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desc ribing such collisions is rather meager. The situation has improved

somewhat recently as a growing recognition of the practical importance of

these processes deve1ops .~
2 6

~

The AERL Electron Kinetics program was proposed in order to

provide absolute cross section data , particularly, with regard to colli-

sion processes between electrons and excited atomic and molecular species.

The program consists of parallel and complementary experimental and theo-

retical efforts .

The goal of t L~~se combined program efforts is to provide reliable

absolute cross section data covering range of electron energies encountered

in the electric discharges of interest.

In addition to the complementa ry benefits offered by the experimental

and theoretical efforts , each has certain capabilities not shared by the other.

For instance, the theoretical effort i.e not restricted to metastable excited

species as is the experimental technique . It can also be applied to allowed U

transitions from excited species , which can also reach high densities in the

discharge due to radiative trapping and hence effectively exhibit metastable

properties. The experimental program on the o ther hand can handle proc-

esses in ground state or metastable molecular species for which accurate

wavefunctions are not available and are therefore not amenable to the theory .

(2) Long, D. R. and Geballe , R . ,  Phys . Rev. 1, 260 (1970).
(3) Lake , M. L. and Garscadden , A . ,  28th Gaseous Electronic s Conference ,

Rolla, Mo. (1975), Paper C-5.

(4) Mityu rwa , A.A. and Penkin , N. P., Opt. Spectrosc . 38, 229 (1975) .
( 5) Wilson , W.G . and Williams, W.L. , J. Phys. B9 , 423 (1976).
(6) Tanne , P. D . ,  “Cumulative Ionization and Excitation of Molecular

Nitrogen Metastables by Electron Impact , ” Dissertation (1973),
School of Engineering , Air Force Institute of Technology.
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The rare gas monohalide lase r systems which have been the subject

of extensive experime ntal and theoretical inve -.4igations at AERL~
7 ’ 8 ,9)

have emerged as extremely promising candidates for satisfying certain goals

of the DARPA visible laser program. These studie s have identified electron

collision processes with metastable state s of the rare gas atom constituents

as playing a major role in both discharge stability and in determining the

equilibr ium metastable concentration , which through reaction with the halo-

gen molecule leads to excimer formation.

Therefore , the specific goal of the AERL electron kinetics program

is to provide absolute cross sections for electron collisions with the first

excited states of the rare gases argon and krypton , both for the metastable

substates and for the substates which are optically connected to the ground

state .

Examples of the transitions of interest are indicated in the partial

energy level diagram of krypton shown in Figure 1 and for argon shown in

Figure 2. The only theoretical calculations available for transitions of the

type shown in Figures 1 and 2 which cover the energy range of interest for

laser modeling are those of Burke et al. ( 10) for the He atom. The transi-

tions corresponding to those shown in Figures 1 and 2 are shown in Figure 3

they are 2’S -‘ 2’P and z3s -‘ 2 3P transitions. The important feature of these

(7) Ewing , J. J. and Brau , C . A . ,  Appi. Phys . Lett . 27 , 350( 1975) .

(8) Ewing , J.J. and Brau, C.A. , Phys. Rev. Al2, 129(1975).
(9) Mangano, J. A. and Jacob, J. H., Appi . Phys. Lett. 27, 495 (1975).

(10) Burke, P.G., Cooper, J. W., Orma nde , S. and Taylor, A. J . ,  Abstract
V ICPEA C, Liningrad , ( 1967).
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cross sections is the extremely large magnitude, l0 14 cm2 which sup-

ports our contention that the corresponding transitions between the first

two excited states of the other rare gases should be extremely large.

Furthermore , in terms of electronic structure, the first excited

state of krypton resembles the ground state of rubidium. Thus, the elec-

tron impact excitation cross section for transitions between the first two

excited states , Se -* 5p, in krypton should be analogous to the alkali atom

resonance transition which is known to be extremely large , of the order

-14 2
— 10 cm .

This value is much larger than the various cross sections involving

ground state excitation processes. Consequently , once significant fractional

populations of the 5s excited state are gene rated in the discharge then the

58 -‘ Sp excitation process will become the dominant energy loss process

• for the electrons and attempts to gene rate higher densitie s of the 5s state

will lead to less efficient operation of the laser, and due to the close prox-

imity of this state to the ionization limit will eventually lead to rapid step-

wise ionizat~on and consequent discharge instability.

The experimental -apparatus which is described in Section II employs

the crossed beams technique and was originally combined with an electron

spectrometer to perform electron energy loss analysis and hence provide

the required relative excitation cross sections . For reasons which have

been fully discussed in a previous semi-annual report , ( 11) a fluorescence

technique was substituded for the method of electron energy loss spectros-

copy in order to identify and measure the relative excitation func tions for the

transitions of interest.

(11) “InvestigatIon of Electron Impact Processes Relevant to Visible Lasers. ”
Boness , M. J., and Hyman, H. A ., AERLI Semi- Annual Report, March
1977 - Aug. 1977 13
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The source of inetastable atoms employed is a low pressure dc die-

charge tube . The source has been fully characterized and the design and

operation optimized for the’production of metastable gas atoms. Using an *

Auger inetastable atom detector absolute metastable krypton densities in

the region of the crossed electron and atomic beams have been estimated

to be l0~ cm 3.

Experiments are reported using the fluorescence technique to pro-

vide absolute cross sections for excitation from the metastable states for

krypton

The principal results of the theoretical calculations are: (1) the

electron impact excitation of nietastable argon and krypton is dominated

by a single transition (4s —o 4p for Ar and 5s -o 5p) with a large cross

section ‘~~ 100 ~ra~ at the peak) and (2) strong coupling effects are dominant

at low energies for the ns -o np transition. In addition , it has been shown

that the use of the intermediate coupling representation is required to obtain

meaningful results for cross sections between the various substates.

