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DIGITAL COMMUNICATIONS INTEROPERABILITY TECHNIQUES

William L. Betts Peter Zakanycz
Electronic Systems Engineering U. S. Army Electronics Command
E-Systems, Inc. ECI Division Communications/ADP Laboratory
\ St. Petersburg, FL 33733 Fort Monmouth, N.J. 07703
ABSTRACT

Contemporary long haul and tactical digital communications systems
employ a variety of digital transmission formats. New code
conversion equipment has been developed which digitally converts
between different pulse code modulation formats and between pulse
code modulation formats and delta modulation formats. Conversion
is accomplished on wideband trunks without restoring the signal
to analog baseband. The digital code conversion techniques may
be applied to conventional multiplex equipment, Army tactical
communications equipment, strategic communications systems, and
TRI-TAC equipment. Conversions are accomplished with respect

to data format, data rate, supervision and signaling formats

and electrical interface. The code conversion techniques

promise significant advantages in utility, performance and cost.
System applications of the digital code converter are compared
with other alternatives. Signal-to-quantization noise ratio
measurements on channels which have undergone digital code
conversion are presented. —7

1.0 INTRODUCTION

A wide variety of digital communications systems are in use
today. Each employs a unique transmission format. The choice
of a particular digital communications technique is dictated by:
technology at the time of development, required trunking
capacity, user performance requirements, anticipated number of
multiple hops, the electrical characteristics of associated
equipment, and bandwidth of the transmission medium. Each of
these is described briefly in the following subparagraphs to
emphasize those characteristics which must be considered for

interoperability.
Technology - Technology at the time of development determines

the maximum capacity of the system and the type of format that

can be used. One example is compression. To achieve the

necessary dynamic range, while maintaining a good signal to noise (
ratio, it is necessary to compress the signal amplitude range. ]
Diode compressors were used in some of the earlier equipment. 5
Matching of these compressors, which are highly dependent upon '
the individual diode devices, is very difficult. More recent

—
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equipments utilize digital compression techniques. The digital
technique is easily matched from unit to unit and provides
much better input-output linearity.

Trunking Capacity - Trunking capacity, or the number of channels
handled by any one multiplexer unit, is dictated by system
constraints. Commercially, a 24 channel grouping is most often
encountered. In tactical military systems, channel grouping of
3, 6, 12, and 24 mav be found. In newer Continuously Variable
Slope Delta Modulation (CVSD) systems, groupings of 4, 7, 8,

15, and 16 are encountered.

Performance - Performance is measured in terms of quality and
intelligibility and is dictated by user requirements. 1In a

Pulse Code Modulation (PCM) system, the quality and intelligi-
bility is determined by the number of bits per sample used to
encode the signal. Frequently, a call must be switched through
several substations, being converted back to analog, switched,
then reconverted to PCM. In these tandem connections, the high
quality provided by 8-bit PCM is required. Quantization noise

is increased 3 dB each time the number of conversions doubles

(3 dB for two hops, 6 dB for four hops, 9 dB for eight hops, etc.)

Electrical Characteristics - The electrical characteristics of
associated equipment dictate the terminal characteristics of
most digital multiplex equipment. Multiplex equipment tvpically
provides an analog or a digital interface which is directly
compatible with the switchboards and telephones in use.
Characteristics, such as signal level, input/output impedance,
and frequency response are dictated by the system in which the
multiplex equipment will be used. A four-wire interface is
normally required to interface with multiplex equipment. 1In
analog systems where four-wire telephones are not used, a

hvbrid transformer must be provided as in the Telephone Signal
Converter, CV-1548, used in tactical military communications.
This converter provides for the two-wire to four-wire conversion
and incorporates circuits for the detection of different types
of supervision and signaling tones. This brings out one of the
primary advantages of digital code conversion. By operating on
a multiplexed wideband trunk, the number of electrical interfaces
is minimized and complex functions such as signaling conversion
can be accomplished more efficientlv.

