— - —

AD=A053 562 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/G 9/2 oy
A COMPARISON OF PROGRAMMING LANGUAGES FOR SOFTWARE ENGINEERING.(U)
APR 78 M SHAW: 6 T ALMES» J M NEWCOMER F30602-75-C-0218

UNCLASSIFIED RADC-TR=78-58

| oF 2

.--;.- ,

A

ADAO53562

-RU NU.

RADC-TR-78-58
Interim Report
April 1978

A COMPARISON OF PROGRAMMING LANGUAGES FOR SOFTWARE ENGINEERING

Mary Shaw
Guy T. Almes
Joseph M. Newcomer

" Brian K. Reid

‘006 FILE coPY"

William A. Wulf

Carnegie-Mellon University

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

This report contains a large percentage of machine-produced copy
which is not of the highest printing quality but because of economical
consideration, it was determined in the best interest of the government
that they be used in this publication.

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including
foreign nations.

RADC-TR-78-58 has been reviewed and approved for publication.

oy £ (K

DOUGLAS WHITE
Project Engineer
Software Sciences Section

APPROVED:

APPROVED: 5222;;%4é?2§%g32107ﬁu#vJ

WENDALL C. BAUMAN, Col, USAF
Chief, Information Sciences Division

JBSTIFIGATION ... st |

ATTH

e e e o]
e N Ste [
- al .

FOR THE COMMANDER: \ ! / /{/%4/

/' JOHN P. HUSS, Acting Chief
Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (ISIS) Griffiss AFB NY 13441.

assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

This will

I——

T

£
] 3 UNCLASSIFIED p
o SECUR|JM=Gy ASSIFICATION OF THIS PAGE (When Data Entered)
E 1 , READ INSTRUCTIONS
3 REPORT DOCUM;NT ATION PAGE BEFORE COMPLETING FORM
ar “ 7 I\ REPORY NUMBER (b 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
E | (Y | vavdfrr-78-58
X S’

shtitle) E e . a—n -
A Gomparison of programming &anguages for}
§oftware Engineeringy)

L ————— T 5. ﬁixroaumc ORG. REPORT NUMBER

5. . JYPE.QERERQRT & PERIOD COVERED
'B Interim Kepext,)]

)

s ol

Al Tt DFeras | 8. CONTRACT OR GRANT NUMBER(s) 1
) Mary bnaw, Brian K./Reid & | F3eg2-15~c6218 ’ ;
Guy T./Almes, William A. fiulf B '
Joseph M. /Newcomer,
9. PE OTCTRNTERT O~ 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Carnegie-Mellon University P.E. 63728F
Dept. of Computer Science J.0. 55500814

Schenley Park, Pittsburgh PA 15213

1. CONTROLLING OFFICE NAME AND ADDRESS /-""‘ 12. REPORT DATE R
Rome Air Development Center (ISIS) (l]m])
Griffiss AFB NY 13441 = v;gb’j = .

98 12\ / Zp

T4 MONITORING AGENCY NAME & ADORESS(I different from Controlling Office) | 15. SECURITY CL RS~ {of th
HIE S RDEA f [rom Controlik
Same A1 Y =& £ (7 1 / 7\ 4 UNCLASSIFIED . .
1 %]) =t M ~ 2 .
NI [t ; : o TSa. DECLASSIFICATION DOWNGRADING :
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

v C N el ey
2

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) o018 St S 2 }-..,, —
¥ . 1
D ” \ - ~ AR M GO W]
A DOD-4! Etrasvan, Woodrman'
Same —<Yaerious i l COAS D 3 i 3 r l. /
‘ *Tinmaw a"(&' Lronman) o e Y,

- . v s i

18. SUPPLEMENTARY NOTES

/

RADC Project Engineer: Douglas White (ISIS) / o

19. KEY WORDS (Cuntinue on reverse side if necessary and ideutify by block number)
Fortran programming languages 2
Cobol language comparison ;
Jovial software engineering
DOD~1

20. ABSTRACT rContinue on reve-se side {f necessary and iden‘ify by block number)

our programming languages (Fortran, Cobol, Jovial, and the proposed
DOD standardﬁ“é?e compared in the light of modern ideas of good software
engineering practice. The comparison begins by identifying a core for each
language that captures the essential properties of the
intent of the language designers. These core languages then serve as a basis
for the discussion of the language philosophies and the impact of the language
on gross program organization and on the use of individual statements.'ql i

DD, 5%"%; 1473 €oimion oF 1 NOV 65 15 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| ' ™ * ! P [4
L{\'“ S $ /.-r
- L—— ~ i&;

e e P — T e e e i o i e R

1. Introduction

1.1. Comparison Methodology

e e Language Cores

1.1.2. Comparison of Languages

1.2, Dimensions of Comparison

1.3. Scope of Project

2. Definitions of Core Languages
2.1. Fortran Core

2.1.1. Fortran Core Philosophy
2.1.2, Fortran Core Language Criteria
2.1.8. A Fortran Core Language

2.2, Jovial Core

2.2.1. . Jovial Core Philosophy

2.,2.2, Jovial Core Language Criteria
2.2.3. A Jovial Core Language

2.3. Cobol Core

2.3.1. Cobol Core Philosophy

2.3.2. Cobol Core Language Criteria
2.3.3. A Cobol Core Language

2.4, Ironman Core

2.4.1. Ironman Core Philosophy
2.4.2, ironman Core Language Criteria
2.4.3. Ambiguities and Conflicts

3. Comparisons of Core Languages
3.1. Comparison of Philosophies
3.1.1. The Designer's View of the Problem Domain
3.1.2, Selection vs. Synthesis

3.1.3. Degree of Permissiveness
3.2, Programming in the Small

3.2.1. Syntax Issues

3.2.2, Data Issues

3.2.3. Control Issues

3.2.4. Efficiency Toncerns

3.38. Programming in the Large

3.3.1. Decomposition of the System
3.3.2. Assembly of a System from Components

iid

-

NOBdMON

12
12
13
16
20
20
21
23
26
26
27
29
36
36
37
40

45

45
46
48
49
50
51
57
63
66
68
69
73

e kel v T i
L NG G ot Sl e

i?‘

3.3.3. Maintenance and Enhancement

4. Conclusions

4.1, On Describing Languages Through Cores
4.2, Remarks on the Comparisons

4.3. Remarks on Languages

Acknowledgements

Refarences

Apx A: Some Anomalies in the Ironman Requirements

A.1, Scope Rules

A.2, Types

A.3. Time/Space Tradeoffs

A.4, Hardware Access vs. Machine Independence

iv

76

78

78
79
79
80

81

84

84
86
89
90

Chapter 1
Introduction

This report is a comparison of four programming languages in the light of
modern ideas of good software engineering practice. We include three existing
languages (Fortran, Cobol, Jovial) and the proposed DoD standard for
programming embedded computer systems.1

At least some of the acrimony that surrounds the discussion of the relative
merits of various programming languages arises from a failure to draw a proper
distinction between comparison and evaluation. In a comparison, the analysis
is directed at distinctions and similarities of the languages, and possibly at the
relative merits of particular features under certain circumstances. An
evaluation, on the other hand, is aimed at making a judgement, hopefully in
terms of a set of clearly-defined objectives. We wish to emphasize that our
primary goal in this report is a comparison of languages. Our comparison
focusses on those dimensions that bear on modern notions of program structure
and good software engineering practice.

In preparing this report we first addressed the problem of language
comparison itself. After an examination of existing language comparisons, we
felt that a new approach was needed. Thus, to replace the customary
exhaustive feature-by-feature comparative evaluation, we have devised a
“language core" technique; this technique is described in detail below. We
believe it to be a substantive improvement in language-comparison
methodology.

One of the reasons for evaluating programming languages is to help select
one for use in a particular project or organization. This selection process often
engenders bitter debate, as typically there are no clear goals or unified
interests. The results frequently depend on the prior language experience of
the evaluators rather than on any objective criteria.

v This language is variously called DOD-1, "Syrawman®, "Woodenman®, "Tinman®, and "ironman®.

B e S s e

P— N VI Y] T War— T ey

. P TS 592 2 = e it

2

We belieave, however, that objectivity In the comparison process is possible,
and we have based this report on that assumption: Rational and objective
comparisons can be made. An evaluation combines comparison with judgments
about particular objectives and methods; it must be accomplished with clear
goals and proper information. This report can provide the language-dependent
part of the information needed to make a rational evaluation in a given context.

1.1. Comparison Methodology

There have been a substantial number of "evaluations" of various
programming languages [c.f. Goodenough 76, Higman 77, Nicholls 75]. Generally
these comparisons or evaluations have been based on a detailed analysis of
the features available in each of the languages under study. Because our goal
is more specific, namely comparison only with respect to the use of the
language in conjunction with modern notions of software engineering, we have
chosen a different approach.

Our approach is based on three closely-related premises about programming
languages:

1. The designers of eaéh language had a strong image of how programs
are, or ought to be, written -- and that they designed the language
accordingly.

2. The designers' image is strongly and consistently reflected
throughout the language. Moreover, once a language is defined, it
tends to acquire an independent identity. Extensions and revisions
tend to continue in the original style, thus remaining true to the
ariginal image of program construction.

3. This reflected image is a major factor in determining how the
language will actually be used. That is, we believe that the language
designer's philosophy of program construction dominates the
language so strongly that it dictates (at least to a first
approximation) a "mind set" which, in turn, strongly impacts how

v B e R AT o

programs will be structured.2

If our goal is the comparison of languages with respect to the way they
support software engineering, a consequence of these premises is that we
should compare the central images of the languages and the programming
parad'lgms embodied by those designs. We propose to do just that, albeit in a
somewhat indirect manner. Our comparison methodology has two steps:

1. Capturing the desigrer's image with a definition of the central core
of each language.

2. Comparing these core languages.

The remainder of this section elaborates these two steps and the rationale for
this approach.

1.1.1 Language Cores

As stated above, we beliave that the language designers' image of the
programming paradigm is a major factor in determining the structure of programs
written in the language. It would be Ideal to compare these images directly and
possibly to discuss the extent to which each language really does support its
image. In most cases, of course, we have little or no direct evidence of the
designers' intent. In fact, we do not believe that this image was necessarily
explicit. The notion of a "core language" is our attempt to express what we
infer to have been their intent.

Since we believe that the designers' image of the programming paradigm is
strongly and consistently reflected throughout the language -- both in the
choice of features and in the way the features are composed into programs ==
it is generally not necessary to examine the entire language in order to see
this image. In other words, it is possible to isolate a subset of the language
that captures the image; we call such a subset a core of the language.

2 5 programmer who learns one programming language or who predominantly uses one language may
menitally program in that language ~d transliterate info another which he uses iess frequently. in such cases
his use of the second language will not conform to the argument above; however, we are primarily
concerned with the primary impact of language and not with secondary etfects.

s o

4

Thus our language comparisons begin with the definition of €ach of the
language cores. We shall compare (only) these cores since they were
designed to capture the attri:utes we wish to compare.

In general, a core of a language will not be unique; for example, it may be
possible to select any of several features to capture some single aspect of
the image. Since small cores are easier to compare than large ones, a core will
usually omit much of a language and, in principle, need not be complete.3
Moreover, the selection of which aspects to include or exclude from the core
of a particular language will be solely a property of that language; one is not
entitled to expect corresponding features, even when they exist, to appear in
the cores of two languages being compared. Such features may contribute to
the unique flavor of a language in one case but not another.

1.1.2 Comparison of Languages

Although we realize that focussing the comparison on the cores of the
languages in uestion has some obvious shortcomings for certain purposes, we
also beliave it has significant advantages over attempts at more
comprehensive comparisons. These advantages are all, in one form or another,
assertions that it is possible to do a more complete, intellectually tractable, and
scientifically honest comparison of a small number of things than a large
number. More precisely:

1. We assert that the design philosophy of a language pervades all
programs written in that language. Indeed, we believe that this has
a far more important impact on program construction than ‘the
presence or absence of specific features. Since, by design, the
core language captures the language design philosophy, comparison
of the cores captures the first-order effects in program composition.

2. We believe that comparison of (only) the cores avoids a whole raft of

silly, finger-pointing arguments -- those arguments of the flavor " ...in
MY language there is an X construct"... "Well, in MY language there

3 That is, it is not nocessary for the care to bo capable of expressing an arbitrary computation.

3.

4.

isn't an explicit X, but you can do with a Y...". Such discussions may
be interesting to some language designers, but they shed littie light
on the real merits of either language. To avoid such silly discussions,

a. We should accept the premise that all languages are
computationally complete; that is, all are adequate for
describing all computations. One language will undoubtedly
be more convenient than another for particular isolated
examples; but the reverse will usually be true for other
examples. Thus these isolated cases serve little purpose.

b. We should recognize that all languages tend to accrete
features to compensate for their most glaring initial
deficiencies. Genuinely important facilities will migrate into
all ianguages in some form. The way in which these
facilities are included, however, is important: in nearly all
cases they enter the language in a style consistent with
the original design philosophy.

c. We should recognize that the simple presence of features
is not a good indication of the worth of a language. A large
collection of ad hoc features, patched together without
thought to uniformity or elegance, will not produce a usable
language.

The core language approach responds directly to each of these
points.

The core language is probably "solid" with respect to its semantics.
Even though all the languages in question have strong portability
goais, from practical experience we know that the less-exercised
features of a language are likely to be implemented incompatibly. By
staying within the center of the language we avoid disagreements
about the semantics of strange cases.

Most importantly, we believe that the "core language" approach is
intellectually manageable. Any "more complete” treatment would, of
necessity, involve a lengthy enumeration of comparisons. It would

then to be difficult to determine (a) what the most important
comparisons are and (b) whether crucial comparisons are missing.

1.2. Dimensions of Comparison

Having established the value of comparison over evaluation, and having
outlined the ideas behind our comparison strategy, we now describe the actual
comparisons to be used.

One of the most important but least tangible factors in the programming
process is the "mental set" of the programmer: his view of the strengths,
weaknesses, peculiarities, and proper use of the programming tools that he
uses. Many factors are involved in the evolution of a particular programmer's
mental image of the programming process; we shall try to isolate the ones that
are affected by language.

When a programmer learns a language and continues to use it, his mind set is
largely determined by that language. When a programmer learns to program in
one language and then switches to another, his mind set is a juxtaposition of
the two, and to a certain extent he will be programming mentally in one
language and translating into the other as the code is written down. For our
purposes, then, the mental language is much more important than the actual
language.

We shall compare the effects that language-induced mind sets have on
programming "in the small", that is, on the use of individual statements,
statement-groups, loops, procedures, or even programs. For example, we
compare how the language syntax and lexical structure shape the code that is
written. We examine how the data abstractions that are built into the language
affect the programmer's choice of representation and how the control
structures provided by the language impact the grouping and local flow of the
finished program.

We shall then compare the effects that languages have on programming "in
the large", that is, the composition of individual programs and program segments
into whole systems. Thus, we examine the ways a language can affect our

ability t0 SEgMENt & Task WG EEPeREE S am—
independent components inlo & sysles s e
exists.

Not all of these questions are mesmaglc W s & wme
of the dimensions of compansce am e O W -
these techniques and thei Mpeed gees e ms sesime e
c““.

1.3. Scope of Project

We have undertaken only & comesisss o e - V-
in a language selection process. one Sus’ s e e
programming environment. Allhoug’ Thess ssew o o
of the language, they in fact result Tram s s
consequently must be trested separain

We have specifically excluged lw. e von
criteria from our study: COmEsEr- o Spalas saes T e -
domain issues. Thus for exampie we SSLes . 0 oo
our Cobol core because It is compeieg son w0 s
systems its functions have been subswmes o o 0
interface. Similarly, although we fSewe Sac s o
modularity, we have not Gecussss S0 e e
compilation and program Inkage ey s -
specific facilities as Cobol's formetivg w0 e o
scientific subroutine library are no' cosser s

The omission of these issues from s w0 0
them as unimportant. On the contrary © S s e —
important than the issues consudersd Sars L w0 e
they are outside the scope of the curren i

The original objectives of this stud, we o

to identify language features cermesty swss w0 e

terms of their specification and scope of effects, their use in

practice, the provability of program correctness, and their suitability
to programmers' needs;

enumerate language features conducive and detrimental to good
program structure, and to identify small variations that may have
significant impact.

As the study proceeded, it became apparent that overall program
organization and the way language features are used have a much greater
impact on the quality of a program than does the selection or nonselection of
individual features. We therefore adopted the "language-core" methodology
described above. Evaluations of language features appear throughout the
report, but we have made no attempt to construct exhaustive lists. Indeed, we
believe that such lists would detract from the major results of the study.

Chapter 2 i
Definitions of Core Languages

In this chapter we define the "cores" of the four languages under
investigation. A section is devoted to each; except for ironman, the definitions
of the cores are structured similarly. The common organization is:

Philosophy
Core Properties
Lexical and Syntactic issues
Data and Data-Structure Issues
Control Structure Issues
Other Issues
Definition of a Core
Syntactic Definition
Semantic Comments
Example Program

The section on "Philosophy" examines some of the contextual information
surrounding the language definition. In many cases the essentiai flavor of a
language derives from such information as the nature of the problem domain,
the state of compiler technology at the time of the language definition, the
typical mode of computer usage, and so on. This section attempts to capture
those aspects of the context which strongly affected the language.

