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PREFACE
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cal Engineering), Air Force Institute of Technology (Department of Elec-
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I. INTRODUCTION

High performance military as well as commercial aircraft
contain numerous sophisticated electronic subsystems. The various
electronic subsystems are interconnected by wires (cylindrical con-
ductors with cylindrical dielectric insulation) which are grouped into
tightly packed bundles. The close proximity of the wires in these
cable bundles enhances the electromagnetic interaction (crosstalk)
between the electronic subsystems which the wires interconnect.
Generally this unintended coupling of electromagnetic energy is detri-
mental to the system performance. Shielding individual wires and use
of twisted pairs are examples of techniques which have been used to
reduce this interference.

In the initial design of an electronic system as well as retrofit
of present systems, there is a need to model the electromagnetic
coupling in cable bundles so that the required interference suppres-
sion measures can be determined. The main objective of this work
is the development of a model which will predict crosstalk in which

twisted pairs are involved,




T

1.1 Rationale for Using Twisted Pairs

Twisted wire pairs are two identical wires that typically have
touching insulations (See Fig. 1-1(a)). The twisting effect stems
from progressively rotating the cross-sectional axis of these two
wires as the distance along the line increases (See Fig. 1-1(b)).

In addition to physically holding the wires together, the twisting
of wire pairs tends to eliminate inductive coupling (inductive cross-
talk). As a preliminary to understanding the mechanism of inductive
coupling, consider the simple two-wire line shown in Fig. 1-2. The
line axis is denoted by x and the line is of total length £. This simpie
two-wire line consists of a generator circuit and a receptor circuit.
The generator circuit consists of a wire, the ''generator wire', and a
reference plane for the line voltages. The receptor circuit consists
of another wire, the '"'receptor wire'', and the reference plane. Typi-
cally one end of the generator circuit is excited and the voltages V,p
and Vgrateach end of the receptor circuit are measured to determine
the induced signals. Portions of these induced signals are directly
related to the area of the loop formed by the receptor circuit and the
reference plane as illustrated by the shaded area of Fig. 1-2(a)[1]. To
prove this, one can show that the per-unit-length mutual inductance

between the generator and receptor circuits and thus the inductive

Ve etk e




Note: Twisted Pairs Have
Touching Insulations
And Both Wires

In Pair Are Typically
Identical.
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coupling is related to the loop area (See Fig. 1-3). The generator
wire current, IG , in a small Ax section of the generator wire will

produce a magnetic flux density, B,, at a distance r from the gener-

Hylg
{1]. By integrating the component of this field,
2mr

B, , which is normal to the vertical plane formed by the receptor cir-

ator wire of B, =

cuit directly beneath the receptor wire, one can obtain the total flux

@T which links a Ax portion of the receptor circuit as

¢p={ By (1-1)

where da = hp Ax. This flux will inducea voltage in the receptor
circuit and cause an incremental current to flow in the receptor wire.
The per-unit-length mutual inductance between the generator and
receptor circuit, 4., , is related to the flux and current by the equa-

tion

(1-2)

Thus the per-unit-length mutual inductance is dependent upon the
loop area of the receptor circuit.

Similarly, the voltage of the generator circuit produces an
electric field intensity between the generator wire and the receptor

wire. This electric field intensity causes a displacement current
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to flow betw.een the generator and receptor wires which may be
represented as a per-unit-length mutual capacitance, c,. -
Intuitively, the induced coupling or crosstalk can be considered,
for a sufficiently small frequency, to be a superposition of the por-
tions of the coupling due to the mutual inductance ("'inductive coupling")
and the mutual capacitance (''capacitive coupling'') between the genera-
tor and receptor circuits. This has been proven in [2] by obtaining an
exp.: * solution for the coupled transmission line equations which
represcrt the circuit interactions for the TEM mode of propagation.
From these equations it was shown in [2] that as the frequency of exci-
tation of the generator circuit becomes sufficiently small, one obtains
the equivalent circuit shown in Fig. 1-4 where IGDC and VGDC are the
D.Z. i 2ro frequency) values of current and voltage of the generator

wire, respectively, and are given by

Vs
1 = (1-3)
Gpc ZOG+ ZSG
ZsG
A = —— Vg (1-4)
GDC ZOG+ Z G

For the circuit in Fig. 1-4, clearly the net induced terminal voltages

in the receptor circuit, VORandV£R,may be considered to be the super-
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cps .ps CAP CAP . . IND
position of the capacitive (VOR and VSR ) and inductive (VOR and

V?;D) portions of the couplings as shown in Fig. 1-5 where VOR =
IND CAP IND . _ CAP T
VOR + VOR and VS.R = V£R V£R . These individual components

are easily calculated from Fig. 1-5 as

z
IND . OR
VoR -szmSIGDC(ZOR+ ZSR) (1-5a)
z
IND _ . { £R
v = -jwl_ &I _— (1-5b)
sr 7 P%m Fape \ZOR+Z£R>
and
Zon Z
V(():::P-chm £VG ( OR SIi_) (1-6a)
DC ‘Zgp + Zgp
Z. 7
vOAP_ jue,, g | OR £R) (1-6b)
£R DC ‘z _+2Z
OR £R

Also in [2] it was shown that the inductive coupling dominates
the capacitive coupling in VOR if

Zec%¢r << 2¢g Zcr (1-7)

where ZCG(ZCR) is the characteristic impedance of the generator

(receptor) circuit in the presence of the receptor (generator) circuit.
Similarly the inductive coupling dominates the capacitive coupling in
Ver if

Z8GZ0R << Z¢g ZcRr (1-8)

-9 .
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Capacitive coupling dominates inductive coupling when the above

inequalities are reversed. From this we see that inductive coup-
ling predominates for ''low'' impedances and conversely for "high"
impedances.

Generally, twisted pairs are used to connect power distribu-
tion circuits which typically have very low terminal impedances.
They are used in these situations with the intent of reducing the
inductive coupling to or from these types of circuits and the ration-
ale is generally based on the above reasoning for the simple two-wire
circuit. However, twisted pairs have been used to connect high im-
pedance devices and it will be shown that the twisted pairs have
virtually no effect on reducing the crosstalk to or from these types
of high impedance circuits.

From the above discussion, it seems that in order to reduce
the inductive coupling one must reduce the loop area of the receptor
circuit. This can be done in several ways. One is to reduce the
height of the receptor wire above the reference plane. A second
method is to shorten the length of the line and a thirci method is to add
a second wire to the receptor circuit that is tied to the reference
plane at one end (See Fig. 1-6). The length and height of wires

above the reference plane are generally minimized in the installation

-1 -
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of the wirce bundle=., :: + oy

ribs, hydraihic lines, et . 0w
above the aircraft structar. .
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odd nur:ter of loops the overall coupling a:... «rs to be effectively
that of one iop. This has long been the accep: < convention in the
reasoning for using twisted wire pairs [3, 8].

However, consider the followin: fzllacy in this reasoning. The
generator circuit currents, IGi , of Fig. 1-7(a) are not actually in
phase. As the frequency of excitation is lowered, however, they
become more closely in phase. Thus, the fluxes induced in the
individual loops, ¢;, are nct in phase and the correspondinz cur-
rents of wire in adjacent loops induced by ¢j and ¢,,, do not cancel
exactly as previously assumed. The currents indauced in adjacent
loops such as I;-and I, in Fig. 1-8 will be complex numbers. Even
though they have approximately the same magnitudes, the phases are
different and they cannot cancel vxactly., Clearly this will only occur
for some 'high frequency' such that the length of a loop is not elec-

trically short,

1.2 Discussion of the Modeling Technique

Previous work on twisted and straight wire pairs have typi-
cally described the fields resulting from twisted and straight wire
pairs when excited with voltage sources in free space without refer-

ence conductors or planes [3,4,5]. These works do not attempt to
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describe the effect of mutual coupling of the pairs with other circuits. J

The objective of this work will be to examine the prediction
of crosstalk either to or from twisted pairs. This will be done by
(a) determining a transmission line (TL) model for predicting the coup-
ling to twisted wire pairs, (b) experimentally correlating the predic-
tions, and (c) simplifying the model where possible.

One of the difficulties in obtaining a TL model for twisted pair
circuits is that conventional TL models generally assume uniform
lines. Lines are said to be uniform if cross-sectional views of the
line at every point along the line are identical, i.e,, the wires do not
exhibit any cross-sectional variation along the line and are parallel
to each other and the reference plane [1]. The reasons for assuming
uniform lines are mainly due to the ease of calculating the per-unit-
length parameters of the model and the ease of solution of the result-
ing differential equations [1]. In calculating the per-unit-length cap-
acitance and inductance parameters (self terms as well as mutual
terms), one may select any section of a uniform line since all other
sections are identical. For nonuniform lines, this is no longer true
and the calculation of the per-unit-length parameters becomes more

difficult. In addition, if the line is nonuniform the per-unit length

-17 -




quantities will be functions of the axis variable, x, Consequeni:,
the TL equations will be nonconstant coefficient differential equa-
tions which are much more difficult to solve than constant coeffi-
cient ones, e.g., Bessel's equation [1].

One straightforward technique for obtaining approximate solu-
tions of nonuniform lines is to model the line as a cascade of uni-
form lines. This technique has been succeigfutiv applied to several
types of nonuniform lines [6, 7] and can be classified =5 r:ocdeling 2
“"smoothly' nonuniform line as an "abruptly' nonuniform one.