Bandwidth - Available bandwidth of the transmission medium directly
affects the bit rate which can be passed through it. The
transmission link mav consist of cable and/or radio paths.

2.0 DIGITAL COMMUNICATIONS FORMATS

A digital communications system, as the term is used herein,
refers to those systems which formats the users' analog signals




into a binary (two state) form. The two basic formats to be
discussed are Pulse Code Modulation (PCM) and Continuously
Variable Slope Delta Modulation (CVSD). PCM is already in wide
use and CVSD will be, with the coming of the TRI-TAC equipment.

PCM and CVSD systems digitize analog user waveforms for efficient
transmission and restoration. The purpose for digitization

includes security, economv and quality.

Pulse Code Modulation (PCM)

In both PCM and CVSD systems, the user waveform must be sampled
at discrete intervals in time. According to Nvquist, the signal
must be sampled at least at twice its bandwidth. In PCM tele-
communications systems, a sampling rate of 8 kHz is used almost
universally since the nominal bandwidth is 4 kHz. As shown in
Figure 1, once the waveform is sampled, it appears as multiple
samples of varying amplitude. The waveform at this point is
pulse amplitude modulation (PAM). When this waveform is filtered
it will accurately reproduce the original waveform. Each PAM
sample is then digitized to a 6, 7, or 8 bit code word for
transmission. A 6-bit code word is shown in Figure 1.

An instantaneous compressor is used in PCM systems for
improvement of the dynamic range. Figure 2 shows a compression
curve. The abscissa indicates the analog voltage of the encoded
signal at any instant in time. The ordinate indicates the
integer that would be encoded for transmission. The curve

shown in Figure 2 represents the 3 segment compressor used in
6-bit tactical PCM systems. The integer is encoded into a
binary number made up of three fields. The first, or lefthand
field contains the sign bit, the second field contains one bit
indicating the particular compressor segment, and the last field
contains a 4-bit representation of the PAM sample. Note that for
6-bit PCM there are only two segments in each of the two
quadrants. The curve in Figure 2 approximates a logarithmic
compressor with u=100 (p=compression factor). There are
numerous PCM formats including the following:

Multiplexer Type PCM Word Size Compression
TD-352 —————— 6-Bit, approx u=100 3 segment compressor
TD-660 ——
D1 :]——o 7-Bit, »=100 Diode Compression
Tl :
D2 ——
T
TD-968 }—— 8-Bit, u=255 15 segment compressor
TD-1192




Multiplexer Type PCM Word Size Compression

CCITT 7-Bit 13 segment
FEuropean A-Law 8-Bit 13 segment

Continuously Variable Slope Delta Modulation (CVSD)

Delta Modulation (DM) uses a single bit form of quantization.

The sampling rate must be correspondingly higher to produce a
good reproduction of the original waveform. 50 kbps delta
modulation systems operate with reasonable quality. Continuously
variable slope delta modulators provide acceptable quality at
rates as low as 16 kbps. Figure 3 shows a functional block
diagram of a CVSD modulator.

In a simple delta modulator, the analog voltage which is to be
encoded is applied to one input of a comparator. This voltage

is compared to a voltage developed on a simple RC integrator
applied to the other input of the comparator. The output of

the comparator is sampled, typically at the channel rate.

If the input voltage is greater than that developed on the
integrator, then a positive pulse is generated. This pulse is

fed back to increase the voltage on the integrator. If the

input voltage is less than that on the integrator then a

negative pulse is generated, decreasing the voltage on the integrator.
Only the sense, positive or negative, of the pulse is transmitted.

In this simple delta modulation system, the voltage developed
on the integrator will track that of the applied input voltage.
The decoder is the equivalent of the integrator which is used
in the feedback loop of the encoder. The advantages of delta
modulation are simplicity and single bit quantization. The
single bit format eliminates the synchronization which is
required to extract multiple bit code words from a serially
transmitted bit stream.