14

- - -—



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,~ -11 ___-  -~~~-—~~~~~~-------—.-- - ------

II. EXPERIMENT

A. TECHNIQU E

The experiment employs the crossed-beams technique , the conc ept

of which is outlined in Figure 4. A low density collimated beam of the

atomic or molecular species of interest is collided at right angles with an

c-beam of the appropriate energy whose energy spread is small compared

with the mean energy. In general, a wide variety of diagnostic techniques

can be employed to measure the electron scattering cross sections . The

merits of the various methods were discussed at length in the original

AERL Electron Kinetics Program Proposal, which concluded that the d cc-

tron spectroscopy of the inelastically scattered electrons offered the broad-

est application compared to any other single technique . However , recogniz-

• ing that on occasion other diagnostics might be preferred or required for

certain processes, the apparatus was constructed in such a way as to per-

mit the addition of these refinements without major modification to the system.

The experiment was enclosed within a double , differentially pumped ,

stainless steel vacuum chamber , bakeable to 200°C and capable of produc-

ing an ultimate vacuum in the io_ 8 
- Torr range . A schematic of the vacu-

urn system is shown in Figure 5. - The two halves of the vacuum chamber

communicate via a small orifice through which the atomic beam passes.

Thu s the atomic beam source and rnetastable excitation system are separa-

ted from the electron impact , crossed-beams region and from the electron

spectrometer . Each chamber is provided with an automatic gate valve for

15 
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emergency isolation in the event of power failure and also to provide rapid

recycling of the system. Liquid nitrogen traps isolate the oil diffusion

pumps to prevent oil backstreaming from the pumps and contaminating sensi-

tive surfaces. Each half of the vacuum chamber is pumped by a 6-inch ,

high- speed oil diffusion pump. Figure 6 shows a photograph of the pumping

system and Figure 7 shows a closeup of the stainless steel vacuum chamber.

B. METASTABLE SOURCE

Originally both glow discharge and charge transfer sources were

proposed as techniques which might offer viable schemes for the production

of beams of metastable rare gases possessing useful intensity.

The principle of the charge transfer process leading to excited state

formation is indicated in Figure 8, and the anticipated experimental arrange-

ment is shown in Figure 9.

Charge exchange cross sections for collisions between rare gas ions

and alkali metals are known to exhibit extremely large cross ections. ( 12)

Since the alkali metal ionization potential is near resonant with the ioniza-

t ion potential of the corresponding metastable ra r e gas , then it is to be ex-

pected and has , in fact, been confirmedU3) that these charge-exchange col-

lisions are likely to produce copious amount s of rnetastable states of the

rare gas .

Both the charge transfer and glow discharge techniques were pur-

sued initially, however , the relative technical simplicity of the glow die-

charge technique has led to faster development of thi s source to the extent

(12) Peterson , J .R .  and Lorentz , D. C.,  Phys.  Rev. 182, 152 (1969) .

( 13) Neynaber , R .H .  and Magnuson , G. D . ,  S. Chem. Phys. 65 , 5239 (1976).
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(i.R. PETERSON & D.C. LORENTS, PHYS REV, 182, 152, (1969) )

BRANCHING RATIOS, y

• *RARE GAS ALKALI X
x x +x *

He Cs 0.85

N. Na 0.5
— Ar Rb 0.4

(R.H. NEYNABER & G.D. MAGPIIJSON, J. DIEM. PHYS. 65, 5239, (1976) )

G7785 -

Figure 8 Charge Exchange Leading to Excited State Formation
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that an optimized design was installed in the system in order to perform

the electron scattering experiments.

1. Glow Discharge Source

The principle of the glow discharge source is to simp ly create a

low pressure stable D.C. discharge and to allow the discharge products to

effuse from a small aperture located at the end of the discharge tube . The

discharge tube is located in a separately pumped chamber having a pumping

speed of approximately 550 ~ /sec . This chamber communicates with the

spectrometer chamber via a 0.050 inch diameter orifice. Various aper~

tures can be placed between the discharge tube orific e and the 0.050 inch hole

separating the two chambers. Bia s potentials can be applied to these aper-

three in order to reject charged particles and to quench high lying, long

lived Rydberg states in the beam. Thu s , in principle , it is possible to ex-

tract a quasi - atomic beam thr ough the 0.050 inch aperture which contains

only ground state atoms and the required metastable atoms.

The developmental work leading to an optimized design of glow dis-

charge source has been completely described in a previous semi-annual

report .

A variety of discharge sources were investigated and the f nal de-

sign adopted is shown in Figure 10. The source consists of a short dis-

charge tube approximately two inches long which is closed at one end by a —

glass plate carrying a 0.020 inch diameter hole . The discharge anode was

placed beyond the end of the 0. 020 inch aperture so that the discharge was

constricted by the 0.020 inch operature prior to reaching the anode. This

constriction was found to be the key feature for optimizing metastable production.

Maintaining a short discharge length was found to reduc e the photon component .
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The performance of the various sources was assessed by placing

an Auger detector approximately 10 cm downstream of the source. The

— main components of the detector and the operating circuit are shown in

Figure 11.

The detector operates on the Auger principle, namely, tha t metas-

table atoms possessing excitation energy in excess of the work function of

a metal sur face may libera te electrons from that metal surface upon im-

pact with it. Usua lly a highly transparent grid is placed above the metal

surface and bia sed positively with respect to the surface so tha t the ejec-

ted electrons are completely removed . If the secondary emission coeffi-

cient for the particular metastable and the particular surface are known

then by measuring the current leaving the surface the metastable flux can

be estimated. The guard plates ensure high elec trical insulation sinc e

small current s are normally encountered; the deflector plates are to remove

any remaining charged particles from the beam.