The section on "Core Properties" Isolates those properties which every core
of the language shouid contain. These are the features and policies that give
the language its identity. The description of these properties is intentionally
terse and hence depends to some extent upon the general knowledge of the
reader.

The final section, "Definition of a Core", defines one possible core which
reflects the properties outlined in the previous section. This core is defined
syntactically, semantically, and by example. The syntactic definition uses an
extended BNF notation (see below). The semantic definition is in prose; it is

R Sl AN e v il s i o_— . ot oty s
Al S SRS T S e R TR

e S S kit T

10

b i

not intended to be complete, but rather to emphasize those aspects of the
semantics which are most relevant to the subsequent comparison sections.
The example program is an implementation of the same simple algorithm in each
of the core languages. The primary purpose of the example is to illustrate that
the cores do indeed capture the essence of the language. A specification of
the example is given later in this section.

The syntactic definition of the cores is conventional BNF with the following
additions and conventions:

1. Key-words (reserved words) are denoted by upper-case Roman
letters.

2. Metasymbols are denoted by lower-case italic letters and may
E contain a hyphen, "-", to separate semantically significant words. |

3. Where the intent of a meta-variable is obvious from its name, e.g.,
identifier or identifier=list, its definition is omitted.

4. The symbols { and } are meta-brackets and are simply used to group
constructs in the meta-notation.

5. Three superscript characters, possibly in combination with a
subscript character, are used to denote the repetition of a construct

: (or group of constructs enclosed in {}). In particular:

wxt denotes "zero or more repetitions of"

"+" denotes "one or more repetitions of"

"#" denotes "precisely zero or one instances of".
Since it is often convenient to denote lists of things separated by
some punctuation mark, we denote this by placing the punctuation
mark directly below the repetition character. Thus,

chpcsad Lh ol

PSR,

11

vwv = a{b | ¢}

defines a vvv to be an a followed by either a b or

ac.
]
Xx%x = a
defines an xxx to be a sequence of 2ero or more
a’s.
*
yyy = a b,

defines a yyy to be an a followed by zero or more
g b's separated by commas.
zzz == {a|b};
defines a zzz to be a sequence of one or more
things separated by semicolons -- where the
“things" may be either a’s or b's.

The problem chosen for the examples is based on [IBM 61a], pp. 79ff. The
task is to take a number of input records which give an age and a salary, and
for each S-year age group to compute the average salary for the sample data.
The algorithm is compactly represented in the following informal program:

peoplelall groups)«B8;
earnings(all groupsl«8;
for each input-record do
begin
add 1 to peoplelgroupl;
add salary to earnings(groupl;
end;
for each group do
begin
if anyone in group
then averagelgroup) « earnings[groupl/peoplelgroupl
else averagelgroup] « 8;
end;

This program was chosen because it appeared to be suitable for all three of
the existing languages undertaken in this comparison. Note, however, that the
intent is that each of the programs be an exemplary use, not a typical use of
each language; the languages were designed for different application domains
and one cannot expect a single task to be typical for all of them. Also, since
1/0 is not a part of standard Jovial and had been excluded from the Fortran

12

core, those two implemeniations were coded as subroutines which received
their data from a main program. A complete Cobol program is presented,
however. In Cobol the secondary-storage philosophy is very strong and
independent subprograms are not possible; we felt that the example should
reflect these properties.

2.1. Fortran Core

Fortran was one of the earliest "higher-ievel" languages for expressing
numeric computations. It was developed in the mid 1950's, primarily for IBM
equipment, and has been revised and extended numerous times. It is
undoubtedly the most widely used programming language for scientific and
numeric computing.

2.1.1 Fortran Core Philosophy

The fundamental style of Fortran was (and is) derived from the the
requirements of numeric, scientific computing; thus ifc is dominated by those
facilities needed for the manipulation of scalar values and homogeneous,
rectangular, N-dimensional arrays of scalars. Thus, for example, the language
has a natural notation for the evaluation of algebraic formulae, but not for
manipulating symbolic data such as strings. Similarly, the iteration construct
(DO) provides sequencing over the integers, reflecting the need to traverse
arrays whose indices are integers.

The fact that Fortran was one of the earliest algebraic languages (early
memos date from 1954) is apparent in several aspects of the language. These
espects still substantially impact the form of programs written in the language.
For example,

1. The syntax of the language is "flat". Except in arithmetic
expressions, nesting of syntactic constructs is generally not allowed.
The most notable example of this is the statement, which is
conceptually (if not always physically) a single line of text.
Statements may be independently grouped only by using the sub-
program facility (SUBROUTINEs and FUNCTIONSs).

i s e s

13

2. The scope rules influence how programs, particularly large programs,
are constructed. Variable names are generally local to a subroutine.
The names of subroutines, on the other hand, are global to the set of
modules which is linked together. Data from one subprogram is made
available to another either by explicit parameter passing or by
importing lists of global variables (COMMON).

3. Although Fortran is generally considered "machine independent”, and
it has certainly been implemented on a large number of dissimilar
machines, there is a strong von-Neumann machine model! evident in

the language design. Some aspects of this model which impact
program construction include:

a. The mapping from an N-dimensional subscripted array to an
address in a linear-contiguous address space is explicit in
the language definition and is tailored for machines with
common index-register properties.

b. Allocation of storage for variables is static (i.e., determined
at compile time).

c. The primitive data types are precisely those supported by
typical hardware. The selection of these types was aimed
at granting the programmer convenient access to the
hardware operations rather than at checking the
consistency of a programmer's use of a particular variable.

Input/output has a distinctive philosophy, which is characterized by its
record-orientation, by the existence of only a few primitive operations (READ,
WRITE, REWIND, etc.), and by a fixed number of primitive mappings (as used in
the FORMAT statements). However, the language retains its essential flavor if
input/output is ignored, so we shall not include it in the core.

2.1.2 Fortran Core Language Criteria

2.1.2.1 Lexical and Syntactic issues

Spaces within a statement are not significant; they are neither necessary

14

(they are not used as separators, so compressions such as "DO10I=1,N" are
legal) nor prohibited (spaces may appear within an identifier, for example).

The initial orientation to punched cards has resulted in restrictions on which
"columns" of the input line may contain the text of a statement.

If a variable has not been explicitly declared, it is implicitly declared when it
is used in a statement. The type of an implicitly declared variable is
determined by the initial letter of its name.

The statement organization is "flat". There is no syntactic nesting of
statements and statements are identified solely by their statement label. By
cultural convention, programmers do not indent Fortran programs. Although
nothing prevents their doing so, Fortran programmers do not use indentation to
provide visual cues. As a result, Fortran programs are vertically "flat".

2.1.2.2 Data Issues

The basic data tvpes are scalar numeric values. The set of types is
determined first by the Fortran standard [Fortran 66, Fortran 76] and then by a
particular implementor (who may choose to implement only a subset of the
types or to provide types which are nonstandard extensions). The set of
types in any implementation is not extensible by the programmer.

Fortran allows the user to define aggregates of types. These aggregates
are limited in form to rectangular arrays of scalar values, all elements of which
must be of the same type (homogeneous).

All operations, except for parameter passing, are defined only for scalar
operands, either simple variables or elements of arrays.

The enforcement of the concept of "type" is weak. There is no type-
checking or conversion of values during subroutine calls, nor can there be.
Within a module, facilities which are part of the language allow a user to
specify several names (aliases) for a single storage location, and the type of
the value in that location can be interpreted in several ways, depending upon
the type of the alias used to access it.

186

The physical representation of data in an array (i.e., the mapping between
subscript values and storage units) Is explicitly visible to programmer and
specified exactly by the standard ([Fortran 66] section 7.2.1.1.1, [Fortran 76]
section 5.4.3).

The rules governing the set of variables which can be accessed at a given
point In a program, i.e., the rules on scope and parameter-passing, are strongly
characteristic of Fortran:

Variable names are completely local to a program unit.
- Subprogram name and COMMON labels are global to all program units.

- Parameters provide for dynamic association of local names and
external storage segments.

- COMMON provides for a static mapping between lo~al names and
external storage segments.

- The type !nterpretation of a mapped storage segment is determined
by the type of the local name mapped to-it.

Fortran was defined before any form of dynamic storage allocation was
common, even the relatively inexpensive stack-criented allocation found in
almost all newer languages. This leads to some characteristic properties of
Fortran:

- The physical representation of data is tied to its abstract
representation.

- Storage requirements are fixed at coding time.
2.1.2.3 Control Issues
The basic control constructs are few in number: there is a simple IF, an
integer-counting loop (the DO), and a GOTO. Although there are additional

facilities in the form of assigned and computed GOTO's, these have much less
impact on the form of For.ran programs than the more common constructs; they

—

16

are therefore excluded from the core. Typically Fortran programmers
synthesize their more sophisticated control from the three primitives.

Subprograms in Fortran may not be recursive. Parameters are either explicit
or communicated through global (COMMON) storage. Separate compilation of
Fortran subprograms has always been a standard feature and is heavily used;
selective sharing of some global variables is supported via named COMMON.

2.1.3 A Fortran Core Language

2.1.3.1 Syntax

declaration :=
SUBROUTINE name { (variable |) }*
| COMMON { /name/ }* const—en.tity:
| EQUIVALENCE { (const-entity, const-entity,) }*
| type con.st-enti.ty;*

statement :=
entity = expression
| GOTO statement-label
| IF (boolean-expression) statement
| DO statement-label name = int-const-var, int-const-var
{, int-const-var }*
| CALL name {(expression ;' 3"

int-const-var ::= integer-variable | integer-constant
type ::= DIMENSION | REAL | INTEGER {+ LOGICAL
const-entity ::= name | name (integer,)

entity :i= name | name (integer-expression,)

17

Note that our syntactic definition ignores the statement/line orientation of
Fortran as well as the placement of numeric statement-labels in colups 1-6,
the continuation symbol convention, and the comment convention (a "C" in
column one). All of these could have been expressed at considerable cost in
the readability of the definition; we consider the price to be excessive and
have therefore elided such details.

it should also be noted that there are two types, DOUBLE PRECISION and
COMPLEX, in full Fortran which are not in the standard subset language. The
new standard [Fortran 76] defines a new type, CHARACTER, as one of the
basic types. The language is not altered significantly by the deletion of these
types from its core.

2.1.3.2 Semantics Comments

The basic view of a Fortran program is as a collection of "program units",
specifically a main program and a set of sub-programs. A program may be
compiled as a single compilation unit or in a series of unrelated compilations;
the language does not impose any constraints on the lexical or temporal
sequence of the compilations, and only insists that the output of such
compilations be available at the time a program is formed (e.g., linked) from its
program units. Each program unit (module) is self-contained. Thus all variable
names and statement labels are local to each module, and may not be
referenced by any other module.

The assignment statement permits the result of an expression to be
assigned to a variable or array element (generically referred to in the standard
as an "entity"). All numeric results will be converted to the type of the entity
to which the result is assigned. A logical result cannot be converted to a
numeric result.

A GOTO statement may transfer control to almost any statement label in the
module. Specific qualifications apply to inactive DO-loops and extended DO-
ranges (where the text of the loop body is outside the range of the DO
statement, e.g. [Fortran 66] section 7.1.2.8.2). A GCTO may not transfer

control to any statement not in the module.4

The IF statement conditionally executes a single statement on the same line
as the IF. If the boolean condition is false, control passes directly to the next
executable statement in the program. Thus, the character of the IF is that
either it executes one statement or it does nothing.

Fortran has a single iteration control construct, the DO-statement. The body
of the DO-statement is delimited by a statement whose label is given in the
DO-statement. Thus, the body of a DO-loop is (usually) contained entirely
between the DO-statement and the statement whose label it mentions. (The
notable exception, which has already been mentioned, is the "extended range"
in which the statements that are logically part of the loop are located
physically outside it.)

The SUBROUTINE declaration and CALL statements allow one program unit to
invoke and to pass arguments to anot..er. The CALL statement causes the
arguments “to become associated" ([Fortran 76] section 156.6.2.2) with the
formal (dummy) arguments of the SUBROUTINE declaration. This is usually
accomplished by either call-by-reference or call-by-value-result.5 The
specific means by which this association is to be established and maintained
are not explicitly stated, but a number of restrictions in the language are
intended to permit various implementations of the parameter association to

4 Note that it is possible to use certain facilities not in the core language, specifically the ASSIGN

statement and the assigned GOTO to defeat this restriction. This technique is specifically prohibited by the
proposed standard [Fortran 76] in section 15.9.4.

5 Here and in the sequel we shall refer to four parameter-passing mechanisms: call-by-value, call-by-

result, call-by-value-resuit,and call-by-reference. When a parameter is passed by value, the formal
parametor is treated as data local to the called procedure (subroutine) which is initialized to the current
valuo of the actual paramoter. When a paramoter is passed by result, the formal parameter is treated as
data local to the callod procedure; upon completion of the proceduwre call, the final value ofithis local
variable is assigned to the actual parameter. When a parameter is passed by value-result, both this

initialization and final assignment take place. Whon a parameter is passed by reference the address of the

actual parameter is passed 1o the procedure, thus both accesses and assignments in the procedure have an
immediato effect on tho actual paramoter.

18

behave in a consistent manner. Unfortunately, these cannot be enforced by
the compiler (c.f., [Fortran 76] section 15.9.3.5; [Fortran 65] section 8.4.2).

A particular feature of the Fortran-parameter association mechanism is that
there is no type-checking or conversion across sub-program calls. Thus, the
representation passed by the CALL statement is determined by the type of the
argument in the calling program unit, while the interpretation of the
representation in the called program unit is determined by the type of the
argument in the called unit.

The data type declarations allow the user to declare the type of a symbol
explicitly; otherwise the type is determined by the initial letter of the symbol.
Except in subprograms, where the bounds of an array may be specified when it
is passed as a parameter, the bounds of an array are fixed at the time the
statement is compiled.

The COMMON declaration allows users to specify explicitly the organization
of storage relative to some base address. The actual address of the storage
segment is determined by a facility such as a linkage editor or loader, but all
COMMON segments with the same name will have the same base address. Note
that modules are not required to specify the variable names in COMMON in the
same order, with the same names, or with the same types as any other moduile.
The interpretation of the COMMON segment by each module depends on order
and type of the COMMON definitions local to that module.

The basic purpose of the EQUIVALENCE statement is to specify storage
sharing, i.e., to allow logically disjoint sections of a program to share physically
identical memory, possibly with different mappings. of type and structure. It
also permits a programmer to bypass the implicit type conversions and treat a
storage location as if it were any of the valid data types.

20

2.1.3.3 An Example

SUBROUTINE AVGSAL (AGE, SALARY,LENGTH, AVERAG)
INTEGER AGE (LENGTH), NUM(20)
REAL SALARY (LENGTH), AVERAG (28)
DO 1 IX=1,208
NUM(IX) =8
1 AVERAG (1X)=8.8
00 2 I=1,LENGTH
IX=AGE (I) /5+1
NUM (IX) =NUM (IX) +1
2 AVERAG (1X) =AVERAG (IX) +SALARY (1)
DO 3 IX=1,20
3 IF (NUM(IX) .NE. 8) AVERAG(IX)=AVERAG (IX)/NUM(IX)
END

2.2. Jovial Core

During the past eighteen years Jovial has been implemented on a variety of
systems and in several versions. Here we describe a core for the Level |
3 subset of the J73 Jovial language [RADC 76]; this dialect was chosen because
: it is considerably cleaner than the J3 version [Air Force 76], yet does no
violence to the essence of the older versions that have dominated the use of
the language.

2.2.1 Jovial Core Philosophy !
The nature of the Jovial language derives from two chief sources:

1. Roots in Algol-58: The basic structure of declarations, control
structure, and program syntax stem from the influence of the early
Algol efforts. As one result, Jovial exhibits a block structure similar
to that of more modern languages. '

2. Application to Command and Control: Jovial has been used to
implement large modular command and control systems from its very
1 beginning. In response to the needs of this application domain, the

language has acquired prachcs “es = w0 -
data representation, sharng of Seloiar o w0
of large systems, and specia o o dee e e

These two sources result in & tensor Betmee w0 o
hand and pragmatic richness on the ot 0 w0
programming language design and e asgeses e
ways. Generally the Jovial resposss Ses cew -
which syntactically resembie hgh-wmes mms 0 o
provlded'which permits addressmg & aEE e -

mechanism appears similar 10 t™he Sgr wew S0 o w0

net result is that, if the mechamss & Praser s e w0
though safety is not ensured

2.2.2 Jovial Core Language Criters

2.2.2.1 Lexical and Syntactic 'ssues

Jovial source programs are free-fors slramsss o
appear almost everywhere and are bracssie . o
form is basically block structurea wt w0
ending in semicolons or surrounded By B o ~
data declarations are single letters & slaaw 0 -
provides an abbreviation faclity who e Lo -
improve the readabiiity of programs

2.2.2.2 Data issues

Jovial data structures ar@ nch and sess . o - -
declaration is the ITEM declaraton wias Sw wee

eJovialMifmombmmum-.- g -
reserved symbols in the anguage - - an s Camwmss e

7 By "weakly typed® we mean Iha! Iypeg & wss B e
and is checked for subprogram parameters B’ We e s e
mechamisms in the language.