As shown in the bottom of Figure 3, a simple delta modulation

may be unable to track a high amplitude, rapidly varving, analog
waveform, thus causing slope overload. To track such a waveform,
the step size of the delta modulator must be increased; however,
this has the undesirable effect of increasing quantization noise.
A CVSD system, as its name implies, has a continuously variable
step size. The step size is varied in proportion to the signal
rate of change. This results in a relatively constant ratio of
signal-to-quantization noise. Slope overload detection logic and
a phonemic filter implement the variable slope algorithm.

The slope overload detector identifies the occurrence of three
or more bits of the same sense (3 ones or 3 zeros) from the
comparator. This indicates that the comparator is attempting




to drive continuously in one direction, and that the step size
should be increased. If this occurs, the output voltage from
the slope overload detector is increased. The voltage change
will be integrated by the phonemic filter which has a 6.4 milli~
second RC time constant.

The voltage out of the phonemic filter is applied directly to
the input of the loop integrator. The loop integrator, a
single pole RC filter, will charge exponentially with a time
constant of 1 millisecond. The CVSD algorithm described here
has been selected as the TRI-TAC standard.

Multiplexing

The digitized representation of the user signal is multiplexed
to achieve economy of transmission. Signals are multiplexed
by sequentially picking up samples from multiple channels.

In PCM svstems this is typically accomplished when the waveform
is in its PAM format. To achieve an 8 kbps sampling rate

on each channel, a twelve channel system must be sampled at

96 kHz. The output of the sampler is then fed to a single
analog to digital converter; thus, one analog to digital
converter can handle multiple channels. At the receiving

end, a demultiplexer redistributes the multiplex samples to
their respective channels. A synchronizer is required to
control the distribution process such that each channel's

data is ultimately distributed back to the correct channel.
Synchronization is typically accomplished by transmitting a
known pattern in a dedicated slot within the multiplexed data
format.

3.0 SYSTEM DESCRIPTION

Two typical digital communication systems are shown in Figure 4.
The figure is intended to show the dissimilarity between two
PCM systems. The first system depicts a two-wire switchboard.
Teleplione signals may be switched among themselves or trunked
to a remote switch. The trunk is depicted as a PCM time division
multiplexed link. A signal converter is required to convert

the two-wire telephone interface to a four-wire interface, and
to generate or detect signaling and supervision tones. The
multiplexer is designed to operate with a full load signal of
-4 dBm. The video interface of the multiplexer in this case

is connected to a cable driving modulator and demodulator.

In the second system, four-wire telephones are shown inter-
connected by a four-wire switch. 1In this case, trunks are
wired directly to the multiplexer from the switchboard. The
multiplexer interface is 600 ohms and receives a -16 dBm full
load signal and provides a +7 dBm output signal. This
multiplexer ie shown as an 8-bit PCM multiplexer. The video




interface in this case is connected
demodulator designed for radic transe.

The dissimilarity between the two svstem .
is apparent.

4.0 INTEROPERABILIT

Consider a typical tactical field deplowmen:

is self sufficient; however, its proximit e .
is assured in most parts of the world. Frob w»
operability may be alleviated by simply pr '

to those users requiring them (possib]
one commercial phone).

In many applications, It may be desiry
interconnecting two communications svates
converter can be used to allow dissimilar «

of the systems to be operated together. tor:
code conversion are shown in the upper port.
shown in the first example, the interface na
providing compatible multiplexers, moden :

each of the two communications svstems Wi
connected. Most likely, the tvpe of m
transceiver connected will be identicas

one of the two systerms.

In the basic system, a tactical multiplexer w
transmission equipment have been relocated o

switch. (Although a radio set is shown, a
system could be used.) The alien tactl -
interface amplifiers and signal ing nvert

complete interface.

If a strategic radio set (or cable dri

the tactical radio set (or cable driver

must be installed as shown in Figure &5,
additional interface amplifiers mav be re¢

the tactical multiplexer video signale wits tiu
set.