Energetic photons may also liberate electrons from the surface of

the Auger detector and , therefore, once charged particles have been re-

moved from the beam it is essential to discriminate between the photon and

rnetastable component s of the beam both of which contribute to the measured

Auger current . The technique adopted for this purpose is due to Stebbings , U4)

and is based upon the difference in absorption length of the photon and metas-

table components of the beam when a background gas is introduced between

the source and detector. Much of Stebbings ’ reported data described the ab-

sorption of metastable helium atoms and photons produced in a low pressure

(14) Stebbings, R.F., Proc . Roy. Soc. 241, 270 (1975).
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Figure 11 Schematic of the Auger Detector and Operating Circuit
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helium discharge by argon gas contained in a gas cell between the source

and detector. Therefore, for comparative purposes, the performance of

the various discharge tubes was usually determined initially by operating

with a helium discharge and performing attenuation measurements of the

photon/metastable beam at the Auger detector as a function of argon back-

ground gas pressure which could be separately and uniformly introduced

into the path of the beam via an auxiliary gas inlet in the spectrometer

chamber.

A typical plot of current measured at the Auger detector vs back-

ground pressure is shown in Figure 12. This plot is for a helium discharge

using argon as the background gas. Two regimes are clearly discernible

on the plot, an early rapidly attenuated component followed by a much larger

tail. The more slowly decaying component is ascribed to the absorption of

photons in the beam which are removed by photoionization of the argon

background gas. Since the absorption length is known (10 cm) and the gas

pressure jS measured , the cross section for this process can be deduced - 
-

from the slope of the line at higher pressures. The value obtained viz

a 2 x ~~~~ cm
2 is in excellent agreement with the value obtained by Steb-

binge and also by other workers, for the photoionization of argon by helium

resonance photons . The photon component can be obtained by extrapolating

the long tail of the Auger current to zero pressure. If the photon component

is subtracted from the total Auger current and the natural log of the residual

current again plotted against background pressure, the cross section for the

low pressure process , ascribed to the attenuation of the metastable corn-

ponent can be deduced . Such a plot is shown in Figure 13 , the cross section

27
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obtained from the slope of the plot is

— 15 2a = 5 xlO cm

This value is approximately a factor of five lower than the value obtained

by Stebbing s . Thi s is of some concern but could be explained by the poor

angular definition employed in this attenuation experiment . Because of the

large angular acceptance of the Auger detector small angle scattering event s

still contribute to the beam and hence the decay of the Auger current occurs

more slowly than if these events were excluded, resulting in a low value for

the measured cross section.

Similar experiments were performed using argon and krypton in the

discharge and a variety of background gases and the operation of the source

optimized as described above.

C. ELECTRON SPECTROSCOPY EXPERIMENTS 
*

During the initial contractual periods an electron gun and electron

spectrometer system was designed and fabricated . A schematic of the

crossed beams apparatus employing the hemispherical electrostatic analy-

zer as the diagnostic is shown in Figure 14. A photograph of the electron

gun and electrostatic analyzer is shown in Figure 15. Details of the design,

construction and operation of this system have been fully discussed in previou s
(11, 15, 16 , 17)semi-annual reports.

(15) “investigation of Electron Impact Processes Relevant to Visible Lasers. ”
Boness , M.J . ,  and Hyman, H.A ., AERL Semi-Annual Report , Sept 1975- - 

-

Feb. 1976 .

(16) “Investigation of Electron Impact Processes Relevant to Visible Lasers. ”
Bonese , M.J .,  and Hyman , H. A ., AERL Semi-Annual Report , March
1976-Aug. 1976 .

( 17) “Investigation of Electron Impact Processes- Relevant to Visible Lasers. ”
Bonees , M.J. ,  and Hyman, H. A ., AERL Semi- Annual Report , Sept .
1976-Feb. 1977.
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Operating the glow discharge with argon , experiments were per-

formed according to the origina l conception of the mea surement . Over the

angular range accessible to the experiment and at a variety of incident elec-

tron energies no measurable electron-metastable scattering energy loss

signals in the vicinity of 1 .6 eV correspond ing to the transition

Ar (4sj ) + e -~~ Ar (4pj’) + e

we re detected.

This transition is, of course, a strongly allowed optical transition.

It is well known that at high electron energies angula r distributions for the

scattered electrons are strongly peaked in the forward direction . At low

energies generalizations are more difficult and several factors such as

- - resonance phenomena and the limited number of partia l wave contributions

to the scattering amplitude complicate the issue tremendously. Thus the

non- isot ropic behavior of the angular distribution combined with the signal-

to-noise limitations imposed by spuriou s scattering signals and long term

stability which limited the signa l averag ing period s could be a valid explana-

tion for the absence of the scattered electron signa l over the angular range

accessible to the experiment .

D. THE FLU ORESCENCE TECHNIQUE

Due to the problems encountered with the technique of energy loss

spectroscopy the possibility of a fluorescence measurement was considered

as a method of observing the process of interest,

viz e + Kr * (Ssj ) -. Kr~ * (5p j ’)  + e

via the fluorescence

Kr** (5pj’)-.. Kr (Ssj) + hv

33
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A comparison of the relative sensitivities of the fluorescence tech-

nique and the method of energy loss spectroscopy involves many factors.

The near isotropic nature of the fluorescence emission together with the

possibility of employing large f- number extraction optic s strongly favor s

the fluorescence technique. However , detector sensitivity, intrinsic noise ,

and spectrometer transmission efficiency favor energy loss spectroscopy.