The technique used in this work will involve a similar methou
for modeling twisted wire pairs. In this model each loop is considerea
as a separate transmission line pair excited by a corresponding adjac -
ent section of generator line. Each loop, although '"smoothly" non-
uniform, will be modeled as a pair of parallel wires as shown in Fig.
1-9. The per-unit-length chain parameter matrix of each single uni-
form loop and corresponding adjacent section of the generator wire
is easily determined [1]. Assuming that the junction between adjacent
loops is ""abruptly'' nonuniform (i.e. the twist takes place over a zero
interval of distance) the chain parameter matrices may be cascaded
(with appropriate interchange of voltage and current variables at the

junctions) to obtain the overall transmission line chain parameter

- 18 -
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matrix (See Figs. 1-9 and 1-10). Once the overall TL has been

modeled as this cascade, the terminal conditions are used with the
resulting overall chain parameter matrix to solve for the induced
receptor circuit voltages. This model will be discussed in Chapter II.
Although this model (referred to as the chain parameter model)
will be shown to provide very accurate predictions of the coupling to
or from twisted pair circuits, the computation time is somewhat ex-
cessive. In order to simplify the computation, a model valid for "low"
frequencies was developed. This model is an approximation to th=
chain parameter model and will be discussed in Chapter IV. Althougt
it seems to be virtually impossible to determine the highest frequency
for which this model is valid, it appears, from the extensive experi-
mental and computed results, to be valid for frequencies such that
the line is electrically short, e.g., £ < 1/20 A where ) is a wave-
length. For this range of frequencies, the low frequency model
yields predictions that are virtually identical to those of the more
complex chain parameter model and both model predictions are within
a few percent of the experimental results. One outstanding advantage
of this model is that the per-frequency computation time is virtually
trivial and considerably less than the chain parameter model. An

additional advantage is that, in the low frequency model, the signals
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induced at each end of the receptor circuit, Vyp and Vegr » are
separated into inductive and capacitive components. One can then
easily determine the relative magnitudes of the components. In
fact, it is shown that twisting the pair of wires reduces the total
coupling more for low impedance loads than.for high impedance
loads (as has long been intuitively assumed). It is also shown

that the total coupling is predominately capacitive for high imped-
ance loads and usually inductive for lower impedance loads. How-
ever, exceptions to this statement will be shown and, in fact we will
find in some instances that although one can effectively eliminate
inductive coupling by using twisted wire pairs, there exists a limit
on the reduction in total coupling due to the capacitive coupling com-
ponent. This very interesting fact has apparently not been noted

before.




l{. DERIVATION OF THE PREDICTION MODELS

2.1 General DDiscussion

In order to evaluate the effectiveness of using twisted pairs
to reduce crosstalk over the use of other wire configurations, one
raw: t J¢cide which other wire configurations will be used for compar-
ison. 1he natural choice would be to compare the crosstalk result-
ing from the single wire receptor circuit shown in Fig. 1-2 and the
straight wire pair receptor circuit shown in Fig. 1-6 to the twisted
pair receptor circuit shown in Fig. 1-7. As discussed in Chapter I,
the twi..red wire pair receptor circuit should be the most effective
in reducing interference followed by the straight wire pair receptor
circuit and then the single wire receptor circuit.

In modeling all three of these configurations there are certain
assumptions that will be used which simplify the mathematics. First,
the wires are assumed to have no insulating dielectric (See Fig. 2-1).
Thus the permittivities and permeabilities of the insulations are con-
sidered to be that of free space, €, and i, respectively and are
therefore considered lossless. Secondly, the conductors are consid-

ered to be perfect conductors.
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These three configurations will be modeled by first determin-

ing the chain parameter matrix of the overall transmission line (TL)

and then incorporating the end conditions (i. e., lcading and voltage

excitation sources) to complete the model (See Fig. 2-2(a), (b), (c)).

2.2

Single Wire Receptor Model

In developing the TL equations and resulting chain parameter

matrix for the single wire receptor model, one can characterize an

electrically short Ax section of the line with lumped, per-unit-length

parameters of self inductance, Ly and Lp , mutual inductance £, ,

self capacitance, cG and CR» and mutual capacitance, Cm 28 shown

in Fig. 2-3{2].

Fig. 2-3 in[2] and in the limit as Ax + 0 they were found to be,

dVG (x)
dx

-jw ZG IG(X) -jw »zm IR(X)

i

~j W Ly I (%) - jw g Ig (%)

)

-jwlcg + Sy Vg (%) + jwe, VR (%)

= jwem VG (x) ~jw(cR + ¢p) VR (%)

- 25 -

The TL equations were derived from the circuit of

(2-1a)

(2-1b)

(2-1c)
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By relating the voltages and currents at one end of the line, VG(£),

VR (£), Ig(L) and IR(L), to the voltage and currents at the other end
of the line, Vg (0), VR (0), I5(0) and IR(0), a solution to these TL
equations is provided by the matrix chain parameters [1,2];

V(O] |2D  2e(D)] | W(0)
= (2-2)

1o| |40 39| |10
where
Vg (9) V5 (0)]

v(s) = v(0)
Vg (5) V2 (0)]

(2-3)

1G(8) [1G(0)
1($) = 1(0)
R0 IR(0)

and an nxm matrix with n rows and m columns is denoted by M
and an nx1 vector is denoted by V. The entry in the i-th row and

j-th column of a matrix M is denoted by [M];; .

For the assumptions in Section 2-1, the matrix chain para-

meters in (2-2) become [2]

$11(&) = cos (BI) L (2-4a)

$12(8) = -j vein(B) L = -jws{“—i':%’"} L (2-4b)
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i - g [5G
Bal) = -j voinB) € = -jug {Z2ED) ¢ (2-4c)
822(9) = cos(B) 1, (2-4d)

where B is the phase constant given by

2
B= -‘;‘,’-=Tn (2-5)

w is the radian frequency of excitation, \ is a wavelength at this

frequency,
A= v/f (2-6)

and v is the velocity of propagation in the surrounding medium,

_ 1

v = ,\/-_—G_ (2—7)
9]

vV

The per-unit-length inductance and capacitance matrices L and C,

respectively, are given by [2]

16 tm
L= (2-8a)
Lzrn JeR
c -(cG + cm) -Cm
= (2-9)
~ L-cm (er + cpy)

- 29 -




1 0

]2 = (2-9)
~ 0 1

where the nx n identity matrix, denoted by l,, has ones on the main
diagonal and zeros elsewhere, i.e., [,ln]ii =1and [ln]ij =0 i,j=1,

..., nandi# j. The matrices L and C satisfy, for a homogeneous

medium [2],

1
L C=uyEel = ;z-_,!? (2-10)

The entries in L may be determined from the following general
result for multiconductor transmission lines [1, 9]. Consider a pair
of wires above a reference or ground plane shown in Fig. 2-4. From

[1, 9], the entries in L. are given by

Ly Zh;
[L)ii= 55 4n (‘;;)
My dy;*
[k]-- = E——zn ( = ) (2-11b)
; ;513 ™ d1J
&if* - Vin; + hy)? + d;;? - (b - hy)? (2-11¢)

=Vd;;? + 4hyh;

For the single wire receptor configuration shown in Fig. 2-1(a), we

obtain

- 30 -
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My G
L= 5— In 2-12a
G ZTT <rwG ) ( )
My Zhg
= o (53) (2-12b)
[ 2
M v d°+ 4hGhR
- -~ 2-12¢
L Py !,n< 3 ) ( )
- Hy in (1 + 4hGhR)
T o4nm a2
The capacitance matrix C is determined from (2-10) where
-1 2-13
g = U'VEV k ( - )

Once the overall transmission line matrix has been determined,
the terminal conditions will be modeled and added. The terminating
loads, voltages and currents are as shown in Fig. 2-5, From this

diagram, the termination equations are found to be

Vg (0) = - Ig(0) Zgg {2-14b)
and
Vg (£) = Zg R IR(S) (2-15b)
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F‘ In matrix form, these becoeme

r . V(0) = V - Zg 1(0) (2-16)
and
V(8) = ZpX(8) (2-17)
where -
Vg (0) | Vg (5) Vg
V(0) = v($) = V=
VR (0) VR {4) 0
- E
I(0) Ig(£)
1(0) = L) =
IR(0) IR(L) . : LRSS
r—ZOG 0 ZSG 0
Zg = Zg =
0 ZoR 0 Z¢R

If the matrix equation (2-2) is expanded, one obtains the following,

V(£) = 8,,(5) V(0) + 855(£)1(0) (2-19)
I(S) = 851(5) V(0) + 85(8) 1(0) (2-20)

By substituting (2-16) and (2-17) into (2-19) and (2-20), equations

for the terminal currents of the line, V5 (0), VG(S) and VR (0) Iy VOR -

VR (£) 4 Ver » are obtained in terms of the input voltage V; as




[312(8) Zg - 322(8) - Z2580(8) Zg + Zg 8o ()1 1(0) = [8,,(8) - Zg 850(D ]V
(2-21a)
1(8) = 3DV + [82(9) - 30(8) Zo ) 1(0) (2-21b)
The (two) simultaneous equations in (2-2la) are solved for the ter-
minal currents at x = 0. The terminal currents at x = £ are then

found directly from (2-21b). The terminal voltages are then found

from (2-16) and (2-17).

2.3 The Straight Wire Pair Receptor Model

The straight wire pair receptor model is derived in much the
same way as the single wire receptor model. Referring to Fig. 2-1(b)
and the assumptions made in Section 2-1, one can characterize anelec-
trically short Ax section of the line with lumped, per-unit-length para-

meters of self inductance (£ s 4y and £,3), mutual inductance (g ,

G2, and 413), self capacitance (cgg s o1 and c33), and mutual
capacitance (cgy, ¢g2, and cj;) as shown in Fig. 2-6.

In Fig. 2-1(b), one of the wires in the receptor circuit is desig-
nated as wire # 1 and the other is designated as wire # 2. This num-
bering is somewhat irrelevant since both receptor wires will be as-

sumed to be identical. However, the numbering will become import-
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ant in deriving the twisted pair model in Section 2-3 when the number
of loops in a twisted pair is odd. The transmission line equations be-

come, in the limit as Ax =+ 0,

av, (x)
—TGx_ = -jwlgglg(®) - jwig IR1(®) - jwigz IR (%) (2-22a)
d VR (x) . . .
—— = -julg) I - jul IRy (x) - julslga(x)  (2-22b)
d Vi, (x)
S - Sjulgylgh) - ukelpy() - jukslpale)  (2-220)
dI.(x)
;}x = -julegg + cg1 + cg2) Vg (%) + jweg) VR (%)
+ jwegz VR2(x) (2-224)
dl,,(x)
——i‘—i—: jweg) Vg (%) - jwlen+egy + ex) Vg (%)
E
+ jw s Vg, (x) (2-22e) i
dig® -
_dx_ = J(DCGz\’G(x) + JowVRl(x)

, -37.