Invariably, one of the systems must ir

that is, equipment which is unfamiliar

will be difficult to maintain. Assuming t!
the problem remains of matching impedances ar
out of the multiplexer and also of matching -
supervision techniques between the two svsten

The preferred technique, using a Digital
interoperability, is shown in Figure ° a: "
there is no need for alien multiplex or transs

v
e
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A strategic multiplexer may be used at the strategic site, and a
tactical multiplexer may be used at the tactical site. The
electrical interface consists of 4 or fewer coaxial cables and

is readily matched by internal circuits. This is to be compared
with 12 to 24 matching circuits for an audio interface. Digital
code conversion can transform data rate, channel modularitv,

PCM format and even signaling and supervision tones between

two dissimilar systems. If a digital code converter is used,

it is only required within one of the two systems which are

to be interconnected. The other system remains virtually unchanged.

Installation of new systems, such as the addition of a satellite
radio, is greatly simplified through code conversion. All
systems (strategic, tactical, special, etc.) may utilize the same
radio equipment. A code converter insures a compatible radio
interface. The satellite link can utilize an existing format
with code converters required at the few installations which do
not use that format. Alternatively, a narrow band format may

be dictated which would reduce transmission bandwidth. Eight
bit PCM (64 kbps per channel) can be converted to 32 kbps CVSD
for 2 to 1 compression or converted to 16 kbps CVSD for a

4 to 1 compression.

5.0 DIGITAL CODE CONVERTER TECHNIOUE

Digital Code Converters have been built which digitally convert:

12 channel, 6-bit, pgloo, PCM —@—————p= 12 channel, 8-bit, p:255 PCM
12 channel, 6-bit, u¥100, PCM .gge——pe 18 channel, 32/16 kbps CVSD
12 channel, 8-bit, u%*255, PCM =t=————p= 18 channel, 32/16 kbps CVSD

Where channel groupings between systems are different, some of
the channels of the larger system are not used. The conversion
is accomplished on a wideband trunk without restoring the signal
to analog baseband. Trunk conversion is emphasized because of
the economy realized through a single multichannel conversion.

The 8-bit PCM to 6-bit PCM code conversion method is relatively
straight-forward. It is accomplished by a Read Only Memory

as shown in Figure 6. PCM data of one format is serially shifted
into a serial-to-parallel conversion shift register. This
register addresses a Read Only Memory (ROM) whose output is the
transformed code word. The output of the Read Only Memory goes
to a parallel-to-serial conversion shift register. This
conversion is accogp%ished by directly mapping one PCM code

word into another.™’ Digital filtering is not required because
identical sampling rates are used in both PCM systems.

A CVSD to PCM code conversion is more complex.5 The sampling rate
is either 32 kbps or 16 kbps for CVSD and 8 kHz for PCM.
Digital filtering is required to transform the sampling rates.




Furthermore, the CVSD system uses a syllabic compressor. Decoding
of the CVSD signal requires a knowledge of the past history of

the channel. The 6.4 msec syllabic time constant used in the CVSD
system indicates that at least a 6.4 msec history of the channel
must be retained to decode the signal.

A CVSD to PCM code conversion is accomplished through the use

of digital filters which emulate the performance of an analog
CVSD encoder or decoder. The interconnected digital filters
produce integer samples representing the signal encoded within
the CVSD channel. These samples are ultimately produced at an

8 kHz sampling rate and may be directly converted from Read Only
Memory to a compatible PCM format. The complexity of the

CVSD to PCM code converter over that of a PCM to PCM code
converter is increased because of the requirement for digital
filters. However, the increase is not significant as individual
digital filters may be time-shared between a number of multiplexed
CVSD channels.

A block diagram in Figure 7 illustrates the PCM to CVSD and CVSD
to PCM code conversion process. Read Only Memories are used

to convert 8-bit companded PCM to 12-bit linear PCM which can

be prc-essed by the digital filters. For 6-bit PCM, a second
ROM first converts 6-bit PCM to 8-bit PCM before conversion to
12-bit linear PCM.