After considering each of these factors it appeared that the fluorescence

technique might provide a better opportunity to perform this particular

measurement.

An additional benefit accrued from adopting the fluorescence tech-

nique was the possibility to increase the incident e-beam intensity by using

larger apertures in the diode stage of the gun. This improvement was

not possible when employing the electron spectrometer since the corres-

ponding increase in the angular divergence and space charge spreading of

the e-beam significantly reduced the signal-to-noise ratio due to a very

large increase in electron scattering signals from surfaces.

Once the decision was taken to adopt the fluorescence technique the

experiment was modified accordingly . A schematic of the fluorescenc e

diagnostic arrangement is shown in Figure 16. Rather than employ an opti-

cal extraction system comprised of lenses which requires carefu l align-

m ent , a light pipe system was employed as shown . The light pipe was

3/8 inch diameter quartz and subtended approximately an fl ratio at the

collision reg ion. The light pipe was sealed through the wall of the vacuum

chamber using a viton 0- ring seal. A stainless steel bellows arrangem ent

was employed for ali gnment purposes. The end of the light pipe was focus-

sed onto the entranc e slit of a 1/4-meter Jarrel-Ash m onochromator using

34 
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a cylindrical lens. A blocking filter which defined the spectral region of —

interest was interposed between the cylindrical lens and the entrance slit

of the rnonochromator. The monochromator was equipped with a 590 lines/

mm grating blazed at 750 nm. The exit slit of the monochromator was

coupled into an RCA model C 31034 photomult iplier using another lens . The

characteristics of the photomultiplier are shown in Figures 17(a) and (b).

The characteristic s shown are actually for the improved ‘A ’ variant of this

model the difference being a factor of two lower quantum efficiency for the

C3l034 model. In order to reduce the dark count the tube was housed in a

refrigerated housing and cooled to -20°C. At this temperature a dark count

rate of approximately 20 cps was obtained. The refrigerated housing con-

tam ed a built-in pulse preamplifier the output of which was taken to the

standard Canberra Industries pulse counting equipment previously descr ibed .
E . FLUORESCENCE EXPERIMENT S

The experimental arrangement finally employed for the fluorescence

measurements is shown in Figure 18.

As with the energy loss spectroscopy considerable problems were —

encountered with background noise signals originating in the experiment

itself. The photon background generated by the discharge overlapped ex-

actly the fluorescence signals of interest and was extremely difficult to cope

with . The signal was reduced as much as possible by introducing a com-

plete shield around the collision region as shown and by collecting the major

component of the photon flux inside the Woods ’ Horn which was open at the

small end in order to vent the box .

Photons emitted from the filament which travelled collinearly through

the collision region with the c-beam and then scattered off various surfaces

36 
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~.s to the collection optics were another problem. This was reduced con-

siderably by providing the venetian blind style electron collec tor which both

monitored the primary e-beam and provided a dump for the continuum em-

ission from the filament.

Initially expe riments were pe rfo rmed to measure the Ar (4pjt )  -
~~ Ar

(4sj), Kr  (5pj ’) —
~~ Kr (5sj) and Xe (6pj ’) -

~~ Xe (6 sj), fluorescence by

exciting the npj ’ levels directly by electron collisions with g round state

atoms. This served to verify the pe rfo rmance of the system and

also to provide a convenient method of exactly calib ratin g the mono -

chromator reading for the wavelengths of interest. Natura lly, the discha r ge

was unnecessary for these experiments; the primary e-beam was simply

crossed with a beam of ground- state atoms. Fluorescence spectra for the

transitions of interest in argon, krypton and xenon obtained at an incident

electron energy of approximately 20 eV are shown in Figures 19- 21 ,

respectively.

1. Meta stable Scattering Experiments

Since the electron-metastable induced fluorescenc e signals never

exceeded 1% of the background fluorescence noise signal long term signal

averaging procedures were routinely employed with accumulation periods

typically averaging 1-2 x 1O 3 sec. In practic e, the disr .ha r ge and electron

gun were operated for several hours prior to data accumulation to ensure

complete outgassing of the discharge electrodes , thermal stability in the

electron gun , stabilization of the background pressure and electron gun

emission current.
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Data accumulation was performed by selecting the wavelength of

interest in the 1/4 meter monochromator and then adjusting the e-beam

energy to the required va lue . The electron-metastable fluorescence signa l

was detected as the difference between the signals collected with the e- beam

on and off. Rather tha n modulate the .- beam by reducing the hea ter  cur r en t

which would also have slightly modulated the photon noise background due to

filament emission the voltages applied to the electron gun were reduced to

zero. At c-beam energies significantly lower than the energy required to

excite the upper fluorescing level directly from the ground state the differ-

ence signal corresponded to fluorescence from electron-meatastable colli-

sions. However , since the ratio of rnetastable to ground- state species in

the beam was extremely small spuriou s signals could , in principle, occur

due to the high energy tail of the c-beam distribution (althoug h orders of

magnitude less than the peak intensity~ interacting directly with ground- state

species . In practice, such signals were detected by repeating the c-beam

“on” and “off” experiments with the discharge tube off but maintaining the

gas flow. Such signals were only detected when the nominal c-beam energy

was within a volt of the threshold energy for direct excitation from the

— ground state.

