

AD A 053572

AD NO.

THE DISTRIBUTION OF SUMS OF 6 EPENDENT LOG-NORMAL VARIABLES







(14) TR-31

15 NOOD14-75-C-0529

PREPARED UNDER CONTRACT NR 00014-75-C-0529, PROJECT NR 042-276 OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for any Purpose for the United Stated Government.

> DISTRIBUTION STATEMENT A Approved for public released Distribution Unlimited

Department of Mathematics and Statistics CASE WESTERN RESERVE UNIVERSITY Cleveland, Ohio



TIFICATI DISTRIBUTION/AVAILABILITY CODE AVAIL and/or SPEC. Bist.

# THE DISTRIBUTION OF SUMS OF DEPENDENT LOG-NORMAL VARIABLES

by

S. Zacks\* and C. P. Tsokos\*\* Case Western Reserve University and University of South Florida

行为主题的的名词 法法 放著

sitered victimeters and bestree [4] control the prostant in density

naving al appropriate b seads le collarede la value

## I. Introduction

actuations and

Distributions of sums of dependent or independent log-normal random variables appear in various fields of applied statistics. Concentrations of pollutants in the air or in water, life distributions of components in reliability systems and other applications. The available expression for the distributions -f sums of log-normal variables are complicated and inattractive. Simpler expressions are needed for practical applications. The purpose of the present paper is to provide some simple approximations and algorithms that can be easily applied for obtaining numerical results. We are concerned with two types of variables (i)  $W = e^{X_1} + e^{X_2}$  and (ii)  $Z = \log(e^{X_1} + e^{X_2})$ , where  $X_1$  and  $X_2$  have a bivariate normal distribution. The dependence of the log-normal variables  $e^1$  and  $e^2$  is a function of the correlation  $\rho$  between  $X_1$  and  $X_2$ . Naus [5] derived the moment generating function of Z for the case of  $\rho = 0$  and equal variances of  $X_1$  and  $X_2$ . Handan [2] extended Naus results to the case of arbitrary  $\rho$  and

The research of S. Zacks was partially supported by the ONR contract NO0014-75-C-0529, Project NR 042-276 at Case Western Reserve University.

monants we provide a formula for a measured approximation.

The research of C. P. Tsokos was partially supported by the United States Air Force, Air Force Office of Scientific Research, Under Grant No. AFOSR 74-2711, at The University of South Florida.

unequal variances. Lowrimore and Tsokos [4] derived the probability density function of Z and of W. Further elaboration of these distributions is given in the paper of Tsokos [6]. The problem is however, that the analytic expressions derived by Lowrimore and Tsokos are very complicated and require also numerical integration. Our aim is to develop simpler methods. In Section 2 we develop two numerical procedures for the determination of the distribution of W with arbitrary parameters. We present some numerical computations of the c.d.f. of W. These computations were performed according to a FORTRAN program given in Appendix A. In Section 3 we study the moments of W and in Section 4 we derive an approximation to the distribution of W based on the lognormal distribution having the same mean and variance. As demonstrated by numerical examples this approximation is very effective when the correlation between X1 and X2 is nonnegative. The lognormal approximation to the distribution of W, which is the normal approximation to the distribution of Z, does not provide very good results in the range of correlations close to -1. We tried therefore to correct for the pronounced skewness in the distribution of Z = log W, when p is close to -1, by employing the Edgeworth expansion. For this purpose we have to determine the moments of Z = log W. In Section 5 we discuss the problem of determining the moments of Z, in the case of  $X_1$  and  $X_2$  having a standard bivariate normal distribution. For the first moment an analytic expression similar to that of Hamdan [2] is given. We present however, an expression which is more suitable for numerical computations. For higher moments we provide a formula for a numerical approximation. The goodness of this approximation is also studied. Numerical computations show that the Edgeworth type of expansion mentioned earlier does not provide in the standard case any substantial improvement.

-2-

2. The Distribution of W. a cart W mond I = 0 has go = 10 +04 = 14 (11)

Let  $X_1$  and  $X_2$  be random variables having a bivariate normal distribution with means  $\mu_1$  and  $\mu_2$ , variances  $\sigma_1^2$  and  $\sigma_2^2$ , respectively and coefficient of correlation  $\rho$ .  $-\infty < \mu_1$ ,  $\mu_2 < -$ ;  $0 < \sigma_1$ ,  $\sigma_2 < -$  and  $-1 \le \rho \le 1$ . Let  $X_1 = X_2$  and let  $F_{\underline{\theta}}(w)$  be the c.d.f. of W, under  $\underline{\theta} = (\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$ . Obviously,  $F_{\underline{\theta}}(w) = 0$  for all  $w \le 0$ . For w > 0 we have for all  $\underline{\theta} = (\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$ 

(2.1) 
$$F_{\underline{\theta}}(w) = P_{\underline{\theta}}[e^{1} + e^{2} \le w]$$
$$= \frac{1}{\sigma_{1}} \int_{-\infty}^{\log w} P[e^{2} \le w - e^{y} | X_{1} = y] \phi(\frac{y - \mu_{1}}{\sigma_{1}}) dy$$

where  $\phi(\mu)$  denotes the standard normal p.d.f. The conditional distribution of  $X_2$ , given  $X_1 = y$ , is the normal distribution with mean  $E\{X_2 | X_1 = y\} = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (y - \mu_1)$  and variance  $V\{X_2 | X_1 = y\} = \sigma_2^2 (1 - \rho^2)$ . Thus, if  $-1 < \rho < 1$ ,

$$F_{\underline{\theta}}(w) = \frac{1}{\sigma_1} \int_{-\infty}^{\log w} \Phi(\frac{\log(w-e^y) - \mu_2 - \rho_2^2}{\sigma_1} \frac{(y-\mu_1)}{(y-\mu_1)}$$

(2.2)

executed. Notice that  $e(-4.5) = .54 \times \frac{1}{2} - \frac{1}{2}$  Therefore, the strot constitued by angle of this character that  $e_{ij} = \frac{1}{2} + \frac{1$ 

).

where  $\Phi(u)$  is the standard normal c.d.f. The following are some special cases: (i) If  $\mu_1 = \mu_2 = \mu$  and  $\sigma_1 = \sigma_2 = \sigma$  then the expressions are slightly simplified since  $e^{\mu}$  is a scale parameter of the distribution and

$$\mathbf{F}_{(\mu,\sigma,\mu,\sigma,\rho)}(\mathbf{w}) = \mathbf{F}_{(0,\sigma,0,\sigma,\rho)} \left(\frac{\mathbf{w}}{\mathbf{e}^{\mu}}\right), \ 0 \leq \mathbf{w} \leq \infty.$$

(ii) If  $\mu_1 = \mu_2$ ,  $\sigma_1 = \sigma_2$  and  $\rho = 1$  then W has a lognormal distribution. Indeed, in this case  $X_2 = X_1$  with probability 1 and

(2.3) The P[W  $\leq$  w] = P[e<sup>X</sup>]  $\leq \frac{w}{2}$ ] =  $\Phi(\frac{\log w - \mu'}{\sigma})$ , is the interval of the product of the produ

where  $\mu' = \mu_1 + \log 2$ . (iii) When  $\mu_1 = \mu_2$ ,  $\sigma_1 = \sigma_2$  and  $\rho = -1$  then  $X_2 = -X_1$  with probability 1 and the distribution of W is given by,

(2.4) 
$$F_{\underline{\theta}}^{(-1)}(w) = \begin{cases} 0 , \text{ if } w \leq 2, \\ \phi(\frac{\xi_2(w) - \mu_1}{\sigma_1}) - \phi(\frac{\xi_1(w) - \mu_1}{\sigma_1}), \text{ if } w > 2, \end{cases}$$

where  $\xi_1(w) = \frac{1}{2}(w - \sqrt{w^2 - 4})$  and  $\xi_2(w) = \frac{1}{2}(w + \sqrt{w^2 - 4})$ . Notice that  $e^x + e^{-x} \ge 2$  for all x.

#### 2.1 Numerical Determination of the Distribution of W.

The integrand of (2.2) can be easily computed for each y value. A numerical integration of (2.2) over the range  $(\mu_1 - 4.5 \sigma_1, \log w)$  can then be readily executed. Notice that  $\Phi(-4.5) = .34 \times 10^{-5}$ . Therefore, the error committed by neglecting the range of  $y < \mu_1 - 4.5 \sigma_1$  is smaller than  $.34 \times 10^{-5}$ . For this reason, for values of w smaller than e , we approximate the value of  $F_{\underline{\theta}}(w)$  by 0.

we are 20 . ( The carbon of " and (around and

since a is a scale parameter of the distribution and

An m-point approximation to (2.2) is given by

-4-

 $\frac{\log(w-e^{n'j}) - (\mu_2 - \rho \frac{\sigma_2}{\sigma_1} \mu_1) - \rho \frac{\sigma_2}{\sigma_1} n'_j}{\sigma_2 \sqrt{1 - \delta^2}} ).$ 

-5-

 $\left[\begin{array}{c} \bullet(\frac{h_{j}-\mu_{1}}{\sigma_{1}}) - \bullet(\frac{h_{j-1}-\mu_{1}}{\sigma_{1}})\right],$ 

45.28.0

上 动生活动的

400 .K

3.000.2

where 000.4 0.81938 A 1983 1994 0.86402  $n_j = \mu_1 - 4.5 \sigma_1 + j \Delta(w)$ , (2.6) · · · · · 10.91382  $\Delta(w) = (\log w - \mu_1 + 4.5 \sigma_1)/\mu_1$ .2283.2.0

 $n_{j} = n_{j} - \Delta(w)/2.$ 

28.

1883年43、日

and

In Tables 1 we provide the results of computing  $F_A(w)$  according to (2.5) with  $\mu = 20$  and subintervals for the case of  $\mu_1 = \mu_2 = 0$ ,  $\sigma_1 = \sigma_2 = 1$  and  $\rho = -.99(.33).99.$ 

Theoretically, the limit of (2.5) as  $m \rightarrow \infty$  is the integral (2.2). We see in Table 1 that the differences between the results of computations with **m** = 20 and **m** = 80 are in most cases in the third decimal place. It is not difficult, however, to determine the distribution functions very accurately by applying the method with a large m value. The computation of the seven distributions of Table 1, with m = 80 required about 60 seconds (double precision) on a relatively slow computer (Honeywell GE-400). A Fortran program according to which these computations were performed is available upon request. To evaluate the goodness of the approximation with m = 80 we provide in Table 2 a comparison of the results obtained for the case of  $\rho = 1$  from (2.5) against the exact log-normal distribution, given by formula (2.3).