An interpolator converts between the 8 kHz PCM sampling rate and
the 32 kHz CVSD sampling rate by inserting 3 intermediate sampling
points between each PCM sample. This yields the required 4 to 1
rate conversion. The filtered output is applied directly to a
numerical magnitude comparator which is the input to the CVSD
encoder. The reverse conversion uses the same filter for
converting from the decoded CVSD sampling rate of 32 kHz to the

8 kHz PCM sampling rate. Look-up tables form the basis of the
conversion of the 12-bit integers, first to 8-bit PCM and then,

if required, to 6-bit PCM.

The digital CVSD decoder is shown in block diagram form in

Figure 8. At the input is a 3-bit shift register with logic

to detect 3 identical bits in a row. A detection will cause the
input to the phonemic integrator to be switched to a level of

291, thereby causing the phonemic filter output to increase in
value. The levels 3 and 291 represent the minimum and maximum
step sizes the CVSD encoder inputs to the phonemic filter.

These are at the same step size ratio, approximately 1 to 100,

of an analog encoder (minimum, 30 millivolts to maximum 291 volts)
and are analogous to the CVSD step sizes of the encoder. The
filter output will continue to increase to a maximum of 59740

or until an input bit of different sense occurs to break the string
of identical bits.




The phonemic filter consists of an adder, a register, and a
multiplier. The register holds the output value of the filter
which was computed during the last sample. The multiplier
multiplies the last output by a factor of 0.995, emulating the
discharge of a phonemic filter having a time constant of

6.4 msec. The input sample (291 or 3) is then added to the
attenuated last sample to produce the current phonemic filter
output. This value will be loaded into the register on the next
clock pulse. The phonemic filter implements a difference equation:

Y % 0.995 Y X

(n) (n-1) (n)

where Y(n) is the new output, Y( is the previous output, and

n-1)

X(n) is the input (either 3 or 291). In this equation, 0.995

is approximated by 1019/1024 and all results are translated to
intugers. The two input values are determined from the CVSD
algorithm itself. This phonemic filter has a time constant of
6.4 msec at a 32 kHz sampling frequency and accurately models the
equivalent RC time constant. The divide by 8 is made for scaling
down the value.

Each of the parallel bits from the phonemic integrator goes
through "exclusive-or'" gate which will selectively negate the
entire output in response to the input CVSD bit sense. Thus,
the output of the phonemic integrator will be either added to,
or subtracted from (negative, 2's complement value), the loop
integrator values. This operation is analogous to the operation
of the analog CVSD.

The loop integrator is similar to the phonemic integrator except
that the attenuation constant is 0.969 which is equivalent to

an RC time constant of 1 msec at the 32 kHz sampling rate. The
difference equation is:

1

“ 1) Fm) 2

= W VA
) 0.969

where the addition or subtraction is controlled by the sense of
the CVSD bit. Y(n) is the phonemic integrator output and Z(n)

is the loop integrator output. The 0.969 is approximated by
31/32, and all results are truncated to integers.

A 2 kHz full load tone will be encoded by a 32 kbps CVSD encoder
as a periodic sequence of 8 ones followed by 8 zeros. Table 1
presents a decoding example showing for each clock period:

the CVSD bit; the input, X(n)’ to the phonemic integrator; the

Z(n), of
the loop integrator; and the decoded PCM. The decoded PCM is

output, Y(n)’ of the phonemic integrator; the output,




the output of the loop integrator, divided by 16.

Z(n)’
The division is necessarv to compensate for the gain of the
digital filters. The highest amplitude PCM signal is normalized
to 2040 which can be represented by 12 bits. The value 2040

was chosen because it maps closely to and is a factor of the
exact segment and points of the 8-bit, mp=255, PCM code.

Refer to the center of Table 1 where the CVSD bit first changes
from 1 to 0. This breaks the string of identical bits and causes
the input, X(n)’ of the phonemic integrator to be changed to 3.

The new output from the phonemic integrator is calculated from

its difference equation by adding the new input, X(n) = 3, to the
past output, Y(n—l) = 45067, after multiplication by the factor
1019. The new output is Y( ) = 44850,

1024 .

