then p ’ is also optimal at (I, a) , and p is also optimal at (B , a ’) .
Proof:

The proof is identical to that for theorem 3 in Part 1.

Theorem 4:

Fix some point B in backlog. Let p be the optimal policy when the

worker allocation for the previous transition is S. Let p ’ be the optimal

policy at I when the worker allocation for the previous transition is S + Q,

and where ~ is a vector whose elements may be positive or negative.

Furthermore , let

S~ < S1 + Q~ < p1 V 1 such that S. < p1

Si > S j+ Q j > p jVisuch that pj < S j

Then, for all I

Si + Q~ < p
~ when S1 < and

S~ + Q1 > p~ when S1 > p1.

Proof:

The proof is identical to that for theorem 4 in Part 1.

49
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Geometric Interpretation:

The properties developed yield a great deal of information about the

optimal control structure of a series shop system. Figure 2 depicts the

general structure of the optimal control policies. Property 1 indicates

what optimal policy will be in force in shop 2 when backlog in that shop

becomes large. When

T < RR2ct/(l—ci)
2,

as it is for the system represented in Figure 2. That policy will be to place

all workers in shop 2. If T is larger , the problem is trivial. (No worker

is ever transferred.)

Property 2 indicates that in an area close to the origin , the optimal

policy is to maintain the policy of the previous stage.

Property 4 shows that in a region where backlog in shop 1 is large the

optimal control structure can be found by solving a 1 shop problem .

The effect of property 3 on the series shop optimal control structure

is shown in Figure 3. The four planes shown give examples of isopol

configuration when the number of workers in shop 1 at the previous stage

are 3 for the top plane, 2 for the plane below, 1 for the plane below that ,

and 0 for the bottom plane. Note that in those regions of the state space,

where the optimal policy is to increase the number of workers in shop 1,

isopols correspond to those in the bottom plane. When the optimal policy

is to decrease the number of workers in shop 1, the isopols correspond to

those in the top plane .

Note that the above properties can be used in the same manner as

• those for parallel systems to build efficient computational solution

methods. (See the discussion in Part 1.)
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Figure 2~ General structure of control policies
for a 2—shops in series system (4 workers )

- where the previous policy is (1, 3).
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