22

type and, optionally, of at least a specific size (in bits for numbers and bytes
for character strings). The basic scalar types are signed Integer, unsigned
integer, bits, character string, and floating point. A facility for giving names to
integers supports a weak form of enumerated type. Implicit type conversions
take place with little restriction. The macro facility can be used to give
symbolic names to constants of any scalar type.

, Tables of one or more entries can be declared. An entry in these tables can
be either a single item or a structure of several items. Thus arrays of
E heterogeneous groups of scalar items can be declared. In each table
declaration the programmer can specify dense, medium, or loose packing of
items, thus exercising some control over the space-time tradeoff.

E The length of each table must be specified at compile time. Allocation of
storage to data is of three forms: (1) RESERVE is permanent and static, (2) IN
is local to a single invocation of the declaring routine, and (3) BASED allocates ‘
E no storage, but uses an explicitly computed unsigned integer as the address

for each reference. RESERVE allocation is the default and allows preloading of
data. BASED allocation appears to be potentially error-prone, yet its skilled
use in conjunction with TABLE and DEFINE declarations allows flexible control :
over storage structure.

2.2.2.3 Control Issues

Jovial control structures include the basic forms common in Algol-like
languages, including the /If-then-else, for, and while constructs, and a slightly |
restricted goto. 1

The procedure call mechanism allows ITEM parameters to be passed by value !
and/or resuit.8 The syntax for procedure declaration and call both make it
clear whether a given formal or actual parameter is passed by value, result, or
value-result. Tables are always passed by reference. Type checking of
actual paremeters is done only for ITEMs.

S 0 i

8 See the earlier footnote in the Fortran core definition for a description of these parameter mechanisms.

T ORI (1 5 U AR PRI SRR - o s

23
2.2.2.4 Other

Jovial implementations must support separate compilation of modules. The
COMPOOL facility allows data, procedures, and definitions to be shared among
these modules. A COMPOOL is itself a separately compiled module that
declares the data, procedures, and definitions to be shared by a system of
modules. Each using module invokes these declarations by means of a
COMPOOL directive.

Jovial also provides low-level control over data representation and
accessing. Representation of a table entry can be specified down to the level
of the word and bit. Similarly, BASED allocation of data allows the programmer
to map a template data description (for either an item or table entry) onto an
arbitrary address. Although potentially error-prone, these features allow the
Jovial programmer explicit access to physical locations that may be system- or
hardware-sensitive.

2.2.3 A Jovial Core Language

2.2.3.1 Syntax

declaration ::=
item-declaration

| TABLE table-name [{{number :}* number}, 1 {N | M
| D}* entry-specifier;

| STATUS status-list-name { V(status-constant) },+ }

| PROC proc-name {(input-parm, {: output-parm, }*) }*
statement;

| COMPOOL compool-name ; { "
declaration | BEGIN declaration; ; END };

PYSUURE PE SRS

ety st e et el

A’

o s

i

statement ::=

statement-label : statement

| BEGIN statement* END

Iuariable,+ = expression ;

| GOTO statement-name ;

| IF expression ; statement { ELSE statement}®
| WHILE expression ; statement

| FOR wvariable : control-clause ; statement

| proc-name actual-parameter-list® ;

; . J , 1 *
item-declaration ::=ITEM item-name item-description { = constant, }* ;

item~description :u=
C size-specifier®
| F ma.n.ti..«:sa.—speci,fic»zr’t exponent-specifier®
| {S|U} size-specifier® status-list-name®
| B size-specifier®

entry-specifier = ;
item-description { = constant, }*
| BEGIN item~-declaration® END

.
’

control-clause := expression { BY expression }* { WHILE expression}®

2.2.3.2 Semantics Comments

A software system written in Jovial consists of a series of modules. The
main program resides in a PROGRAM module. The other procedures are declared
in PROC modules. Definitions, including procedure headings, macros, and shared
variable names, are declared in COMPOOL modules. While each module may be
separately compiled, the COMPOOL facility allows the sharing of procedure
formal parameter specifications as well as procedure names and of shared
variable names and types as well as the hames of blocks of shared data.

The ITEM declaration specifies the name, type, size, and preloaded value of
a scalar. The TABLE declaration makes use of the ITEM declaration syntax to
specify the name, type, size, and preloaded data of each field in a table entry.
In addition, it specifies a dimension list (bound at compile time) and the density
of packing of the fields. The STATUS list declaration associates a list of
symbolic status names with a range of integers. These may be used to treat

s AN

25

an integer item as an Instance of an enumerated type, and the language
encourages the programmer to do so. The type of such an item remains S or U
(i.e., integer) and integer notation and operations may be used at any time.

One unusual feature of the procedure deciaration is the way it distinguishes
between value, result, and value-result for scalar formal parameters. Any
scalar formal may appear once in the input parameter list, in which case it will
be passed by ‘alue. A scalar formal may also appear once in the output
parameter list, in which case it will be passed by resuit. Should a scalar formal
appear in both lists, it is called by value-result. Thus in the procedure heading:

PROC MUNGE (AA, BB : AA, CC)
BB is passed by value, CC is passed by result, and AA is passed by value-

result. The syntax of the procedure call is similar and demands proper
specification of the actual parameters. Thus in the procedure call:

MUNGE (XX, YY : ZZ, XX);
YY is passed by value, ZZ is passed by result, and XX is passed by value~-
result. This control over parameter passing at both procedure deciaration and
call is remarkably simple and flexible, yet almost unique. Surprisingly, it is a
product of Algol-58 from which Jovial was derived but has not been kept in

other languages.

The assignment statement is quite ordinary; it should be observed, however,
that implicit type conversions occur freely.

2.2.3.3 An Example

PROC AVGSAL.ARY (EACH'DATA, AVERAGE, LENGTH);

BEGIN

TABLE EACH'DATA [1];
BEGIN
ITEM AGE S; "THE AGE OF ONE PERSON "
ITEM SALARY F; "AND HIS ANNUAL INCOME "

END "EACH’DATA"

TS

26

TABLE AVERAGE (28] Fs "AVERAGE ANNUAL INCOME OF AGE GROUP"
ITEM LENGTH S "NUMBER OF ENTRIES IN EACH’'DATA"
TABLE NUM (20] E: "NUMBER OF ENTRIES IN AN AGE GROUP"
ITEM ENTRY Ss "INDEXES INTO EACH'DATA "

ITEM SLOT S; "INDEXES INTO AVERAGE AND NUM"

FOR SLOT:8 BY 1 WHILE SLOT<28; “CLEAR NUM AND AVERAGE"

NUM (St -1, AVERAGE [SLOT] = 0.8;

FOR ENTRY:@ BY 1 WHILE ENTRY<LENGTH; “DEVELOP SuMS OF INCOME"
BEGIN
SLOT=AGE [ENTRY) /5;
AVERAGE [SLOT] =AVERAGE [SLOT] +SALARY [ENTRY] ;
NUM [SLOT]) =NUM [SLOT] +1.8;
END

FOR SLOT:8 BY 1 WHILE SLOT<28; "USE SUMS TO BUILD AVERAGES"
IF NUM(SLOT] >8.8;
AVERAGE [SLOT] =AVERAGE [SLOT] /NUM [SLOT] ;
END

2.3. Caobol Core

The design of Cobol was motivated by the need to write non-numeric file-
oriented programs. Such programs involve substantial amounts of externally
stored data; the programming problems are frequently dominated by the format-
sensitivity of this data. The original design philosophy explicitly considered the
issue of program compatibility and portability of data among machines. This led
directly to the explicit separation of the algorithmic or procedural parts of a
program from the description of the data involved. Further, information about
the object machine was to be separated from beth algorithm and data
definitions [Cobol 60, Cobol 74].

2.3.1 Cobol Core Philosophy

Most programs in use today are written in Cobol; this is a tribute to the
language design, the importance of the problem domain, and the standardization
and promotional efforts of the U.S. government.

27

The language which has evolved from the original goals is dominated by the
following characteristics.

1.

2.

3.

4.

Closeness to secondary storage: The Cobol programmer is in close
contact with secondary storage. Windows into externally stored
files are an integral part of his program's name space, and a
substantial part of the programming task is concerned with defining
the formats to be used for interpreting this data. The external files
are viewed as sequences of unit records of characters, and
interpretations are imposed by defining complex field, array, and
record structures on the underlying character stream.

Similarity to English: The designers intended programs written in
Cobol to be readable by people without knowledge of the object
computer. They approached this goal by making the language
resemble English as much as possible.

Multiplicity of Specific Features: The language comprises a large
collection of individual features. Each of these either specifies some
property of a data organization or operates on the data so defined.
The feature collection is large enough (36 verbs and 262 keywords)
to make the act of programming resemble selection from a menu of
features more than synthesis from a set of abstract primitive
operations.

Separation of concerns: Information related to algorithms, data
definitions, and machine characteristics is viewed as separate and
independent. The distinction is so strong that a top-leve! separation
is made in every program.

2.3.2 Cobol Core Language Criteria

2.3.2.1 Lexical and Syntactic Issues

A Cobol program is a sequence of statements, each beginning with a
keyword. Some statements are procedural, others are declarative, and some
declaration keywords are numeric, but the essential keyword-driven syntax
remains the same. The rules for assembly of Cobol statements into a program

28

are so complex that they could well be called a "vertical syntax". Cobol
reference manuals are almost universally divided into two separate but
interwoven pieces: one describes the syntax of the various statements, and
the other describes the syntactic rules for combining them.

A Cobol statement is a verb followed by its operands or modifiers. A
sentence is one or more statements terminated by a period. Sentences can be
clustered into paragraphs, and paragraphs into sections. In divisions other
than the PROCEDURE DIVISION, the notions of sentence and paragraph are
vague. Within a statement, operands are separated by sequences of blanks
and keywords; the programmer may use commas and semicolons as visual cues
for the reader, but they will be ignored by the compiler. The syntax for some
particular statement frequently requires noise words, whose presence is not
needed to parse the statement unambiguously but which make the statement
more readable to a layman. Thus, the Cobol statement

SORT X-FILE ON ASCENDING KEY PART-NO USING A-FILE GIVING
B-FILE.

could be reduced by removing the noisewords to

SORT X-FILE ASCENDING PART-NO A-FILE B-FILE.

without becoming uncompilable.
2.3.2.2 Data Issues

Cobol requires the programmer to specify both internal program data
organization and file data, using almost, but not quite the same mechanism for
both. The essence of Cobol data declarations is the superposition of structure
on the underlying memory. File data declarations specify how the characters in
the file are to be grouped together into data items, while data declarations for
primary storage specify how the memory address space is to be organized into
variables, arrays, and such.

A Cobol elementéry datum, called an item. is the smallest unit of declaration.
Cobol provides a set of item types, with variations, and the programmer may
combine elementary item types into bigger structures in any combination.

29

However, the programmer cannot build a new item type. The set of item types
provided by the language (DISPLAY, COMPUTATIONAL, etc.) is designed to be
implementable in terms of data types supported by the underlying hardware,
and there is a sufficlently rich and redundant collection of item types that
widely varying hardware features can be used efficiently.

Cobol names are global to the entire program, but need not be globally
unique: procedure and data names are qualified, where necessary, by the name
of the section or data structure that contains them.

2.3.2.3 Control Issues

Cobol has two control constructs, GOTO and PERFORM. A GOTO is not in any
way restricted as to destination. A PERFORM combines the functions of
iteration and routine-call, with the property that the scope of an iteration is
delimited by the PERFORM and not by any marks in the code being iterated.
(This is in fact why the language can afford to allow arbitrary GOTO
destinations, as there can be no interference with loop code). PERFORM
implements for-loops, while-loops, and combinations thereof.

2.3.3 A Cobol Core Language

2.3.3.1 Syntax

Cobol program ::=
ENVIRONMENT DIVISION. environment-division-body
DATA DIVISION. data-division-body
PROCEDURE DIVISION. procedure-division-body

data-division-body ::=
FILE SECTION. FD-paragraph* 5
WORKING-STORAGE SECTION. data-declaration-statement .

FD-paragraph ::=
FD file-name DATA RECORD IS . record-name.
01 record-name item-description

data-declaration-statement ::=
0] data-name item-description
| 77 data~name item-description
| 88 data-name 88-description

et e st = e TG R | T i b i

30

procedure-division-body ::= { procedure-label SECTION. procedure-paragraph* }*

procedure paragraph ::= procedure-label. paragraph-body

paragraph-body :=
{ COMPUTE data-name = arithmetic-ezpression
| ADD datum TO data-name
| SUBTRACT datum FROM data-name
| MULTIPLY datum BY data-name
| DIVIDE datum INTO data-name
| PERFORM procedure-label {iteration-ciause}®
| MOVE data-rame TO data-name
| IF condition THEN paragraph-body ELSE paragreph-body
3 | input-output statement
) { GOTO procedure-label | STOP RUN}¥.
| EXIT.
| COPY lLibrary-entry-name.

item-description :=
; X "
attribute-description , . ’
{larger-level-number data-name item-description} .
| COPY Lbrary-entry-name.

attribute-description ::=
PICTURE picture-string
| USAGE {COMPUTATIONAL | DISPLAY }
| VALUE IS lteral-constant
| REDEFINES data-rame
| OCCURS integer-constant TIMES

input-output statement ::=
OPEN { INPUT | OUTPUT } fils-name |
| CLOSE file-name ,
| READ file-name { AT END paragraph-body}*
| WRITE record-name
data-name := declared-identifier
datum ::= data-rame | literal-constant.

condition :i= Boolean-expression | 88-level-data-name

88-description ::= VALUE IS lteral-constant

31

Note that the syntax of Cobol, like that of Fortran, is format-sensitive; i.e., it
has specific rules for the placement of a statement on a card image. It does
not seem productive to exhibit these requirements in the core; thus, the

definitions ignore them.

Also note that the environment-~division-body is not defined because it
specifies highly machine-specific information; we feel that such details are not

relevant to the core.

o . et ey

32

2.3.3.2 Semantics Comments

A Cobol program is divided into a data-description part and a algorithm-
description part. It is largely from this separation that Cobol derives its
noteworthy portability. The full language specification also contains an
identification division and an environment division; these were excluded from
the core as not being essential to the central language characteristics. In
particular, most of the functions of the environment division have been
subsumed by the operating system in modern implementations of Cobol.

Cobol contains, as a part of the data-declaration mechanism, the ability to
specify implicit computations, i.e. operations performed indirectly as data is
moved into a record. This unique feature helps to simplify the procedure
division by removing from it the complex, detailed coding that would otherwise
be required.

The character of Cobol hierarchical data description is difficult to capture in
the syntax. A good mental picture is to see it as a stepwise decomposition of
a data record, with each level specifying a more-detailed breakdown of the
data in the previous level.

Note that the ADD, SUBTRACT, MULTIPLY, and DIVIDE verbs have the same
synhtax, and store their result into the second argument; this construction leads
to the clumsy DIVIDE...INTO sequence. We have excluded from our core Cobol
the DIVIDE...BY sequence, which has the unusual property of storing into'its
divisor: DIVIDE X BY Y will set Y to the quotient X/Y.

The COPY construct allows a programmer to include library data-definitions or
code paragraphs in his program. This simplifies the sharing of tapes among
programs and supports common file-formats and algorithms.

i

2.3.3.3 An Example

In the following version of the example program we have excised certain
machine-specific information. The program will not run without this information,
but it is no more pertinent to the language comparison than, for example, the
control commands used to run the program. To show where this information was
omitted we have Iinserted lines containing the string "<machine specific

information omitted>".

ENVIRONMENT DIVISION.

<machine specific information omitted>

DATA DIVISION.
FILE SECTION.

FO

al

FD

el

INPUT-DATA

DATA RECORD IS INPUT-RECORD,

<machine specific information omitted>
INPUT-RECORD USAGE IS DISPLAY-7.

82 AGE PICTURE 83.
82 FILLER PICTURE X.
82 SALARY PICTURE 88338.

OUTPUT-DATA

DATA RECORD IS OUTPUT-RECGORD,

<machine specific information omitted>
OUTPUT-RECORD USAGE IS DISPLAY-7.
82 FILLER PICTURE X(132).

WORKING-STORAGE SECTION.

a1

a1

OUTPUT-LINE.

82 AGE PICTURE Z8.

82 FILLER PICTURE X VALUE IS "-".

02 AGE-UPPER-LIMIT PICTURE Z3.

82 FILLER PICTURE XXX VALUE IS " ",

82 SALARY PICTURE ZZ,ZZ8.

DATA-BUCKETS.

82 EACH-BUCKET OCCURS 28 TIMES.
a3 NUMBER-OF -PEOPLE PICTURE 38333.
a3 TOTAL-INCOME PICTURE 999393933.
83 AVERAGE-INCOME PICTURE 938393393.

21 SCRATCH-VARIABLES.

a2 [PICTURE 88.
82 AGE-VALUE PICTURE 93.
77 BUCKET-LIMIT PICTURE 93 VALUE IS 28@.
77 INPUT-OK PICTURE 9 VALUE IS 1.
77 INPUT-EOF PICTURE 3 VALUE IS @.
a1 GLOBAL-STATUS.
82 INPUT-FILE-FLAG PICTURE 8.
88 DONE-WITH-INPUT VALUE IS 8.
77 YEAR-SPAN PICTURE 89 VALUE IS S.