By relating the voltages and currents at one end of the line
(x=25), Vg(L), VR1(D), VRZ(S), 1g(£), IR3(£), and IRa(E), to the volt-
ages and currents at the other end of the line (x=0), V5(0), VR;(0),
VR2(0), I5(0), IRy(0), and Ig(0), a solution to these transmission
line equations is again provided by the matrix chain parameters

shown in (2-2) where,

(Vo (®) ] Vg (0) ]
V(E) = | VR1(8) V(0) = | VR1(0)
| VR2(9)] _th(ot
(2-23)
(1609 ] [15(0) ]
1(8) = | Igi(D) 1(0) = | Igy(0)
L1R2(£) ] L_IRz(O) |

This overall chain parameter matrix, § (£), of the line relates these

terminal voltages and currents as

V(&) $11(5L) $12(£) v(0)
= (2-24)
I(8) $21(8) $22(%) 1(0)

where ,‘f,ij are now 3x 3 matrices given by [1]
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$11(L) = cos (BE) 1, (2-25a)

$12(8) = -jvsin(BI) L (2-25b)
$21(8) = ~jvsin(BL) C (2-25c¢)
322(f) = cos(BI) 15 (2-25d)

The 3x 3 per-unit-length inductance and capacitance matrices, L

wuc © . respectively, are given by

Lele] 4Gl G2

L= |ta1 Ly lz (2-26a)
fG2 Lo )
- -
(ccg + cg1 + cg2) ~€q1 -cG2
g i - ¢l (cyq + €G1?t S - C1z
i - cg2 -Cyp (e + cG2 + CE)J
(2-26D)

Again, because of the assumption of a homogeneous surrounding
medium (free space), C is found from L via (2-13). The entries in

% are found from the general result in (2-11) and Fig. 2-1(b) as
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Wy G
£ = ==
GG 2 4n (rwG)
M (h, + Ah)
2,11 = Zv in <Z R >
m I'wR
" 2(hr - Ah
by = Zv in ( R ))
d TwR
Uy 4h(hg + Ah)
I‘Gl = "4-— £n (1 + 2
- il (d® + (hg+Ahg-hg)©)
. 4hg(hg - h)
m (d®+ (hg-ahp-hg)©)
. Wy , (1 X 4(hg + Abh) (bg - Ah)
= — In
4m 4(Ah)?
_ MKv hR
T 4n 4n (Ah >

In deriving (2-27), we have assumed that receptor wire # 1 lies

directly above receptor wire # 2.

(2-27a)

(2-27b)

(2-27¢)

(2-27d)

(2-27e)

(2-271)

It is, of course, possible to derive

the equations for the case in which the two wires lie side by side. In

an actual cable bundle, either of these situations is a possibility so

we have arbitrarily presumed the first case.

The equations for the termination networks are obtained from

Fig. 2-7 as
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VG(O) = Vs - ZOG IG(O)
VR1(0) = - Zpg Igy(®)
Vg, (0) = 0
1609 = (=) Vg (9
£G
Tl = (zo2) Ol - Vo ()

1
Ip (9 = (E) (Vo (£) -V, ()

Writing equations (2-28) in matrix form gives

V(0) = V - Zg 1(0)

1(£) = Yo V(£)

where
Vg (0) VG (9)
V(0) = |VRy1(0) V(&) = | VR1(8)
VR2 (0) Vr2 (%)

-42 -

(2-28a)

(2-28b)

(2-28¢)

(2-284)

(2-28e)

(2-28f)

(2-29a)

(2-29b)




[1,(0) | (159 |

X0) = 11.,(0) 9 = IR1(£) (2-30)
LIRZ(O)_ -IRZ(S)-
Fz 0 o- r(;) 0 -
0G Z g

for |0 0| we| 0 D) - GY)
EEREY R IR s

Substituting (2-29) into (2-24) yields equations similar to (2-21);
[¥o23u(8)Z0 - Ye212(9) - 3a2(8) Z + §22(DH] 1(0) =

[Ye 21D - 20D ¥ (2-31a)

X8 = 31OV + [822(8) - 321(8) Zy 1 1(0) (2-31b)
[

The (three) simultaneous equations in (2-3la) are then solved for the
terminal currents at x = 0. The terminal currents at x = £ are then

found directly from (2-31b).

2.4 The Twisted Wire Pair Receptor Model

J

The model of the twisted wire pair receptor is somewhat similar

to that of the straight wire pair receptor. The line is modeled as a

- 43 _
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cascade of loops. Each loop consists of a uniform section of parallel
wires of length £ and nonuniform wire interchange sections or twists
at each end of the uniform sections as shown in Fig. 2-8, The chain
parameter matrix for the uniform sections of each of these loops 23(88),
can be easily found and is of the same form as the chain parameter ma-
trix for the straight wire pair in (2-24) and (2-25) with £ in (2-25) re-
placed by £,.
We have assumed that both wires in the twisted receptor pair

are identical. This is a reasonable assumption and is the usual prac-
tice since in a twisted pair, both of the wires are presumed to carry
the same current. Clearly the dependence of each section's chain
parameter matrix on the cross-sectional dimensions of the line resides
solely in the per-unit-length inductance matrix whose entries are given
in (2-11). Therefore, with the important assumption that the wires in
the twisted pair are identical, the per-unit-length inductance and capa-
citance matrices for each uniform section of length £; will be identical

even though wires # 1 and # 2 alternate cross sectional line positions.

The problems of modeling the ""abruptly' nonuniform portion or

twist still remains. This can, however, be represented quite simply
if the twist is considered to take place over a zero interval of distance,

Referring to Fig. 2-9 it can be seen that the physical significance of
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the twast is to reverse the position of the re eptor wires # 1 and # 2,

From Fig. Z-9 the following two equations can uc written,

and

-

Vg (x1)
VRr1 (%))
VRz (%)
Ig(xy)
IR1(*1)
Ir2(x)

Vg (%a)
VR 2 (%a)
VR1 (%a)
1g(xa)
IR 2(x3)
IR1(x%a)

-

= ,?,S (£s)

= (L)

[

Vg (%)
VR1 (xo)
VR2 (%q)
Ig(xg)
Iri1(xg)

IRZ(XO)

-

Vg (%)
Vi (%)
VR1(%a)
1g(x%p)
IR 2(x%2)
IR(x2)

(2-32)

(2-33)

where § (£3) is the chain parameter matrix formed over the uniform

section of the loop of length £4.

The chain parameter matrices in

(2-32) and (2-33) are identical since we assume that the wires in the

twisted pair are identical.

a zero distance, then,
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Note in Fig. 2-9 that if, as assumed, the twist takes place over




X 57X

Ig(xp) = Ig(x;)

Ipi(x2) = Ig (%)
Ip (%) = Ip (%)
Vg (%2) = Vg (x,)
VR1 (%) = Vg (%)
VR2 (%2) = VR, (%))

Equation (2-34) can be written in matrix form as

]

Note the ordering of the voltage and current variables in the two

vectors in (2-35). P is a 6x6 permutation matrix given by

-

VG (%2)
Vr2 (x2)
VR1(x%2)
Ig(x%2)
IR2(%2)
IRi(%:)

o

A
where P is given by

o>

H

A
P
0

3~3
1 0
0 0

[
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a3

A
P

o = O

] Vo (%)

-

VR (%)
VRr2 (x,)
IG(x,)
IR1(*1)

IR 2(%y) J

(2-34)

(2-35)

(2-36)

(2-37)




and

and j=1,...,m,

is an nxm zero matrix with[ 0 .
n~m-1

J

:=0 fori=1,

Combining (2-32), (2-33) and (2-35), the matrix

ees

product $s P 85 relates the voltages and currents at x5 to those at x

as

in (2-38) are not in the same order.

Vg (%3)
VR 2 (x3)
le (xa)
IG(Xs)
IR 2(%s)

Iny(xa)

sections modeled in Fig. 2-9 is even,

VG(XO)
VR1 (x0)
Vg2 (xq)
IG(XO)
IR1(*0)
Tr2(>p)

=

(2-38)

Note that the voltage and current variables in the two vectors

This is because the number of

To arrange the voltage and

current variables in both vectors in the natural order as in (2-23) we

introduce an additional interchange section or twist at x = xzas shown

in Fig. 2-10.

The twist length x, - x5 is again zero.

[ VG (x4)
VR1(x,)
VR2 (x,)
IG(x,)
IR1(x4)

IR 2(x,)
"
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VG (%¢)
VR1 (x0)
Vr2 (%q)
I5(xp)
IR1(x)
Ir2(*o)

ol

This results in

(2-39)
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r

and the voltage and current variables in both vectors are in the

same order.

The additional twist added from xsto x,; clearly does not affect
the line behavior and is only used to properly sequence the voltage
and current variables in the chain parameter matrix relation for a
pair of adjacent sections, Therefore, the overall TL matrix for the
line consisting of N logps can be modeled as a cascade of matrices
$s and P as shown in Fig. 2-1l.

It is interesting to note at this point that the overall transmission

line chain parameter matrix, &,., , for the entire length of the line can

~T
be written in a compact form in terms of §5 and P, The equations will

depend on whether there is an even or odd number of loops. For an odd

number of loops (See Fig. 2-12a) the overall chain parameter matrix is

given by
FVG () FVG (0)
Vg1 (9 VR1(0)
Vr2 (%) =[3sP 85P -+ 3P §5] VR3O | (2-40)
Ig (£) “ ~— o | Ig(0)
Igy(S) 31 Ir1(0)
Ip2(8) R2(0) |
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Note that in (2-40) the § matrix product begins and ends with §,

*and the voltages and currents in the left-hand side vector of the

equation are in the same sequence as in the right-hand side vector.
Thus no additional interchange matrix is required. However, for

An even number of sections (See Fig. 2-12b), we have

[ l i )

Vg (9) Vg (0)
VR1(£) VR1(0)
YRz (9) VR2(0)
VR1 () 87 Ig1(0)
_VR2(_£)- _IRZ(O)J

Note that the proper sequence of entries in the vectors on the left

and right sides of (2-41) are obtained by adding a P matrix at the end
of the TL cascade of chain parameter matrices. This does not
change the values of voltages or currents in the equations since it
ideally takes place over a zero interval of distance and only serves to
properly sequence the voltages and currents on both sides of (2-41),
It is now apparent from (2-40) and (2-41) that the overall chain para-

meter matrix of the entire line, <I>T , can be written as

N-1 for odd # of loops
=% (E 25) (N odd) (2-42a)

- 54 _




o st g

.......

and

N f .
E’,T - (B 23) or ever

1\ L

wlhicce N is the number of loops.

The terminal network equations for the tenste
‘ne same as those for the straight wire pair (ase wr
(2-29) and (2-30) and illustrated in Fig. 2-7. Sin. - -
careful to sequence the voltages and current varia:. -
spi:.iug voltage vectors, V(&) and V(0), and . orrees,
vectors, I(£) and I(0), the overall matrix chair para-

for the line given by

v(8) V(0)

1(8) T | yo

may be used directly with these terminal eQquaun~. -

equations for the terminal currents given in (.- U

2.5 Special Considerations

Note that for the abruptly nonuniform muode - .

pair, one is required to find the overall chain parar -t~

QT, of the entire line which is given as a product .« .
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f and 3¢ in (2-42). Computationally, (2-42) requires that we find

N products of 6 x 6 matrices. Computing P §, is trivial since this
requires only an interchange of certain rows of 85 (See (2-36) and
(2-37). However, we must still compute N products of 6 x 6 matrices
at each frequency. This can obviously be a time consuming opera-
tion, especially when the response of the line is desired at a large
number of frequencies. One would prefer to obtain this product in
some compact form without resorting to direct matrix multiplications.
To determine whether this is possible, we examine the form of this
matrix product. The equations for the overall chain parameter matrix

in (2-42) become

3r=3s(P g_s)N'l (N odd) (2-44a)
=2s(P 3sEB3%s ' E &q)
N-1
§r=(F gs)N (N even)
=(P 3sP 85" P 34) (2-44b)

r
\
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Extensive examination of these products revealed no simplification.