| Table 1. |        | Distributio | n of W for | $\mu_1 = \mu_2 =$ | • 0, $\sigma_1 =$ | $\sigma_2 = 1.$ | Determined | according |
|----------|--------|-------------|------------|-------------------|-------------------|-----------------|------------|-----------|
|          |        | to (2.5) fo | r m = 80 a | and m = 20.       |                   | int .           | (M) 1      | (5-2)     |
| 1        | n W/p  | 99          | 66         | 33                | 0                 | 33              | .66        | .99       |
|          | 1.000  | 0.00000     | 0.02006    | 0.06698           | 0.11346           | 0.15739         | 0.19994    | 0.24281   |
|          | 2.000  | 0.12205     | 0.29188    | 0.35051           | 0.39414           | 0.48153         | 0.46590    | 0.49900   |
|          | 3.000  | 0.66113     | 0.59716    | 0.59660           | 0.60781           | 0.62269         | 0.63926    | 0.65685   |
|          | 4.000  | 0.81100     | 0.77229    | 0.75013           | 0.74334           | 0.74393         | 0.74856    | 0.75560   |
|          | 5.000  | 0.88036     | 0.86294    | 0.84076           | 0.82774           | 0.82141         | 0.81938    | 0.82013   |
|          | 6.000  | 0.92414     | 0.91197    | 0.89489           | 0.88122           | 0.87221         | 0.86683    | 0.86402   |
| 80       | 7.000  | 0.94697     | 0.94042    | 0.92823           | 0.91600           | 0.90645         | 0.89961    | 0.89490   |
|          | 8.000  | 0.96162     | 0.95799    | 0.94947           | 0.93922           | 0.93014         | 0.92287    | 0.91726   |
|          | 9.000  | 0.97150     | 0.96940    | 0.96345           | 0.95512           | 0.94690         | 0.93976    | 0.93382   |
|          | 10.000 | 0.97838     | 0.97712    | 0.97293           | 0.95901           | 0.95901         | 0.95228    | 0.94635   |
|          | 1.000  | 0.00000     | 0.02004    | 0.06696           | 0.11353           | 0.15755         | 0.20028    | 0.24416   |
|          | 2.000  | 0.12185     | 0.29124    | 0.35052           | 0.39417           | 0.43135         | 0.46579    | 0.49262   |
|          | 3.000  | 0.66129     | 0.59864    | 0.59759           | 0.60813           | 0.62229         | 0.63864    | 0.65854   |
|          | 4.000  | 0.82205     | 0.77607    | 0.75199           | 0.74399           | 0.74351         | 0.74765    | 0.76265   |
|          | 5.000  | 0.88671     | 0.86693    | 0.84293           | 0.82859           | 0.82105         | 0.81835    | 0.82802   |
|          | 6.000  | 0.92364     | 0.91506    | 0.89697           | 0.88215           | 0.87193         | 0.86578    | 0.87066   |
| 20       | 7.000  | 0.94654     | 0.94247    | 0.93004           | 0.91692           | 0.90625         | 0.89860    | 0.89974   |
|          | 8.000  | 0.96123     | 0.95924    | 0.95095           | 0.94008           | 0.93000         | 0.92193    | 0.92038   |
|          | 9.000  | 0.97115     | 0.97012    | 0.96463           | 0.95589           | 0.94681         | 0.93890    | 0.93555   |
|          | 10.000 | 0.97804     | 0.97751    | 0.97385           | 0.96693           | 0.95897         | 0.95150    | 0.94701   |
|          | 6      |             |            |                   |                   |                 | An Ist in  |           |

Theoretically, the Hailt of (2.5) as 2 - - is the integral (2.2). He

| Table 2. The Distrib       | oution of          | W for P1     | = µ2 = 0, σ   | = o, = 1,    | point al sa    |      |
|----------------------------|--------------------|--------------|---------------|--------------|----------------|------|
| i place, It is not         | aloob bul          | no end mi    | 23640 1eog    | at sis 08    | * a bis 05 = 1 |      |
| tions very accurately      | eson <b>W</b> unce | (2.3)        | (2.5)         | b nt enevs   | ifficult, now  | 1    |
| spation of the seven       | 1.000              | 0.2441       | 0.2498        | te bolizen s | di gaiylage, y | d.   |
| cleionty siduol; shaces (  | 2.000              | 0.5000       | 0.4916        |              | encipudinter   | 5    |
| o salbroose mainorh astice | 4.000              | 0.7559       | 0.7655        |              | fevtacles a m  |      |
| staniave of tasener and    | 6.000              | 0.8640       | 0.8608        |              |                |      |
| mainsense C alder as a     | 8.000              | 0.9172       | 0.9224        | enorrerie.   | oo geedi darm  | ar . |
| 1                          | 0.000              | 0.9337       | 0.9476        |              | to seenchog ed |      |
| operations for early t     | · 17 2023          | 1. # 0. 36 J | amag gild Joi | heathdo      | auluast sda li | 0    |

log-normal discribution, given by formula (2.2).

-6- -8-

" La- cuta - m - 2"

#### 2.2 Gauss-Legendre Quadrature.

The numerical integration method prescribed in Section 2.1 is quite simple in the sense that it is based on subintervals of equal length. The results obtained seems to be quite stable over all the range of  $-1 \le \rho \le 1$ . However, as seen in Table 2, there is some difference although small, between the numerical results obtained and what should be obtained in the case of  $\rho = 1$ . We therefore investigate here what numerical results can be obtained by applying the Gauss-Legendre quadrature formula, with 80 cut-points, for integrating (2.2) numerically. An m-point Gauss-Legendre quadrature formula is

(2.7) 
$$\int_{a}^{b} f(x)dx = (b-a) \sum_{i=1}^{m} p_{i} f(x_{i}) + R_{m}$$

where  $x_i = \frac{b-a}{2} \xi_i + \frac{a+b}{2}$ , i=1,...,  $m \xi_i$  is the i-th zero of the Legendre polynomial  $P_m(\xi)$  over  $-1 \le \xi \le 1$ , and  $P_i = 1/(1 - \xi_i^2) [P_m'(\xi_i)]^2$  is a weight assigned to  $\xi_i$  (i=1,...,m).  $R_m$  is a proper remainder term (see Abramowitz and Segun [8; pp. 888]). The values of  $\xi_i$  and  $2p_i$  for m = 80 are tabulated in Abramowitz and Segun [8; pp. 918]. For the case under consideration, let

(2.8) 
$$f(x;\alpha,\beta, s,w) = \frac{1}{s} [\log(w-e^{x}) - \alpha - \beta x], -\infty \le x \le \log w$$

where  $\beta = \rho \sigma_2 / \sigma_1$ ,  $\alpha = \mu_2 - \beta \mu_1$  and  $s^2 = \sigma_2^2 (1 - \rho^2)$ . By simple change of variables, we can write the c.d.f. of W in the form

-7- ---

Hence, the Gauss-Legendre approximation is, according to (2.7)

(2.10)  $F_{\underline{\theta}}(w) \stackrel{\sim}{=} \phi(\frac{\log w - \mu_1}{\sigma_1}) \int_{\underline{i}=1}^{\underline{m}} p_i \phi(f(\mu_1 + \sigma_1 \phi^{-1}(y_i); \alpha, \beta, s, w))$ where  $y_i = \frac{1}{2} \phi(\frac{\log w - \mu_1}{\sigma_1})(1 + \xi_i)$ ,  $i=1, \dots, m$ .
In Table 3 we present the results of the numerical determination of the distributions corresponding to those of Table 1, according to the Gauss-Legendre method with m = 80.

-8- ---

The comparisons of Table 1 and 3 show that the two methods yield very close results. In Table 4 we provide further comparisons of the two methods in non-standard cases.

Further simplication of the calculations without sacrificing much accuracy can be achieved by applying formula (2.10) for a small value of m. We have seen in Table 1 that (2.5) provides highly accurate results with m = 20. For small values of m formula (2.5) may not yield sufficiently accurate results, as shown in Table 5, since it is based on a partition to equal size subintervals.

On the other hand, formula (2.10) with m = 6 yields accurate results when  $|\rho|$  is not too close to 1. This is seen in Table 6. For  $\rho = 1$  and  $\rho = -1$  we can compute the distributions exactly by other formulae.

For m = 6 formula (2.6) should be used with the following constants (see Abramowitz and Segun [8, pp. 921]).

| 1                           | $\frac{1+\xi_1}{2}$ | P.     | blas, we can write th |
|-----------------------------|---------------------|--------|-----------------------|
|                             | 03376               | -1     |                       |
| 2                           | .16939              | .18038 |                       |
| 1.0.0 (3) <sup>(1)</sup> 4. | .38069              | .23395 | * (v) .*              |
| 4                           | .61930              | .23395 |                       |
| 5                           | .83060              | .18038 |                       |
| 6                           | .96623              | .08566 |                       |

| 高点的影响或的高点。 | A BREAKS  | TO INC. LO. L. | and the states | 13 Galdridge Maria | Edge - Cheroland Andre | 金 出口 總是不正一部 | · · · · · · · · · · · · · · · · · · · |
|------------|-----------|----------------|----------------|--------------------|------------------------|-------------|---------------------------------------|
| Table 3.   | The Distr | ibution of     | W for H.       | = µ_ =             | 0, σ. = σ              | . = 1.      | Determined                            |
|            |           |                |                | - 2                | a such and a such      | 2           |                                       |

According to The Gauss-Legendre Quadrature; m = 80.

|       |         |         |                                                                                                                 |         | A 4       | 120 J. M. J. | 0       |         |
|-------|---------|---------|-----------------------------------------------------------------------------------------------------------------|---------|-----------|--------------|---------|---------|
|       | ₩:/ρ    | 99      | 66                                                                                                              | 33      | 0         | .33          | .66     | .99     |
|       | 1.000   | 0.00000 | 0.02006                                                                                                         | 0.06698 | 0.11345   | 0.15737      | 0.19992 | 0.24278 |
| ik.0  | 2.000   | 0.12207 | 0.29191                                                                                                         | 0.35054 | 0.39416   | 0.43153      | 0.46590 | 0.49900 |
| 12.0  | 3.000   | 0.66176 | 0.59728                                                                                                         | 0.59668 | 0.60785   | 0.62272      | 0.63928 | 0.65689 |
| 3.0   | 4.000   | 0.81144 | 0.77245                                                                                                         | 0.75022 | 0.74340   | 0.74398      | 0.74860 | 0.75565 |
| 1.16  | 5.000   | 0.88254 | 0.86301                                                                                                         | 0.84081 | 0.82780   | 0.82147      | 0.81943 | 0.82019 |
| 5.0   | 6.000   | 0.92191 | 0.91186                                                                                                         | 0.89489 | 0.88127   | 0.87227      | 0.86689 | 0.86409 |
| \$ .0 | 7.000   | 0.94567 | 0.94010                                                                                                         | 0.92817 | 0.91603   | 0.90651      | 0.89967 | 0.89497 |
| 6.7   | 8.000   | 0.96088 | 0.95759                                                                                                         | 0.94935 | 0.93923   | 0.93019      | 0.92292 | 0.91732 |
|       | 9.000   | 0.97105 | 0.96910                                                                                                         | 0.96330 | 0.95510   | 0.94695      | 0.93981 | 0.93388 |
| 8.2   | 10.000  | 0.97810 | 0.97699                                                                                                         | 0.97281 | 0.96621   | 0.95905      | 0.95233 | 0.94641 |
|       | EREEP.D | 0.83489 | 20078-0                                                                                                         | TRHUNA  | C FORMA D | onter o      | 25.000  |         |
|       |         |         | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |         |           |              |         |         |

We remark that for m = 6 formula (2.10) can be used also with hand calculators

Mar Mar Re

99 4915 8569

A.卖A.