PROCEDURE DIVISION.
MAIN SECTION.
START.
PERFORM INITIALIZATION.
PERFORM DATA-INPUT UNTIL DONE-WITH-INPUT.
PERFORM AVERAGING.
PERFORM DATA-OUTPUT.
PERFORM TERMINATION.
STOP RUN.

HOUSEKEEPING SECTION.
INITIALIZATION.
OPEN INPUT INPUT-DATA.
MOVE INPUT-OK TO INPUT-FILE-FLAG.
OPEN OUTPUT OUTPUT-DATA.
PERFORM ZERO-BUCKETS VARYING I FROM 1 BY 1 UNTIL I
GREATER THAN BUCKET-LIMIT.

TERMINATION.
CLOSE INPUT-DATA, GOUTPUT-DATA.

ZERO-BUCKETS.
MOVE @ TO NUMBER-OF-PEOPLE (I}, TOTAL-INCOME(I).

s

DATA-INPUT SECTION.
READ-INPUT-DATA.
READ INPUT-DATA, AT ENC
MOVE INPUT-EDF TO 180T & 0 #iw
GO TO END-OF - INPL e 7a
COMPUTE [=AGE OF INPUT-RECDN. W
ADD 1 to NUMBER-OF -PEOF L
ADD SALARY OF INPUT-RECDR. ~ " »n w0

END-OF -INPUT-DATA.
EXIT.

COMPUTATIONS SECTION.
AVERAGING.
PERFORM AVERAGE-BUCKET waiv w0 -
GREATER TwaAN Bns -

AVERAGE-BUCKET.
IF NUMBER-OF -PEDPLE (1 W07t o

COMPUTE AVERAGE - INCIFE - "Iim o

NUMBER -OF S0P ¢

RESULT-DISPLAY SECTION.
DATA-OUTPUT.

PERFORM DO-QUTPUT vaRy . o o -~ -
THAN BUCKE ™ &

DO-0UTPUT.
COMPUTE AGE-VALUE « YEAR e
MOVE AGE-VALUE TD AGE ¢ s W
COMPUTE AGE-VALUE = AGE -wALLE - "W e
MOVE AGE-VALUE TO AGE-Fwgs &
MOVE AVERAGE-INCOME (1 70 Sams o .
MOVE OUTPUT-LINE TO QUTRLUT s
WRITE OUTPUT-RECORD.

36

2.4. lronman Core

ldentifying an Ironman core presents a somewhat different task from the
previous definitions. We have complete language specifications and a body of
user experience for Fortran, Cobol, and Jovial, but for these languages we must
deduce the intentions of the designers from the legacy of features in the
languages. In contrast, for Ironman we have an explicit statement of goals and
philosophy [lronman 77], but no language designed to meet those goals (nor,
for that matter, do we have a guarantee that it is possible to design a language
to satisfy the goals). However, the general design criteria, together with
requirements for specific features, do yield an image which will probably be
preserved by any satisfactory candidate for the language.

2.4.1 Ironman Core Philosophy
The attitudes which emerge are dominated by two practical considerations:

1. The intended application to embedded systems leads to (restricted)
generality and specific machine-relevant considerations.

2. The importance of maintainability leads to a spirit of clarity,
simplicity, and understandability.

The dominant characteristics of the Ironman language seem to be:

1. Simplicity of language: This is explicit in the goals, and it is
supported by lexical, syntactic, and semantic considerations in the
specific requirements. The simplicity of the language is intende‘d to
arise from the similarity of related constructs, and from uniform
assumptions about the interpretation of program statements. The
simplicity is further supported by a number of requirements for
compile~-time checking.

2. Rich data structuring: Data structuring facilities include not only
scalar values and structures which are aggregates of scalars, but
also complex record structures and mechanisms for defining
application-specific data organizations.

e b e i

Sae T sk

3. Programmer=-defined types: A powerful abstraction facility is
intended to allow definitions of data structures and related
operations to be encapsulated and protected. Abstractions defined
by this mechanism are to have same status as the primitive data
abstractions (types) of the languages.

4. Access to underlying hardware: Explicit provisions are made for
providing access to all the features of the underlying hardware and
for interposing as little language overhead as possible. In this way
the programmer can obtain very detailed control over efficiency of
both code and data representations.

5. Conscious restraint: A number of facilities have been omitted and
the power of others has been restricted in order to retain leanness
and safety in the language. In addition, the requirements show
considerable sensitivity to the usability of the language.

we note that the view projected by the Ironman requirements is not totally
self-consistent, and it may not be possible for any language to simultaneously
satisfy all the goals. In particular, there seems to be a conflict between a
desire for readability and safety on the one hand and detailed control over
access to the underlying hardware on the other.

2.4.2 lrornman Core Language Criteria

We shall now address the lronman requirements along traditional lines and
show how they can be expected to lead to a language with the philosophy
described above. Each of the entries in ‘this sketch is supported by
references to specific requirement numbers in the Ironman report [Ironman 77].
2.4.2.1 Lexical and Syntactic Issues

The general design criteria call for simple syntax bouth explicitly (1E) and
implicitly, in support of maintainability (1C) and formal definability (1H). The

restriction to only the necessary generality (1A) also supports simplicity.

Specific lexical requirements include the ability to use a 64-character
alphabet (2A), no special interpretation of line boundaries (20), the ability to

38

use mnemonic identifiers {(2E), restriction of reserved words to be delimiters
(2F), and built-in numeric and string literals (2G,2H).

The syntax is required to be regular and free-form (2B), and similar notations
are required to denote similar constructs (2D,4A). The regularity extends to
the use of expressions, which can appear wherever constants and variables of
similar type are allowed (4D). Regularity is extended to programmer-defined
types (3C,4A); they must be treated on a par with the basic types. The
complexity of the language is held down by the requirement that the built-in
control statements be of minimal number and complexity (6A). Defaults are
forbidden (1C,5B,5E), as is extension of the lexical and syntactic structure of
the language (2C,3-2A,6A).

2.4.2.2 Data Issues

The data definition facilities of lronman are dominated by strong typing, rich
heterogeneous nonscalar structure, and provisions for programmer extension of
the type system. Access to the object machine is provided by tailoring the
primitive arithmetic types to the available precision, by allowing programmers to
specify object representations, and by providing a type extension mechanism.
These facilities are motivated by concerns for maintainability (1C), efficiency
(1D), and implementability (1F).

Strong typing is supported by requiring compile-time type checking (3A,13D),
requiring safe treatment of variant records (3-3H), and prohibiting implicit
conversions between types (38.3-1E,3-1H).9 The type philosophy is carried
into the rules for interpreting expressions; the syntax of expressions is
independent of operand type (4A), and their types are determinable at compile
time (4B).

The requirements for rich data structures are most apparent in section 3,
which requires the language to support heterogeneous composite types (3.3),

9 Note that the rule on implicit conversions may be in conflict with a requirement for opemtion§ between
typos (3-5D); also, fioating point pracisions are not treated as distinct typos (3-1C). However, mixed-mode
arithmotic appoars to be allowable under criterion 1C.

M«m R s LT T

enumeration types including Booleans (3.2.1), characters (3.2.2), and
programmer-defined enumerations (3-2A,3-2B), and sets of enumerations (3.4).
The composite types may be recursively defined (3-3A); new types shall
automatically have field accessing operations (3-3C,5F), value constructors
(3-3C), assignment (3-3C, 5F), and (for scalars) equality test (3-2A). Further,
arrays shall have built-in operations on contiguous subarrays (3-3E), the
subscripts for arrays may be any enumerated type (3-3D), variants shall be
supported (3-3H), and assignment shall be permitted between records with the
same structure (3-3F). Types are not to be fully general; procedures,
functions, types, labels, statements, and exceptions shall not be treated as
types (SD).

Ironman will support programmer definition of data abstractions in a number of
ways. In addition to composing data definitions, it shall be possible to define
new types (3C) and to abbreviate specification phrases (5G). Programmer-
defined types will, as far as possible, have the same status as built-in types
(8C,7A). This will not be entirely possibie; for example, new literal values may
not be added (2B,2.2,3~2A), constants are not permitted for dynamically
allocated types (5A), and it is unlikely that the requirement for evaluating
constant expressions before execution time will be implementable (4E). The
new types may be defined by enumeration (3.2), or they may be encapsulated
with private data (3.5). [n addition, types (as well as functions and
procedures) may be defined generically (12D).

The requirements for numeric types reflect a concern for allowing gocd use
of the underlying hardware. Fixed-point arithmetic (3.1.2) is important in many
applications, and the implementation of floating-point arithmetic is encouraged
to match the available machine precision (3-1C,3-1D). The programmer may
control the physical representation of his data (11A), declare properties of the
object machine (11C), insert encapsulated machine code (11E), and write
programs whose behavior depends on the object hardware configuration.

2.4,.2.3 Control Issues

lronman control is dominated by the philosophy on simplicity and restraint.
The design goals call for readability (1C), efficiency (1D), avoiding of error-
prone features (1B), and formal definability (1H) lead to the choices of both
local and nonlocal control constructs and to the restrictions placed on the
features selected.

[

tidion i

S R

40

The local control mechanisms comprise the usual nestable, structured
statements plus the goto (6A,6B,6C,6E,6G). Attention to safety is evidenced in
the restrictions on destinations of gotos (6G) and the protection of loop control
variables (6F). This concern fails, however, in the interaction of short circuit
evaluation for certain control structures (6D) with the possibility of side
effects (4C).

The nonlocal control mechanisms address functions and procedures (7),
parallel processing (9), and exception handling (10). Procedures and functions
may be invoked and defined recursively (7B). They are constrained by
requirements on strong typing (7D,7G,7H), parameter binding rules (7€,7F), and
aliasing (71). In addition, functions may not use variables from the caller's
scope (7E); note that this does not completely preclude side effects (4C). A
number of facilities for parallel processing (8) and exception handling (10) are
required by the report, but few details are given. Since current software
engineering practice has not achieved consensus on these topics, we cannot
predict the form the features will take.

2.4.2.4 Other

The philosophy and design goals demand that the object machine be made
accessible to the programmer (1D,1F). The primary mechanisms for providing
this access are input-output (8A,8B), a way to interrogate and interact with
the machine configuration (8E,11C,11D), provisions for specifying timing
properties (9D,9E,9F), control over the physical representation of data (11A),
and machine language insertions (11E). The power of these mechanisms shall
be circumscribed in order to preserve machine independence (1G). The primary
techniques for enforcing these restrictions are various kinds of encapsulation
(11D,11E).

2.4.3 Ambiguities and Conflicts

Some of the requirements appear to be either mutually contradictory or
substantially at variance with the language philosophy and general design
criteria. The suspect requirements include those dealing with scope rules, the
notion of type, dynamically allocated variables, and the simultaneous
requirements for machine independence and detailed access to the object
machine.

41

Other requirements, such as those for parallel processing, exception
handling, time-space tradeoffs, and the complete integration of programmer-
defined types in the type structure, may or may not be possible to satisfy.

In other languages, extensions and modifications may compensate for
unevenness in the original desigh. However, this escape mechanism s not
available to lronman, which shall have no subsets or supersets (13C).

These issues are discussed in the sections below. In many cases, the
inconsistencies involve many sections of the report. Only the most significant
are mentioned here; the comprehensive web of supporting points is listed in
appendix A.

2.4.3.1 Scope Rules

Although it is clear that the designers intend to have a simple, safe scope
rule, the specific requirements are at least unciear and possibly incompatibie.
Most of the statements in the report support the view of a nested, block-
structured language with lexically static inheritance of names and other
restrictions intended to preclude side effects. However, this basic model may
not be compatible with the encapsulation mechanism (3-5B,3-5C,3-5D,6G), the
availability of own variables (3-8C,4C,7E,11E), dynamicaily allocatable
variables (3-3J), the exception mechanism (10C), explicit importation and
exportation of definitions (3-5C,12B), and embedded machine code (11E).

The most significant potential difficulty is that it may be possible to.defeat
the scope rules by passing Information through hidden paths (3~
5C,10C,11E,128), thereby circumventing the design criteria of readability,
maintainability, simplicity and reliability. Such hidden paths can reasonably
arise through private data of encapsulations (3-5C) and through explicit
importation and exportation of names between modules (128). If dynamically
allocated variables can be used to construct objects with shared substructure
(3.3.3) the resulting aliasing produces hidden paths. Both exceptions (10C)
and machine code (11E) may also permit communicating in non-nested ways.
Certainly these mechanisms may be used safely, and the name or data sharing
may be explicit and well~-defined, but the policies which are being used in any
particular program can be much more complex than seems intended by the

philosophy.

b S e bt AN K

|
3
|

A L

42

2.4.3.2 Types

Further difficulties may arise in determining when two variables or
expressions are of the same type and in treating programmer-defined types as
if they were primitive.

Strong type checking requires precise determination of the type of each
variable or expression. This is clearly intended (1F,3A,48,7G,8C,12B), but it is
not clear exactly when two variables are of the same type. For example, the
descriptions of range, precision, and scale specifications suggest that these
specifications do not affect the types of variables (3-1C,3-1F). However,
other requirements appear to discriminate on the basis of these specifications
(3-1H,3-3B,7G).

More generally, it is not clear whether two variables are of the same type
when the types used in their declaration are identical in name or only when
those type definitions have identical (or even similar) structure. The first
position is consistent with the philosophy (1B,1F) and certain requirements
(38,3-3D,7H). The second is suggested by other requirements (3.2,3-
2B,3.3,3-3F,3-3H,3-5A,11B). In particular, it appears that partial record copies
may be required (3-3F). Dynamic substructure of dynamically allocated types
is simply inconsistent with other requirements (3-31). In addition, the type
structure can he violated under certain circumstances (3-5D,11E).

A second set of unclear requirements concern the use of programmer-derined
types. The interaction of such definitions with scope requirements was
discussed above, but problems may also arise in the interaction with the type
structure. In particular, although any restrictions on defined types must apply
to all types (3C) and all restrictions must be enforceable by the compiler (1F),
there may be problems with enforcing these standards for literais (2.2,3-2A),
compile-time evaluation of constant expressions (4E), and certain
"automatically-defined" operators (3-2A,5F,7A).

2.4.3.3 Dynamic Allocation
Ironman is required to support types whose elements are dynamically

allocated. This will require a feature-specific mechanism that is unlike anything
else in the language (3-3l). If, as suggested, these types are required by the

43

applications and If they can be incorporated in the language tastefully, the
result may be consistent (1A,1D). However, the distinction between these
types and composite types (3-3/,5A) is at variance with the philosophy of
consistency (1E, etc.); it produces a new kind of scope rule very different from
the dominant rule (3-3J), and the requirement implies a garbage-collected
allocation strategy which may be more general (less efficient) than necessary
for particular applications (1A).

2.4.3.4 Parallel Processing and Exception Handling

As discussed in section 2.4.2.3, the requirements for parallel processing (8)
and exception handling (10) are qualitatively different from the remainder of
the report. There is more than one current proposal on how best to handle
each of the issues, and none has yet been recognized as dominant. In addition,
it is curious that "real time" processing appears under the heading "parallel
processing" (8D,9E).

Even the statements of these requirements have a different flavor from the
rest of the report. The interactions between the specific requirements (9,10)
and the remainder of the report are only

1A: Embedded applications require real time control, seilf diagnostics,
and paraliel processing.

1G: The requirement (GE) for a real time clock is at variance with 1G,
which demands that the language not dictate the character of the
object machine.

3-1A: Numeric overfiows create exceptional conditions.

6G: The goto statement shall not transfer control out of paralilel controi
structures.

The requirements do, however, ask only for a safe, relatively well-understood
subset of the current proposals. hopefully this can be done in a manner which
will not interfere with future developments. It is not clear, however, whather
such a "safe" subset exists == or, if it does, whether it is adequate to cover
the envisioned need. Features such as exception handling may be integral to
the language design philosphy and may not be easy to "patch-on" later.

ke oo

44
2.4.3.5 Time-Space Tradeoffs

lronman is required to permit the programmer to exercise control over time-
space tradeoffs. This is evidently to be accomplished in two ways:
automatically, by stating criteria to control which resources are to be optimized
(1D, 11F, 13A) and manually, by explicitly defining representations and policies
(8E, 11A, 11B, 11E).

"Automatic" control may be achievable to the extent of allowing the
programmer to decide whether packed or unpacked representations are to be
used and whether the compiler should optimize the object code. However, we
see no way to provide a continuum of choices or arbitrary objective functions.

It is clearly possible to permit "manual" control of the tradeoff. The facilities
provided for this purpose will probably be powerful enough to interfere with
other language goals. We mention some of the potential problerq areas
elsewhere.

2.4.3.6 Hardware Access vs. Machine lndependence

The fundamental tension between machine access and independence is
captured in criterion 1G: "The language shall strive for machine independence.
It shall not dictate the characteristics of object machines or operating
systems... There shall be a facility for specifying those portions of programs
that are dependent on the object machine configuration..."