Therefore, the matrix products are obtained by direct computation

in the computed results to be presented.

However, for certain wire configurations, the result is simpli-

fied considerably and no matrix products as in (2-44) need be obtained.

Consider the special configurations shown in Fig. 2-13, In these two .

configurations, the receptor wires lie either above or below the gen-
erator wire and are symmetric with respect to a vertical line through

the generator wire. For these two physical configurations, we observe

that due to symmetry

g fay = a2 (2-45a)
My =l (2-45b)
Thus L becomes
i 7
gele a1 ‘G1
L= |t n h e (2-46) |
{
Re s | \
> ) {

Clearly, because of symmetry, we also obtain
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°G1° G2 (2-47a)
€1, = € (2-47b)
and C becomes
- i
r(cc;c:. + 2¢cc)) ~€G1 -cal1
’ C. -Gl (ent iz + ) - c (2-48)
-CGI - C]a (c11 + C]a + CGIH

C has the same structure as L. Note that these relations, because
of the assumed symmetry, hold even if the wires have dielectric in-
sulations (the dielectric insulations of the receptor wires are logically ‘
assumed to be identical in type and thickness)! For this configuration,

we can write the matrix productP § P as

A A
E 323 cos(BE )'\1'3 -jvsin(BL )L 2 323
P§.P =
~ ~ A A
O P -jvsin (BL4)C  cos(Bs)ls 0 P
(2-49)
A A . 3 ‘
P .9 cos(Big) P -jvsin(BLg) L P
= A . A A
323 P -j vein(BLy) cP cos(BLy) P
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A A A A

cos (8L5) PP -jvsin(Big) PL P
A A A A
-j vsin(B.i‘,S)g CP cos (B£3)£’ g

~

But, note that

o
(=}
j—
o
o
b
[=]
o

(2-50)

19>

0>

It
o o =
- o
=}
o o
- o
o Pt

1}
o o
o o
- o

H

&

Also by using the forms of E and 9 in (2-46) and (2-48) for this con-

figuration, one will obtain the important result

A A
PLP=L (2-51a)
A A
PCP=C (2-51b)

Applying the results of (2-50) and (2-51) to (2-49) we obtain

cos (BLa) g -jvsin(Be) L

Y >
v
«
>
"

(2-52)
-jvsin(BLg) C cos(Bds) 1

$s
The matrix products in (2-44) for several values of N are

2T=§s N=1

- 60 -




© e A ——

=(R3sP)is (7-53)

From this grouping, one immediately observes with the result in

(2-52) that

N
Bp = (2 (2 -54)

Note, however, that this is simply the chain parameter matrix of

the straight wire pair, i.e.,
N
dr=8s (£)=38(D) (2-55)

This astonishing result shows that for the special configurations in
Fig. 2-13, the twisting of the receptor pair has absolutely no effect!
Note that this result holds regardless of whether the receptor wires
have insulation and is based solely on the symmetry of the physical

configuration and the assumption that the two receptor wires are

_ 6] -




ealacacing

jdentical.

In a practical situation in which the generator and receptor
wires are immersed in a large, random cable bundle, one could
argue that the physical configuration of the receptor wires in Fig.

2-13 probably does not occur. Therefore, it is important to examine
other cases. Note that if éne accepts the assumption that there is
some other configuration in which the twisting of the receptor wires
has some effect, namely reducing the coupling over that from the un-
twisted case (the straight wire receptor pair), then the configuration
in Fig. 2-13 would represent an upper bound on the coupling for other
configurations.

The physical configuration which was investigated experiment-
ally is shown in Fig. 2-14, For this configuration, the center of the
receptor pair is located at the same height above the reference plane
as the generator wire. Observe that in a practical situation, the two
receptor wires will have touching insulations (the receptor pair is
simply twisted together), Thus Ah will be the sum of each wire radius
and associated insulation thickness (See Fig. 1-1b). From a practical
standpoint, Ah will be quite small. Thus one might make the following

approximations:
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G1 = g2

by = ke

(2-56)
cGl= a2
€1y = ©Cap

Note that when these approximations are valid we obtain the same
result as for the special symmetric configurations in Fig. 2-13; the
twist has no effect! Clearly, the twist will have some effect over
the straight wire pair since (2-56) are approximations. For (2-56)
to be exact, we would need to require that the two receptor wire
positions be identical; a physically impossible situation. We will
find in Chapter III that for relatively "high' impedance loads that the
twist has virtually no effect for the '"'side-by-side'' configuration in
Fig, 2-14, However, we will find that for very ''low'' impedance

loads, the twist has a dramatic effect.

2.6 Other Excitation Configurations

We will also be interested in investigating the configurations in
Fig. 2-15 in which the voltage excitation source, Vg, is located in the
twisted pair circuit, for Fig. 2-15(c) and correspondingly located for

Fig. 2-15(a) and (b). In these cases, the induced voltages, Vor and
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VgR » are at the ends of the single wire which was the generator cir-
cuit in all previous cases.

The chain parameter models previously derived can be
similarly obtained for these cases. Clearly the overall chain para-
meter matrix of the line for all these cases will be of the same form
as for the circuits in Fig. 2-2. Note for Fig. 2-15, the wires (and
consequently the line voltages and currents) have been relabeled.
For example, the generator wire in Fig. 2-2(a) becomes the recentor
wire in Fig. 2-15(a). Obviously one can write the chain parameter
matrix entries and the equations for the terminal conditions for
Fig. 2-15 in the same fashion as was done for the configurations in
Fig. 2-2.

Computed and experimental results for the circuit configura-
tions in Fig. 2-2 and Fig., 2-15 will be obtained in the following

chapters.
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IoI. EXPERIMENTAL RESULTS

3.1 General Discussion

This chapter deals with experimental verification of the models
derived in Chapter II. Although the object of this work is to predict
the coupling involving twisted wire pairs, a comparison of the effec-
tiveness in reducin'-g coupling between the twisted wire pair configura-

tion, the single wire configuration, and the straight wire pair configu-

ration will be made. In order to determine the accuracy of the

straight wire pair and twisted wire pair models, the circuit configura-
tions of Fig. 2-2(b) and Fig. 2-15(b) (the straight wire pair configura-
tion) and Fig., 2-2(c) and Fig. 2-15(c) (the twisted wire pair configura-

# tion) will be examined experimentally. Experimental measurements

for the single wire configuration of Fig. 2-2(a) and Fig. 2-15(a) will
not be made since this particular model has previously been verified

experimentally and was found to be sufficiently accurate {10, 11].

3.2 Experimental Procedure

The circuits in Fig, 2-2 and Fig. 2-15 were constructed of # 20

gauge solid copper wires with radii of 16 mils and having polyvinyl
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chloride insulation 17 mils in thickness. The circuit lengths were
15 - 55" (£=15' - 5%" in Fig. 2-2) and the circuits were mounted
on a 2' by 15' - 11" aluminum ground plane 1/8" in thickness as shown
in Fig. 3-1and Fig. 3-2. The resistors which terminate the ends of
the circuits were constructed by inserting small resistors into BNC
connectors to facilitate their removal and replacement.

Two basic circuit separation configurations will be investigated
for the twisted and straight wire pair configurations. Referring to
Fig. 3-3, the circuit separation, d, will be 2 cm o . 1451805 in,
the latter of which will be obtained when the insulaiions of the wires
in both circuits are touching. These two circuit separations will be
referred to as the 2 cm and Touching cases. The height, , ia Fig.
3-3 will be 2 c¢m in all experiments. This height was obtained by
supporting the wires above the ground plane by small styrofoam blocks
that had an average height of 2 cm. The 2 cm and Touching circuit
separations were obtained by taping the wires to the styrofoam blocks.
The separations Ah in Fig. 3-3 will be equivalent to the sum of the
wire radius and insulation thickness, i.e., Ah = 33 mils,

The experimental data were taken from 20 Hz to 100 MHz for the
Touching cases and 1 KHz to 100 MHz for the 2 cm cases. The reason

for the difference in frequency ranges, is due to the fact that the
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measurement equipment used in the experiment does not have the
needed sensitivity at the lower frequencies when the circuits were
separated by 2 cm. The circuit lengths, £, are one wavelength

long at approximately 64 MHz (computed assuming free space prop-
agation). Therefore, this frequency range (20 Hz to 100 Mz) will
permit investigation of circuit responses for electrically short to
electrically long cable lengths (£ = 3.14 x 10'7)\ to £ = 1.568451).
Measurements were taken at discrete frequencies; 20 Hz, 25 Hz,

30 Hz, 40 Hz, ---, 90 Hz, 100 Hz, 150 Hz, 200 Hz, 250 Hz, 300 Hz,
---, 900 Hz, 1KHz, 1.5 KHz, 2.0 KHz, 2.5 KHz, 3.0 KHz, 4.0 KHz,
---, 9.0 KHz, 10 KHz, 15 KHz, 20 KHz, 25KHz, 30 KHz, 40 KHz, ---,

90 KHz, 100 KHz, 150 KHz, 200 KHz, 250 K: ., 300 KHz, 400 KHz,

---, 900 KHz, 1 MHz, 1,5 MHz, 2.0 MHz, 2.5 M 1z, 3.0 MHz, 4.0
MHz, ---, 9 MHz, 10 MHz, 15 MHz, 20 MHz, 25 MHz, 30 MHz, 40
MHz, ---, 90 MHz, 100 MHz. The data points are connected by
straight lines on the graph to facilitate the interpretation of the results.

The apparatus used for measurement and excitation of the line are:

Frequency Range

(1) HP 8405A Vector Voltmeter 1 MHz -+ 100 MHz

(2) HP 3400A RMS Voltmeter 20 Hz % 1MHz
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Frequency Range

(3) HP 205AG Audio Signal Generator 20 Hz -+ 15 KHz
(4) HP 860lA Generator/Sweeper 1 MHz <+ 100 MHz
(5) Wavetek 134 Sweep Generator 15 KHz + 1 MHz
(6) Tektronix DC502 Counter 20 Hz -+ 100 MHz

The input voltage source Vg in Fig. 2-2 and Fig., 2-15 was a one-volt
sinusoidal source. This was obtained, experimentally, by monitoring
the oscillator output and adjusting it to provide one volt. The ratio of
the received voltage to Vg =1 volt is plotted versus frequency in all
graphs. Although the received voltages are phasors with a magnitude

and phase, only the magnitudes are plotted versus frequency.