and the o

| and                                   | tables of th | he standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | normal        | distribution          | ns.                             | ecce.e       | "学家理"。至    |              |
|---------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|---------------------------------|--------------|------------|--------------|
| 0.22204                               | Stell-Nill   | \$1.519.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21807.0       | C. TORING             | 0.725559                        | - 100257. Q. | 588. See   |              |
| 1042516                               | 0,75124      | 10865106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACCASE O      | 0.251225              | CRAEK.D.                        |              | 238.8      |              |
| TORE R                                | 0.77625      | 0.77545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28282.0       |                       |                                 |              | LIL.S.L.   | (2.10)       |
| 之法特别形式的                               | 54305.0      | LSZQXUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | A Lange in            | 0,86332                         | 10208.0      | det. ot    |              |
| ALLENO Y                              | 0.81975      | 0.81123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | ANTER STATE           | GYELN.G.                        |              | 16.336     |              |
| 0.32352                               | ECEDE.D'     | 0.828.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0182885       | Sanss.o               | 18068.0                         | 0.03337      | 855.82     |              |
| 0002810                               |              | 38968.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,83669       | 0.83892               | 0.84009                         | 0.5862.0     | 21,000     |              |
|                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                       |                                 |              |            | 1 0085       |
| 0.03226                               | 一日1023年后     | 82310.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$6666.9      | Vaedo .o              | 0.0007                          | .00000.0.    | 0.135      |              |
| 6.13796                               | O. LAZZO     | 125.11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 186700.0      | 0.093115              | 80150.0                         | d6000.6*     | SA2.0      |              |
| 01155.0                               | * \$5024.4   | 6.33.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | READE ST      |                       | 0.26103                         | CETEL.O      | 000.1      |              |
| 18841.0                               | OL74697      | accesto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 488 20.0      | 01600820°             |                                 | LOENA.0      | 1.89.5     |              |
| 48(33.0                               | SOLM8.0      | 0.864.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18058.0       | 0.003.01              |                                 | 0.96932      | ete.t      | 3-0          |
| 0,92322                               | 0.92622      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81838.0       | 2106913               | 10328.05                        | 12100.0      | 20,085     |              |
| 43、安美尔57                              | 0.23815      | 0.95875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$2622.0      |                       | 11000                           | 0.955384     | 1942、442   |              |
| <b>72.6</b> 19 /0                     | LESTE AV     | 86848.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01230.0       | 875 CO. 6             | 01.997.29                       | 40758.8      | 1224.841   |              |
| 83182.0                               | 0.98770      | 了、的财政之                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | astax.6       | 0,95797               | 的。如果                            | 0.98777      | 403,429    |              |
| arcen a                               |              | SING DUP IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sector e      |                       |                                 | annan n      | STT A      |              |
| PARKER                                | ENELF.C.     | A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASSAN A       | 5 ARTON 0             |                                 | Cheph h      | BAP A      |              |
| PERSA O                               | 104514       | 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 | ·马尔里马拉        | and the second second | a the state of the state of the | BATST A      | 000.10     |              |
| ····································· | ACCRT I      | Anarchia da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B. East Bar M | officia di            | 18.6822                         | ECORX A      | 165 5      |              |
| SCCAR A                               | PERSON OF    | SCIER 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1912 2 4 1 1  | ALTAN D'              | 19734                           | ALCAL D      | 022 5      | 12.04        |
| 27250 0                               | Share n      | nerne a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 会ど留からいた       | T 1 (157 15 153       | BEER A                          | CAPES A      | and he     | all an ear t |
| 02100 3                               | DIREN D      | ntaža n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 化石底设施 的       | AL DED D              | 17620 0                         | STORD D      | 100 - 10 a |              |
| 02320 0                               | a tate o     | THAT'S O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · 你们的不可以不可以   | terre h               | 新了了平台 N                         | TITTO O      | FTA MAR    |              |
| 0.93753                               | 0.98763      | 0.48970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ST CRO D      | 4.03775               | 27729.0                         | 0.98773      | 0CA. 200   |              |
|                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                       |                                 |              |            |              |

-9- -0.6-

|        | Table 4. | The Distr:               | ibution of   | W Compute             | d According            | ; to (2.5) | and Accor             | ding    |
|--------|----------|--------------------------|--------------|-----------------------|------------------------|------------|-----------------------|---------|
| •      | 10042313 | to Gauss-]               | Legendre Q   | uadrature.            |                        |            | na nana ser           |         |
|        |          | Case I: µ                | $= 0, \mu_2$ | = 0, σ <sub>1</sub> = | 1, σ <sub>2</sub> = 3; | Case II:   | μ <sub>1</sub> = 0, μ | 2 = 3,  |
| R.     | 88.      | $\sigma_1 = 1, \sigma_2$ | 2 = 4.       | - Th                  | 33                     | Q2         | 0157                  |         |
| ase I  | W/p      | 99                       | 66           | 33                    | 0                      | .33        | .66                   | .99     |
| 0.495  | 1.000    | 0.00000                  | 0.06995      | 0.13479               | 0.18889                | 0.23925    | 0.29053               | 0.34915 |
|        | 3.222    | 0.49500                  | 0.47368      | 0.49128               | 0.51462                | 0. 53951   | 0.56491               | 0 58860 |
|        | 5.444    | 0.65530                  | 0.64135      | 0.63729               | 0.64234                | 0.65173    | 0.66301               | 0.6738  |
|        | 7.667    | 0.72296                  | 0 71551      | 0 70896               | 0.70810                | 0.71110    | 0.71640               | 0.7220  |
| 12 86  | 9 880    | 0 76153                  | 0.75604      | 0.75124               | 0.76855                | 0.7/1119   | 0.71040               | 0.7220  |
|        | 12 111   | 0 78723                  | 0.79604      | 0.73124               | 0.74635                | 0.74690    | 0.73123               | 0.7344  |
| _T     | 16 222   | 0.76723                  | 0.70404      | 0.77948               | 0.77630                | 0.77540    | 0.77630               | 0.7761  |
| CD R   | 14.333   | 0.80002                  | 0.00303      | 0.79999               | 0.79093                | 0.79347    | 0.79340               | 0.7965. |
|        | 10.330   | 0.82063                  | 0.818/4      | 0.815/9               | 0.81295                | 0.81125    | 0.810/9               | 0.81134 |
|        | 10.//8   | 0.83245                  | 0.83091      | 0.82847               | 0.82589                | 0.82413    | 0.82339               | 0.82360 |
|        | 21.000   | 0.84232                  | 0.84103      | 0.8389/               | 0.83665                | 0.83489    | 0.83398               | 0.83390 |
|        | 1.000    | 0.00000                  | 0.07007      | 0.13503               | 0.18916                | 0.23950    | 0.29067               | 0.3491  |
|        | 3.223    | 0.49724                  | 0.47431      | 0.49169               | 0.51490                | 0.53965    | 0.56490               | 0.5886  |
|        | 5.444    | 0.65536                  | 0.64165      | 0.63751               | 0.64249                | 0.65179    | 0.66297               | 0.6738  |
|        | 7.667    | 0.72293                  | 0.71559      | 0.70907               | 0.70819                | 0.71122    | 0 71638               | 0.7220  |
|        | 9.889    | 0.76147                  | 0.75693      | 0.75126               | 0.74858                | 0.74891    | 0.75119               | 0.7543  |
| 2.5)   | 12,111   | 0.78715                  | 0.78400      | 0.77945               | 0.77635                | 0.77545    | 0.77625               | 0.7780  |
| ,      | 14.333   | 0.80594                  | 0 80359      | 0 79994               | 0 79690                | 0.79545    | 0 79544               | 0 7964  |
|        | 16.556   | 0.82055                  | 0.81870      | 0 81574               | 0 81291                | 0 81123    | 0 81075               | 0.8112  |
|        | 18 778   | 0 83237                  | 0.83097      | 0.828/2               | 0.82585                | 0 82409    | 0.82335               | 0 8235  |
|        | 21,000   | 0.84223                  | 0.84099      | 0.83892               | 0.83660                | 0.83485    | 0.83395               | 0.8339  |
| T      | т        | 0104225                  | 0.04077      | 0.03072               | 0105000                | 0105105    | 0105575               |         |
| ase 1. | 0 135    | 0 00000                  | 0 00027      | 0 00367               | 0 00002                | 0 01659    | 0 021/3               | 0 0227  |
|        | 0.155    | 0.00000                  | 0.00027      | 0.00307               | 0.00992                | 0.01038    | 0.02143               | 0.0227  |
|        | 1 000    | 0.00000                  | 0.02109      | 0.03/13               | 0.00922                | 0.11/91    | 0.14273               | 0.13/94 |
|        | 2 701    | 0.15/85                  | 0.24605      | 0.29959               | 0.34449                | 0.30031    | 0.43029               | 0.4011  |
|        | 2.701    | 0.0/301                  | 0.65902      | 0.00000               | 0.0/334                | 0.09230    | 0.71097               | 0.7490  |
| -L     | 7.839    | 0.869/2                  | 0.86/39      | 0.86341               | 0.86091                | 0.86120    | 0.86402               | 0.00/0  |
|        | 20.086   | 0.9314/                  | 0.93104      | 0.93015               | 0.928/8                | 0.92/35    | 0.92612               | 0.9252  |
|        | 54.598   | 0.95984                  | 0.95977      | 0.95957               | 0.95922                | 0.958/5    | 0.95816               | 0.95/5  |
|        | 148.413  | 0.97724                  | 0.97725      | 0.97719               | 0.97710                | 0.97698    | 0.97682               | 0.9765  |
|        | 403,429  | 0.98777                  | 0.98781      | 0.98777               | 0.98774                | 0.98772    | 0.98770               | 0.98768 |
|        | 0.135    | 0.00000                  | 0.00027      | 0.00367               | 0.00995                | 0.01662    | 0.02149               | 0.0227  |
|        | 0.368    | 0.00000                  | 0.02176      | 0.05734               | 0.08949                | 0.11825    | 0.14321               | 0.1586  |
|        | 1.000    | 0.15748                  | 0.24682      | 0.30027               | 0.34516                | 0.38752    | 0.43113               | 0.4803  |
|        | 2.781    | 0.68028                  | 0.66717      | 0.66809               | 0.68012                | 0.69846    | 0.72228               | 0.7538  |
| 2.5)   | 7.389    | 0.86966                  | 0.86737      | 0.86346               | 0.86100                | 0.86128    | 0.86403               | 0.8677  |
|        | 20.086   | 0.93140                  | 0.93099      | 0.93012               | 0.92876                | 0.92730    | 0.92607               | 0.9251  |
|        | 54.598   | 0.95977                  | 0.95971      | 0.95954               | 0,95921                | 0.95870    | 0.95810               | 0.9574  |
|        | 148,413  | 0.97717                  | 0.97719      | 0.97717               | 0.97709                | 0.97695    | 0.97675               | 0.9765  |
|        | 403.429  | 0.98772                  | 0.98775      | 0.98775               | 0.98774                | 0.98770    | 0.98763               | 0.9875  |

| erente a | a Canada and | . J. material | and ano | an Anglanan | Survey out to | made olde | water arms |
|----------|--------------|---------------|---------|-------------|---------------|-----------|------------|
| W/p      | 99           | 66            | 33      | 0           | .33           | .66       | .99        |
| 1.000    | 0.00000      | 0.02050       | 0.07004 | 0.11845     | 0.16275       | 0.20154   | 0.22662    |
| 2.000    | 0.09668      | 0.30755       | 0.36506 | 0.40738     | 0.44136       | 0.46498   | 0.43157    |
| 3.000    | 0.65238      | 0.61829       | 0.61385 | 0.62212     | 0.63209       | 0.63592   | 0.56577    |
| 4.000    | 0.84762      | 0.78664       | 0.76445 | 0.75557     | 0.75147       | 0.74380   | 0.65754    |
| 5.000    | 0.87245      | 0.87047       | 0.85124 | 0.83737     | 0.82709       | 0.81399   | 0.72333    |
| 6.000    | 0.89576      | 0.91525       | 0.90219 | 0.88858     | 0.87638       | 0.86130   | 0.77234    |
| 7.000    | 0.94787      | 0.94138       | 0.93322 | 0.92157     | 0.90948       | 0.89421   | 0.80998    |
| 8.000    | 0.96941      | 0.95779       | 0.95285 | 0.94344     | 0.93232       | 0.91775   | 0.83961    |
| 9.000    | 0.97429      | 0.96867       | 0.96574 | 0.95832     | 0.94847       | 0.93500   | 0.86339    |
| 10.000   | 0.97656      | 0.87618       | 0.97449 | 0.96871     | 0.96014       | 0.94789   | 0.88276    |

Table 5. The Distribution of W for  $\mu_1 = \mu_2 = 0$ ,  $\sigma_1 = \sigma_2 = 1$ . According