The relevant requirements address issues ranging from the availability of
special features (1A, 8A, 10A) to facilities for using the hardware effectively
without special effort (1D, 3-1C, 3-1D, 11A) to safety provisions (1C, 8E, 11C,
11D, 11E).

It seems reasonable to expect that the needs of embedded computer
applications can be satisfied only by providing an escape mechanism that
allows the programmer to interact with the individual properties of each
computer. Indeed, it would be unwise to attempt to anticipate such individual
characteristics in a high-order-language design. The escape mechanism does,
however, require special attention to ensure its consistency with the remainder
of the language.

i
|
[
|

e

e

e r——

45

Chapter 3
Comparisons of Core Languages

Section 1.2 outlined a number of dimensions along which languages can be
compared. In this chapter we perform those comparisons for the core
languages defined in Chapter 2. Note that the comparisons are directed at the

cores, not at the full languages.

3.1. Comparison of Philosophies

Language designers, we believe, make a number of fundamental philosophical
decisions whicl. significantly affect the nature of the language they produce.
While these decisions are not always explicit (they may be the result of
historical or other contextual factors), they tend to have an enormous impact.
Thus, we shall begin our comparison by examining some of these issues for the

four languages in guestion.
The issues we shall consider are:

1. The Designer's View of the Problem: The designer's image of the
nature of the problem domain is undoubtedly the most important of all
influences on the language. The distinction between numeric
computations, data processing, and command-and-control is the most
obvious manifestation of this viaw. !n addition, however, whether the
designers perceived solutions to problems as consisting of single
programs, sets of single programs, oi large systems is a major ractor.

2. Selection vs. Synthesis: There is a spectrum of approaches to
providing "power" in a programming language. At one @nd of this
spectrum is the selection, or menu, approach: to anticipate evzry
possible need in the form of specific features, thus making the
programming task one of simply selecting the right option for a given
problem. The other extreme of this spectrum is the synthetic
approach: to supply a small set of basic mechanisms together with a

46

flexible means of composing them into larger units, thus making the
programming task one of constructing the proper substructure in
which ultimately to state the solution to a problem.

3. The Degree of Permissiveness: Another important spectrum in
language design is the degree to which it enforces, encourages,
permits, or prevents various programming practices. In software,
just as in other technologies, powerful tools are often dangerous.
Precisely the same language features which are touted as powerful
are often subject to misuse. The enforcement spectrum, then,
expresses the degree of permissiveness in the language relative to
the use of these powerful, but dangerous mechanisms. A given
language generally takes a stand at some point on this spectrum and
then must respond by either (1) impcsing restrictions on the power of
the language and then permitting controlled circumvention of its own
restrictions, or (2) providing powerful but dangerous features and
allowing conventions to be imposed on their use.

Not all combinations of these philosophical positions make sense, nor are any
of the languages in question completely consistent in their positions on these
issues. Nevertheless, observing the way the languages respond to these
questions provides insight into their actual use.

3.1.1 The Designer's View of the Problem Domain

The major questions here are the designer's image of the problem domain,
and the kinds of programs which are likely to provide solutions to problems in
that domain. As noted above the most obvious distinctions are the traditional
"scientific" vs. "business", etc. These simple distinctions, however, belie many
of the really important issues. Cobol, for example, is not influenced merely by
the fact that it is aimed at business data processing, but also by a 1850-style
view of the nature of the solution to business data processing problems -- a
view that was dominated by manual and/or unit-record techniques.

Fortran: Fortran is, of course, dominated by its orientation to scientific,
numeric computing. Even though it was one of the earliest hi h-level
programming languages, much of the early history of computers
revolved around just the kind of numeric computing that Fortran is

= -

e e —

47

designed to do. Thus the needs of this class of users was well
understood. The early definition of the language is manifest in other,
sometimes subtle ways, however. The most obvious is its quaint
syntax. A more subtle one is its extreme concern with efficiency; in
those early days, it must be remembered, most "large" users did not
believe that any higher-level language could replace assembly
language because the foriner were inherently too inefficient.

Cobol: The experience with manual and unit-record approaches to

business data processing applicationsappears to pervade Cobol. The
most natural programs in Cobol are those which serially process a
sequence of identical records, performing the same computation on
each record, and writing the resuits of that computation into another
series of records. Even the laudable goal of readability was, we
believe, influenced by this view of the nature of business data
processing. In the manual and unit-record world a complex operation
is divided into a series of highly standardized steps of the type
described above; no individual step is very large. Within this context
the notion of readability only applies to relatively small contexts --
and hence Cobol's preoccupation with English-like style for the
individual "sentence".

Jovial: Command and control problems of the 19560's, exemplified by the

SAGE effort, forced the development of large complex software
systems. These systems needed maintainability, reliability, and
efficiancy, and the Jovial language designers attempted to achieve
these goals by providing the programmer with tools for modular
system decomposition, sharing of data among modules, powerful and
flexible control constructs, and simple input-output schemes. The
technique of sharing via a COMmunications POOL, for example had
evolved prior to the design of Jovial. Similarly, the use of complex
tables of data on small machines of the 1950's led to techniques of
packing data that had to be supported by any high-level language for
these systems. Finally, since these systems were written by
sophisticated programmers, a rich concise notation was preferred to
the loose English-like style of Cobol.

Ironman: The other three languages were initially defined in the second

T T T T e

48

half of the 1950's; Ironman, on the other hand, will be defined
twenty years later. Thus, both the specific application domain and a
great deal of cultural context differs. The notions of program
structuring, potentially dangerous language constructs, and software
engineering did not explicitly exist hefore the mid 1960's. Thus
Ironman is responding to a range of concerns quite different from
those facing the designers of the other languages. These responses
can be seen in the restrictions on the goto, the restrictions on
aliasing (see section 3.2.1.3), and in the explicit inclusion of an
encapsulation mechanism.

3.1.2 Seizsction vs. Synthesis

As noted earlier, the philosophical question here is whether to attempt to
provicde one of every possible feature or to provide a basic set from which more
complex things can be created. It is interesting that the languages are
schizophrenic on this question; in particular they often seem to respond
differently to data and control issues.

Fortran: Fortran takes the menu approach to data; it provides a small
collection of scalar data types and N-dimensional arrays of these
scalar types. With respect to control, on the other hand, Fortran
takes a synthetic approach. The only "high-level" control constructs
are the DO and subroutine call; all others must be synthesized from
the IF and GOTO.

Cobol: Cobol's data definition mechanism is essentially synthetic. It
differs from the modern view of type (or structure) composition,
however, in that it really only permits the description of a
hierarchical naming of a linear sequence of characters. The Cobol
attitude toward operations is strongly menu-oriented; the language
makes a serious attempt to provide a comprehensive set of verbs
and all possible options suitable for each verb. At the same time, the
language prevents user-extension of these options. Cobol's attitude
toward control is, again, synthetic, with heavy use of the PERFORM
verb as the basis of the synthesis. Note, however, that the complex
options on many of the other verbs subsume effects that would
appear as explicit control statements in other languages.

v e~

Jovial: Jovial tends to be more synthet. .

but with restrictions. The TABLE covvwe 0 o0

an array of records (in contempo o«
are restricted to contain only scamrs

are synthesized, but the leve o o
although this limitation may be sesthe w -

not a serious practicel concern Mo w0
probably fall within these Iimtaton: 0
is primarily synthetic, but wit o« e
influenced by modern notions of wos® 0
primitives. (Note that the version of w0 o
defined in 1974.)

Ironman: lronman, in most respects ‘awor

encapsulation mechanism s e s
particularly since the report regqures e oo
programmer have an egual stalus w0

language. With respect to contro. o

more of a menu than the othe & .
presumably this is because the ssoes o
constructs have been so thorowg o o
years. Nevertheless, this larger se o«
programming by synthesis

3.1.3 Degree of Permissiveness

As noted above, this question s “orce e W

o

e

~ R

language attempts to prevent a piogam o o s

: programming practices. The primary paces -
‘ are in:

1. The ability to create aliases -

10 An "alias® is an alternative naming path 1o Bcomss & Cam o s
it is possible to modify the variable n non-obvious wi

2. The ability to circumvent the language « v

50

3. The degree to which the language permits or demands run-time
checks (e.qg., of array subscripts).

4. The degree to which the language explicitly exposes the run-time
representation, for example the representation of arrays or the exit-
value of a loop index.

Fortran, Cobol, and Jovial all tend to be permissive (albeit in somewhat
different ways) while lronman, defined in a very different cultural context,
tends to be more restrictive. COMMON and EQUIVALENCE in Fortran both permit
explicit aliasing, for example. Although these features were originally intended
only to effectively utilize the scarce primary-memory resource, they are
extensively used to circumvent the type mechanism. Similarly, the based
tables in Jovial and REDEFINES in Cobol reflect a generally permissive attitude
with respect to accessing memory. The restrictive flavor of Ironman is
exhibited by the requirement for strong type-checking and the intention to
prevent aliasing, although there are questions as to whether the present
language requirements actually do so.

The permissive attitude of the earlier languages can be traced largely to two
sources: (1) a less jaded attitude about what could be accomplished in
software, and (2) the fact that the smaller machines of that era required more
careful use just in order to get the job done. The second of these concerns is
still evident in lronman since some of the applications will run on very small
minicomputers or microcomputers; however, lronman avoids the most obvious :3
pitfalls by demanding that permissive constructs be wused only in
encapsulations.

3.2. Programming in the Small

This set of comparisons deals only with language features of the cores and
with the impact of these features on the construction of individual procedures
or small programs. The features addressed here affect the ease with which
algorithms and data structures can be described, they affect the programmer's
ability to construct "well structured programs", and thus they affect the
legibility of the resulting code. They do not necessarily seriously impact the

T

A R S e it

51

organization of large program systems (although there are some features which
impact both).

3.2.1 Syntax Issues

The grammar rules of a language affect the programmer's ability to read and
write the language fluently. It is important for a programmer to be able to think
about the problem and algorithm; he should not waste energy worrying about
how to express the algorlthm. Thus, the uniformity, expressiveness, clarity,
and size of the language are of major significance. |f the language definition is
large, as those for Fortran and Cobol are, a programmer may not be able to
know the entire language and, as a result, may code in a private sublanguage.
Abstraction mechanisms can also help readability in particular by focussing the
text on appropriate details.

3.2.1.1 Regularity of Grammar

The grammars of the languages under comparison have different degrees of
regularity -- that is, they reuse definitions of substructure to a greater or

lesser extent.

Fortran: The syntax of Fortran is "flat", with a relatively small list of
features and common rules for forming substatements. These rules
are not, however, uniformly applied; special restrictions apply, for
example, to the expressions that may appear as subscripts
([Fortran 66] 5.1.3.2). (Interestingly, most of these restrictions are
relaxed by most compilers even though they still appear in the
standard.)

Cobol: Cobol is defined in terms of a set of individual features; each
feature is tailored to its own task and has a syntax appropriate to
that task. Thus each verb has its own grammar, and the ruies are
not uniform across features. There are, however, some common
concepts (such as "sentence") that crop up periodically.

Jovial: The Jovial language is explicitly defined in terms of a recursive
grammar. This leads to a higher degree of uniformity. The format of
the ITEM declaration, for example, is also used to describe the fields

R s

T

52

of table entries. Since some options of an ITEM declaration,
however, are not appropriate to a field description, the grammar is
slightly different.

Ironman: The requirements are quite explicit about syntactic uniformity:
for example, it must be possible to write an expression anywhere
both a variable and a constant of the same type may appear.
However, there are exceptions; for example, the "short-circuit"
evaluation of boolean expressions in conditionals and iterations is not
necessarily identical to the full evaluation of boolean expressions
which is required elsewhere.

We have used the word "regularity" where others have used "involution",
"orthogonality", and "symmetry". All of these words are intended to connote
the desirable property that the programmer need only learn a small number of
concepts that may then be used in any of a large number of contexts. It
seems clear that Fortran, Jovial, and Ironman forim a spectrum of increasingly
regular syntax, and that within this spectrum, greater regularity is better.
Cobol, however, is interesting in that it rejected the idea that uniformity is an
inherent "good", and chose instead to adopt a specialized, "natural" syntax for
each of its constructs.

3.2.1.2 Readability and Intelligibility

A language is readable to the extent that the form and style of programs in
the language simplify the mechanical aspects of reading. A program is
intelligible to the extent that what is read can be understood. Generally a
program must be readable in order to be intelligible; the proper choice of
comments, mnemonic identifiers, consistent indentation, and so on all contribute
to the understandability of a progrm. These factors are under the control of
the programmer, not the language, and are usually more important than
language-dependent factors. Nevertheless, with this caveat we can make a
few remarks about the readability of the various languages.

Fortran: The "flatness", and especially the statement-per-line forms:t of
Fortran programs, permits but does not encourage indentation or
other devices to aid the visual impact of the program text. Numeric

statement labels prevent mnemonic labeling of parts of a program.

e el kel e

53

The comment convention in Fortran (a line with a "C"” in column 1)
prevents comments from appearing on the same line as program text;
this reduces the density of information and may interfere with clarity.
Both COMMON and EQUIVALENCE introduce the possibility of using
different names to refer to the same item of data. This may
significantly decrease the intelligibility of the text because a simple
(readable) statement could have unexpected effects unless the
programmer is aware of possible allases. The implicit type coercions
may decrease intelligibility because each implementation may choose
a different order for applying them.

Cobol: The designers of Cobol had a farsighted grasp of the great
importance of the readability of program text. Often, however, the
pseudo-English prose style of Cobol hinders this goal as much as it
helps it. Individual statements are easy to read, but the verbosity of
this style substantially (and often unnecessarily) increases program
size -- thus decreasing intelligibility. Both the use of 88-levels as
predicates (or as enumerated types) and the data definition facility
emphasize the distinction between data and control, thus removing
unnecessary knowledge about the data representation from the
algorithms which deal with it. (However, a programmer may need a
cross-reference listing to find the definition sites of data items or
88-level predicates.) The implicit editing operations may cause an
innocent-looking data transfer to have unexpected side effects.
Although the programmer must be concerned with certain margins for
placement of statements, within those margins the language is free-
form, and techniques such &s indentation may be used to increase
the readability and intelligibility of the program text.

f Jovial: Of the three existing languages bheing compared, Jovial comes
' closest to the generally accepted notions of readable languages -~
in particular its free-form input, unobtrusive comment convention and
a tradition of indented coding all contribute to readability. Several
aspects of Jovial, however, tend to detract from its readability.
Some of these are minor; for example, the fact that the separator
between the boolean expression and "then-part" of an IF is a
semicolon, rather than then or some other mnemonically significant
delimiter, may be confusing. Similarly, single letter symbols are used

54

(in declarations) to denote the type of the variable being declared;
this both prohibits the use of single character identifiers and may
make the declarations cryptic. The use of DEFINE, a simple macro
definition facility, permits a programmer to have significant positive
or negative effects on both readability and intelligibility depending
upon the taste with which it is used. Properly used, macros ican
suppress irrelevant detail and thus substantially improve readability;

misused they may obscure important information and make a program
illegible.

Ironman: Readability is, of course, an explicit goal of the Ironman
requirements. The degree to which this goal will be achieved is not
known. However, the designers have a great deal more information
at their disposal than did the designers of the three existing
languages. We expect that the goal can be achieved.

All of the languages except Fortran provide a mechanism for (logically)
including information from a library in the compilation process (COPY in Cobol,
COMPOOL in Jovial, ana "libraries" in Ironman). All of these mechanisms create
the opportunity to hide irrelevant detail and thus increase the readability of the
resulting program. But such mechanisms aiso create the opportunity to tuck
important information in obscure places -- thus decreasing intelligibility. This,
like so many other language features, cannot be judged in isolation; its
desirability depends upon intelligent use.

We recommend that the interested reader examine Weissman's study
[Weissman73] of the effect of various factors that are commonly thought to
affect the intelligibility of programs, e.q., indentation, mnemonic identifiers, etc.
The overall impression given by this study is that intelligibility is affected less
by language features than one might expect. Thus, again, we emphasize that
the above discussion must be tempered by the realities of its actual import.

3.2.1.3 Synonyms or Aliasing

The ability to generate synonyms, or aliases, will impact large program
organization as well as local readability. Thus the following remarks also apply
to the concerns of section 3.3.1. |If there are two or more naming paths
by which the same storage location can be addressed simultaneously, we say

55

that synonyms, or aliases, exist for that location. Most aliasing arises in one of
the following ways: (1) a global variable is passed as a parameter to a
subroutine, so the subroutine can name the variable as both the formal
parameter and as the global itself, (2) the same variable name is passed to a
subroutine in two parameter positions, so the subroutine can name it with either
formal name, (3) the language supports a “reference", or "pointer" data type,
and two references to the same variable can be created, and (4) an explicit
"remapping" operation (or declaration) can appear in the language (e.g.,
EQUIVALENCE in Fortran).