3.3 Discussion of Graph Formats

The experimental results for the received voltages of the
straight and twisted wire pair configurations, discussed in Section 3-2,
have been plotted versus frequency in Appendix A and B. The computed
results using the models of the three circuit configurations discussed
in Chapter II, for the circuits in Fig. 2-2 and Fig. 2-15 are also
plotted on these graphs. The model predictions and experimental
results for the three circuit configurations in Fig. 2-2 or Fig. 2-15

are.nlaced on the same graph in order to determine the model accur-
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acies and also to compare the effectiveness of each configuration in
reducing crosstalk.

To facilitate labeling of the graphs, we will refer to Fig. 3-4.
In all cases either V) or V, will be zero. If V} =1land V, = 0, this
corresponds to the configurations of Fig. 2-2. If V;=0and V, =1,
this corresponds to the configurations of Fig. 2-15, Note also that
the termination impedances are labeled as Ro1» R.tl' Rgp2, Rgp which

implies that they are purely resistive as is the case in our computed

results (and approximately so in the experimental situation). For

Vy =1land V, = 0, the received (plotted) voltage is Vg, For Vi =0
and V =1, the received (plotted) voltage is Vo). Typical graphs are
shown in Fig. 3-5 for 1000 ohm loads and Fig. 3-6 for 50 ohm loads.
Note, in these graphs, that besides showing the values of the resis-
tive loads, the circuit separation and the value of V; and V, are also
given. The circuit separation will always be labeled as either "2 cm"
or "Touching'' as discussed in Section 3. 2.

The graphs of '"assorted" loadings, which consist of all permu-
tations of 50 ohm and 1000 ohm resistors, are given in Appendix A,
Appendix A consists of 50 ohm and 1000 ohm assorted loadings along
with varying the circuit separation, Vi, and V,. Table I shows a

cross reference for the particular loading, voltage, and circuit sepa-
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ration for the graphs in Appendix A. Appendix A represents an even
number of loops (226) in the twisted wire pair model and experimen-

tal data.

3.4 Single Wire Results

As previously mentioned, there were no experimental measure-
ments taken for the single wire configuration of Fig. 3-4(a) since
this work has previously been done [10,11]. As was shown in Chapter
11, the single wire configuration is much simpler, computationally,
than the other two configurations. One might therefore be interested
in determining whether this simpler model will provide a reasonable
prediction of the twisted wire pair case. Although one might suspect
that this model would not be able to predict the twisted wire pair case,
examples will be shown for which it does provide accurate predictions.
This suggests that for these loadings, the twisting of the wire pair has
no effect on reducing the coupling; a rather remarkable observation.

Referring to Appendix A, note that for "high'" impedance loads,
i.e., 1000 ohms, the model for the single wire configuration predicts
the coupling for the twisted wire pair configuration very well. The
error for this "high' impedance loading being between 1, 75 db and

5.5 db for the Touching cases and 3 db and 6 db for the 2 cm separa-
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tion cases, However, for 'low'" impedance loads, i.e., 50 ohms,
the model of the single wire configuration does not predict twisted
wire pair coupling very well. The error for this "low' impedance
loading being between 6 db and 25 db for the Touching cases and be-
tween 10 db and 32 db for the 2 cm separation cases. From the
results shown in Appendix A, it appears that the error in using the
single wire model to predict twisted wire pair coupling increases as

the load impedances decrease and circuit separation increases.

3.5 Straight Wire Pair Results

In looking at the experimental results and the model predictions
for the straight wire pair configuration in Appendix A, one can see
that the model is very accurate in predicting the coupling for this con-
figuration. The error for this model as compared to the experimental
results (50 ohm and 1000 ohm loadings) is between 6 db and 8.25 db for
the Touching cases and between 3.5 db and 4.25 db for the 2 cm separ-
ation cases,

As was the case for the single wire model, the straight wire pair
model also does very well in predicting coupling for the twisted wire
pair configuration for "high' impedance loads, i.e., 1000 ohms, and

not so well for '"low' impedance loads, i.e., 50 ohms.
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Referring again to Appendix A, the error incurred in using the

straight wire pair model to predict coupling in the twisted wire pair
case is between 0 db and 3. 2 db for the Touching cases and between

2 db and 7 db for the 2 cm separation cases. Even though the straight
wire pair model provides much better predictions of the twisted wire
pair coupling for '"low'" impedance loads than that of the single wire
model, the predictions are still not very accurate. The error in pre-
dicting twisted wire pair coupling using the straight wire pair model
again increases with a decrease in load impedance and increased cir-

cuit separation.

3.6 Twisted Wire Pair Results i

The model for the twisted wire pair case compares very well
with the twisted wire pair experimental results, as shown in Appendix
A. The error in predicting twisted wire pair coupling (50 ohm and
1000 ohm loads) is between 2.95 db and 3.35 db for the Touching cases
and between 3.2 db and 3.5 db for the 2 cm separation cases.

From Appendix A one can see that the straight wire pair model
is almost as accurate as the twisted wire pair model in predicting

twisted pair coupling for ""high'' impedance loads, i.e., 1000 ohms.

However, for '"low'" impedance loads, i.e., 50 ohms, or where the




straight wire pair model does not accurately predict tenater w.--
pair coupling, the twisted wire pair model is very accurate TH..
"low' impedance load coupling is clearly shown in Fig. ' 4 whe-.
coupling to twisted wire pairs is 10.25 db lower than the . uplin. ¢+
straight wire pairs. It would appear from this that the twnat 1 ..

in fact, matter for ""low' impedance loads and has no effect t v hig

impedance loads.

3.7 Low Impedance Loads

As discussed in sections 3.4, 3.5, and 3.6, it appears that th.
prediction of twisted wire pair coupling cannot be accurately achieve
using the single wire and straight wire pair models for low 1mped
ance loads. In order to further investigate the effects of low 1mpe-
ance loads on coupling for the circuits of Fig. 3-4. measurements we r.
taken for the particular loadings listed in Table II. Table 1] refers ¢t
the figures of Appendix B which are plots of the results for 25 ohn:.
10 ohm, 5 ohm, and 1 ohm loads on both circuits. Typical plots of the
"low'" impedance loads are shown in Fig. 3-7 through Fig. 3-10 where
the circuit separation is 2 crn. The twisted wire pair results again
represent an even number of loops (226) for these figures and those 1n

Appendix B.

- 83 -

SNV PPV



: i-d l T 0 1 1 0 wo Z
ti-d ] g 0 g 1 0 wo 7z
(-4 01 01 0 01 I 0 wd g
£1-d g2 4 0 Y 1 0 wo g
2-d 1 1 1 0 0 1 w g
-4 g S g 0 0 1 w 7
n1-4d 01 01 01 0 0 1 wd 7
6-4 Y4 §2 %4 0 0 1 w 7
8- 1 I 0 1 1 0 m.:EusoH .
L-g S g 0 S 1 0 Sumonoy,  J 3
9-g o1 01 0 01 1 0 Sumgonoy, M
G-4 S2 62 0 G2 1 0 Suryono g, 4
y-d 1 1 1 0 0 1 Suryono, “
¢-g g S g ] 0 1 Buryono, \
v-d 01 01 o1 0 0 1 Suiyomno g,
i-d 62 Y 14 0 0 1 8uryono g
‘3u1 (v)zTy (v)1TH (v)20d (v)i0y (s3104) 2 (s3104) Tp nonaﬂwm.ww

II 377dV.L




L-¢ 813

(*ZH) 4ININB3Y 3
Oheecos

Oisgrosm ¢ 2 DOhearoash & g 2  Pleerssmn &z  POlestoas v ¢ A
o
"W) 2 INQILYYEJ3S LINJYID )
s2=21y 52=204 0=24
52=174 0=10Y [=14A

W0

.0
Ol1bY H34SNYYL
- 85 -

’\»’ \ ©———————3"IM ITINIS =Y
'v @-—H1Hd JYIM LHIIBYLS
\\w v— dldd 031SIMI

7300W Y3L3WHHHd NIBHD

\ +——HIYd IWIM LHITUHILS

% dibdd 031SIML
*IHINIWIHIJX3




("ZH) AIN3IND3IYS

Ohsee9sh & 7 PLesegs» ¢ 2 DOlssras m ¢ § Plsgses v ¢ 2 0L
Q
W] 2 ‘NOILUHBJ3S LINJYID [
01=204 0=2A [
0=104 1=1A .
(=]
b
|2
E
e 3
192
[ gl
[ m
Q [ D
E o
- D
e
w (=}
® 3WIN 379NIS |5
@——YIdd 3IYIM IHOIHUYLS .
v "HiYd 03ILSIM) 3
*7300W Y313IWHHHd NIUH) "m
+——HIYd 3HIM LHOIHHLS X
b Hldd 03ILSIML _

‘IYINIWIYILXI

o7




6-¢ 814

("ZH) LIN3N0D3Y 4
Oheecgs

6495 nh € ¢ DOlescgsh € @ n e 2 PObsgrssm ¢ 2  Dhegy9s h € 2
Q
"W) 2 ‘NOILHHEJIS LINJYID °
G=27d S=20H 0=2A
S=174 0=10Y 1=1%
(=}
<
>
D
Qz
@
m
D
D
D
. Q=
-~ ‘ \ lnw
Q / \\ \
!\ , yx“ N e IHIM IS o
\ o/ g —
| . he S SP O @——HIdd IYIMTHITHYLS
; -.YO v 2% 14d 031SIM]
4, STI00W U3L3WEHBd NIBHD  Fo
~.. -
//f;rrfxlfloxl*\Qx +——HIHdd 3IHIM LHOIBYLS
¥ ——————HItd 031SIM]
*IWWINININIEXI g

- 87 -

iylnllllk




o1-¢ *81J

(*ZH) AININD3IY4
Plesses & 2 Ohees9s v & ¢ Dlge¢gsh § ¢ Dhegsys v ¢ ¢  JDhegsgs v § ¢ Ob

"W) 2 INOILHHHJLIS LINJHID °
1=20H 0=2A
D=1DH I=1A

p—
2,
s 3
o
p= ]
D
-
a
MM LHOTHYLS
‘ Yldd Q3LSIML
$9300K H313INUWHL NIBHI
=]
+——HIdd 3IYIM LHOTUHLS b
* Yivd 031SIML !
fIYININIHIIXI g

5 L. . » i ]
R A e P T P S TR T ialade



In comparing the single wire model predictions with the twisted
wire pair experimental results shown in Appendix B, one observes
that these plots further verify the previous observation that the error
in predicting twisted wire pair coupling by using the single wire model
increases with lower impedance loads and larger circuit separation,
Although the error is not as large, the same is true for the straight
wire pair model. The major point here, is that the twisting of wire
pairs dramatically reduces the coupling as compared to single wire
and straight wire pair configurations for "low' impedance loads.
This is apparent in Fig. 3-7 through Fig. 3-10, where the consistent
reduction of values of the load impedances shows a proportional de-
crease in coupling for the twisted wire pair over the single wire and

straight wire pair results.