Measurements were attempted at wavelengths corresponding to the

various peaks in the fluorescence spectra shown in Figures 19-21 , however

the very large background photon flux, extraneous noise problems and limits

to long term stability of operation interfered considerably with data accumula-

tion . Data corresponding to fluorescence from electron-metastable and

electron-ground state collisions is presented in Figures 22-25. For kryp-

ton reliable electron-metastable collision signals over an extended energy
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range were reliably detected for the combined 8104 A and 8113 A wave-

lengths corresponding to fluorescence from the p9 -~~ and p8 
-, 85 transi-

tions. The threshold for direct excitation of the p8 and p9 levels directly

from the ground state occurs at 11.44 eV and a large increase in fluorescence

due to this process is observed at this energy. The only other transitions

for which electron-metastable fluorescence signals were detected were at

locations in the fluorescence spectrum corresponding to the combined

7587 A and 7602 A (p5 -~~ S4~ 
p6 -~~ 85

) and 8263 A, 828 1 A and 8298 A (p7
8
4~ ~ 3 -, and p2 -+ 

~~ 
transitions . The signal-to—noise st~ tl stic s for

these transitions were significantly worse than for the 8104 A and 8113 .R
transitions and due presumably to the combined reduction in c-beam inten-

sity and cross sections at low energies the statistically significant data

points were restricted to those shown. Once again near the threshold s for

direct ground-state excitation large increases in fluorescence intensity

were observed which restricted measurements of the electron-metastable

fluorescence signal to energies below these threshold .

Similar difficulties affected the electron-argon metastable collision

measurements and only signals corresponding to the combined 8104 A and
8115 A (p 7

_, 8
4~ p9

-. s~) transitions shown in Figure 25 could be detected .

a . Cross-Section Normalization

In order to place the cross-section measurements on an absolute

scale and to establish upper limits for the weaker undetected transitions ,

the following normalization procedure was adopted . First , the direct

ground- state excitation cross section for the transition of interest was

norma lized wit h respect to the lie 7065 A 3 3S-. 23P. This cross section

has been measured absolutely by a number of authors and good agreement ~
- -
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exists between the various measurements . Thi s transition was selected

because It falls within the spectral range occupied by the transitions of in-

terest in krypton and argon and therefore does not Introduce additional un-

certainties due to variations in the spectral response of the photomultiplier.

- .  
The value of

-18 2a = l . l x l O  cm

( 18)for the peak cross section obtained by Jobe & St. John , and which occurs

close to threshold was employed for the normalization. The energy depend-

ence of the He 53 -, 23P clearly indicating the resonant nature of the thresh-

old behavior is shown in Figure 26. Absolute measurements of the ground

state line excitation cross sections have been made by Zapesochnyi and

Feltsan, ( 19) however normalization of the present measurements via the

helium excitation function was preferred since the helium data has been sub-
-

~~ atantiated within 20% by three independent groups of authors and , therefore,

provided a more reliable basis for the normalization. It also provides a

basis for comparison with the Zapesochnyi & Feltsan data and which is in-

dicated -~ .r igures 22- 25. Since the published data includes all transitions

from the ~~~~~~~~ p states to all final s states excluding the ground state,

these cross sections had to be adjusted according to the appropriate ratio

of oscillator strength to account for those transitions not included in the

present measurements. For this purpose the appropriate transition proba-

bilities recently calculated by Lilly~
20

~ were employed .

( 18) Jobe , J. D. & St. John , R.H., Phy8• Rev. ~~j, 117-121 (1967).

- •  ( 19) Zapesochnyi, I .P. and Feltsan, P.V., Optika I Spectrosk (USSR), 20,
521 ( 1966) Eng lish translation in: Optic s & Spectrosc (USA ) 

~Q, 291T1966).

(20) Lilly, R. A., J .Opt. Soc . Am.~~~~, 245 (1976).
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Finally, in order to place the electron-metastable line excitation

cross sections on an absolute scale , it was necessary to determine the

ratio of meta stable to ground- state species in the atomic beam.

Knowing the secondary electron emission coefficient (‘y) for the meta-

stable species in question on the surface of the Auger detector , then abso-

lute metastable densities at the detector location could be determined from

the magnitude of the metastable component of the Auger current deduced

from attenuation measurements similar to that shown in Figure 12. This

value was extrapolated back to obtain the absolute value of the meta stable

density at the collision region defined by the interception of the electron and

atomic beams.

The value of y for argon metastables incident on a gold plated sur-

face (y = 0.5) was taken from the work of Dunning et al , 

(21) the value of —

y used for krypton was 0. 25.

The absolute value of the ground- state atom density at the collision

was determined from measurements performed with the electrostatic d cc-

tron energy analyzer system described in Section U.C.

As previously described for the electron spectroscopy experiments

the collision volume defined by the acceptance angle of the electrostatic

analyzer acceptance optics was designed to be invariant with respect to an-

gular location as illustrated in Figure 27 in order to provide accurate rela-

tive angular distribution measurements. For purposes of determining the

ground- state atom density (performing the fluorescence measurements) the

angular divergence of the atomic beam was increased so that the cross-

(2 1) Dunning, F.B., Rundel, RD., Stebbing, R.F. Rev. Sci. Inst. 46,
697 1975.
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the Electron Spectroscopy Experiments