In some cases, the ability to create synonyms can increase the readability of
a program. Often, however, it can lead to subtle, but profound, interactions and
hence to obscure programs. The position of the four languages with respect to
aliasing are: |

Fortran: The primary sources of aliasing in Fortran arise in connection
with COMMON and EQUIVALENCE, but the problem of passing the same
actual parameter in two argument position also exists. Although the
language standard appears to prohibit passing a variable in COMMON |
as a parameter to a subroutine that modifies either the parameter or |
its location in the COMMON region, we do not believe this can be
checked by a compiler. The ability, indeed the need, to use separate
COMMON declarations ih each subroutine encourages aliasing --
although (safe) conventional practice is to use identical declarations
in each subroutine. The EQUIVALENCE declaration was initially
intended for overlays, but it has often been used to create alidses
which subvert the typing mechanism.

‘Cobol: Although Cobol is largely immune to some forms of aliasing
because it has no parameter-passing mechanism, the REDEFINES
clause in a data description and the multiple-records feature for an
input file allow a programmer to explicitly set up an alias by declaring
different identifiers to represent the same storage. The Cobol
programmer is encouraged to use REDEFINES as a means of building

Eg and processing mixed-record files, but he must be careful not to

forget that two records are aliased. |

i G st

i Jovial: Jovial has all the aliasing problems mentioned above: parameters

can reference global variables, two non-scalar formal parameters
may reference the same actual, and based tables provide both the
effect of pointer-varlables and arbitrary remapping.

ifronman: The Ilronman requirements specifically prohibit features that
permit the creation of aliases. It is not clear, however, that the
report is internally consistent on this issue; elsewhere in the report,
for example, Algol-like scope rules are required, and such rules lead
to aliasing of type (1) discussed above. Thus, the intent appears to
be to prohibit aliasing, but the specifics of how this will be done are
unclear.

It seems clear that completely unconstrained aliasing is incompatible with
modern software engineering practice, and it certainly precludes any possibility
of program verification. The practicalities of the situation are unclear,
however. No language that prohibits all aliasing has yet been used to construct
a significant piece of software.

3.2.1.4 Abstraction Facilities

The readability of even small sections of program text is affected by the
kind and amount of detail exhibited in the text. An abstraction mechanism is
one which permits the programmer to define all the details of the
implementation of a conceptual entity in one, localized place. The most familiar
abstraction mechanism is, of course, the subroutine. Subroutines, however,
provide only operational (ie., algorithmic) abstractions; modern programs also
requires data control abstractions.

*

Many of the topics discussed here affect large program organizations
(section 3.3.1.1), but they are also of significance in the present context.
All the languages provide procedures for control abstraction, but each provides
some other facilities:

Fortran: The SUBROUTINE is the only abstraction provided in Fortran;
there are no means for defining abstract data structures or control
structures. In some cases a stereotyped use of COMMON and
EQUIVALENCE may allow the programmer to mimic non-homogeneous
structures (records), but only at some risk of error.

A

Y T T T TR SR

57

Cobol: The only subroutine mechanism provided in standard Cobol is a
set of PERFORMed paragraphs; this mechanism is quite weak,
however, since it does not admit parameterization. The definition of
data structures and 88-level definitions are powerful abstraction
tools since they remove specific formats and values from the
algorithmic portion of a program. in particular, the implicit editing
associated with a MOVE suppresses an enormous amount of
(irrelevant) detail.

Jo-ial: In addition to a more sophisticated procedure mechanism
(particularly with respect to parameter binding) and data structuring,
Jovial provides a macro-definition facility called DEFINE. The DEFINE
can be used in the most obvious way to construct in-line procedures;
in addition, however, it can be used to construct data ard controi
abstractions. As with all macro mechanisms, it is possible to misuse
the facility and create obscure programs. By encapsulating DEFINEs
in COMPOOLs, however, it is possible to achieve much the same
effect as with modern encapsulation mechanisms such as that
proposed for lronman.

lronman: The report requires an explicit encapuslation mechanism to
support the definition of abstractions; it further requires that types
defined in this way have equal status with the built-in types of the
language. The report, on the other hand, does not require a macro
facility; this may represent a reaction to the undisciplined use of
macros in earlier languages. It remains to be seen whether the
encapsulation facility can replace all the legitimate use of macros in
earlier languages; in particular, we suspect that the lack of a facility
for defining control abstractions may be a serious omission which, at
this stage of technology, would be best supplied through a macro
mechanism.

3.2.2 Data Issues

Since the primary purpose of most programs is to transform data from one
form to another, the data types and organizations provided by the language
have a profound effect on the resulting programs. The important aspects of a
language's data structuring facilities include its view of data types, the

SRR, T

it

i s

58

mechanisms for defining nonscalar structures, the degree of user control over
data organization and representation, and the interaction between types and
operations.

3.2.2.1 Language View of Type

The fundamental view of typing in a language emerges through the set of
primitive types provided and the degree of enforcement of type rules (that is,
the "strength" of type checking). We first compare the primitive types
provided by the core languages.

Fortran: Real, integer, logical.

Cobol: Decimal and character strings with formatting, binary
(computational-1), and various special usages (display,
computational-2)

Jovial: Character string, signed and unsigned integers, floating point, and
bits.

Ironman: At least real, integer, fixed point, and logical.

The extent of the influence these type selections have on the programmer is
impacted by the degree to which type associations are enforced. That is,
languages that check type correspondences under all circumstances force the
programmer to be more attentive to his data than do those in which the type
declaration means little more than a comment. The impact of type checking is
also affected by the richness of the underlying type structure; if this is lean,
information that might be carried in the types may have to be encoded in data.
Enumerated types, for example, are superior to explicit integer encoding, even
when they result in identical object code.

The strength of type checking is intimately related to the amount of coercion
(i.e., automatic type conversion) permitted by the language. Coercions occur
when the data to be used in some context has a type other than that explicitly
anticipated by the program text. Performing the conversion automatically can
serve as a convenience to the programmer, but it can also produce unexpected
effects without warning. Type checking can also be defeated through aliasing;

Fortran: Typing is weak, and can easily be circumvented. There is no

checking of the types of parameters across subroutine calls; both
COMMON and EQUIVALENCE explicitly permit aliasing of dissimilar
types to the same storage locations. The coercions between
operands of type REAL and type INTEGER are implicit and may lead to
unexpected results.

Cobol: The notion of type is a little fuzzy; the primary orientation is

clearly to a single scalar type (character representations in any of
several formats), but COMPUTATIONAL provides for various binary
representations. The notion of coercion is correspondingly fuzzy, but
certainly more central to the Cobol philosophy than the corresponding
concept in other languages. This is especially evident in the implicit
editing associated with data movement; a great deal of work is
accomplished by simply moving a field in one format into one in
another format.

Jovial: The Jovial type mechanism is both richer (i.e., has more primitive

types) and stronger than that of Fortran. The consistency of actual
and formal parameters is checked on all subroutine (procedure) calls,
including separately compiled procedures linked through a COMPOOL.
Coercions are defined, however, and the BASED facility can be used
to subvert the type checking mechanism. Also, although the STATUS
declaration provides much of the power of enumerated types,
checking is not provided. Finally, there is no explicit type definition
or encapsulation facility but these facilities can be simulated through
intelligent and disciplined use of DEFINE, STATUS, and COMPOOL.

lronman: The requirements demand strong typing with a rich set of

primitive types and structuring tools (arrays, records, references).
The programmer may also define new types which acquire the same
status as the primitive types. Coercions between types are
prohibited. Given all this, one presumes that the authors intend strict
typing, but there are exceptions. The report also calls for: (1)
assignment between any two records with corresponding structure

59

since aliasing problems are discussed in section 3.2.1.3 we shall not repeat the
discussion here.

———— PV

60

even though they may not be the same conceptual type, and (2) an
implicit assignment for programmer-defined types even though it may
not be sensible for the conceptual type.

The sequence <Fortran, Jovial, Ironman> provides a series of increasingly
powerful type mechanisms. As in other things, Cobol is not directly comparable.

3.2.2.2 Nonscalar Data Organizations

In the previous section we addressed the prinitive scalar data types
provided by the language. ”These languages also provide ways to compose
these into array or record structures which give the languages a major part of
their flavor. '

Fortran: The only aggegrate structure is the rectangular homogeneous
array of scalar elements. Neither records nor pointers are permitted,
so all non-array structures must be modeled in terms of arrays.
Moreover, because there is no macro facility, the full detail of the
representation encoding must appear explicitly at each use site.

Cobol: The language provides arrays and records. The record structure
may be deeply nested, and parallel equivalencing of corresponding
substructre is available. There are no pointers (references),
however.

Jovial: Scalars may be composed into records, arrays, and arrays of
records (called TABLES). There are no explicit references (pointers),
but unsigned integers may be used as addresses; this is an unsafe,
but very powerful, substitute.

lronman: The requirements call for homogeneous arrays, records, and
pointers, and for these to be recursively definable -- thus, one may
have arrays of records which, in turn, contain records, and so on.
The requirements also specify recursively-definable structures
which, if achieved, will eliminate the need for pointers wherever
explicit sharing is not required.

e

3.2.2.3 Definition and Representation of Data

A user may exercise control over data definitions at two levels: at the
language level by defining new abstractions and at the machine level by
controlling the low-level representation on the hardware.

At the high level, we must further distinguish between data organizations
provided by the language itself and facilities provided to the programmer for
application-specific structures. These might be as simple as enumerated types
or as complex as extensions to the basic type structure of the language.

Fortran: The programmer has no direct control over representation; the
only representatidn decision (that of arrays) is preempted by the
language. The fact that the representation of arrays is explicitly
defined in the language permits the clever programmer to encode
other representations, but only at the price of having the mapping
function appear at each use.

Cobol: Although the record structure of Cobol is predominantly oriented
to processing character streams, it allows a quite explicit and very
rich choice of representations. The 88-level definitions may be used
as both enumerated types and simple predicates.

Jovial: Jovial provides extensive control over representation, most
notably including BASED records for explicit address arithmetic.
Status lists provide a simple form of enumerated types.

Ironman: As noted earlier, lronman requires a complete facility for
programmer definition and use of encapsulated types. The ability to
embed machine code in an encapsulation presumably provides
arbitrarily fine-grained representation control.

Access to the underlying physical representation of data is also important. It
is of major concern to programmers who must interface with given constraints,

either in time, space, or preexisting data representations.

Fortran: The physical layout of arrays is part of the language
specification. Although generally not considered an advantage,

3 A 4 e

62

knowledge of the representation of arrays both permits some coding
efficiencies and compensates for Fortran's otherwise arid data
structuring.

Cobol: Secondary storage is an integral part of the programmer's world
view. Its forinat can be explicitly encoded in the data division. File
and data formats, including exact field sizes, can be defined. Thus,
the programmer may explicitly specify much of the representation to
be used by the underlying hardware. Note that, although Cobol is
generally regarded as strongly machine-independent, this kind of
low-level control can cause intolerable inefficiencies on some
machines.

Jovial: Precision of numeric items can be specified in declarations, and
the locations of fields within a TABLE entry can be specified down to
the bit level in some forms of the TABLE declaration.

Ironman: The language shall permit, but not require, programs to specify
the physical representation of data, which seems to imply that the
compiler is free to ‘choose a representation uniess specifically
instructed to use some particular one.

3.2.2.4 interaction Between Data and Operations

The contemporary view of data types holds that types are characterized by
both a se* <, values and a set of operations on those values. Thus the kinds of
operaticn a language provides on its primitive data and the consistency of
thosa operations from one type to another strongly affect the tone of the
language. We must consider what kinds of operations are available, whether
they can be applied to aggregate structures or only to scalars, and the degree
to which they are implicitly invoked.

Fortran: The only operations are the scalar operations on the primitive
types. The only implicit operations are the integer-real coercions.
The only means of extending the set of operations is through
SUBROUTINES.

Cobol: Rich record-oriented operations are provided, and the effects of

such verbs as MOVE are strongly contromes o0 0 0
ancd field types involved. Operators s«
operations in a fashion appropriate o the oo »

data. There is no purely algorithmic abstra. oo w0

Jovial: The only operations are scalar operation:
and there is no means (other than PROCED S &= 0 w0
operations. Character strings, howeve: s o -
types. Nonscalar TABLE structures can oe wman o
structures by means of the BASED TARLL me o

Ironman: In addition to all the usual scalw cow v o
mechanism, the report requires that t e oo .
built-in operators (e.g. plus) to operate o e e 0

3.2.3 Control Issues

We will consider separately the commands wee 0
control within a subprogram and the facilities for wiw v

3.2.3.1 Local Control

The considerations of modern programming et o .
number of control constructs whose use wass
understandable programs. These constructs are

1. A grouping syntax (for making compound statese

2. Two flavors of alternatives, an /f and & case o+ 0 o
or an indexed multi-way alternative construc!

3. Two styles of loops, a while loop tha' Terwie o
condition is satisfied, and a for oy Wi seae o
specified set of values and assigning each v = o o
a "control variable".

We will not repeat the arguments that support the sew e
central modern control commands. The fow langusge: o
provide the following constructs:

e -

64

Fortran: Only the simple one-way if and integer counting for are
provided. There are no compound statements or while loops.1 1

Cobol: Paragraphs and sections serve to construct compounds. The IF
allows grouping of statements at a level finer than the paragraph and
provides a two-way alternative construct. The loop construct, based
on the PERFORM verb, allows iteration to be controlled by either or
both of condition-testing and indexing through a range.

Jovial: Algol-style compounds, if, and for are provided as well as a
while.

lronman: All of the modern "well-structured" control constructs are
required by the report.

Despite the theoretical soundness of the arguments in favor of the "well-
structured" command set, certain practical situations (notably processing
(local) exceptions) are awkward to handle with those commands alone.
Therefore, in addition to the "well-structured" control set, all these languages
provide an explicit goto. However, the particular flavor of any goto is colored
by the possible destinations of the jump as determined, for example, by the
scope of the statement labels.

Fortran: Except for certain semantic restrictions concerning inactive DO
loops which are difficult to enforce at compile time, a GOTO may
branch to any statement within the current program unit.

Jovial: Scope rules make it impossible to jump into an inner compound
statement or loop body except when the destination label is
explicitly exported from its block. Jumps into inactive procedures
have undefined results.

Ma multi-way branch exists in the full language but has been excluded from the core because of its
restricted power; it can be composed from a sequence of IF..GOTO constructs and in itself provides no
more power or flexibility than this. The impact of the mulli-way alternative is maere profound in languages
which pormit nested synthetic structures.

65

Cobol: Any paragraph may be the destination of a goto, whether or not it
is part of an active loop. The language definition insures that all
transfers will work correctly and not interfere with any existing loop
state.

Ironman: The goto is required, but an explicit list of restrictions
constrains it to the uses generally recognized as appropriate in
situations where well-structured control is awkward.

3.2.3.2 Nonlocal Control

In addition to the local control commands described above, all the larfguages
provide inter-module control in the form of subroutine calls. Although these
constructs are primarily concerned with organizing the relations among groups
of programs, they also impact local programming. The inter-module issues are
discussed in section 3.3; here we focus on the local issue.

The subroutine is the primary tool for defining (and isolating) abstractions in
most traditional languages; as such we have come to rely heavily on its
properties. The properties that are important local programming are: (1) how
the body is delimited, (2) parameter conventions and options, (3) and local
variable conventions and options. Some of these topics are covered elsewhere
in this report, but we shall repeat them here briefly for reference.

The bodies of subroutines in the various languages are delimited as follows:
Fortran: The last statement is (must be) an END.

Cobol: A subroutine is not syntactically delimited at its definition.
Rather, at the call site the set of paragraphs comprising the body are
specified in the call (i.e. the PERFORM). Note that this implies that
the same paragraph may be executed in line or as part of several
different (conceptual) subroutines.

Jovial: The body of a PROCEDURE is a statement. Note, however, that a
statement can be either a compound or a block, so the body may in
fact be arbitrarily complex.

66

Ironman: The requirements do not specify the syntax for a procedure
body, but we may presume that, like Jovial, it will be a statement.

The parameter conventions are:

Fortran: The implementor may use either call-by-value-result or call-by-
reference.

Cobol: There are no parameters to PERFORMed paragraphs.

Jovial: Call-by-value, call-by-result, and call-by-value result are
provided for scalars; TABLES are passed by reference only.

Ironman: At least call-by-value, result, and value-result are required.
The facilities for local variables include:

Fortran: The scope of a local variable is the program unit in which it is
declared. Its extent is that of the program unit's activation.

Cobol: There are no (syntactially) local variables.

Jovial: Both dynamically allocated (IN) and statically allocated (RESERVE)
locals are available.

Ironman: As in Jovial, both dynamically and statically allocated locals are
available.

"It is clear thai. of the existing languages, Jovial has the strongest subroutine
mechanism. The Cobol mechanism is so weak as to be almost non-existant.

3.2.4 Efficiency Concerns

Despite the fact that the need for "efficiency at all costs" has decreased
as hardware has become less expensive and faster, there are some ways, and
some applications, in which the efficiency of a language significantly affects
the way in which it is used. In particular, programmers will contort a program's
organization in order to avoid constructs that are known to be inefficient;

67

typically, for example, procedures (subroutines) are larger in PL/I programs
because programmers are aware of the overhead associated with calling them.
Similarly, programmers will warp the organization of a program in order to use
those features that are known to be efficient -~ as in the extensive use of
COMMON in Fortran programs.