3.8 Summary

The models of the straight wire pair and twisted wire pair con-
figurations proved to be very accurate in predicting the correspond-
ing experimental results. The results, of course, are not as depend-
able in the standing wave region (the region in which the line length
is greater than 1/10)) which is apparent from the plots in Appendix A

and Appendix B above approximately 10'7 Hertz,
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It appears that for ‘''high" impedance loads; twisting the wire
pair has virtually no effect in reducing coupling as compared to the
straight wire pair. Therefore, for these load impedance levels, the
simpler straight wire pair model (or even the single wire model) will
suffice for predicting the twistea pair coupling. However, for 'low"
impedance loads the effect of twisting the wire pair has a dramatic
effect and neither the straight wire pair nor the single wire models
provide any adequate predictions of the twisted pair results,

It is difficult to precisely define the range of loads which are
considered to be either "high' or 'low'' impedance since it does not
appear to be feasible to solve the transmission line equations in
literal form for either the straight wire pair or twisted wire pair

configurations. However, the single wire configuration has been

‘*solved in literal form in [2] and from an examination of the resulting

equations, one can define the terms "high'' impedance and ''low' im-

et i

pedance to be those impedances greater than or less than, respec-
tively, the characteristic impedance of the single wire above ground
(approximately 275 ohms).

It would be advantageous, computationally, to find a simpler

approximate model of the twisted wire pair that would not only provide

a reasonable prediction of the coupling for the twisted pair case but
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would also separate the total coupling into capacitive and inductive

components. This separation was illustrated for the single wirecase
in Chapter II. A simpler model is justified by the fact that twisted
pairs are usually randomly oriented in cable bundles. Therefore
even an ''exact' model would not accurately predict the coupling for
this realistic situation. Also, the previously derived chain para-
meter model of the twisted wire pair is very time consuming, com-
putationally, since one must multiply, at each frequency, the chain
parameter matrices for the uniform sections of the line (each loop).
For the problem investigated here, this requires 226 multiplications

oif 6x 6 matrices at each frequency.

A simpler, approximate model for predicting twisted pair coup-
ling will be derived in the following chapter. This model not only pro-
ﬁdes accurate (within 3 db) predictions of the twisted pair coupling
for frequencies such that the line is electrically short and is virtually
trivial, computationally, but also provides considerable insight into the

twisted pair coupling phenomenon.
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IVv. THE LOW FREQUENCY MODEL

4.1 Introduction

In determining simpler coupling models for the twisted wire
pair and straight wire pair configurations, the lines will be assumed
to be electrically short (i.e. £ < 1/20)). This assumption will allow
considerable simplifications in the resulting model which are justifi-
able, at least, intuitively. The basic technique used in deriving
these models will be the superposition of the coupling due to the
mutual inductance ("'inductive coupling') and the mutual capacitance
{''"capacitive coupling'') which was discussed for the single wire con-

figuration in Chapter I and can be shown to be correct for this case

for electrically short lines [2]. The inductive and capacitive coup-
ling contributions will be determined separately and their magnitude
will be added together to determine the magnitude of total coupling

; for each model.

The following derivations are not rigorous nor are they intended

to be. In order to obtain rigorous justification for these models, one

must solve the terminal current equations of Chapter II in literal

- 92 .
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form (as opposed to a numerical solution) as was done for the single
wire configuration in [2] and observe the resulting simplification of
these equations as the frequency is decreased. For the straight wire
pair and twisted wire pair configurations, this would involve great
difficulty as should be evident from Chapter II. Therefore it does not
appear feasible to approach the solution in this manner. Instead, we
will rely on extending the result for the single wire configuration in a
logically consistent manner to the straight wire pair and twisted wire

pair configurations.

4.2 Inductive Coupling

4,2.1 The Twisted Wire Pair

In order to determine the inductive coupling for the
twisted wire pair receptor configuration shown in Fig. 2-2(c), the
total inductive coupling will be taken to be the sum of the inductive
coupling contributions for each loop. The "abruptly" nonuniform
model for this situation is shown in Fig. 4-1. For each section or
loop in Fig. 4-1, the net flux, ¢, penetrating a loop is the difference
in the fluxes penetrating the area between one of the wires in the
twisted pair at height h; and the reference plane, and the area be-
tween the other wire at height h, and the reference plane (See Fig.

4-2).
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Since the line (and consequently each loop) is electrically short,

'L we may assume that the current in each generator section, IC'i , is
independent of position along that section and we may represent the
effect of this net flux, ¢;, as equivalent induced voltage sources as
shown in Fig. 4-3. The mutual inductances, f43j and 45, , are be-

: tween the single generator wire and each of the wires in the twisted
pair [2] (See Section 2-3 and Section 4-5). If the components of in-
ductive coupling are represented for every loop of Fig. 4-1. the
result would be as shown in Fig, 4-4, Since the twist between each
loop is assumed to take place over a zero interval of distance, we
can "untwist” the receptor circuit of Fig. 4-1 and superimpose the

inductive components of coupling into one representative voltage

IND . :
source, VTWP , as shown in Fig, 4-5 where
IND '
Viwp = I¢dsligilc + fg2lga + -+ -failaz - fg2lc)  (4-D)
= jw s g - 4g2) gy - Ig2 + I3 - - - -]
= ju"‘S:s zm (XITWP)
and

Im =Gl - fG2 (4-2)
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XITWP = {IG]. - IGZ + IG3 - e } {+-3)

The portion of the received voltage due to inductive coupling,

IND .
VORTWP , becomes from Fig, 4-5

Z
VIND - OR ND (4-4)
ORTWP ZoRr + ZgR TWP

Z

0 .

= (—-——-—Z +RZ )Jstfqn(XITWP)
OFR. £R

4.2.2 The Straight Wire Pair

In deriving the inductive coupling for the straight
wire pair configuration, one can cascade sections of Fig. 4-3 giv-
ing the circuit of Fig. 4-6. The representative induced voltage
sources for the inductive coupling of Fig. 4-6 would again simplify

as shown in Fig. 4-7 where,

IND
swp - J9SsUgilcr t fgalga + -+« - fg2lge - fc1lcl)

<
I

jw £B (‘ZG]. - IGZ) {IGI + IGZ + .. .] (4-5)

= juwds 4y (XIswp)
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and

XiIgwp =Ig1+tIg2 + --- (4-6)

IND

oRswp ’ foF the

Therefore the inductive coupling transfer ratio, V

straight wire pair is

z
IND  _ OR ND
Vorswp * (ZQR + ZgR) SWP (4-7)
z
: OR .
’ =\ —) jwisim (XIswp)

4.2.3 Comparison of the Inductive Coupling Models

In comparing the inductive coupling models for the

twisted wire pair configuration in (4-4) and the straight wire pair

configuration in (4-7), we observe that the only difference is in the 1
terms Xlpwp and Xigywp. The term XIgyp given in (4-6) is the

sum of the generator currents Ig1» Ig2, ---whereas the term

XITWP given in (4-3) is the sum of the currents in the odd numbered

generator segments, IGl » Isgs ---minus the sum of the currents in

the even numbered generator segments, IGZ , IG4 , ===, If the line

i is very short, electrically, one would expect that Ig15 g2 = Ig3 =
vmw = IGN' Consequently, for this case, XITWP would be the cur-

rent in one segment for an odd number of twisted pair loops and zero
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for an even number of loops. Therefore for an even number of loops
in the twisted pair, the inductive coupling is zero. This is intuitively
satisfying since the traditional explanation of twisted pair coupling
discussed in Chapter I reaches the same conclusion.

For the straight wire pair case and an electrically short line,
XIgwp = NI where I; is the current in any section of the generator
line. Substituting this into (4-7) we observe that the term jw ££,,
(XJSWP) becomes jw (4, N &g) I and 4, N &g is the total mutual in-
ductance between the two circuits. This is again an intuitively satis-

fying result.

4.3 Capacitive Coupling

4.3.1 The Twisted Wire Pair

The capacitive coupling components for each section of
the twisted wire pair receptor shown in Fig. 4-1 can be represented
as shown in Fig. 4-8, where the capacitive components of coupling
are represented as current sources for each receptor wire [2]. We
again assume that each loop is electrically very short and therefore
the voltage of a generator wire section, VGi , is independent of posi-
tion along that section., This result is an extension of the single wire
low frequency model discussed in Chapter I and the items c¢) and
cg2 are the mutual capacitances between the single generator wire

and each of the receptor wires (See Section 2.3 and 4.5). Applying
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this to the circuit of Fig. 4-1, the result would be a cascade of sec-

tions containing current sources as shown in Fig. 4-9. If the recep
tor circuit of Fig. 4-~9 is '""untwisted' the result would be the circuit
of Fig. 4-10, where VCAp would represent the porti f the

g. , re VoRTWP epresen portion o
received voltage due to capacitive coupling. Note in Fig. 4-10, that

the short circuit introduced by grounding one end of the twisted wire

pair configuration effectively shorts out certain of the current sources.

CAP
Therefore VORTWP becomes,
zZ _Z
CAP OR“SR \ .
ORTWP ~ (zOR + sz_)sts(cleGl +tecgaVg2 t---) (4-8)

Since the pair of wires in the receptor circuit ave separated only by
their insulations and are therefore very close together, one would

reasonably expect that
~ ¢ 4-
Gl— G2 (4-9)

Substituting (4-9) into (4-8) we obtain

v

CAP ( ZorZgR

ORTWP ~ )5‘”"35 cg1 (Vg1 + Vg2 +---) (4-10)

ZoRr + ZgR
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\Z

where,

XViwp = (M

4.3.2 The Straight Wire Pair

In developing the model for tr. ~r...
receptor a cascade of sections shown 1n F1g  + - &
Fig. 4-11. These components of capacitive o up..r

fied as shown in Fig. 4-12 where,

z 2z
yCAP _( OR"SR . . .
ORSWP ~ \Zgg + Zgg. -~ 1 =
z,.Z
ORTER \ . .
- —=== £.cry XN
<ZOR+Z£R>JJ s €Gl SWi

and where

4.3.3 Comparison of the Capacifiv: ( .apiic,

Note that the results of equath inie

the same as those for the twisted wire pair :r ~o at.
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(4-11) if we assume that c,, = cgp @8 in (4-9). Therefore the cap-
acitive coupling contributions are the same for the twisted wire pair

and the straight wire pair configurations.

4.4 Generator Circuit Currents and Voltages

The generator circuit segment voltages, vGi , and currents,
Ic'i , will, theoretically, depend upon whether the receptor circuit is
a twisted wire pair or a straight wire pair. However, we have im-
plicitly assumed in the preceeding derivations that the generator and
receptor circuits are to some degree ''weakly coupled' so that the
receptor circuit has a negligible or secondary effect on the generator
circuit. On the basis of this observation, we will therefore assume
that the segr: :t voltages, vGi , and currents, IGi' may be computed
by considering only the isolated single wire generator circuit. In this
case, the segment voltages and currents are independent of the type of
receptor circuit.