52 -

5’— ~~~~~~~~ ~~~~~~~~~~~~~~~~ 
£
~~
— —— — — -

~~~~~~~~~



-~ - -~ rt-~ - -s--~ rfl’- ~~~~~~~~~~~~~~~~~~~~~ 

sectional area exceeded the area intercepted by the acceptance angle defined

by the electrostatic analyzer acceptance optics and the c-beam for 900

r scattering as shown in Figure 28.

Using this geometry the metastable source gas flow rate was adjusted

to yield the usual optimized background pressure conditions and the elastic

electron scattering signal through the electrostatic analyzer as measured by

the channeltron count rate was measured. The atomic beam was then turned

off and gas introduced into the spectrometer chamber through a separate

large diameter (3/4~t) orifice remote from the collision region until the

scattering signal measured by the channeltron count rate was equal to that

obtained with the atomic beam operating. Under the latter conditions the

pressure is uniform throughout the chamber and was measured on the ion

gauge. Since the collision volume is invariant under the two conditions as

illustrated by comparing Figures 28(a) and 28(b), then the background pres-

sure measurement determines the atomic beam density and , thus, yields

the absolute value of the ground- state atom density re quired to provid-e the

ratio of metastable-to-ground state densities necessary for the metastable

cross- section normalization procedure .

The values of the metastable excitation cross sections are indicated

in Figures 22-25. The vertical bar on the figures indicates one standard

deviation for the statistical variation imposed by the background signal

counting rate and represents the statistical accuracy to which the rnetastable

scattering signal could be determined . Incomplete suppression of extrane-

ous signal Interference would reduce the accuracy determined by statisti-

cal fluctuations. These interferences were rount inely & periodically yen-

fled to be absent during data accumulation.
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Figure 28 Diagram of the Collision Chamber Geometry Employed
for Determining the Atomic Beam Density for the
Fluorescence Measurements

(a) Atomic Beam Scattering Measurement

(b) Background Gas Scattering Measurement Note the
Identical Interaction Volumes Defined by the
Analyzer Entrance Optics
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b. Energy Scale Calibration -

The 33S -. Z~ P transition in helium which was used for normalization -

of the cross sections was also employed to provide a calibration for the elec-

tron energy scale. This transition which has a resonance at threshold as 
- -

shown in Figure 26 , exhibit s a vertical onset at 22.72 eV and was used to

calibrate the energy scale to an accuracy determined by the c-beam energy

distribution which was approximately 0.4 eV.
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been include . for the dominant s-p transitions (see Section I I .D) j .  The

Born cross section, in units of ia0
2, for a transition from initial state i to

final state f is given by 
4

Kmax
8Q.f = —i-— J ~~~ 

(K) d (In K) (1)
I K .nun

2 .  . -where k1 is the incide nt electron energy, AE = Ef - E~ is the transition

energy, and K = - 

~~~~~ 

is the magnitude of the momentum change of the

incident electron. The quantity f 1f (K) is the generalized oscillator strength~
23

~
(GOS), and is given by

N

f~ 
(K) = exp (iK rj ) I’~”i- >~ (2)

j = l

where ‘I. and are the initial and final wavefunctions ,of the N-electron

atom, respectively.

We start from a single configuration intermediate coupling (IC) wave-

func t ion~
24

~ for the rare-gas excited states. Expanding the IC-state in terms

of pure LS-coupled basis states, we obtain

p5 n f r J M ) =  
~~~ I P~ (

2P)~~ S L J M > < S L J I rJ > (3)

In the absence of exter nal fields J (the total angular momentum) is a ri gorous

quantum number in any representation. The expansion coefficients <SLJI rJ)

are elements of a unitary matrix, and in general are obtained by diagonalizing

the spin-orbit Hamiltonian in the LS-basis states. (24 ) Transformation matrices

between various pure coupling schemes are given in Ref. 25.

(24) Condon , E . U., and Shortley, G. H., The Theory of Atomic Spectra,
Cambridge Univ. Press , Cambridge, England (1964).

(25) Cowan, R. D. , and Andrew, K. L., J. Opt. Soc. Amer. 55, 502 (1965).
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To evaluate the matrix element in formula (2) we use the weil-known

— expansion of the plane wave in spherical harmonics:

exp (iK ’ r) = 4 i  ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ (4) ~
- -

a

with (Kr) the spherical Bessel function. Substituting expressions (3) and

(4) into (2), sun-irning ove r final degenerate states and ave raging over initial

degenerate states, we obtain

~~~ 
(K) = 

~~~ 2J. + ~ 
< I fJf Sf LfJf >

i i f f K i. A S1 L. SfLf

5 2  “ 5 2x <p ( P) nf IfSf LfJf ~ 
j~ (Kr) Y

~ 
(r)~ p ( P) n1I1S1L1J1>

2
x <S1L1J~ (5)

The reduced matrix element is evaluated by two applications of Eq. (7. 1.8)

of Edmonds~
26
~ to give

<
S
(
2p ) 1~5 LJ  

~~~~~ 

(Kr) Y
~ G~II p 5 2

~~niiisii~ai~i >

Jf+81+L1+Lf+Ii +If+l /(2J1+l)(2Jf+l)(2Li+l)(2Lf+l)(Zfj+1)(211+l)(2X+l)— ( - 1) Si, SfV

L1 J1S1 If Lf l fIf A I 1\
x 

) 
Rx (K) (6)

J1 L~~A L1 L A  \o  0 0 /

(26) Edmonds , A. R.,  Angular Momentum in Quantum Mechanics1 Princeton
Univ. Press , Princeton , New Jersey (1960).
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with

Rx (K) P
~~i

(r ) j
~~(Kr) P t (r) dr (7)

and where P 1 (r) is the radial part of the wavefunction. We have assumed

that the various levels of a given configuration can be desc ribed by a single

radial wavefunction.

For n~s - n1p transitions, only the A = 1 term provides a non-

vanishing contribution, and for this case it is strai ghtforward to show from

Eqs. (5) - (7) that

(A = 1) 
_____  

[
~ 1_(K)12

fr~J1, rfJf 
(K) = 2J. + 1 

L 

d j ~ 
(r~J~, r1J1) (8)

with

d = J nfp 
(r) r 

~
‘n.s (r) dr (9)

and with ~~~ the optical line strength. (24 ) Equation (8) can be used to cir-

cumvent the spin-orbit diagonalization procedure for cases where either

experimental data or intermediate coupling calculations exist for the line

strength .