The impact of efficiency concerns arises in both programming “in the small"
and "in the large"; we have placed the discussion here because it was the
first opportunity to do so. The reader should be aware that these remarks
actually apply in both contexts.

The first paragraph of this section used the phrase "the efficiency of a
language"; this phrase requires some explanation. The major factor in
determining the efficiency of a particular program is generally the proper
choice of data structure and algorithm for that program -- factors outside the
influence of the language. Usually the next most important factor is the quality
of the particular implementation of the language -- a factor beyond the control
of the language designer. In addition, however, the language design may
prevent highly efficient implementation. It is these factors that are of concern
in a language comparison, and even then they are of concern only to the
extent that they are likely to impact good program organization.

Designed in the late fifties, when efﬁciéncy was a more pressing concern,
both Fortran and Jovial have known efficient implementations; both contain
features (e.g., COMMON and COMPOOL) and restrictions (e.g., on recursive
subroutines) that permit efficiencies. Both also contain some features that
interfere with optimization techniques that were discovered since the time the

languages were defined. For example, the extensive use of GOTO imFortran-
complicates giobal flow analysis and prevents some optimizations that might be
applied if the compiler knew which control construct were being synthesized.
Similarly, the possibility of a non-local GOTO in Jovial requires some extraneous
run-time overhead. However, these points are probably second-order effects.

The dominance of input-output in most Cobol applications tends to decrease
the emphasis on extremely efficient implementations; however, there is little in
the language that prevents such implementations. The feature-oriented nature
of the language, for example, permits the ambitious compiler-writer to apply a
great deal of special case knowledge to optimizing the most frequently used

aerovein e, T T T BB a D TR Ty rala

68

constructs. In addition, Cobol affords the programmer considerable control over
the representation of his data (e.g., via USAGE).

Since Ironman is not yet a language, it is difficult to comment on its
efficiency. The requirements do call for a number of constructs that are
generally understood to be inefficient, but it is not clear that these will survive
to the language design stage. Moreover, the philosphy espoused by the report
recoghizes the need for efficiency in the intended application domain, and it
explicitly warns against the inclusion of inefficient constructs.

3.3. Programming in the Large

The languages we are concerned with in this report are used to write (the
components of) large programming systems. A language comparison must
therefore address the support they provide for problems that arise when
programs are thousands of lines long, when programs are in use for many years,
or when several programmers are involved in the design, implementation, and
maintenance of a program system.

There are a number of software engineering methodologies for dealing with
large programs. They differ in details, but they share a common view: When a

project involves long times and several people, it must be possible to:

1. Decompose the task into subtasks which can be worked on

independently.
© T T 2T "Assemble the resuttant pletes MYS & coherent, operational whole.

3. Manage the requisite long-term maintenance and enhancement.

Support for the tasks of decomposition, assembly, and maintenance must be
provided in many ways, not just through the programming language. For
example, when more than a single person is involved in these activities a
number of management and coordination problems arise. A tool, e.g. a language,
cannot solve all of these problems, but it may facilitate their solution. Thus, in
this section we shall consider those aspects of the languages under
consideration that impact these Issues.

69
3.3.1 Decomposition of the System

A system may be decomposed along natural lines in any of several
dimensions. Two obvious dimensions are functionally and data-oriented, but
there may be others and, of course, a single system may be decomposed along
more than one dimension simultaneously.

We will discuss each of these dimensions presently; whatever the nature of
_ the decomposition, however, the resulting pieces must correspond to "work
assignments" [Parnas72]. That is, the decomposition is not useful unless it
permits a portion of the original task to be performed by a person (or team) in
relative isolation. As we shall see, the major impact of language issues on
"programming in the large" is the degree to which a language permits or
encourages such independence.

By a functional decomposition we mean one which emphasizes major
algorithmic components of the system. Often such components are temporally
related: First one component is applied to the data, then the next, and so on
until the task is complete. This is the traditional view of program decomposition
and is typified by elaborate and detailed specifications of the data structures
which form the "interface" between the functional subunits.

\

By a data-oriented decomposition we mean one which emphasizes the major
(abstract) data structures and the operations defined on them. This view of
decomposition is more modern and, although not proven on a large numbher of
systems, is gaining a great deal of favor. It is typified by careful, often
mathematical, specifications of the abstract data structures in terms of their
invariant properties and the operations which may be applied to them.

Since no practical decomposition is purely functional or purely data-oriented,
the issues related to both become entwined in the following discussion.

Languages can affect the ability to decompose a system into modules in two
important ways. We must first ask what kinds of modular decompositions are
supported by the language; that is, we must examine the facilities for defining
and using abstractions. We must then consider the extent to which they
ensure the actual independence of separate work assignments.

3.3.1.1 Definition and Use of Abstractions

Abstraction is one of the most important tools of the modern software
engineer. The language designer's choices about abstraction facilities have a
strong impact on the availability of functional or data-oriented abstraction.
This, in turn, determines which system designs (i.e., decompositions) are
practically feasable.

Almost all languages provide some methods for separating the definitions of
isolable concepts from the use of those concepts: at a bare minimum,
procedures will be available. We see in the core languages a range from simple
procedures to complex facilities for extending the type structure of the base
language.

Fortran: The sole isolable concept in Fortran is the abstract operation
described by a sub-program. There is no way to isolate the
definitions of data in a common location such that all program units
can share one definition. This is particularly noticeable in the need
to include the type and DIMENSION specifications (as well as
EQUIVALENCE declarations) independently in every program unit. The
language specifies no way to "encapsulate" abstractions (e.g., in the
form of macros) that represent arbitrary syntactic forms. Thus, many
abstractions in data and control that are not captured in either
COMMON or sub-program ceclarations must be written out explicitly
in terms of the primitive data and operations at each usage.

Cobol: The physical representation of data can be defined in a single
definition, which can be copied into & source program with the COPY
declaration. The operations on the data can be specified in
computation units of paragraphs or sections, which can also be
shared among many modules in a large system. However, because of
the need to pass parameters to such operations through global
storage, the mechanism is weaker than that of Fortran. The level-88
predicates allow a weak form of enumerated type to be shared
across modules. Other abstractions that cannot be captured by the
data definitions, level-88 predicates, or in paragraph bodies must be
explicitly defined in terms of the primitive data and operations at
each usage.

71

Jovial: The physical representation of data can be defined in a COMPOOL
file by using based tables. The abstract operations can be defined
by including macros or procedure declarations in the COMPOOL. The
definitions of enumerated types (STATUS variables) can be shared in
the same way. Other "encapsulated" abstractions, such as macros
that expand into arbitrary syntactic forms in the language, are
communicated through COMPOOL in the DEFINE declaration.

Ironman: Modern ideas about abstraction have significatly influenced the
Ironman requirements. This is evident in both the general design
criteria and specific requirements for rich data structuring,
programmer-defined types, generic definitions, strong library support,
and encapsulation.

3.3.1.2 Enforcement of Independence

When a system is decomposed into isolated tasks that are created as
independent work assignments, it is important that each programmer know how
other program segments will depend on his. The most important term of support
is clear specification of the interface, but that is (at present) not a language
issue. Some language facilities do support this independence, however. The
degree to which abstractions can be encapsulated (section 3.3.1.1) is
important, as is the ability to avoid aliasing (section 3.2.1.3). A third set of
features affect the programmer's ability to control when and by whom his data
may be accessed. These later features include scope and extent rules,
allocation policies, and declarations.

The scope, extent, and allocation rules for a variable determine the lifetime
of the variable and the portions of the program in which it can be accessed.
Scope and extent rules for a variable are usually, but not always, determined
by its declaration. Allocation rules are generally inflexible; at most a small
menu of allocation policies are available.

Fortran: Data names are local to a program unit. COMMON labels and
subroutine names, and only those, are giobal to all program units.
Because of the flat syntax, there is no intermediate scope between
these. Allocation is static, so the extent of a variable is the lifetime

of the program.12 The EQUIVALENCE facility allows the user to
specify that logically separate data areas may physically overlap.
Implicit variable declarations allow new variables to be created
inconspicuously, and sometimes erroneously.

Cobol: All names are global to a program module, although some names
(e.g., field names of structures) may be ambiguous if incompletely
qualified. A single level of hierarchy is available for procedure labels
by the use of SECTION declarations; all paragraph names are local to
a section. The language specification explicitly states how the
compiler shall disambiguate data and paragraph names that are not
fully qualified. Allocation is static, although there are facilities (e.g.,
REDEFINES) that allow data areas to overlap.

Jovial: Most variable names obey the rules of simple nested block
structure. The COMPOOL facility provides nonlocal scope through
mutual agreement of the affected modules. Allocation for nested
blocks can be handled with a runtime stack, and the BASED construct
allows an (unsafe) escape through which the programmer may define
a dynamic storage allocation mechanism.

Ironman: It is clear that block-structured scope rules are intended, but
the report is confusing about some details (see section 2.4.3). Some
clauses require simple nested block structure, some require scope to
hbe lexically determined, and others require encapsulations to provide
protection and private data. Moreover, aliasing is prohibited. It is
unclear that these requirements can be satisfied simultaneously. A
runtime stack will suffice for all allocation except for dynamic types
-- but it is not clear how complex the stack mechanism must be.
Dynamic types will require a heap with garbage collection.

12 Note, howover, that the standards permit an implementation to perform dynamic allocation of named
COMMON; see [Fortran 76] sections 8.3.5 and 16.8.4 and [Fortran 66] section 10.2.5.

73

3.3.2 Assembly of a System from Components

The task of assembling a number of independent modules into a coherent,
operational system is usually regarded as a problem in integration and testing.
As such, it is supported primarily by nonlinguistic toois such as file librarians,
Ilnkérs. debugging systems, and analysis packages. Although (as for
decomposition) the language is not the dominant factor affecting the task,
some properties of the language may be of substantial help or hindrance.
These aspects of the language are concerned with the ways independently-
developed units can be coupled and with the safety of the assembly process.

In section 3.3.1 we discussed the ways a system can be separated into
independent subproblems. In that discussion we were concerned with the
logical separation of modules. However, if individuals or small teams are to
work independently, it is extremely helpful to be able to separate the tasks
physically as well. The degree to which the language supports the
development of physically independent modules impacts the integration process
and the testing style. The amount of support the language provides for making
sure that interface assumptions are observed is also important.

3.3.2.1 Physical Independence of Modules

The most common way to support physically independent module development
is to provide a means for independently compiling the various modules of a
system. This provides a boundary for protection of data; it may facilitate
independent testing; and it may allow substantial savings in compilation time.

In order to establish a common context between separately-compiled
modules, particularly in a functiona!l decomposition, it is necessary to
coimunicate both the structure and the location of the data that ig being
shared. This context may be established by linking separate code segments
into a common address space, or it may be loosely coupled, with external data
serving to carry the common information. In sharing, it is at least necessary to
communicate the location of the code, and perhaps other properties as well
(e.g., number and/or types of the parameters).

Fortran: The structure of shared data is communicated through COMMON

74

declarations. The location of the data is communicated through the
f link-edit process. The location of code is established by the link-edit
; process as well, but in general there is no attempt to assure that
parameters correspond in type and number. Facilities for this
checking are not part of the Fortran language specification.

Cobol: The sharing of data is strongly affected by the view that
secondary storage is an integral part of a program's name space.
Data definitions provide the structure of the data; the COPY verb
simplifies maintenance of this information by allowing many programs
to extract data definitions from a common library. The location of
data in secondary storage is established by the environment division
or by the operating system command language. The flavor of the
data-sharing is dominated by the language's strongly serial world
view. Communication of data is usually done by sharing secondary
storage between separate programs rather than by sharing primary
storage between modules. This limits the grain of interaction of
program segments. There is no facility like explicit COMMON that
permits separately compiled modules to share data in primary
memory. Code may be shared by using the COPY verb to include
source code from a common library.

Jovial: COMPOOL provides many of the same facilities as Fortran
COMMON and Cobol COPY. In particular, the type of shared variables
and the type and number of formal parameters of shared procedures
is shared.

lronman: There are requirements for libraries, sharing, and link-editing of
information. Encapsulated type definitions allow Information about
data and associated operations to be communicated implicitly through
the language's type structure.

3.3.2.2 Checking Module Linkages

The only form of module specification provided in current languages takes
the form of type and number checking of external declarations and parameters.
External linkages were discussed in the previous section; we turn now to
parameters.

75

Parameter binding rules determine whether the actual parameter may be
used for input or for output, whether it is reevaluated each time it is used, and
whether or not its value Is dynamically updated c¢uring procedure execution. In
addition, a language may or may not enforce type checking across procedure
calls, particularaly when separately compiled modules are involved.

Fortran: The language specification is (intentionally) vague on whether
scalar parameters are called by reference or by value-result. The
distinction affects whether certain aliasing problems arise. The
specification is quite explicit on how arrays shall be passed as
parameters (by reference) and furthermore states explicitly how
these are to be interpreted. In any case, the language is defined in
such a way that the type and number of the parameters passed to
an external module cannot be checked for validity. Furthermore, a
number of restrictions in the Fortran language standard (which arise
because of aliasing) cannot be checked by the compilers (e.g.,
[Fortran 76] section 15.9.3.5 or [Fortran 66] section 8.4.2). Thus,
large systems require careful documentation to assure that the
language restrictions are not inadvertently violated. The language
standard conspicuously does not specify what will happen if the
restrictions are violated.

Cobol: The concept of externally-defined procedures is not part of the
language13 . However, the PERFORM verb allows a paragraph or
group of paragraphs to be invoked as a subroutine. Since the data in
the program is global to such a subroutine, a paragraph can
potentially access (and affect) all of it. Parameters to such
subroutines are necessarily communicated through global storage.

Jovial: A syntactic and semantic distinction is made between input and
output (scalar) parameters; a parameter used both for input and
output must be mentioned twice. Tables are always passed by
reference. Type checking is firm, but can be circumvented.

13 Some common oxtensions to COBOL, which are neithor part of the core nor part of the language standard,
permit separatoly compilod modules to communicate via a subroutine CALL mechanism with explicit parameter

passing.

76

Ironman: Type checking is strong, but the definition of what constitutes
a type (with respect to parameters) is unclear. In any case, it
appears to be the intent that aliasing be prohibited. Input and output
parameters are distinguished. Input parameters act as constants
within a procedure invocation.

3.3.3 Maintenance and Enhancement

We have grouped together maintenance (repairing errors) and enhancement
(adding features or improving performance) because they involve similar
activites and are both done on "operational* systems. Experience, often bitter
experience, suggests that these activities are both costly and error-prone,
and hence deserve specia! attention in the design of the tools (e.g., languages)
used.

The most outstanding characteristic needed in a maintainable system is
understandability. The person responsible for maintaining a system is usually
not one of its original authors -- and even when it is, the interactions in large
system are usually subtle, complex, and easily forgotten. Thus the first
problem of maintenance is to (re)understand the existing code well enough to
design and implement the necessary changes.

Some aspects of understandability are discussed in the sections on
programming in the small, 3.2. However large programs introduce additional
problems. It is no longer the case that the definition and use of each variable
(or subroutine) will appear within a few pages of each other. One cannot
simply "flip pages" to find how a variable was declared, whether it is ever used
in particular ways, or whether certain properties of it are assumed by the code.
Indeed the definition and uses of a variable (or subroutine) may not even be in
the same module (or file), and responsibility for maintenance of the modules
may reside with different people. Thus, while the ability to indent, to use
nicely-structured control constructs, and so on, are helpful for understanding
local parts of the system, they do not address some of the essential properties
of large-system maintenance.

The previous paragraph emphasizes one aspect of maintaining large systems
-- the need to be able to locate relevant information. The dual problem, which
is even more important, is to hide irrelevant information. Humans are not well

o

suited to coping with vast amounts of detail, and systems s w =
exception. The maintainer needs to be able to function w ™ » w0

of the components of the system -- to be able to ungersian:

in terms of what they do rather than the details of how he, & P
are to be fixed or changes made he uses this mode o guwae o

be modified -- and, equally importantly, to suggest wha! coue w0
as irrelevant to the current task.

There is a clear tension between these two asspects o
system understandable; some information must be wsas.
information must be hidden. Modern methodlogy, of cowrse om0
can be structured, often hierarchically, so that at & gwes wow o
separation between what must be known and what = -
subscribe to that view but it must be remembered hat *r.
especially perceptive individual to devise a suitabie s 0
system, and (2) none of the existing languages was gesgoe. o+
these issues were as clear as they now are. Thus omy o
requirement for libraries and encapsulations, proviges dgwec’ o
modern ideas.

The notions of libraries and encapsulations as reguees
are close to the most modern notions of wha' s mesoes
program maintenance; thus they are the yardstick agaos w -
measure the facilities of the existing languages. Smece e w0 .
features have been mentioned previously we shall only summe oo 0 .

Fortran: As noted before, the only abstraction tools we 0 o
and named COMMON. Since there is neither ‘wee
parameters nor consistency checking of COMBMON Sw w
is no language support for enforcing understansan. +.
Only careful conventions and documentatbuon mass o
construction feasibie.

Cobol: Very large systems are constructed n Cobol yo! e o
no language support for understandability<in-the e ge

Jovial: The COMPOOL, except for rigorous type-checkig e 0
the lronman facility.