Furthermore, we will assume that the line, and therefore each
segment of length £, is electrically short. With this assumption, we

may reasonably approximate the segment voltages and currents as

A

= e =IGN=m (4-14)

- 12 -




PR

Z
&G
v, =V = .. =V __Vs [ .o S (4-15)
Gl G2 GN (Z£G + ZOG)

4.5 The Mutual Inductances and Capacitances of the Segments

One final calculation remains; the determination of the seg-

ment mutual inductance, s and mutual capacitance, ¢g; (or cgp).

The segment mutual inductance, £4,,, is given by

tm =t - 42 (4-16)

In Chapter II, the per-unit-length inductance matrix is given by

r‘GG 1G1 ‘Gz-
G2 b Lo J

where /) and 4, are given in (2-27d) and (2-27e) as (See Fig. 3-3)

G =107 tn [1+ Halhsoh)] (4-18)

d2 + Ah®
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Gz =107 zn[l  2h(h - ab) h'Ah]

a4+ Ah? (4-19)
Therefore £, becomes
4m = 4G) - g2
-7 d®+ Ah®+ 4h%+ 4hph
=10 & 4-20
* La%+ ah%+ 4h3- 2npn (4-20
The per-unit-length capacitance matrix C is found from L {via
the assumption of a homogeneous medium) as
-1 (4-21)
C=uy L
r —
(eGG + cqy + egp) - <Gl - G2
= . cGl (C11 + CGI + Cu) =Cip
-cG2 -¢yp (Ccop + g2 + ¢33)
L -
Expanding this result, we obtain,
(2Gahs - 4q) &)
°G1 7 MvEv (4-22)
L)
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CEALLLY - .

( -4 )
caz = Hvly chz‘j lmlcz (4-23)
L

3

where | L| is the determinant of L. From this result, if we

assume

1 £ faz (4-24)

fhy 2 ke (4-25)

then clearly ¢ = c;,. In the computed results, we have chosen

cg to be used in the capacitive coupling model as shown in (4-10)

and (4-12).

4.6 The Total Coupling Equation

Combining the results in Sections 4.2, 4.3, and 4.4 we obtain

the following results for the received voltage Vgi;

Twisted Wire Pair:

IND CAP ;
[Vor [Noad = [Vorrwe! * Vorrwp! (4-26)
w
one loop

- 115 -

ot aien "+ = 1S g T S AT AR A b
s et - T e



z

OR . Vg
z | m———— ju d ———
| (Zor + ZgR) s‘m (2 + Zoa) |
ZonZ z
ORZ SR £G
4| ————="— jwfsca NV, o |
(Zog + ZgR) GLTTS (Zgg + Zgg)
0
_ | yIND CAP
IVorIN even = | Vorfwe! + |Vorrwe | (4-27)
ZonZ Z g
= ’ ( OR” IR " jU)SsCGlNVS

ZoRr + ZgR) (Zsq + Zog) |

Straight Wire Pair:

IND CAP
V = -
[Vor | = Vopswp ! * |Vorswp! (4-28)
ya
OR Vs
z | ————— & N ———
| Zon + Zg) 05N By 7y |
ZonZ Z
I—-———Z OR ;R jwEgc, . NVg ——IG ]
(Zor + ZgR) Gl (Zgr + Zpg)

4.7 The Coupling Model for Other Excitation Configurations

In the previous model derivations of this chapter, the voltage
excitation source, V; , was attached to the single wire circuit as

shown in Fig. 4-1 and Fig. 2-2. The excitation may, however, be
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connected to the twisted pair or straight wire pair (which Lecomes
the generator circuit for this situation) as shown in Fig, 4-13 and
t'ig, 2-15, In this case, we are interested in determining the voltage
ot eithier nd of the single wire (which becomes the receptor circuit
“er this situztion).

+.7.1 Inductive Coupling

Again we assume that the line is electrically short and
r~1ine the equivalent voltage induced in each segment of the
recept:or circuit (the single wire) by the flux associated with the cur-
rent in each corresponding segment of the generator circuit (the
twisted wire pair or straight wire pair). The net flux passing between
single wire and the greound plane is now due to the currents in each
.. the %o wires comprising the twisted wire pair or straight wire pair
generaty: circuit as shown in Fig. 4-14. In Fig. 4-14, we have as-

sumed that the currents in the two wires of the generator circuit for

this segment, IGi’ are equal and oppositely directed. This is based
on the assumption that the line (and therefore each segment) is elec-

trically short. This net flux is

;i = {145 1Gi - 4g2 Sslai (2-29)

= (g1 - 4g2) $51g;
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where ;) ({G2) is the mutual inductance between the upper (lower)

wire of the twisted wire pair or straight wire pair and the single
wire. Clearly 4 and 4, are the same as for the situation in whi

the excitation, Vg, is attached to the single wire as in Fig. 2-2.

ch

The

equivalent circuit for the single wire receptor circuit is shown in Fig.

4-15. From this result we obtain

Z
VIND OR .
= £ I -1 +1 T oo 4-30
ORTWP (ZOR n Z£R> jwfstm (IG] - Ig2 + Ig3 ) ( a)
and
v = (——————ZO Lz )J’wi‘- bn g+ Igz +Ig3 + ..-) (4-30b)
ORSWP = \ZgR + ZgR S Gl T G2 7 °G

Again we assume that the line is electrically short and approxi-

mate the segment currents, IG-' as
i

\

Igi=1lgz2=-... =IgN = (ZE—EEEG—)

4.7.2 Capacitive Coupling

The capacitive coupling model for the twisted wire
pair generator circuit configuration is shown in Fig. 4-16. The
segment voltages V;,; and V,; for an electrically short line are ap-

proximated as

(4-31)
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Consequently, the capacitive « yuplhin, nm 1e

yCAP ¢ ZORZIR -, o
ORTWP ~ \ZgRr + Zgr/ = "
_ ( Zor?sR .
Zor * ZgR S
where we have assumed that c, = Copp ars

are identical to those for the situatior 1= why

attached to the single wire. The capac v~
straight wire pair generator confiv.rat:

to (4-34).

4.7.3 The Total Coupling Mode!

The magnitude of the tota! .
sum of the magnitudes of the indicrtive a= -

tributions. The results are:




¥
3

Twisted Wire Pair:

IND CAP
| Vor IN oda = | Vortwe |+ VorTws !
one loop
. ZoR v

|

S—————— i, — 8
! (Zgr + Zgg) J¥*s/m (Zgg + Zpg)

ZanZ VA
JR =R . £G
—_— w£ c N V.
(ZoR 1 Z¢R) J s¢Gl 8

+ e S,
| (ZgG + Z¢g)

I

0
IND CAP
V, =
Z 7 VA
OR“ER . £G
Sl jwigeg] NVg ———22
(Zor +ZgR) * °® *(ZgG + Zog) |
Straight Wire Pajr;
_ 1 «IND CAP
Vor | = Vorswp | * [Vopswp |
Z Vs
OR .
= Ty ————— _]U);:sllrnN !
| (ZoR + ZgR) (Zgg + Zpg)

| _20r%sR

z
. £G
(Zor + Zgg) ¥ ¥s SGIN Vs

(ZgG + Zpg) ’
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Comparing these results to those for the situ .tion in which the exci-
tation, Vg, is attached to the single wire (See (4-26), (4-27) and
(4-28)) we oi:serve that the coupling equations ar~ identical. There-
fore one model represents both the situations in Fig. 2-2 and those
in Fig. 2-15. Furthermore this implies that the coupling will be th.x
same for the two corresponding situations of Fig. 2-2 and Fig. 2-15

if the corresponding loads on the circuits are the same.

4.8 Prediction Accuracies of the Low Frequency Model

The predictions of the low frequency model for ii.e cases in Fig.

3-4 are compared with the predictions of the chain parameter model
in Appendix C. Since the chain parame!., model was compared to
experimental results in Chapter III and found to yield accurate pre-
dictions, experimental results w11l not be plotted on these graphs.
The predictions of both models will be shown for an odd number of
roops (N = 225) and an even number of loops (N = 226). In each case,
the length of each segment, £;, was obtained by dividing the total
line length, £, by the total number of loops, N. In Ap;endix C, the
excitation and load impedances will be comprised of the following

cases;
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Six values for R will be used;

1Ka, 50, 254, 104, 54, 1a and circuit separations o. ¢ cm
and Touchiag will be investigated. A cross reference of the tigure
numbers and the configurations they represent is given in Table III.
In these results, the effect of having an odd number of loop3
as opposed to an even number in the twisted wire pair is only signifi-
cant for 5a and 1a loads. For the 1a load situation and 2 cm separ-
ation, an odd number of loops (N = 225) provides approximately 30
db more coupling than an even number (N = 226) at the lower fre-
quencies. For all cases investigated, the low frequency model not
only predicts this difference (within 1 db accuracy) but also predicts
with remarkable accuracy (typically within 1 db) the straight wire
pair and twisted pair results of the chain parameter model. This
rather astonishing accuracy of the simple low frequency model sug-
gests that the separation of the coupling into capacitive and inductive
coupling contributions is valid. Note also that the results for Vl =1,
V, =0and } =0, V, =1 for corresponding load impendances are iden-
tical. This was evident in the low frequency model and provides a

further indication of the validity of this model.
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4.9 Further Observations Based on the Low Frequency Model

It was determined in the previous Section that the low frequency
model provides predictions that are virtually identical to the chain
parameter model when the line is sufficiently short, electrically.

The low frequency model is significant not only for its ability to pro-

vide these accurate predictions with very little computational effort

but also for its ability to explain the twisted pair coupling phenomena - y i

as the following will show.