Finally, for various applications it is useful to consider an average

-( excitation cross section between two configurations, which we define as the

sum over final rf
j

f -states and the ave rage ove r initial r1J~-states. The

average GOS is then given by

Tn11~
, nf tf 

(K) = 12 (2I~ + 1) (2J~ + 1) 5r~J1, rfJf~~~ 
(10)

-~~ 
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Using Eq. (5), togethe r with the unitary prope rty of the expansion matrix

and the orthonorinality relations for the 6-J symbols , (25) we obtain

‘fi1~
, nf lf 

(K) = 
~~~~~~~

- (2t~ + l)E  (2A + l 
(t f  x i.)2 I R ~ (K) 12 ( 11)

where AE is the average transition energy (see Sec . III.C). This is a

1-electron formula, independent of coupling, as expected.

C. RADIAL WAVEFUNCTIONS

The radial wavefunctions are dete rmined from a semi-empirical

method, (27) in which the radial Schrodinger equation for the active electron

is written in the form

( 12)

Enf is taken to be the statisticafly-averaged experimental binding energy of

the configuration , ~~, (p) is the “effective charge” --hf the atomic core , (27) and

is a radial scaling or distortion parameter and is the eigenvalue of Eq.

(12) subject to the boundary conditions (0) = P~f 
(oo ) = 0. The function

~~(p) is given by
~~ 

(p) = (Z - N) + 

~~~~~~~~~ 

J(l  
- ~~)P ~2 (p l ) dp ’ (13)

with Z the nuclear charge, N the number of core electrons, and P
3
(p) the

radial wavefunctions of the core electrons. For the present calculations,

the undistorted core wavefunctions were taken to be the analytical Hartree -

Fock functions~
28

~ of the relaxed ion . In the excited state, the active electron

(27) Vainshtein, L. A., Opt. Spect. 3, 313 (1957).
(28) Clementi , E. ,  and Roetti , C., Atomic Data and Nuclear Data Tables 14,

177 (1974). 
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is fairly far-removed from the core and sees primarily a Coulomb field.

The above method should thus give a good representation for the wavefunction

in the relevant region of configuration space. 
•

The average experimental binding energies were calculated from the

- - 
formula

Ent = ? 
.. [

~~~~~~ 

(2J + 1) E~ 1 (2J + 1)] (14)

with I the average ionization energy and E~ 1 ~~

. the excitation ener~v of each 
—

level; all experimental energies for Ar* and Kr * were taken from tu e  NBS
H ‘29’tables. ’ ‘ The values for E~1~ in units of Rydbergs are given in Table I

for the states included in th~ calculation. The average transition energy

(
~~

) between two configurations is simply the difference between the values

listed in the table . The scaling parameters, obtained from the numerical

solution of Eq. (12), are given in the last column of Table I. The fact that

all of the values of are close to unity and that the total variation is only

1.18 
~~~ 

ari~ ~~~, 1.27 provide s additional support for the use of the distorted

core approximation for the rare-gas excited states.

D. RESULTS AND DISCUSSION

For metastable argon and krypton, transitions of the type p5 n~s - 

I 

-

P
5 

flf p, with flf = n1, are by far the most important (see below), and both

experimental and accurate IC theoretical results for the optical line strengths

(29) Moore , C.E.,  A±omic Energy Levels, Vols . l and II, Circular of the
National Bureau of Standards 467 , U. S. Dept . of Commerce, Washing-
ton , D.C. (1949).
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TAB LE I
I

BINDING ENERGIES AND SCALING PARAMETERS
FOR Ar AND Kr

S

Average Binding Scaling
Atom State Energy, I.E~t I  (Rydberg8) Parameter ,

Ar 3p
54s 0.30627 1.27 18

0. 19464 1.2343

3d 0.12740 1.2490

5s 0. 12376 1.2512

• 5p 0.09 183 1.2204

4d 0.07174 1.2383

Kr 4p
5
5s 0.29700 1.2245

— I 5p 0. 18593 1.1915

4d 0.13321 1.2228

6s 0.12006 1.2012

0.08867 1.1796

5d 0.07312 1.2104
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exist in the literature for these cases. (30-33) Equation (8) has therefore

been used to obtain a large number of Born cross sections for the Ar* (4s -

4p) and Kr * (5s - 5p) transition arrays. (34) The effect of choosing different

coupling schemes to represent the excited states is shown in Figures 29 and

30. Referring to the Ar* (4s - 4p) array, Figure 29 shows the Born cross

section vs incident electron energy for the 182- 2p4 transition (see Ref . 29

for not~ tion) obtained with the experimental line strength ;~
30

~ and with line

strengths calculated in intermediate, 1.5-, and jI-coupling;~
3
~~ Figure 30

shows the corresponding results for the 185 
- 2p8 transition. In both cases ,

the IC results are very close to those obtained using the experimental

values. In the 18 2 - 2p4 case, the pure il-coupling cross section is in rea-

sonably good agreement with the IC curve, while the LS-coupling cross

section is in very poor agreement . For the 15 5 - 2p8 transition, however ,

just the opposite’ is true . Furthermore, again with respect to the Ar* (4s -

4p) array, the ls~ 
- 2p6 transition is completely forbidde n in both jI- and

Is-coupling, (31) while the IC calculation gives a large cross section with a

peak value of 36 ,ra0
2. The cross section clearly can be very sensitive to the

choice of coupling scheme, and intermediate coupling should be used to obtain

reliable results.

(30) Wiese , W. L., Smith, M. W .,  and Miles , B. M., Atomic Transition Pro-
babilitie s, Vol. II, NSRDS-NBS 22 , U.S. Dept . of Commerce, Washing-
ton, D.C. (1969).