-11-

|       | table 6. | The Dist:           | ribution of             | f W Determ          | ined by For       | rmula (2.1) | 0).                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|----------|---------------------|-------------------------|---------------------|-------------------|-------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | a train  | Case I:             | $\mu_1 = 0, \mu_2$      | = 0, <sub>0</sub> = | 1, $\sigma_2 = 1$ | ; Case II   | $= \mu_1 = 0,$          | μ <sub>2</sub> = 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |          | σ <sub>1</sub> = 1, | σ <sub>2</sub> = 4; m · | <b>-</b> 6.         |                   |             | 936 <sub>a</sub> ) 8 .3 | wice \$5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | abred di |                     | 5 bris (0)*             | N VU Bades          | tab ana a s       |             | terdest a               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ase I | W/p      | 0.99                | 66                      | 33                  | 0                 | .33         | .66                     | .99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 1.000    | 0.00000             | 0.02007                 | 0.06714             | 0.11344           | 0.15720     | 0.19994                 | 0.24896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 2.000    | 0.11675             | 0.29190                 | 0.35060             | 0.39388           | 0.43139     | 0.46605                 | 0.53030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 3.000    | 0.63077             | 0.59662                 | 0.59623             | 0.60685           | 0.62180     | 0.63946                 | 0.63481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 4.000    | 0.83510             | 0.77805                 | 0.75230             | 0.74339           | 0.74276     | 0.74764                 | 0.74155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 5.000    | 0.86792             | 0.87131                 | 0.84572             | 0.83008           | 0.82143     | 0.81729                 | 0.85772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 6.000    | 0.90840             | 0.91886                 | 0.90063             | 0.88528           | 0.87397     | 0.86476                 | 0.88071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 7.000    | 0.95439             | 0.94530                 | 0.93345             | 0.92085           | 0.90982     | 0.89886                 | 0.89062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | .8.000   | 0.97747             | 0.96143                 | 0.95368             | 0.94406           | 0.93451     | 0.92393                 | 0.89707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 9.000    | 0.98548             | 0.97190                 | 0.96666             | 0.95854           | 0.95177     | 0.94264                 | 0.90196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 10.000   | 0.98922             | 0.97902                 | 0.97531             | 0.97008           | 0.96394     | 0.95656                 | 0.91261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |          |                     |                         |                     |                   |             |                         | and the second se |

0.00369

0.05731

0.30052

0.66231

0.86445

0.93062

0.95990

0.97742

0.98791

0.00995

0.08935

0.34510

0.67452

0.86192

0.92898

0.95916

0.97701

0.98765

0.02150

0.14301

0.43104

0.71796

0.86519

0.92802

0.96007

0.97850

0.98906

0.01662

0.11806

0.38741

0.69346

0.86259

0.92835

0.95924

0.97725

0.98787

0.02275

0.15864

0.47818

0.76278

0.88895

0.91327

0.93661

0.99119

0.99982

at to (2.5) with m = 6. Other is solded subtray all of any as

Case II

0.135

0.368

1.000

2.718

7.389

20.086

54.598

148.413

403.429

0.00000

0.00000

0.15551

0.65624

0.88892

0.91415

0.94280

0.99226

0.99982

0.00027

0.02173

0.24696

0.66079

0.86865

0.93262

0.96146

0.97885

0.98913

C

3. The Moments of W and Some Characteristics of Its Distribution

As seen in the various tables of Section 2, the distribution of W is considerably skewed in non-standard cases. We develop here formulae for the moments of W and measures of skewness, kurtosis and other characteristics. The r-th moment of W is given by,

0.65239

000.2

(3.1) 
$$M_{\mathbf{r}}(\underline{\theta}) = E_{\underline{\theta}} \{W^{\mathbf{r}}\} = E_{\underline{\theta}} \{\sum_{j=0}^{\mathbf{r}} (\mathbf{j}^{\mathbf{r}}) \exp \{(\mathbf{r}-\mathbf{j})X_{1} + \mathbf{j}X_{2}\}\}$$
$$= \sum_{j=0}^{\mathbf{r}} (\mathbf{j}^{\mathbf{r}}) \exp \{\mathbf{j}\mu_{2} + (\mathbf{r}-\mathbf{j})\mu_{1} + \frac{1}{2}((\mathbf{r}-\mathbf{j})^{2}\sigma_{1}^{2} + 2\sigma_{1}\sigma_{2}\rho_{1}(\mathbf{r}-\mathbf{j}) + \sigma_{2}^{2}\mathbf{j}^{2}\}\}.$$

Indeed, for each j=0,...,r,

$$(r-j)X_{1} + jX_{2} = N((r-j)\mu_{1} + j\mu_{2}, (r-j)\sigma_{1}^{2} + 2j(r-j)\rho\sigma_{1}\sigma_{2} + j^{2}\sigma_{2}^{2}).$$
  
Moreover,  $E \{e^{N(\xi, \tau^{2})}\} = exp\{\xi + \tau^{2}/2\}.$ 

The central moments of W are denoted by  $M_r^*(\theta)$  and are given in terms of  $M_r(\theta)$  by the formula

(3.2) 
$$M_{\mathbf{r}}^{*}(\theta) = \sum_{j=0}^{\mathbf{r}} {r \choose j} (-1)^{j} M_{\mathbf{r}-j}(\theta) (M_{1}(\theta))^{j}.$$

When  $X_1$  and  $X_2$  have the same marginal distributions, i.e.,  $\mu_1 = \mu_2 = \mu$  and  $\sigma_1 = \sigma_2 = \sigma$ , then  $e^{\mu}$  is a scale parameter of the distribution of W and we have

(3.3)  

$$M_{1}(\theta) = e^{\mu} \cdot 2 e^{\sigma^{2}/2}$$

$$s.d._{w}(\theta) = e^{\mu}\sqrt{2} e^{\sigma^{2}/2} (e^{\sigma^{2}} + e^{\rho\sigma^{2}} - 2)^{1/2},$$
where s.d.<sub>w</sub>( $\theta$ ) is the standard deviation of W, under  $\theta$ .

In Figure 1 we illustrate the standard deviation of W, as a function of  $\rho$ , for  $\sigma = 1$ , 1.5 and 2, and  $\mu = 0$ , on a logarithmic scale.

We see in Figure 1 that the standard deviation of W changes very slowly when  $\rho \leq 0$  and increases faster over the range of positive  $\rho$  values. Also, the relative rate of increase grows fast with  $\sigma$ . In other words, for  $\sigma = 2 \text{ s.d.}_{W}(\Theta)$ is relatively constant over  $\rho \leq 0$ , compared to the case with  $\sigma = 1$ .

Other parameters of interest are the coefficients of skewness,  $\gamma_1(\underline{\theta}) = (M_3^*(\theta))^2 / (M_3^*(\theta))^3$  and of kurtosis  $\gamma_2(\theta) = M_4^*(\theta) / (M_2^*(\theta))^2$ . Again, when  $\mu_1 = \mu_2 = \mu$  these parameters do not depend on  $\mu$  (or on the scale parameter  $e^{\mu}$ ). For  $\sigma_1 = \sigma_2 = \sigma$  we obtain that

(3.4) 
$$M_3^*(\theta) = 2e^{\frac{3}{2}\sigma^2}[e^{3\sigma^2} + 3e^{\sigma^2}(e^{2\sigma^2\rho} - 2) - 6e^{\sigma^2\rho} + 8]$$

and

(3.5) 
$$M_{4}^{*}(\underline{\theta}) = 2e^{2\sigma^{2}}[e^{2\sigma^{2}}(e^{4\sigma^{2}} + 4e^{\sigma^{2}+3\sigma^{2}\rho} + 3e^{4\sigma^{2}\rho}) - 8e^{\sigma^{2}}(e^{2\sigma^{2}} + 3e^{2\sigma^{2}\rho}) + 24e^{\sigma^{2}}(e^{\sigma^{2}} + e^{\sigma^{2}\rho}) - 24].$$

The coefficients of skewness and kurtosis,  $\gamma_1(\underline{0})$  and  $\gamma_2(\underline{0})$  are plotted in Figure 2 as functions of  $\rho$  for cases of  $\mu_1 = \mu_2$  and  $\sigma_1 = \sigma_2 = 1$ , 1.5, 2.0. These plots show that the distribution of W becomes extremely skewed and flat when  $\sigma$  becomes large.

COEFFICIENT OF CORRELATION, O

In Figure 1 we illustrate the standard deviation of U, as a function of P,

Figure 1. The Standard Deviation of W for  $\mu = 0$ . For  $\sigma = 1, 1.5, 2.0$ . We see in Figure 1 that the standard deviation of W changes very slowly when 2 < 0 and increases faster over the range of positive P values. Also, the relative rate of increase grows fair with a. In other words, for a = 2 a.d., (b) 1 2= 0 1 1 100 T , sancerer  $\frac{1}{2} \left( \frac{1}{2} \right)^{2} = \left( \frac{1}{2} \right)^{2} \left( \frac{1}{2} \right)^{2}$ detrash. 5 When D, \* Do = D these parameters do not dopend on D (or of the scale parameter STANDARD DEVIATION W ( P  $e^{\mu}$ ). For  $\sigma_1 = \sigma_2 = \sigma$  we obtain that (\*\*(a) = 2a<sup>2</sup> o<sup>2</sup> (-3a<sup>2</sup> + 3e<sup>2</sup> (e<sup>2</sup>a<sup>2</sup> a - 2) - 6e<sup>62</sup>a J=1.5 10 N. (E) = 20<sup>20</sup> 10<sup>2</sup> 10<sup>4</sup> + 40<sup>2</sup> + 40<sup>2</sup> + 30<sup>2</sup> + 30<sup>4</sup> - 30<sup>2</sup> N 19 5 · J=1 int bedroit ore The coefficients of skewness and kurtcais, 2.0 Figure 2 as functions of a for cases of  $u_1 = u_2$  and  $u_1 = c_1 = 1$ , 1.5, 2.0. These plots show that the distribution of W becomes extremely showed and flat >0 -1.0 -.75 -.50 -.25 0 .25 .50 .75 1.0 COEFFICIENT OF CORRELATION, P

-14-





-16-

#### 4. Approximating the Distribution of W by a Lognormal Distribution.

Let  $LN(n, \tau^2)$  denote a lognormal distribution corresponding to the normal distribution  $N(n, \tau^2)$ . We consider a lognormal approximation to the distribution of W, with parameters n and  $\sigma^2$  determined so that the first two moments of  $LN(n, \tau^2)$  and of W coincide. In Figure 3 the distribution of W (in the standard case) is plotted on a normal probability paper versus log W, for  $\rho = -.2(.2).8$ . We see that in the standard case the distribution  $F_{\underline{\theta}}(w)$ for nonnegative  $\rho$  values is very close to a lognormal distribution. The lognormal approximation is very good for  $\rho = -.20$ .

We consider now the lognormal approximation to  $F_{\underline{\theta}}(w)$ . By the methods of moment equations we determine  $\eta$  and  $\tau^2$  by equating the first two moments of W to those of LN( $\eta$ ,  $\tau^2$ ). The equations to be solved are:

$$exp\{n + \tau^2/2\} = exp\{\mu_1 + \frac{\sigma_1^2}{2}\} + exp\{\mu_2 + \frac{\sigma_2^2}{2}\},$$

(4.1) and

 $\exp \{2n + 2\tau^2\} = \exp\{2\mu_1 + 2\sigma_1^2\} + \exp\{2\mu_2 + 2\sigma_2^2\} + 2\exp\{\mu_1 + \mu_2 + \frac{1}{2}(\sigma_1^2 + 2\rho\sigma_1\sigma_2 + \sigma_2^2)\}.$ 

These equations yield the solutions:

(4.2) 
$$\tau^{2} = \log \frac{e^{2\mu_{1}+2\sigma_{1}^{2}} + e^{2\mu_{2}+2\sigma_{2}^{2}} + 2e^{\mu_{1}+\mu_{2}+\frac{1}{2}(\sigma_{1}^{2}+2\rho\sigma_{1}\sigma_{2}+\sigma_{2}^{2})}}{e^{2\mu_{1}+\sigma_{1}^{2}} + e^{2\mu_{2}+\sigma_{2}^{2}} + 2e^{\mu_{1}+\mu_{2}+\frac{1}{2}(\sigma_{1}^{2}+\sigma_{2}^{2})}}$$

and

(4.3) 
$$\eta = \log(e^{\mu_1 + \sigma_1^2/2} + e^{\mu_2 + \sigma_2^2/2}) - \tau^2/2.$$