The ability of the low frequency model to explain numerous as-
pects of the twisted pair coupling phenomena is a direct result of our
separation of the total coupling into capacitive and inductive contribu-
tions. Recall that the capacitive coupling contribution for the twisted i
pair configuration was identical to the capacitive coupling contribu-
tion for the straight wire pair configuration. Yet we know from our
computed and experimental results that twisting the wire pairs reduces
the coupling for low impedance loads and has virtually no effect for
high impedance loads. Clearly, if the low frequency model is to
explain these results, the effect of the twist must lie in the inductive
coupling contribution. The difference in the inductive coupling con-
tributions for the twisted wire pair and straight wire pair configura-

tions is dramatically illustrated by observing the equations for these

- 129 -




contribations given in (4-26), (4-27) and (4-28). From these equ..iicas

we may form the ratios

|VIND .
__ORSWP _ _ (4-38)
vIND

'YORTWP ' N odd

IND

|v |
ORSWP ' _ (4-39)
ND

, Vi)R'I‘WP ,N even

For an odd number of loops in the twisted pair, the twist reduces
the inductive coupling over the straight wire pair by a factor of N.
For an even number of loops in the twisted pair, the twist reduces
the inductive coupling to zero. This points out an interesting aspect
of twisted pair coupling. Although the inductive coupling for an even
number of loops is reduced to zero, the total coupling is the sum of
the inductive and capacitive coupling contributions and the capacitive
coupling is not zero. Therefore even though the twist reduces the
inductive coupling, the capacitive coupling contribution provides a
'"floor'" which limits the net reduction in total coupling! Therefore
the total coupling is no less than the larger of the capacitive and induc-

tive coupling contributions.
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To illustrate this, Tables IV, V and VI show the values of the

capacitive and inductive coupling contributions for V} =1, V2 = 0,

Rg; =0, Rgy = Rgp = Rgp = R and 2 cm circuit separation where

R takes on three values, 1000n, 50a, 1a. For R = 1a in Table 1V,
we observe that for the straight wire pair, the total coupling is induc-
tive; the capacitive coupling is below this by a factor of 75 db. How-
ever for the twisted wire pair cases, for an even number of loops,
the total coupling is limited by the capacitive contribution. For an
odd number of loops, the inductive contribution is considerably
larger than the capacitive contribution; on the order of 30 db!

For R = 50a in Table V, both contributicns are of the same
order of magnitude for the straight wire pair. For the twisted wire
pair and an even number of loops the coupling is capacitive whereas
for an odd number of loops the capacitive coupling is on the order of
40 db larger than the inductive component.

For R = 1Ka in Table VI, the capacitive component dominates
the total coupling for the straight wire pair which is on the order of
45 db larger than the inductive component. The capacitive coupling also
dominates for an odd number of loops in the twisted wire pairs; being

90 db larger than the inductive component. The total coupling is
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purely capacitive for the twisted wire pair with an even number of

loops.

Thus we have shown cases involving twisted wire pairs in
which the capacitive coupling dominated the inductive coupling and
cases in which the inductive coupling dominated the capacitive coup-
ling. The fact that the low frequency model predicted each of these
cases with extr;.ordinary accuracy should provide strong evidence

to indicate that the individual equations for the capacitive and induc-

tive contributions are both correct.

'4.10 Balanced Load Configurations

All of the previous single wire, twisted wire pair, and straight
wire pair configurations are commonly termed as '""unbalanced'.
Quite often, an attempt is made to ''balance’ the loads with either
center tapped transformers or dual input-dual output operational ampli-
fiers. This '"balanced' load configuration for the twisted wire pair is
shown in Fig. 4-17, and is supposedly used to further reduce the coup-
ling over that attainable with the unbalanced case. Therefore, since
this configuration is such a popular choice over the ''unbalanced" con-
figurations, we will investigate this twisted wire pair circuit configu-

ration using the same approach as discussed for the unbalanced cases
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in which the chain parameter model and a low frequency model will

be derived.

Note that the balanced load configuration for the twisted wire
pair of Fig. 4-17 can be reduced for modeling purposes to that of

Fig. 4-18. Obviously the overall chain parameter matrix for this

balanced load configuration will be the same as for the unbalanced

configuration developed in Chapter II. The difference in the chain

parameter model will be in the terminal network equations. The

terminal network equations for the balanced load configurations are

developed in the same manner as in Chapter II and the result is

easily seen to be

V(0) = V - Z9 1(0)

9 = Y V(9)

where
- -
Vi (0) rvc;(-f»)-}
Y(0) = | Vgy(0) V() = | Vgp (9
e pu - -
p- p= -
16(0) | IG(5)
1(0) = | Ig(0) 1©) = | Igy(9)
Ixo(0) Ig (&)
|20 |2
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(4-40b)
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(4-41)
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o o X 0 0 = 1,
L - L R_

Note that the only difference in these equations and those developed
for the unbalanced load configurations in equations (2-29) and (2-30)
is on Zg and Yg. Therefore, the chain parameter model for the
balanced load configuration can be obtained using a similar formula-
tion to that of the unbalanced case.

In developing the low frequency model of the balanced load con-
figuration, one can again model the inductive and capacitive compon-
ents separately as was done in Sections 4-2 and 4-3, where Fig., 4-19
shows the resulting circuit models. If the circuits are simplified as
was done in Sections 4-2 and 4-3 the result would be as shown in Fig.

4-20. From these circuits we obtain,

IND ZoR

Voo s
ORTWP ~ (Zyg + ZgR)

=jwulg {IGI(IGI + IG3 +..4)

+ZG2 (IGZ+IG4+ ...)}
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z
- (ZOR +Zep

OR )ijS{lGI(IG2+IG4+...)+£Gz(IG1+IG3+...)}

ZoR
= (ZOR + Zm) jwss (I'G]. - sz) {IGI - IGZ + IG3 - . .}
Z
OR .
= jwlg b Xlrywp (4-42)
(ZOR + ZS,R s"m
and
Z _Z
CAP 1 OR“ LR .
VORTWP = E (ZOR F ZSR)JwSS {CG]_(VGI + VG3 + .. .) + CGZ
(Vg2 + Vgg +...)}
YA A
1 OR”ER \ .
-E(-Z__—\ T Z )was{ccl(vc,z +Vge +..0) 4+ g2
AR SR

(VC'2+ VG4 + ...)}

Z_ _Z
1 OR &R .
== (——————22=_\ juw&a(c - C V; ~ V,
2 (ZOR +Z£R) J s( Gl GZ) { Gl G2

+Vg3 - ...} (4-43)
The inductive coupling contribution for the balanced load configura-

tion is the same as for the unbalanced case as shown in equations

(4-4) and (4-42). The capacitive coupling for the balanced load con-
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figuration is dramatically different from that of the unbalanced as
shown in equations (4-10) and (4-43). Note that if c5) = c5p 28
reasoned in equation (4-9) that equation (4-43) will equal zero! Thus
there is a canceling effect in ;:he capacitive coupling when the balanced
load configuration is used. This canceling effect can be seen when
Fig. 4-10 is compared to Fig. 4-20(b), where it is apparent that there
is no short circuit present in the circuit of Figs. 4-20(b) as there is
in Fig. 4-10 in which the short circuit does not allow the current
sources on the right of the circuit of Fig. 4-10 to cancel with th.: n
the left of the circuit. This is an amazing result since one can now
lower the capacitive floor of the twisted wire pair configuration for
the unbalanced case by balancing the load., One could similarly develop
the low frequency model for the SWP balanced load configuration. The
results would obviously be the same as for the straight wire pair un-
balanced load configuration in the inductive contribution and the capac-
itive coupling contribution would be zero.

In order to verify the low frequency model results for the bal-
anced load twisted wire pair configuration, we will again compare the
low frequency model predictions to those of the chain parameter model

for the equal load cases, Tables VII, VIII, and IX show comparisons

of the total coupling calculated using the low frequency model and using
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the chain parameter model for both the twisted wire pair and straight
wire pair configurations.

Note in these tables for the twisted wire pair configuration that
for an even number of loops, the total coupling for the low frequency
model is equal to zero whereas the chain parameter model results are
negligible or very near zero. For an odd number of loops and low
frequencies the low frequency model and the chain parameter model
both show almost the same total coupling, which has been found to be
purely inductive in the balanced load configuration since the capaci-
tive coupling is essentially zero.

Note also in these tables that the low frequency model compares
very well with the chain parameter model in predicting straight wire

pair coupling. Thus once again, the low frequency model proves to

be accurate in computing total coupling, not only for unbalanced but

also balanced load configurations.




s T S TRET T RRRE RET IR

V. SUMMARY

In reviewing the results of this work, there are many conclu-
sions to be emphasized. Therefore, the results are listed in state-

ment form under the following categories;

(1) Accuracy of the Chain Parameter Model Predictions

(a) The chain parameter models for the single wire, straight
wire pair, and twisted wire pair configurations accurately predict
the corresponding coupling.

(b) For '"high' impedance loads both the single wire model and
straight wire pair model predict twisted wire pair coupling very well,

(c) For "low'" impedance loads neither the single wire model nor
the straight wire pair model do well in predicting twisted wire pair
coupling.

(d) The twisted wire pair model predicts twisted wire pair coup-

ling very well for both '"high' and ''low' impedance loads.

(2) Comparison of the Effectiveness of the Three Circuit Configura-

tions in Reducing Crosstalk

(a) For "high''impedance loads, the single wire, the straight wire
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pair, and twisted wire pair configurations all give the same amount
of coupling (i.e. the transfer ratios for each circuit configuration

are approximately the same).

(b) For "low" impedance loads, the twisted wire pair configuration
is the most effective in reducing crosstalk, followed by the straight

wire pair configuration and then by the single wire configuration.

(3) Comparison of the LLow Frequency Model Predictions

(a) Thelow frequency models for the straight wire pair and twisted
wire configurations, accuratelypredict the corresponding circuitconfig-
uration coupling for both the balanced and unbalanced load configurations,

(b) The low frequency model is easier to conceptually model than
thatof the chainparameter model (i. e., software development is simp-
ler.)

(c) \The actual computation time for the low frequency model is
much less than that of the chain parameter model since the mathe-
matics modeling is proportionally less (verified from actual usage).

(d) Since in actual practice the circuit configurations are not
as modeled but more of a random configuration (such as in random
cable bundles) the low frequency model is much more attractive to

use since it accurately predicts coupling, but also is much more

efficient computationally than the chain parameter model.




(4) Low Frequency Model Implications

(a) The low frequency model shows that the inductive coupling
component is zero for an even number of twists in the twisted wire
pair configuration, and is equivalent to that in only one loop for an
odd number of loops.

(b} The low frequency model shows t};at t?here is a capacitive
""floor' on coupling for the unbalanced load configurations.

Although twisting of wire pairs has proven to reduce inductive
coupling, this capacitive '"floor'" may limit the total reduction in
coupling, therefore the twisting may have no effect.

(c) The low frequency model shows that the capacitive '"floor"
on coupling seen in the unbalanced load configuration is reduced in

the balanced load configurations.

The objective of this work was to quantitatively predict coup-
ling to twisted wire pairs. This was achieved by developing two
models, the chain parameter model and the low frequency model. The
chain parameter model was found to he very accurate for all frequency
ranges except the standing wave region where the results, although not
as accurate as lower frequencies, still tend to follow the experimental
results. Generally speaking, the low frequency model proved to be

as accurate as the chain parameter model for frequencies such that the
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line is electrically short, e.g., when the line length is less than
1/201. The low frequency model was found to be more appealing
since not only was it simpler to derive but led to more insight into

the components of coupling.
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