The loop integrator output, Z ) is calculated by dividing the

(
phonemic integrator output, Y = 44850, by 8 and subtracting
(n)

this value (in accordance with the "0" sense of the CVSD bit)
from the previous loop integrator output, Z(n 1) = 22666, after

multiplication by the factor 31. The new loop integrator
32
output is Z(n) = 16351. The loop integrator output, Z(n)’ is

then divided by 16 to generate the final converted PCM value of
1022. This value will then be filtered by the interpolator and
converted to the 8-bit PCM format.

10
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TABLE 1 - DIGITAL DECODING EXAMPLE FOR 2 kHz TONE

CVSD X(n) Y(n) Z(n) PCM
45067 -22666
1 3 44850 -16351 -1022
1 3 44634 -10261 -641
1 291 44707 -4352 =272
1 291 44780 1381 86
1 2911 44852 6945 434
1 291 44924 12343 771
1 291 44996 17582 1099
1 291 45067 22666 1417
0 3 44850 16351 1022
0 3 44634 10261 641
0 291 44707 4352 2772
0 291 44780 -1381 -86
0 291 44852 -6945 -434
0 2911 44924 -12343 -771
0 291 44996 -17582 -1099
0 291 45067 -22666 -1417
1 3 44850 -16351 -1022

Note that a single 32 kHz clock line activates both filter
registers and the slope overload detection shift register. The
clock simplifies implementation. The same filters are economically
shared in the code converter for all 12 channels and for both
encoding and decoding. The filters and look-up tables are the
critical components with respect to performance. However,

most of the circuitry is associated with supporting functions

such as synchronization, timing recovery and the electrical
interface with multiplexers and radio sets.

Table 2 shows a comparison of the relative circuit complexity in
the two code converters. The percentage of circuitry dedicated

to each of the primary code converter functions is indicated.

Frame synchronization represents one of the most complex code
conversion functions. Twentv-eight percent for PCM-PCM and

187 for PCM-CVSD. The code conversion function itself requires
only 67 of the PCM-PCM circuitry and 27% of the PCM-CVSD circuitry.




TABLE 2 & COMPARISON OF RELATIVE CIRCUIT COMPLEXITY

Input Interface

Timing Recovery

Frame Synchronization
Demultiplex
Sync/Signalling Deletion
Code Conversion

Timing Regeneration
Sync/Signalling Insertion
Multiplex

Output Interface

PCM-PCM PCM-CVSD
87 1%
87 1%

28% 187
87 67
67. %
67 27%
12% 127
47 3%
8% 67

127 117




6.0 SIGNAL-TO-QUANTIZATION NOISE RATIO PERFORMANCE

Signal-to-quantization noise ratio, S/Ng, was the principal
performance parameter used in evaluation of the digital code
converter. S/Nq was measured over a range of input signal levels
from -4 dBm to -44 dBm. The range in signal level is necessary

to evaluate the effects of the PCM and CVSD compression techniques.
For the 6-bit PCM to 8-bit PCM conversion, there was a significant
improvement in S/Nq, up to 8 dB, for signal levels between -14 dBm
and -28 dBm, when using the Digital Code Converter. In present
PCM systems, the analog patch methodisused to interface the 6-bit
to the 8-bit system. Measurements for the analog patch method were
performed by sending the analog signal into the 6-bit multiplexer
(one A/D and D/A hop) and then through an 8-bit multiplexer

(A/D and D/A hop) and measure the S/Nq on the output.

The improvement was relative to a 6-bit multiplex-operating
back-to-back with an identical 6-bit multiplexer. This was

due to the improved digital mapping at the 2nd segment end

points by the Digital Code Converter.

The CVSD to 6-bit PCM conversion performance was measured and
compared against predicted values. Figure 9 shows how the
performance prediction was made. The performance of a 6-bit PCM
multiplexer and a CVSD coder/decoder were each measured back-
to-back. Figure 9 shows the S/Nq versus input signal level.