(31) Garstang, R. H., and VanBle rkom, J., 3. Opt. Soc. Amer. ~~~~~, 1054
(1965).

(32) Murphy, P. W .,  J. Opt. Soc . Amer. ~~~~, 1200 (1968).
(33) The authors of R.efs . 31-32 give transition probabilities or Einstein , ~, .~

A-factors in intermediate coupling. The corresponding line strength,
in atomic units , is obtained from the relation .~~~ = 4.95 x i~~~19 g~ X3A,
with g the statistical weight of the upper level, A the transition wave - —

length ’in R, and A the transition probability in sec ’.
(34) Hyman, H. A.,  (unpublished).
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( ) Experimental Line Strength
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The average Born cross sections , calculated from Eq. ( 11), are

shown as the solid curves in Figures 31 and 32, for the cases Ar* (4s - nI)

and Kr* (5s - nI) . As indicated — arlier . the s-p transition with no change

in principal quantum number is the domi iant process. This is due to the

long-range dipole interaction , which causes the s and p states ~o be. strongly

coupled and which in turn causes a breakdown in the Born approximation in

the low to intermediate energy range. Seaton has introduced a simplified

impact parameter theory, (35) which accounts approximately for both the

weak coupling and strong coupling regimes. The method requires a know-

ledge of the oscillator strek~gth, f and of the cut-off radius , (35) R0. The

average oscillator strength was determined from Eq. (1 1), together with

the wellknown relation

Tn s  n = u r n  
~n s  (K) (15)

j )  fP K-+ 0 i ’  fp

while the cut-off radius was chosen so as to give agreement with the Born

theory at high energies. The parameters used in the calculations were: for

Ar * (48 - 4p), T =  1.O68 and R0 = 4.572a0; f or K r ~~(5s - 5p), 1= 1.121

and R1, = 4. 723 a0. The results of the impact parameter theory are given by

the dashed curve in Figures 31 and 32. Strong coupling effects are dominant

at incident energies E
~ ~ 

20 eV, and the resulting cross sections are seen

to diffe r significantly from the Born theory both in shape as well as in mag-

nitude .

Finally, we consider the average optical excitation cross section , (36 , 37)

— 

~ T’ for the Ar * (4s - 4p) and Kr TM 
(5s - 5p) transitions . This quantity , def ined

(35) Seaton, M.J.,, Proc. Phys. Soc. 79, 1105 (1962).

(36) Chen, S. T ., and Galla gher , A. C. , Phys. Rev. A14, 593 (1976).
(37) Cben, S. T ., and Gallagher , A. C., Phys. Rev. A (to be published).
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- Figure 31 Average Cross Sections vs Inc ident Energy for the Configura-
tions Ar * (3p5 48 - 3p~ nl):  ( ) Born Theory,

- (— — —) Impact Parameter Theory
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by 
~~~ 

= 
~ Direct + 

~~Cascade’ is useful for estimating the validity and

range of application of the Born approximation. 
~ Cascade can be evaluated

from the cross sections given in Figures 31 and 32; the maximum cascade

contributions to 
~ T in the Born approximation are found to be 17% and 18%

for argon and krypton, respectively. In Figure 33, we have plotted the re -

duced quantities~
36’ 37) 

~ T 
(~~~)2/T vs E1/~~~ . These curves are very

similar to the analogous Born curves for the resonance transitions in the

alkalis, (37) which is not surprising given the similarity between the elec-

tronic structure of the alkalis and that of the rare-gas metastables. It

should be pointed out that we have neglected the complicated branching ratios

for the excited states in determining the cascade contribution [for example,

the 3 = 1 components of the p5s and p5d series can decay to the rare-gas

ground state as well as to the np5 (n + 1) p state]. This leads us to over-

estimate 
~~Cascade’ but is compensated for by the fact that we have neglected

the additional small contribution due to still higher-lying states not included

in the present calculations. Considering these two effects , we estimate that

the curves of Figure 33 are uncertain by - 3%. Based upon measurements

of a number of optically-allowed electron impact excitation cros s sections,

Chen and Gallagher~
36’ 37) have suggested an empirical universal relation

of the form.

(observed)
_ _ _ _ _ _ _ _ _  

!.
~~~(Born) ~ 1 - &

V
I
~~~~

- (16)

~T

which would imply that the Born theory is no worse than a factor of 2 in

error for incident energies as low as E
~ 

— 6 eV for the present case . Fur-

thermore, Seaton ’s method~
35

~ appears capable of removing — 3/4 of the

disc repancy between the observed and Born cross sections in this energy

range . 70 
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FIgure 33 ~~~~
.

~~~~ (XE)2/1 vs Ej /bAE for the Transitions Ar* (4s - 4p) and
Kr (5s - 5p~ 0T is the average Born cross section includ ing
cascades, is the transition energy, ?is  the oscillator
strength, and E1 is the incident electron energy

$
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E. CONCLUSION

Electron impact excitation processes for metastable argon and kryp-

ton atoms have been considered. General formulas for the Born cross section

in intermediate coupling have been given, from which various special cases

were obtained (i. e.,  for s-p transitions and for the average cross section

between two configurations). The importance of using intermediate coupling,

as compared to various pure coupling schemes, has been pointed out. Strong

coupling effects were shown to be dominant at low to intermediate energies

for the Ar * (4s - 4p) and Kr* (5s - 5p) dipole transitions, which were found

to have large cross sections with peak values — 100 ~ra0
2. Finally, the

validity of the Born approximation was estimated from an empirical point of

view through a consideration of the optical excitation function.

I
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