-17-

The approximation to the distribution of W is then

(4.4) 
$$F_{\underline{\theta}}(w) = \phi(\frac{\log w - \eta}{\tau}).$$

In Table 7 we compare the exact distribution of W in the standard case with the lognormal approximation for  $\rho = -.75(.25).75$ . Table 7 confirms the earlier conclusion from Figure 3, that the lognormal approximation (4.4) is very good for nonnegative values of p. In Table 8 we provide a comparison between the exact distribution and the lognormal approximation in the case of  $\mu_1 = \mu_2 = 1$  and  $\sigma_1 = \sigma_2 = 1$ . Here also the approximation is also good  $\rho$ nonnegative values of p. The extent to which the lognormal deviates from the exact in the case of  $\rho = -.75$  is shown in Figure 4. Due to the asymmetry of the distribution, the lognormal distribution provides a better approximation at the right hand tail of the distribution than at the left hand tail. Between the 10th and 90th percentiles the lognormal distribution is good even in the case of p = -.75. siglans + 12 th + .uslass = 1 rs + rsi qua

In order to improve the approximation, especially for negative values of p, we consider the Edgeworth expansion (see Johnson and Kotz [3; pp. 17]). A These equations y taid the solutional 2-term approximation formula is

n = 10258 + 12 + 14 - 2/2 - 2/2 ·

(4.5) 
$$F_{\underline{\theta}}(w) = \phi(\frac{\log w - \eta}{\tau}) - \frac{\gamma_1^*(\underline{\theta})}{6} \left[ \left(\frac{\log w - \eta}{\tau}\right)^2 - 1 \right]$$
$$\phi(\frac{\log w - \eta}{\tau});$$

normal distribution M(n. "); the co

(4.6)  $\mathbf{F}_{\underline{\theta}}(\mathbf{w}) = \mathbf{G}_{\underline{\theta}}^{(2)}(\mathbf{w}) - \frac{1}{24}(\gamma_{2}^{*}(\underline{\theta}) - 3) \cdot \left[ \left( \frac{\log w - n}{\tau} \right)^{3} - 3 \cdot \left( \frac{\log w - n}{\tau} \right) \right] \\ + \left( \frac{\log w - n}{\tau} \right) - \frac{1}{72} \gamma_{1}^{*}(\underline{\theta}) \left[ \left( \frac{\log w - n}{\tau} \right)^{5} - 10 \left( \frac{\log w - n}{\tau} \right)^{3} + 15 \left( \frac{\log w - n}{\tau} \right) \right] + \left( \frac{\log w - n}{\tau} \right),$ 

where  $\gamma_1^{*}(\underline{\theta})$  and  $\gamma_2^{*}(\underline{\theta})$  are the coefficients of skewness and kurtosis of  $Z = \log W$ , and  $\phi(u)$  is the standard normal p.d.f.  $G_{\underline{\theta}}^{(2)}(w)$  is the R.H.S. of (4.5). In order to apply these approximations we have to discuss the problem of computing the moments of  $Z = \log W$ , which are required for  $\gamma_1^{*}(\underline{\theta})$  and  $\gamma_2^{*}(\underline{\theta})$ . This problem is discussed in Section 5.

In Table 9 we provide the results of a 2-term Edgeworth expansion, for the case presented in Table 8.

A 4-term approximation is given in Table 10. The comparison of these Tables with Table 9 showing sometimes certain improvements but not substantial ones.

Other types of approximations that we attempted did not yield better results.

|        | (lower); | μ <sub>1</sub> = μ <sub>2</sub> = | ο, σ <sub>1</sub> = σ | 2 - 1   | ocijertvo | iggs alot- | ê si brin |
|--------|----------|-----------------------------------|-----------------------|---------|-----------|------------|-----------|
| W/p    | 75 C     | 50                                | (T.25)*               | 0_ (*   | .25       | .50        | .75       |
| 1.000  | 0.00946  | 0.04229                           | 0.07849               | 0.11346 | 0.14692   | 0.17938    | 0.21151   |
| 2.000  | 0.26969  | 0.32330                           | 0.36195               | 0.39414 | 0.42283   | 0.44948    | 0.47499   |
| 3.000  | 0.60336  | 0.59423                           | 0.59875               | 0.60781 | 0.61889   | 0.63107    | 0.64397   |
| 4.000  | 0.78277  | 0.75881                           | 0.74750               | 0.74334 | 0.74333   | 0.74594    | 0.75029   |
| 5.000  | 0.86991  | 0.85105                           | 0.83682               | 0.82774 | 0.82248   | 0.81994    | 0.81936   |
| 6.000  | 0.91602  | 0.90363                           | 0.89113               | 0.88122 | 0.87402   | 0.86906    | 0.86585   |
| 7.000  | 0.94279  | 0.93491                           | 0.92509               | 0.91600 | 0.90850   | 0.90262    | 0.89814   |
| 8.000  | 0.95943  | 0.95437                           | 0.94698               | 0.93922 | 0.93218   | 0.92617    | 0.92119   |
| 9.000  | 0.97031  | 0.96701                           | 0.96153               | 0.95512 | 0.94881   | 0.94307    | 0.93803   |
| 10.000 | 0.97771  | 0.97551                           | 0.97147               | 0.96625 | 0.96074   | 0.95545    | 0.95058   |
| 1.000  | 0.0801   | 0.0939                            | 0.1108                | 0.1311  | 0.1548    | 0.1819     | 0.2118    |
| 2.000  | 0.3483   | 0.3651                            | 0.3840                | 0.4047  | 0.4271    | 0.4507     | 0.4751    |
| 3.000  | 0.5806   | 0.5886                            | 0.5977                | 0.6078  | 0.6190    | 0.6311     | 0.6440    |
| 4.000  | 0.7338   | 0.7348                            | 0.7364                | 0.7386  | 0.7416    | 0.7455     | 0.7503    |
| 5.000  | 0.8292   | 0.8265                            | 0.8240                | 0.8218  | 0.8202    | 0.8194     | 0.8193    |
| 6.000  | 0.8883   | 0.8842                            | 0.8799                | 0.8757  | 0.8718    | 0.8685     | 0.8658    |
| 7.000  | 0.9255   | 0.9211                            | 0.9163                | 0.9114  | 0.9066    | 0.9021     | 0.8981    |
| 8.000  | 0.9493   | 0.9452                            | 0.9406                | 0.9356  | 0.9306    | 0.9257     | 0.9212    |
| 9.000  | 0.9649   | 0.9612                            | 0.9570                | 0.9524  | 0.9476    | 0.9427     | 0.9380    |
| 10.000 | 0.9753   | 0.9721                            | 0.9684                | 0.9643  | 0.9598    | 0.9552     | 0.9506    |

Tables with Table 9 showing amorthes cartain improvements but not substantial

Other types of approximations that we attempted did not plaid better besuics.

and the second second

-20-

Table 7. The Exact Distribution of W (upper) and the Lognormal Approximation

Table 8. The Exact Distribution of W (upper) and Its Lognormal Approximation

|     |        | (lower           | ) for $\mu_1$ | = µ <sub>2</sub> = 1, | °1 - °2 | - 1.   |        |        |        |
|-----|--------|------------------|---------------|-----------------------|---------|--------|--------|--------|--------|
| W/p | -1.00  | <del>.</del> .75 | 50            | 25                    | 0       | .25    | .50    | .75    | 1.00   |
| 1   | 0.0000 | 0.0000           | 0.0001        | 0.0014                | 0.0049  | 0.0110 | 0.0197 | 0.0310 | 0.0452 |
| 2   | 0.0000 | 0.0008           | 0.0106        | 0.0292                | 0.0518  | 0.0765 | 0.1025 | 0.1299 | 0.1587 |
| 3   | 0.4602 | 0.0183           | 0.0616        | 0.1034                | 0.1415  | 0.1768 | 0.2105 | 0.2435 | 0.2761 |
| 4   | 0.6141 | 0.0873           | 0.1560        | 0.2061                | 0.2473  | 0.2835 | 0.3168 | 0.3486 | 0.3795 |
| 5   | 0.7094 | 0.2080           | 0.2715        | 0.3156                | 0.3514  | 0.3829 | 0.4119 | 0.4397 | 0.4666 |
| 6   | 0.7743 | 0.3481           | 0.3876        | 0.4188                | 0.4458  | 0.4705 | 0.4939 | 0.5168 | 0.5393 |
| 7   | 0.8208 | 0.4795           | 0.4927        | 0.5102                | 0.5280  | 0.5458 | 0.5635 | 0.5816 | 0.5998 |
| 8   | 0.8551 | 0.5893           | 0.5826        | 0.5883                | 0.5981  | 0.6096 | 0.6223 | 0.6360 | 0.6504 |
| 9   | 0.8812 | 0.6758           | 0.6570        | 0.6540                | 0.6573  | 0.6636 | 0.6719 | 0.6818 | 0.6929 |
| 10  | 0.9014 | 0.7421           | 0.7176        | 0.7087                | 0.7070  | 0.7091 | 0.7138 | 0.7206 | 0.7289 |
| 11  | 0.9173 | 0.7924           | 0.7666        | 0.7540                | 0.7487  | 0.7476 | 0.7494 | 0.7536 | 0.7595 |
| 12  | 0.9300 | 0.8307           | 0.8060        | 0.7914                | 0.7837  | 0.7802 | 0.7797 | 0.7817 | 0.7857 |
| 13  | 0.9403 | 0.8600           | 0.8378        | 0.8225                | 0.8132  | 0.8079 | 0.8056 | 0.8059 | 0.8083 |
| 14  | 0.9487 | 0.8828           | 0.8635        | 0.8483                | 0.8380  | 0.8315 | 0.8279 | 0.8268 | 0.8279 |
| 15  | 0.9557 | 0.9008           | 0.8843        | 0.8698                | 0.8591  | 0.8517 | 0.8470 | 0.8449 | 0.8449 |
| 16  | 0.9614 | 0.9152           | 0.9014        | 0.8877                | 0.8770  | 0.8691 | 0.8636 | 0.8606 | 0.8598 |
| 17  | 0.9663 | 0.9268           | 0.9154        | 0.9028                | 0.8922  | 0.8840 | 0.8781 | 0.8744 | 0.8729 |
| 18  | 0.9704 | 0.9364           | 0.9269        | 0.9155                | 0.9053  | 0.8970 | 0.8906 | 0.8864 | 0.8844 |
| 19  | 0.9739 | 0.9443           | 0.9366        | 0.9262                | 0.9164  | 0.9082 | 0.9017 | 0.8971 | 0.8946 |
| 20  | 0.9768 | 0.9510           | 0.9446        | 0.9353                | 0.9261  | 0.9180 | 0.9113 | 0.9065 | 0.9036 |
| 21  | 0.9794 | 0.9566           | 0.9514        | 0.9431                | 0.9344  | 0.9265 | 0.9199 | 0.9148 | 0.9117 |
| 22  | 0.9816 | 0.9615           | 0.9572        | 0.9498                | 0.9417  | 0.9340 | 0.9274 | 0.9222 | 0.9189 |
| 23  | 0.9835 | 0.9656           | 0.9621        | 0.9555                | 0.9480  | 0.9406 | 0.9341 | 0.9288 | 0.9254 |
| 24  | 0.9852 | 0.9692           | 0.9663        | 0.9605                | 0.9534  | 0.9464 | 0.9400 | 0.9348 | 0.9312 |
| 25  | 0.9867 | 0.9723           | 0.9699        | 0.9648                | 0.9583  | 0.9516 | 0.9453 | 0.9401 | 0.9365 |
| 1   | 0.0013 | 0.0021           | 0.0033        | 0.0052                | 0.0084  | 0.0133 | 0.0207 | 0.0311 | 0.0452 |
| 2   | 0.0257 | 0.0319           | 0.0403        | 0.0512                | 0.0654  | 0.0831 | 0.1046 | 0.1299 | 0.1587 |
| 3   | 0.0913 | 0.1039           | 0.1192        | 0.1378                | 0.1596  | 0.1847 | 0.2128 | 0.2435 | 0.2761 |
| 4   | 0.1852 | 0.2008           | 0.2191        | 0.2402                | 0.2641  | 0.2904 | 0.3188 | 0.3487 | 0.3795 |
| 5   | 0.2888 | 0.3042           | 0.3219        | 0.3420                | 0.3641  | 0.3881 | 0.4135 | 0.4398 | 0.4666 |
| 6   | 0.3897 | 0.4030           | 0.4182        | 0.4352                | 0.4538  | 0.4739 | 0.4951 | 0.5170 | 0.5393 |
| 7   | 0.4816 | 0.4920           | 0.5039        | 0.5172                | 0.5318  | 0.5476 | 0.5644 | 0.5819 | 0.5998 |
| 8   | 0.5622 | 0.5696           | 0.5781        | 0.5877                | 0.5985  | 0.6102 | 0.6229 | 0.6364 | 0.6504 |
| 9   | 0.6314 | 0.6360           | 0.6414        | 0.6477                | 0.6550  | 0.6632 | 0.6724 | 0.6823 | 0.6929 |
| 10  | 0.6899 | 0.6921           | 0.6950        | 0.6985                | 0.7029  | 0.7081 | 0.7142 | 0.7212 | 0.7289 |
| 11  | 0.7390 | 0.7393           | 0.7401        | 0.7414                | 0.7434  | 0.7461 | 0.7497 | 0.7542 | 0.7595 |
| 12  | 0.7800 | 0.7789           | 0.7781        | 0.7776                | 0.7776  | 0.7784 | 0.7799 | 0.7824 | 0.7857 |
| 13  | 0.8143 | 0.8121           | 0.8100        | 0.8082                | 0.8067  | 0.8059 | 0.8058 | 0.8066 | 0.8083 |
| 14  | 0.8429 | 0.8399           | 0.8369        | 0.8340                | 0.8315  | 0.8294 | 0.8280 | 0.8275 | 0.8279 |
| 15  | 0.8667 | 0.8633           | 0.8596        | 0.8560                | 0.8526  | 0.8496 | 0.8472 | 0.8456 | 0.8449 |
| 16  | 0.8867 | 0.8829           | 0.8788        | 0.8747                | 0.8707  | 0.8670 | 0.8638 | 0.8614 | 0.8598 |
| 17  | 0.9034 | 0.8994           | 0.8951        | 0.8907                | 0.8862  | 0.8820 | 0.8782 | 0.8751 | 0.8729 |
| 18  | 0.9174 | 0.9134           | 0.9090        | 0.9043                | 0.8996  | 0.8950 | 0.8908 | 0.8872 | 0.8844 |
| 19  | 0.9292 | 0.9252           | 0.9208        | 0.9160                | 0.9111  | 0.9063 | 0.9018 | 0.8979 | 0.8946 |
| 20  | 0.9392 | 0.9352           | 0.9309        | 0.9261                | 0.9212  | 0.9162 | 0.9115 | 0.9072 | 0.9036 |
| 21  | 0.9476 | 0.9438           | 0.9395        | 0.9348                | 0.9299  | 0.9249 | 0.9200 | 0.9156 | 0.9117 |
| 22  | 0.9547 | 0.9511           | 0.9469        | 0.9424                | 0.9375  | 0.9325 | 0.9276 | 0.9230 | 0.9189 |
| 23  | 0.9608 | 0.9573           | 0.9534        | 0.9489                | 0.9441  | 0.9392 | 0.9343 | 0.9296 | 0.9254 |
| 24  | 0.9660 | 0.9627           | 0.9589        | 0.9546                | 0.9500  | 0.9451 | 0.9402 | 0.9355 | 0.9312 |
| 25  | 0.9704 | 0.9673           | 0.9637        | 0.9596                | 0.9551  | 0.9503 | 0.9455 | 0.9408 | 0.9365 |