The predicted value was calculated assuming that the independent
noise sources from CVSD and PCM would add. Where both curves
give the same S/Nq (at -14 dBm) then the predicted S/Nq was

3 dB lower.

Figure 10 shows the actual measured performance. It can be seen
that the 6-bit PCM to CVSD conversion performance is significantly
better than predicted. This is due to the improved digital
decoding of 6-bit PCM. The analog PCM decoder is bypassed in the
PCM to CVSD converter. In converting from CVSD to 6-bit PCM, the
analog PCM decoder is used (the analog PCM encoder is bypassed)
and the resultant dip in S/Nq for signal ‘levels around -25 dBm

is apparent. In both cases, the digital code conversion
performance is better than predicted.

Figures 11 and 12 show the results of comparative tests run on

the Digital Code Converter and on equipment connected back-to-

back in an analog interface. An improvement of approximately

3 dB is realized through digital code conversion, depending on

the particular value of the input level. In Figure 11, a test

signal was supplied to a 32 kbps CVSD encoder. The digital CVSD encoder
output was multiplexed with other CVSD signals, then digitally

code converted to a multiplexed PCM signal and finally demultiplexed

£
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and decoded to analog. The S/Nq distortion in the analog output
was measured with the results shown. In the analog test, the
digital CVSD signal was decoded to analog by a CVSD decoder and
then fed into a PCM multiplexer. The signal was the PCM encoded,
multiplexed, demultiplexed, and decoded. The S/Nq in the output
was measured and plotted for comparison. The significant
improvement through digital code conversion is apparent.

Figure 12 shows similar results for 16 kbps CVSD.

7.0 CONCLUSIONS

The digital code conversion interoperability technique which has
been presented, offers significant advantages over other
alternatives. By providing code and signal conversion at the
video output of a compatible multiplexer, complete compatibility
with the switchboard and local user instruments can be maintained.
- The alternative, the installation of an alien interface multi-
plexer circuit and signal conversion module which is compatible
with a remote system, would necessitate an electrical conversion
of signal amplitudes, impedance and possible signaling and
supervision techniques. The digital code converter does not
require forced air cooling and uses little power. As no controls
are required for the digital code converter, a sealed enclosure
may be used which simplifies EMI constraints.

The digital code converter offers significant performance
improvements. In particular, the unit operates synchronously
with the input data and alleviates the need for channel filters.
In a PCM to PCM code conversion, it is possible to provide
multiple conversions with no additional build-up of quantization
noise.

Where additional degradation is permissable, an 8-bit PCM system
(a 64 kbps channel) may be converted to 16 kbps CVSD providing

a 4 to 1 bandwidth reduction. A digital code converter applique
can be used to provide bandwidth compression® for existing
multiplex systems. The installation of a new multiplexer would
require training and extensive maintenance facilities. The
digital alternative is easily maintained and requires no
adjustments.

The use of these devices will extend life-cycle utilization of
current inventory equipment in step with evclutionary introduction
of new TRI-TAC equipment.

Acknowledgements: The authors are greatly indebted for the help
and cooperation of their colleagues at Electronics Command,
Comm/ADP Lab, Fort Monmouth, NJ and at Electronics System
Engineering, E-Systems, Inc., ECI Division, St. Petersburg, FL.
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8-BIT PCM ——=| SER|AL TO PARALLEL
' 768 kHz CLOCK ————a=| SHIFT REGISTER

(8-BITS) x (96 kHz) = 768 kHz
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{12 CHANNELS) x (8 kHz) = 96 kHz XK ’

96 kHz LOAD ———=={ PARALLEL TO SERIAL
576 kHz CLOCK——=={ SHIFT REGISTER

—% 6-BIT PCM

1 (6-BITS) x (96 kHz) = 576 kHz

FIGURE 6. 8-BIT PCM TO 6-BIT PCM CODE CONVERSION
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PCM
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FIGURE 7. BLOCK DIAGRAM OF CODE CONVERSION PROCESS
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