78

Chapter 4
Conclusions

The purpose of this report was the comparison of four programming languages
to determine their appropriateness for use with current software engineering
methodologies. In chapter 1 we set forth a new technique for language
comparisons. This methodology involves identifying a core that captures the
characteristic properties of each of the languages, then couching the
comparisons in terims of these cores. Chapter 2 defines a core for each of the
four languages; chapter 3 discusses the way these core languages respond to
various methodological issues.

We shall now review this approach and summarize the important points in the
cores and the comparisons.

4.1. On Describing Languages Through Cores

We developed the core approach to language comparison for much the same
reason that motivates us to devica abstractions for our programs. Full
language definitions contain an enormous amount of detail; most of it, however,
is not significant for our goals. By concentrating on the essence of the
languages, we are able to focus on the properties that in fact influence the
way programs are written. It is these properties that should be compared to
satisfy our goals, and the suppression of other information eliminates many
distractions from the discussion. The resulting analysis is, we believe, more
pertinent to the goal than a comprehensive comparison of details would have

heen

w temes for the three existing languagcs are all short -- the syntax
s wre about one page long -- but they span the actual languages well.
we had o dewviate from the core languages only slightly to write

. — e example pregrams, and those deviations were primarily

.o woughou! the comparisons, we found

he languages that our ntuitions argued

79

This is not to say that any subset of a language which is complete, or almost
complete, can serve as a core for a study such as this. On the contrary,
defining a representative core requires substantial sensitivity to language
issues in general and to the languages under comparison in particulay. It is
easy, for example, to define a computationally complete subset of Fortran that
fails to capture the flavor and power of the language. Once a representative
core has been defined, however, it sharpens the issues and leads to more
concrete comparison.‘ 4

4.2. Remarks on the Comparisons

The dimensions along which we compared the core languages were chosen to
emphasize our view of software engineering. We see three major interactions
between language design and software engineering practice. First, the
language designer's implicit assumptions about programs and programming have
subtle but important effects on the language and its usefulness as a tool.
Second, the language is the primary tool for actually writing the algorithms that
control computations. As such, its uniformity and expressive power has a

“strong impact on the programmer at those times when he is actually generating
code. This is programming in the small. Third, all significant systems are made
up of many components and the choice of language affects both the
decomposition of a system into components and the styles of communication
among those components. These considerations impact multi-person projects
-~ that is, programming in the large.

4.3. Remarks on Languages

This report emphasizes comparison, not evaluation. A few evaluative remarks
are in order, however.

4 it is interesting to consider whothor the core approach could serve as a training tool or an organizational
principlo for a course in language comparison. We are enamowed of tho idea, but it is inappropriate to

pursue it here,

80

None of the three existing languages is ideal for modern methodology. We
feel strongly, therefore, that there is much to be gained by a well-thought-out
language design that meets (or exceeds) the Ironman requirements.

In the light of modern software engineering practice, we feel that the issues
of programming in the large are central. The COMPOOL mechanism of Jovial is
the most useful tool provided by any of the three existing languages; it allows
sharing of definitions, procedures, and data, and this serves as a weak
encapsulation mechanism. The Cobol COPY mechanism shares many of these
virtues.

There seem to be no dimensions along which Fortran dominates the other
languages. Thus, although a strong Fortran implementation and good system
support may provide a pragmatic advantage over weaker implementations of
the other languages, Fortran seems to have no linguistic advantage.

Finally, there is much still at stake in the Ironman proposal. The proposed
requirements generally reflect what has been learned about programming
languages and software engineering over the past twenty years. Certain
ambiguities and contradictions pointed out in this paper, however, indicate the
remaining danger that the gains of Ironman could fall well short of what is
possible.

Acknowledgements

We are particularly grateful to Carolyn Councill and Howard Wactlar for
system support provided during the preparation of this report, and to Roy Weil
(of Michael Baker, Jr., Inc.) for his insightful comments on the use of
programming languages in practical contexts.

SRS SO, bt it i

peTTR—

oy

[AirForce 76]

[Cobol 60]

[Cobol 74]

[DEC 76]

[Fortran 66

[Fortran 76]

81

Refarences

Department of the Air Force, Military Standard Jovial (J3),
MIL-STD-1588 (USAF), Rome Ait Development Center, Air
Force Systems Command, Griffiss Air Force Base, New York
13441, June 1976.

CODASYL, Initial Specifications for a COmmon Business
Oriented Language, Department of Defense, April 1860.

X3.23-1974 American National Standard COBOL, 1974

L.gital Equipment Corporation, DECsystem=-10 COBOL:
Programmer's Reference Manual, Digital Equipment
Corporation publication DEC-10-LPCRA-B-D, Maynard,
Massachussetts, 1976.

X3.9-1966 American National Standard Fortran, American
Standards Association, Inc., New York, N. Y., 1866

X3.9-1976 ODraft Proposed ANS Fortran, published in
SIGPLAN Notices, 11, 8 (March 1976).

[Goodenough 76] Goodenough, J. B, A Study of High Level Language

[Higman 67]

[1BM 57]

Features: Detailed Language Feature Analysis, SOFTECH,
Inc., Waltham, Ma., February 1876. :

Higman, B., & Comparative Study of Programming Languages,
American Elsevier, New York, 1967.

International Business Machines Corp., General Information
Manual: Programmer's Primer for FORTRAN Automatic
Coding System for the IBM 704 Data Processing System,
Form No. 32-0306-1, 1857.

82

[1BM 61a] International Business Machines Corp, General Information
Manual: FORTRAN, |IBM F28-8074-1, December 1961.

['BM 61b] International Business Machines Corp., Reference Manual,
709/7090 FORTRAN Programming System, |BM C28-6054-
2, January 1961.

[ironman 77] Department of Defense, High-Order Language Working Group,
Department of Defense Requirements for High=Order
Computer Programming Languages: "lronman”, Department
of Defense, Jan. 1977. i

[Nicholls 75] Nicholls, J. E., The Structured Design of Programming
Languages, Addison-Wesley, 1975.

[Parnas 72] Parnas, D. L., "On the Criteria to be Used in Decomposing !
Systems into Modules", Communications of the ACM, 15, 12,
December 1972 (pp. 1053-1058).

[RADC 76] Rome Air Development Center, Jovial J73/1 Specifications, 1
Rome Air Development Center, Air Force Systems Command, f
Griffis Air Force Base, New York 13441, July 1976.

[Ralston 71] Ralston, A., /atroduction to Programming and Computer
Science, McGraw-Hill, 1971,

[Sammet 69] Sammet, J. E., Programming Languages: History and _
Fundamentals, Prentice-Hall, Englewood, 1969. 1

[Shaw 63a] Shaw, C. J., "Jovial--A Programming Language for Real-Time
Command Systems", A4nnual AReview of Automatic

Programming, 3 (1963).

! [Shaw 63b] Shaw, C. J., "A Specification of JOVIAL", Communications of
the ACM 6, 12 (Dec 63). ;

[Strawman 75] Report of Subcommittee on Strawman HOL Requirements.

83

[Tinman 76] Department of Defense Requirements for High Order Computer
Programming Languages: "Tinman", April, 1876.

[Weissman 73] "Psychological Complexity of Computer Programs: An Initial
Experiment", Computer Systems Research Group Technical
Report, University of Toronto, 1973.

[Woodenman 75] “Woodenman” Set of Criteria and Needed
Characteristics for a Common DOD High Order Programming
Language, Institute for Defense Analysis, August 1975.

-

84

Appendix A
Some Anomalies in the Ironman Requirements
The discussions of ambiguities and inconsistencies in section 2.4.3 require
detailed documentation. In this appendix we paraphrase and summarize the
points in the Ironman report [Ironman 77] that support the arguments in the
text. Note that we have done this only for the anomalies. The principles

discussed in sections 2.4.2.1 to 2.4.2.4 are supported consistently by the
report, and a sampling of the requirements should suffice.

A.1. Scope Rules

The dominant philosophy calls for nested, block-structured scope rules, but
many requirements conflict with that position.

1A: The language is to be general only to the extent necessary to
satisfy the requirements.

1B: Error-prone features are to be avoided.
1C: Readability and maintainability are to be emphasized.

1D: The language shall aid production of efficient code and avoid
distributed overhead.

1E: The language shall be small and simple.

1F: The language shall be composed from features that are understood
and implementable.

3C: The scope of a type definition shall be determinable at translation
time.

3-3J: Elements of dynamically allocated types may be created at will
and must remain allocated as long as they are accessible.

3-5B: Encapsulation inhibits exportation of wvariable and operation
names of the implementation.

3-5C: Encapsulations may declare private variables; the scope of these
variables is the same as the scope of the encapsulation. It is not
clear whether such variables are to be defined once for each
encapsulation or once for each use of an encapsulation as a type.
3-5D: The scope rule for encapsulations must be violable.

4C: Few side effects Ih expressions are permitted.

5C: The intended scope of a declaration shall be determinable at
compile time. Scopes may be lexically embedded.

5C: Warnings shall be issued when a name is redefined, but functions
with different specifications are not the same.

6A: Local scopes shall be allowed in control statements.

6G: Some ideas about scope are implicit in the restrictions on the
destinations of gotos.

7C: Name inheritance is block-structured and static (lexical).

7E: Function calls may not alter either their parameters or (other)
variables in the caller's scope.

7l: Procedure calls are restricted so that two parameters or an
inherited name and a parameter cannot be aliases for each other,
either directly or indirectly.

8E: It shall be possible to override the normal control over logical and
physical resources. This presumably includes allocation policies that
support block structure.

10C: The invocation of an exception causes a transfer of control whose
destination is unclear.

85

86

11E: The safety of encapsulated machine code shall be maximized, but
machine code shall be permitted.

12B: Separately compiled segments shall explicitly export and import
shared definitions.

A.2. Types

4 A.2.1 Strong Type Checking

Strong typing is clearly intended, but the following statements appear in the
requirements:

] 1B: Error-prone features are to be avoided.
1F: All language restrictions must be enforceable by the translator.

3A: The type of each expression or component of an expression shall
be determinable at compile time.

3B: Implicit type conversions are forbidden.

3C: New type definitions shall be allowed; they shall be processed
entirely at translation time.

3-1C: Explicit conversions between floating point precisions shall not
be required; in other words, the precision of a floating point number
does not affect its type.

3-1F: Similarly, the range of an integer or fixed point variable does not
affect its type.

3-1H: However, explicit scale conversions are required as necessary,
so the scale of a fixed point variable does affect its type.

3.2: It is not clear whether or not two enumerated types with the same
elements are of the same type.

3-2B: A variable of an enumerated type may be restricted to a
subrange. It is not clear whether distinct subranges are distinct
types.

3.3: Similarly, it is not clear whether or not two composite types with
the same structure are of the same type.

3-38: Range, precision, and scale are ali mentioned In the discussion of
component type specification.

3-3D: The number of dimensions of an array shall be fixed at compile
time, but the range of array subscript values may be determined at
allocation time. In view of 3A, the exact range must not affect the
type of the array.

3-3F: Assignment shall be permitted between records with
corresponding components of identical name and type. Since
assignment cannot coerce types, such records must be of the same
type. It is not clear whaother this requirement applies if a subset of
the components correspond. The situation is further niuddied by 3-
3G, which allows individual record components to be read-only.

3-3H: Variant types are allowed if the variant is resolvable at compile
time. It is not ciear how the value of a variable can be converted
from one variant to another.

3-3t: Dynamically allocated types with dynamic substructure are
allowed. They must be distinguishable from other composite types.
It is clear that variables with dynamic substructure can violate
strong typing.

3-5A: Type definitions may be encapsulated. It is not clear when, if
ever, two encapsulations define the same type.

3-5D: Operaiions such as type conversion may operate simultaneously
on more than c.ae type. Itis not clear whether the definitions of such
operations will appear to violate strong typing.

87

88

4B: It shall be possible to determine the type of each expression at :
compile time.

4D: Expressions are allowed wherever variables and constants of the
same type are allowed.

5B: Variables may be of any type.

8D: Procedures, functions, types, labels, exceptions, and statements
are not types.

7G: Range, precision, and scale specifications are required for formal
parameters as part of the type-checking provisions.

7H: The number of dimensions for array parameters must be
determinable at compile time, but the exact ranges may vary from

call to call.

8C: Input shall be allowed only from files whose representation is known
at compile time.

11B: More than one physical representation may be used for variables
of a single type.

11E: Embedded machine code is allowed; it can clearly violate typing.

12B: Type checking shall be enforced across the boundaries of
separately compiled segments.

12D: Generic type definitions are allowed.
A.2,2 Programmer=-Defined Types

A second set of unclear requirements concern the use of programmer-defined
types.

1E: The language shall have uniform syntactic conventions.

1F: All language restrictions shall be enforceable by the compiler.

89

2.2: Some literal values are built in.

3C: New type definitions are permitted. No restriction shall be imposed
on defined types unless it is imposed on all types.

3-2A: Literals of enumeration types shall be syntactically
distinguishable from other identifiers. it is not clear what this means.
Also, equality is automatically defined.

3-3A: It is not clear whether the composition rules for composite types
are limited to arrays and records. It is not clear whether recursive
definitions are allowed.

3-5A: Encapsulated type definitions shall be allowed.

4E: Constant-valued expressions shall be evaluated before execution
time. It is not clear how to do this for programmer-defined types.

S5F: Assignment and value access operators shail be automatically
defined for each variable. This implies that programmer-defined

types must have those operators.

7A: Existing operators may be extended to new data types.

A.3. Timo/Space Tradeoffs

The language has ambitious goals for programmer control of time/space
tradeoffs, but it is not ciear they are achievable.

1D: Users shall be able to specify the time space tradeoffs in a
program. Constructs with unusually cheap or expensive
implementations should be easily recognized.

1F: It should be possible to predict the interactions of features.

3-3G: Nonassignable record components need not take data storage
space.

haaas o e

90

3.3.3: Dynamicaily allocated types are almost forced to undergo the
overhead of garbage collection.

7B: Recursive procedures shall be permitted, but they may not increase
the execution costs of other constructs.

8E: It shall be possible to override the language's resource-
management policies.

11A: Programs may specify the physical representation of data.

11B: More than one representation at a time may be used for a single
type.

11E: Embedded machine code shall be allowed.

11F: It shall be possible in programs to specify the optimization criteria
to be used. This shall include the ability to express preferences for
optimizing translation time, execution time, or runtime storage
requirements.

12D: The compilation of generic definitons may share object code.

13A: The defining documentation might point out the relative efficiency
of alternative constructs. (But note 1E: the language should not

provide several notations for the same concept.)

13D: Translators shall warn of the use of expensive constructs.

A.4. Hardware Access vs. Machine Independonce

Ironman strives to provide both access to the underlying hardware and
independence of specific implementation details.

1A: Applications require real time control, self diagnostics, input-output
to nonstandard devices, and file processing. 4

1C: Defaults shall be severely restricted

1D: Features should be implementable o' w1 > -
machines.

1G: The language shall strive for machine maspesses o
be a facility for specifying those portions of & w0
dependent on the object machine contiguratos

2A: All constructs shall be representable w e 0 v o
subset.

3-1C: Floating point precision specifications sha v e
minimum precision, and rounding of truncalee e
impiemented precision.

3-1D: Floating point computations may use bhiec! Sa e 0w
properties. Built-in operations shall mase o s

accessible.

3-1E,3-1H: Integer and fixed-point valwes ant ooeraioes o
treated exactly as specified.

3-3l: Dynamic types are intended primarily for the supear’ s an o
embedded computer software.

8A: Low-level input/output operations shall act! dwectly s shos
files, channels, and devices.

8D: The language shall not require an operating system and stanas
definitions shall be independent of one if it exists

8E: A few low-level facilities shall expose physical resources and s ow
language-controlled management policies to be preempted

9D: Rcal time constraints shall be expressible and checkable

QE: There shall be a real time clock.

- AD=A053 562 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER =-=-ETC F/6 9/2
A COMPARISON OF PROGRAMMING LANGUAGES FOR SOFTWARE ENGINEERING.(U)
APR 78 M SHAW: G T ALMES: J M NEWCOMER F30602-75-C-0218
UNCLASSIFIED RADC=TR-78=58 NL

END

DATE
FILMED

6=78

20 2

oDe

10A: Exceptions to be processed Iinclude hardware-dependent
conditions.

11A: Programs may specify the physical representation of data.

11C: The language shall require global constants to specify the object
machine configuration.

11D: Programs may use machine-dependent facilities, but such usage
shall be permitted within conditional structures that discriminate on
the machine facilities.

11E: Escape to machine code shall in some cases be possible, but it
shall be encapsulated and implemented as safely as possible.

13A: It should be possible to predict program behavior from the
language definition.

13E: Machine independent parts of translators should be separate from
code generators.

13F: Restrictions imposed by translators should reflect real limitiations
of object machines, not arbitrary decisions for convenience.

92

bk it o I foad RS ol Ui e A i

S L3 L3 23 23 3 232 23 3 23 3 23 2 L)

MISSION
of
Rome Avr Development Center
RADC plans and conducts research, exploratory and advanced

development programs in command, control, and communications
(c3) activities, and in the C? areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
survelllance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

3

\UTIOy,
&,,o %
3)
%")