Table 9. A 2-term Edgeworth Expansion Approximation  $\mu_1 = \mu_2 = 1$ ,  $\sigma_1 = \sigma_2 = 1$ .

|                                       |                       |                |                                                 | 40 30                                    | Frank Martin          | 一個 计数图                                          | 王 可是是他们是了 。           |                                        |                    |
|---------------------------------------|-----------------------|----------------|-------------------------------------------------|------------------------------------------|-----------------------|-------------------------------------------------|-----------------------|----------------------------------------|--------------------|
| W/p                                   | 75                    | 50             | 25                                              | 0                                        | .25                   | .50                                             | .75                   | 200.0                                  |                    |
| - AREAN                               | 0.0062                | 0.0050         | 0 0066                                          | 0 0004                                   | 0 0130                | 0 0200                                          | 0 0312                | 100 + L <sup>m</sup>                   |                    |
| 5,00,0                                | 0.0397                | 0.0652         | 0.0561                                          | 0.0669                                   | 0.0135                | 0.10/8                                          | 0.1300                |                                        |                    |
|                                       | 0 1086                | 0 1214         | 0 1384                                          | 0.1596                                   | 0 1845                | 0 2126                                          | 0 2434                | 0050.0                                 |                    |
| . Inter                               | 0 1971                | 0 2158         | 0.2376                                          | 0 2623                                   | 0.2893                | 0 3183                                          | 0.3485                | 0.4602                                 | E                  |
| 13795                                 | 0.2927                | 0.3141         | 0.3369                                          | 0.3611                                   | 0.3865                | 0.4128                                          | 0.4396                | 14.60.0                                | 4                  |
| 3454.1                                | 0.3867                | 0 4078         | 0 4289                                          | 0 4503                                   | 0 4722                | 0 4944                                          | 0.5168                | 0.7090                                 |                    |
| eyee.                                 | 0.4742                | 0.4928         | 0.5106                                          | 0. 5282                                  | 0.5459                | 0.5637                                          | 0.5817                | 2477.0                                 | 1                  |
| 8962.1                                | 0.5526                | 0.5676         | 0.5816                                          | 0.5952                                   | 0.6087                | 0.6224                                          | 0.6362                |                                        | T.                 |
| 9.0.1                                 | 0.6212                | 0.6324         | 0.6425                                          | 0.6522                                   | 0.6619                | 0.6719                                          | 0.6821                | TREASER-                               | 8                  |
| 10                                    | 0.6803                | 0.6878         | 0.6943                                          | 0.7006                                   | 0.7071                | 0.7138                                          | 0.7210                |                                        | 2                  |
| 11                                    | 0.7308                | 0.7348         | 0.7383                                          | 0.7417                                   | 0.7453                | 0.7494                                          | 0.7541                |                                        | 11                 |
| 12                                    | 0.7735                | 0.7747         | 0.7755                                          | 0.7765                                   | 0.7779                | 0.7797                                          | 0.7823                | 0.3373                                 | 11                 |
| 13                                    | 0.8095                | 0.8083         | 0.8071                                          | 0.8061                                   | 0.8056                | 0.8057                                          | 0.8066                | 0019100                                | 12                 |
| 14                                    | 0.8398                | 0.8367         | 0.8338                                          | 0.8313                                   | 0.8293                | 0.8280                                          | 0.8275                | 0.9403                                 | - 21               |
| 15                                    | 0.8652                | 0.8607         | 0.8565                                          | 0.8528                                   | 0.8497                | 0.8472                                          | 0.8456                | 0,9482                                 | 14                 |
| 16                                    | 0.8865                | 0.8809         | 0.8758                                          | 0.8712                                   | 0.8672                | 0.8639                                          | 0.8614                | - 12250.0                              | 24                 |
| 17                                    | 0.9044                | 0.3980         | 0.8922                                          | 0.8870                                   | 0.8823                | 0.8783                                          | 0.8752                | 0.0514                                 | Ió                 |
| 18                                    | 0.9194                | 0.9125         | 0.9063                                          | 0.9006                                   | 0.8954                | 0.8910                                          | 0.8873                |                                        | 11                 |
| 19                                    | 0.9320                | 0.9248         | 0.9183                                          | 0.9123                                   | 0.9069                | 0.9020                                          | 0.8979                |                                        | 1 1 1              |
| 20                                    | 0.9426                | 0.9353         | 0.9286                                          | 0.9225                                   | 0.9168                | 0.9117                                          | 0.9073                | 1. S. A. M. C. C.                      | 21                 |
| 21                                    | 0.9515                | 0.9442         | 0.9375                                          | 0.9313                                   | 0.9255                | 0.9203                                          | 0.9156                | -2012-0                                | 20                 |
| 22                                    | 0.9590                | 0.9518         | 0.9452                                          | 0.9390                                   | 0.9332                | 0.9278                                          | 0.9231                | PEAE.U                                 |                    |
| 23                                    | 0.9653                | 0.9583         | 0.9518                                          | 0.9457                                   | 0.9399                | 0.9345                                          | 0.9297                | galenteld -                            |                    |
| 24                                    | 0.9706                | 0.9638         | 0.9575                                          | 0.9516                                   | 0.9458                | 0.9405                                          | 0.9356                | CODE AN                                | 10                 |
| 25                                    | 0.9751                | 0.9686         | 0.9625                                          | 0.9567                                   | 0.9511                | 0.9458                                          | 0.9409                | CARDEN IN                              | 10                 |
|                                       |                       |                |                                                 |                                          |                       |                                                 | A REAL PLACE A GE     | VBCR VA                                | 1.04               |
|                                       | Life D                |                |                                                 |                                          |                       |                                                 |                       | 6,0013                                 |                    |
| · (38.2.4                             |                       |                |                                                 |                                          |                       | . 6040.0                                        |                       | 0.0257                                 | Ś                  |
| 1.2761                                | 0.2435                |                |                                                 |                                          |                       | 0.1192                                          | . 9602.0              | EXQ0.0                                 | E.                 |
| CERE.C                                |                       |                | 。 "你你们们                                         |                                          |                       | 0.2191                                          |                       | 0.1833                                 | i de               |
| Albert                                | E. BREACO             |                |                                                 |                                          |                       | \$126.0                                         | 0.104.2               | 0.2853                                 | 1. A.              |
| AREC.                                 |                       |                |                                                 | 三、相关者;0                                  | 0,435Q                | 0.4182                                          |                       | (198E.0                                | 2                  |
|                                       |                       |                |                                                 |                                          | 0.9172                | 9.008.0                                         | 0.9930                | 0.4975                                 |                    |
| 9050 A                                |                       |                | 1. 1. S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |                                          |                       |                                                 |                       | 0,5622                                 | 8                  |
|                                       |                       |                | al che de la                                    | 0220.0                                   |                       | 97.64*1                                         | 0660.6                | 0.6324                                 | 6                  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                       |                | 1201.0                                          |                                          |                       | 00000.0                                         | 1283.10               | 0.66320                                |                    |
| NT GE S                               |                       | a transfer an  | 1. 6992 .                                       | a Philippin                              | 1111日 明上がくした。         | 14442.40                                        | CELS C                | 0.0001.00                              |                    |
|                                       |                       |                |                                                 | 0.175.8%<br>1.175.8%                     | 033334                | 100120                                          | Coal. G               | aller of                               | 14                 |
|                                       |                       |                | 8 647 B - U                                     | AND CONTRACT OF A                        |                       | and the second                                  |                       | 5428-Q                                 | 24                 |
| CALD D                                |                       |                |                                                 | STER S                                   |                       | と言くもよい                                          | AN CONTRACT           | Mariah L                               | () 新闻              |
| 2000.0                                | and the second        |                | ADDA A                                          | and a state                              | 1943 C. D. + U.       |                                                 | したおど。ほ                | 1000.00                                | 202                |
| BAST CALL                             |                       |                | 010010                                          | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 3930+9<br>Kono -0     |                                                 |                       | 1000.0                                 |                    |
|                                       |                       |                | NADOLU<br>DEDE D                                | 2000 - 20<br>2000 - 5                    |                       | 132 M 6 4 2                                     |                       | PAGE AL                                | 14                 |
| ASPR 0                                | 07010                 |                |                                                 | 11200                                    |                       | AND ALL AND | A A CARLEND           | TOTAL D                                | 33                 |
|                                       | 2500 0                | 1. C. 2. 4.    |                                                 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | and the second second |                                                 | ACAC N                | Cond o                                 |                    |
| 5130 0                                | AT 10 - 10            |                | 10. 22. No.                                     |                                          | ANA CAR               | 2010 -                                          | AND CARE AND A        | 2544.4.5                               | 10.11              |
| RSIG C                                | 65.545 7              |                |                                                 | 2770 0                                   | ALL ALL ALL           | 6.9.5.5 y 13                                    | LITTE IN              | 1000 1000 1000 1000 1000 1000 1000 100 | - Al-Jo            |
| 1220 0                                | A CTOR                | · F. ( F 10 10 |                                                 | town H                                   |                       | STORE AL                                        | TOTAL T               | STRATE P                               | A.A.               |
| 5189 0                                | 0.9339                | sale a         | 1920 11                                         | 0020 0                                   | 1.130 1               | BARA D                                          | SA WELL IN            | 10000                                  | the file.<br>A set |
| 2200 0                                | 0030 0                |                |                                                 | 1350 0                                   |                       | the second second second                        | and the second second |                                        | 20                 |
| and the second                        | and the second second | A SALE RIVER   | a and a st                                      | and the second second                    |                       | 大学であったな                                         |                       | APREMAL END                            | 100                |

| Ta  | ble 10. | $\sigma_1 = \sigma_2 =$ | geworth E | xpansion | Approxima | tion. Fo | r µ <sub>1</sub> = µ <sub>2</sub> |
|-----|---------|-------------------------|-----------|----------|-----------|----------|-----------------------------------|
| W/p | 75      | 50                      | 25        | 0        | .25       | . 50     | .75                               |
| 1   | 0026    | 0025                    | 0010      | 0.0027   | 0.0090    | 0.0184   | 0.0307                            |
| 2   | 0.0347  | 0.0443                  | 0.0572    | 0.0730   | 0.0914    | 0.1117   | 0.1332                            |
| 3   | 0.1313  | 0.1457                  | 0.1625    | 0.1814   | 0.2020    | 0.2242   | 0.2478                            |
| 4   | 0.2366  | 0.2516                  | 0.2681    | 0.2864   | 0.3064    | 0.3282   | 0.3517                            |
| 5   | 0.3290  | 0.3443                  | 0.3605    | 0.3780   | 0.3972    | 0.4182   | 0.4410                            |
| 6   | 0.4075  | 0.4234                  | 0.4395    | 0.4565   | 0.4748    | 0.4947   | 0.5164                            |
| 7   | 0.4760  | 0.4920                  | 0.5077    | 0.5239   | 0.5412    | 0.5597   | 0.5798                            |
| 8   | 0.5373  | 0.5527                  | 0.5674    | 0.5824   | 0.5982    | 0.6150   | 0.6332                            |
| 9   | 0.5933  | 0.6070                  | 0.6201    | 0.6334   | 0.6474    | 0.6623   | 0.6784                            |
| 10  | 0.6444  | 0.6558                  | 0.6668    | 0.6781   | 0.6900    | 0.7029   | 0.7169                            |
| 11  | 0.6910  | 0.6996                  | 0.7082    | 0.7173   | 0.7271    | 0.7379   | 0.7497                            |
| 12  | 0.7331  | 0.7388                  | 0.7450    | 0.7518   | 0.7594    | 0.7681   | 0.7780                            |
| 13  | 0.7709  | 0.7738                  | 0.7775    | 0.7821   | 0.7877    | 0.7944   | 0.8023                            |
| 14  | 0.8045  | 0.8048                  | 0.8062    | 0.8087   | 0.8124    | 0.8172   | 0.8235                            |
| 15  | 0.8341  | 0.8321                  | 0.8315    | 0.8322   | 0.8340    | 0.8372   | 0.8418                            |
| 16  | 0.8601  | 0.8561                  | 0.8538    | 0.8528   | 0.8531    | 0.8548   | 0.8579                            |
| 17  | 0.8827  | 0.8772                  | 0.8733    | 0.8709   | 0.8698    | 0.8702   | 0.8720                            |
| 18  | 0.9023  | 0.8955                  | 0.8905    | 0.8868   | 0.8845    | 0.8837   | 0.8844                            |
| 19  | 0.9192  | 0.9115                  | 0.9055    | 0.9008   | 0.8976    | 0.8957   | 0.8954                            |
| 20  | 0.9338  | 0.9254                  | 0.9186    | 0.9132   | 0.9090    | 0.9063   | 0.9051                            |
| 21  | 0.9462  | 0.9374                  | 0.9301    | 0.9240   | 0.9192    | 0.9157   | 0.9138                            |
| 22  | 0.9568  | 0.9477                  | 0.9401    | 0.9335   | 0.9282    | 0.9241   | 0.9215                            |
| 23  | 0.9658  | 0.9567                  | 0.9488    | 0.9419   | 0.9361    | 0.9316   | 0.9284                            |
| 24  | 0.9734  | 0.9644                  | 0.9564    | 0.9493   | 0.9432    | 0.9382   | 0.9345                            |
| 25  | 0.9798  | 0.9710                  | 0.9631    | 0.9559   | 0.9495    | 0.9442   | 0.9401                            |

10.0 ------

0 0.5 1 1.5 2 2.6 3 3.5 4 4.5 5

ve tog a or the fract and the Legelorman

-23-

W DOJ

1 per

1.0 -



Figure 4. Normal Probability Plot vs Log W or the Exact and the Log-Normal Distributions, for  $\mu_1 = \mu_2 = 1$ ,  $\sigma_1 = \sigma_2 = 1$  and  $\rho = .75$ .

-24-

### 5. The Moments of Z = log W in the Correlated Case.

Hamdan [2] developed formulae for the expectation and variance of  $Z = \log W$  in the case of correlated random variables, with possibly different variances. His formula for  $E \{Z\}$  in the standard bivariate case  $(\mu_1 = \mu_2 = 0, \sigma_1 = \sigma_2 = 1)$  can be written in the form

(5.1) 
$$\mu_1^{\rho}(Z) = \sqrt{\frac{1-\rho}{\pi}} + 2 \sum_{j=1}^{\infty} (-1)^{j-1} \frac{1}{j} e^{j^2(1-\rho)} \phi(-j \sqrt{2(1-\rho)}).$$

It is easy to prove that this series is absolutely convergent, since for large values of  $j \Phi(-j \sqrt{2(1-\rho)}) \approx \frac{1}{j \sqrt{2\pi}} e^{-j^2(1-\rho)}$  (see Feller [1; pp. 166]).

One should be careful in the computation of  $\mu_1^{\rho}(Z)$  according to (5.1) since  $e^{j^2(1-\rho)}$  grows very fast with j and  $\Phi(-j\sqrt{2(1-\rho)})$  decreases very fast. We have found that the polynomial approximation for  $\Phi(z)$  given by Zelen and Severo [7] to be very effective. This approximation is given by

(5.2) 
$$\phi(z) = 1 - \phi(z) \sum_{j=1}^{5} b_{j} (1 + pz)^{-j}, \quad z > 0$$

where p = .2316419;  $b_1 = .319382$ ;  $b_2 = -.356564$ ;  $b_3 = 1.781478$ ;  $b_4 = -1.821256$ ; and  $b_5 = 1.330274$ . By substituting (5.2) in (5.1) and since  $\Phi(-z) = 1 - \Phi(z)$ , we obtain the formula

(5.3)  $\mu_1^{\rho}(Z) = \sqrt{\frac{1-\rho}{\pi}} + \sqrt{\frac{2}{\pi}} \sum_{j=1}^{\infty} (-1)^{j-1} \frac{1}{j} \sum_{j=1}^{5} \frac{b_i}{(1+p(j\sqrt{2(1-\rho)})^i)}.$ 

The convergence is of  $0(\frac{1}{2})$ . Our experience has shown that between 10 and 20 terms are sufficient in most cases to obtain stable results. The error in (5.2) is smaller in magnitude than  $1.5 \times 10^{-8}$  for all z. We therefore consider the values obtained from (5.3) as close to the exact ones. This approximation is better than the one given by Hamdan in [2].

We could not obtain similar formulae for the higher moments of Z. Although Hamdan provides in [2] a formula for  $E_{\rho}\{Z^2\}$  we have not been able to apply it (the series expression given by Hamdan does not converge absolutely!). We therefore provide the following numerical approximation formula for the determination of the moments of z:

(5.4) 
$$\mu_{\mathbf{r}}^{\rho}(z) \approx \sum_{i=1}^{m} \sum_{j=1}^{m} [\log(e^{n'i} + e^{n'j})]^{\mathbf{r}} \cdot [\Phi(n_{i}, n_{j}; \rho) - \Phi(n_{i-1}, n_{j}; \rho) - \Phi(n_{i}, n_{j-1}, \rho) + \Phi(n_{i-1}, n_{j-1}; \rho)],$$

where  $\Phi(z_1, z_2; \rho)$  is the standard bivariate normal integral; m is the number of subintervals for each variable. We compute the moments over a grid of m x m squares. The range in each dimension is from -4.5 to +4.5 and the length of each subinterval is  $\Delta = g/m$ .

In Table 11 we compare the values of the first moment of Z obtained by (5.3) and by (5.4) with m = 7.

In Table 12 we present the values of the first four moments of Z computed according to (5.4) with m = 10, and also the values of the standard deviation,  $\sqrt{\gamma_1}$  and  $\gamma_2$  of Z.

-26-

| Table : | 11. The | Expectation | of 2. | 1948年1月1日日月月 | 一般之影温养。10 | achine The | alder |
|---------|---------|-------------|-------|--------------|-----------|------------|-------|
|---------|---------|-------------|-------|--------------|-----------|------------|-------|

| soo nu mitate     | a Listinon | proximately | fairtherize of 3, for a 20, to ap           |
|-------------------|------------|-------------|---------------------------------------------|
| Net of 2 - log W. | (5.3)      | (.54)       | alors of $r_{11}$ and $r_{2}$ for $e =75$ i |
| soliditistb VI    | 1.0295     | 1.0254      | hes ) is close to -1, can be appare         |
| ot time.50        | .9893      | .9860       | see Johnson and Fors [31 pp 121]            |
| 25                | .94/3      | .9459       | · · · · · · · · · · · · · · · · · · ·       |
| 0.25              | .8565      | .8598       | 1 Udultal and in first and anadam           |
| 0.50              | .8067      | .8125       | ocos lipy year (list) scon balloon          |

Table 12. Moments, Standard Deviation and the Coefficients of Skewness and Kurtosis of <sup>Z</sup> in the Standard Case.

| ρ            | 75     | 50     | 25     | 0      | .25    | .50    | .75    |
|--------------|--------|--------|--------|--------|--------|--------|--------|
| μ            | 1.0396 | 0.9998 | 0.9583 | 0.9148 | 0.8690 | 0.8203 | 0.7679 |
| μ2           | 1.4047 | 1.4165 | 1.4297 | 1.4447 | 1.4620 | 1.4824 | 1.5074 |
| μ3           | 2.2543 | 2.3395 | 2.4126 | 2.4739 | 2.5234 | 2.5601 | 2.5818 |
| μ4           | 4.1885 | 4.4522 | 4.7300 | 5.0318 | 5.3648 | 5.7353 | 6.1522 |
| ρ            | 75     | 50     | 25     | 0      | .25    | .50    | .75    |
| S.D.         | 0.5692 | 0.6457 | 0.7151 | 0.7796 | 0.8407 | 0.8997 | 0.9580 |
| $\sqrt{Y_1}$ | 0.6533 | 0.3330 | 0.1708 | 0.0848 | 0.0411 | 0.0220 | 0.0169 |
| Y2           | 3.9928 | 3.4180 | 3.1729 | 3.0648 | 3.0161 | 2.9936 | 2.9826 |

Table 12 shows again the observation previously discussed that the distribution of Z, for  $\rho \ge 0$ , is approximately normal. Considering the values of  $\sqrt{\gamma_1}$  and  $\gamma_2$  for  $\rho = -.75$  it seems that the distribution of Z = log W, when  $\rho$  is close to -1, can be approximated by the Pearson type IV distribution (see Johnson and Kotz [3; pp. 12]). However, it is quite difficult to compute the c.d.f. of the Pearson type IV, while the c.d.f. of Z can be computed numerically very well according to (2.5) or (2.10).

Kortoels of Z in the Standard Case.

| 25.      |         | . 25    |         | -,25      | - 50    | 1222     | 4              |
|----------|---------|---------|---------|-----------|---------|----------|----------------|
| erar.a - | 0.8203  |         | SATE; 0 | .2860.0   | 9:9998  | 1.0395   | 14             |
| 1.50%    | 4088.1  | 174620  | 1.4447  | 1.6292.   | 1.9165  | 1,4047   | and a          |
| 2.5018   | 1636.S. | 2.5234  | SEXN.S  | 381813    | CREE.S. | 2.2543   | 54             |
| 6.1522   | 5.7393  | 6.3646  | 5.0318  | 4.25300   | 4,4522  | 4.1285   | A <sup>R</sup> |
| ēt.      | 08.     | 杜.      | 0       | - 25      | - 50    | 27       | ų.,            |
| 0.9580   | 1928.0  | 0.8497  | 2.2796  | 0.7151    | 0.6437  | \$050,0  | C . 2          |
| 0.0169   | 0.0220  | 0.0411  | 8280.0  | · 41.1208 | 0.3330  | 0.6533   |                |
| 2.9826   | 2.9936  | 2.01612 | 3.0648  | 3.1229    | 0310.0  | · 8699.6 | SY.            |

#### 6. References

- Feller, W. (1957) <u>An Introduction to Probability Theory and Its Applications</u>, Vol. 1. <u>New York</u>: John Wiley & Sons.
- [2] Hamdan, M.A. (1971)
   "The logarithm of the sum of two correlated log-normal variates", Journal of the American Statistical Association, 66: 105-106.
- Johnson, N.L. and Kotz, S. (1970)
   <u>Distributions In Statistics: Continuous Univariate Distributions 1,</u> Boston: Houghton Mifflin Co.
- [4] Naus, J.I. (1969)
   "The distribution of the logarithm of the sum of two log-normal variates", Journal of the American Statistical Association, 64: 655-659.
- [5] Tsokos, C.P. and Lowrimore, G.R. The Probability Distribution of the Logarithm of the Sum of Two Log-Normal Variates. In preparation.
- [6] Tsokos, C.P. The Probability Distribution of the Logarithm of the Sum of Two Log-Normally Distributed Random Variables. In preparation.
- [7] Zelen, M. and Severo, N.C. (1968)
   Probability Functions, Chapter 27 of: <u>Handbook of Mathematical Functions</u> with Formulas, Graphs, and Mathematical Tables; M. Abramowitz and I.A.
   Segun (eds.); New York: Dover Publications, Inc.
- [8] Abramowitz, M. and Segun, I.A. (1968) <u>Handbook of Mathematical Functions with Formulas, Graphs and Mathematical</u> Tables, New York: Dover Publications, Inc.

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. REPORT NUMBER 2. GOVT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| No. 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and an an and a second of the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4. TITLE (and Subtitle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S. TYPE OF REPORT & PERIOD COVERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE DISTRIBUTION OF SUMS OF DEPENDENT L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OG-NORMAL TECHNICAL REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VARIABLES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6. PERFORMING ORG. REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7. AUTHOR(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S. CONTRACT OR GRANT NUMBER(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S. ZACKS, CASE WESTERN RESERVE UNIVERSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TY NR 00014-75-C-0529                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C. P. TSOKOS, UNIVERSITY OF SOUTH FLORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA PROJECT NR 042-276                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10. PROGRAM ELEMENT, PROJECT, TAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DEPARTMENT OF MATHEMATICS AND STATISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | is .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CASE WESTERN RESERVE UNIVERSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12. REPORT DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| OFFICE OF NAVAL RESEARCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | APRIL 20, 1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ARLINGTON, VIRGINIA 22217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13. NUMBER OF PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14. MONITORING AGENCY NAME & ADDRESS(It different from Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | trolling Office) 15. SECURITY CLASS. (of this report)                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SCHEDULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NLIMITED<br>0, 11 dillerent from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALIMITED<br>0, 11 different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 2<br>18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JLIMITED<br>0, 11 dillorent from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 2<br>18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JLIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 2<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on reverse elde if necessary and identify in the second statement of the second              | SLIMITED<br>0, ii dillerent from Report)<br>by block number)                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 2<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on reverse elde if necessary and identify<br>Log-normal distribution; bivariate-norm<br>supdrative: Edgeworth expansions: skewn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALIMITED<br>0, 11 different from Report)<br>by block number)<br>nal distributions; Gauss-Legendre<br>bess: kurtosis.                                                                                                                                                                                                                                                                                                                                                                             |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 2<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on revorce elde if necessary and identify in<br>Log-normal distribution; bivariate-norm<br>quadrative; Edgeworth expansions; skewn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALIMITED<br>0, 11 different from Report)<br>by block number)<br>mal distributions; Gauss-Legendre<br>mess; kurtosis.                                                                                                                                                                                                                                                                                                                                                                             |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 2<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on reverse elde if necessary and identify I<br>Log-normal distribution; bivariate-norm<br>quadrative; Edgeworth expansions; skewn<br>28. ABSTRACT (Continue on reverse elde if necessary and identify I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALIMITED<br>0, ii different from Report)<br>by block number)<br>mal distributions; Gauss-Legendre<br>ness; kurtosis.<br>by block number)                                                                                                                                                                                                                                                                                                                                                         |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 2<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on revorce elde if necessary and identify<br>Log-normal distribution; bivariate-norm<br>quadrative; Edgeworth expansions; skewn<br>19. ABSTRACT (Continue on revorce elde if necessary and identify b<br>The present paper studies the prop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ALIMITED<br>0, 11 different from Report)<br>by block number)<br>mal distributions; Gauss-Legendre<br>mess; kurtosis.<br>by block number)<br>perties of the distribution of sums                                                                                                                                                                                                                                                                                                                  |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 2<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on reverse elde if necessary and identify<br>Log-normal distribution; bivariate-norm<br>quadrative; Edgeworth expansions; skewn<br>18. ABSTRACT (Continue on reverse elde if necessary and identify a<br>The present paper studies the prop<br>of dependent log-normal random variable<br>their corresponding c.d.f.'s. The dependent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALIMITED<br>0, 11 different from Report)<br>by block number)<br>mal distributions; Gauss-Legendre<br>mess; kurtosis.<br>by block number)<br>perties of the distribution of sums<br>es and methods to compute numerically<br>endence between the log-normal vari-<br>lation between the log-normal vari-                                                                                                                                                                                          |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 2<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on reverse elde if necessary and identify the<br>Log-normal distribution; bivariate-norm<br>quadrative; Edgeworth expansions; skewn<br>10. ADSTRACT (Continue on reverse elde if necessary and identify the<br>The present paper studies the proportion of dependent log-normal random variable<br>their corresponding c.d.f.'s. The dependent log-normal random variable<br>their corresponding c.d.f.'s. The dependent is defined in terms of the corresponding the correspondent of the correspondent | ALIMITED<br>0, 11 different from Report)<br>by block number)<br>mal distributions; Gauss-Legendre<br>mess; kurtosis.<br>by block number)<br>perties of the distribution of sums<br>es and methods to compute numerically<br>endence between the log-normal vari-<br>lation between the corresponding<br>erical computations of the exact                                                                                                                                                         |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 2<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on reverse elde if necessary and identify in<br>Log-normal distribution; bivariate-norm<br>quadrative; Edgeworth expansions; skewn<br>10. ABSTRACT (Continue on reverse elde if necessary and identify in<br>The present paper studies the proportion of dependent log-normal random variable<br>their corresponding c.d.f.'s. The dependent log-normal random variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALIMITED<br>0, 11 different from Report)<br>by block number)<br>mal distributions; Gauss-Legendre<br>hess; kurtosis.<br>by block number)<br>perties of the distribution of sums<br>es and methods to compute numerically<br>endence between the log-normal vari-<br>lation between the log-normal vari-<br>lation between the corresponding<br>erical computations of the exact<br>first. One can be described as a                                                                              |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 2<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on reverse elde if necessary and identify in<br>Log-normal distribution; bivariate-norm<br>quadrative; Edgeworth expansions; skewn<br>10. ABSTRACT (Continue on reverse elde if necessary and identify in<br>The present paper studies the proportion of dependent log-normal random variable<br>their corresponding c.d.f.'s. The dependent log-normal random variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALIMITED<br>o, II different from Report)<br>by block number)<br>mal distributions; Gauss-Legendre<br>hess; kurtosis.<br>by block number)<br>perties of the distribution of sums<br>es and methods to compute numerically<br>endence between the log-normal vari-<br>lation between the log-normal vari-<br>lation between the log-normal vari-<br>lation between the corresponding<br>erical computations of the exact<br>first. One can be described as a<br>a Gauss-Legendre quadrature. These |
| DISTRIBUTION OF DOCUMENT UN<br>17. DISTRIBUTION STATEMENT (of the abetract entered in Block 2<br>18. SUPPLEMENTARY NOTES<br>19. KEY WORDS (Continue on reverse elde if necessary and identify<br>Log-normal distribution; bivariate-norm<br>quadrative; Edgeworth expansions; skewn<br>10. ADSTRACT (Continue on reverse elde if necessary and identify a<br>The present paper studies the prop<br>of dependent log-normal random variable<br>their corresponding c.d.f.'s. The dependent<br>ables is defined in terms of the correl<br>normal variables. Two methods for nume<br>cumulative distributions are developed<br>numerical convolution and the other is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALIMITED<br>o, Il dillerent from Report)<br>by block number)<br>mal distributions; Gauss-Legendre<br>hess; kurtosis.<br>y block number)<br>perties of the distribution of sums<br>es and methods to compute numerically<br>endence between the log-normal vari-<br>lation between the log-normal vari-<br>lation between the corresponding<br>erical computations of the exact<br>first. One can be described as a<br>a Gauss-Legendre quadrature. These                                         |

1

•

-----

1

LUNITY CLASSIFICATION OF THIS PAGE (When Date Entered)

和新学校

879

PROJECT NO DE

STAD TROOMS IS

La no standard C

The sense a second of the second second second second second

APRIL 20.

ok Dor A

methods are compared by numerical results in standard and non-standard cases. The moments of the distribution of the sum are given explicitly and also the coefficients of skewness and kurtosis. It is shown that for for positive correlations the distribution of the sum is approximately log-normal. For negative values of the correlation the log-normal becomes ineffective. Another approximation is given for these cases, based on the first few terms of an Edgeworth expansion. Finally, methods for computing the moments of the logarithm of the sum are developed.

SI EAGS, CASE VESTERS REPERVE READ , DEAS .8

C. P. ISONOS, UNIVERSITY OF SOUTH TEOFICIA

and a second when the second and the brind action

AND RELEASE STRUCTURES ( RELEASE CHILDREN )

NICON OUR STAND OFFICE WALLS STREET ASS

PAGE WESTERN RESERVED. CREATERST TTATTALE OF TATE A DIA A DIA TATT

ARTISTICS ATTOMIST AND AND A

HERATERY JAVAN VO RD 1990

NEWS & CONTRACTOR STAR

OTTRACTOR TARGOOD TO MULTIPLETARE

the second states when the the most state and the second states and

athrospices and include the more alarysis distributions: Sama-ingentra diadrodive. Electory, suddy bode: skowheel; Asticked

engenere for in the state is a second start with the second start and

and the state of the state and the second of the second

The press of public term of an aptrophysic and lather. Know the streng of of desentation incriminal radiate vertainer and mechanic to commute partector. I Freit corresponding d.d.i. \* The Rependence Pervece the tog-mirral vari-diffe is durined to being of the originalitic between the corresponding correst and the terms in a the original tim between the corresponding a se had the de an and the train beauty beauty and end the train is a termine muserical correction and the uniter is stands-legendra medicat

SECURITY CLASSIFICATION OF THIS PAGE (When Dete