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ABSTRACT

In the study of complex queueing systems analysis techniques

aimed at providing exact solutions become ineffective. Approximation

techniques provide an attractive alternative in such cases. This

paper gives an overview of different types of approximation techniques

available in the literature and points out their relative merits.

Also the need for proper validation procedures of approximation

techniques is emphasized.
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Queueing theory has passed through several stages in its growth.

The first three decades of this century consisted of pioneering work

in its foundations. Major analysis techniques for the investigation

into the behavior of Markovian systems were developed during the

next two decades. The nineteen hundred and fifties saw investigations

extended into problems related to non—Markovian systems. This trend

continued well into the middle of the sixties. Until then, queueing

theory, having been developed by mathematicians, probabilists and

statisticians, had grown with minimal interaction with applications.

During the past ten years, the trend has been more towards applica-

tions and making queueing theory results applicable. The two major

areas receiving maximum attention during this period are optimization

problems in queues and approximation technqiues in the solution of

queueing problems.

As the complexity of the systems being considered by applied

scientists increases, finding effective solution techniques leading

to exact solutions is becoming a difficult task. Approximation tech-

niques provide an attractive alternative in such cases. Over the years

several types of approximation techniques have been developed for the

solution of queueing problems. It is our intention here to provide
.

an overview of these techniques and discuss their relative merits.

Three different stages may be identified in the modeling and

analysis of a queueing system. At the first stage a suitable mathe-

matical model for the system is developed. The second stage concerns

the identification of and investigation into the basic process under-

lying the model. At the third stage numerical results are obtained

from the analysis of the process. Noting that an approximation can
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be introduced at any one of these stages, we may identify three

major categories of approximation techniques: (1) system approximation ,

(2) process approximation, and (3) numerical approximation.

In the following sections we shall discuss different techniques

used in approximations for the solutions of queueing problems based

on the above categorization. Since justifying approximate results

Is an integral part of the process, techniques for validating approx—

Imations are also discussed . Finally comments are made about future

prospects in this direction.

It should be pointed out, however, that the objective of the paper

is not the categorization, but understanding different types of approxi-

mating procedures. As will be clear later, even though the approximation

is initiated at a certain stage, the net result is to impact the system

at all stages of analysis. Consequently the distinction between the

techniques sometimes becomes unclear.

For purposes of convenience we use Kendall notation suitably modified

to include finite capacity. For instance, A/B/C/D represents a system in

which the symbols A, B, C, D stand for the inter—arrival time distribution ,

service time distribution , number of servers and system capacity respec-

tively. When dealing with systems with no limitations on capacity, D Is

dropped. Also the time dependence of an element is indicated by writing

it as a function of t.

In compiling a bibliography , the intention of the authors has been

to include a representative list of references. We have also tried to

be exhaustive so as to make it useful to the reader. All omissions of

significant papers are inadvertent rather than intentional.
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System Approximation

A system approximation is mainly a simplification of the system under

study such that the behavior of the new system is strongly related to the

original system. The four main elements in a queueing system are the

arrival process, the queue discipline, the service process, and the system

structure. These elements are described by their properties or attributes.

Also, due to the complexity of some applications such as networks of queues

we need to add a set of relations that hold among these elements, which

are the results of various assumptions. Hence, a system simplification

may be characterized either as simplifying the system elements or relaxing

the relational assumptions.

Simplification of system elements is at the heart of the practice of

queueing theory. Many times, results may not be available for the exact

representation of the system element model (such as the distribution for

inter—arrival time or service time). Then, the best available model is

used to arrive at the best approximate result. The predominant use of

the exponential distribution in practice is due to this approximating

process. In an attempt to incorporate more general inter—arrival time

and service time distributions, Erlangian distribution and Erlangian

mixtures have been extensively used. In this regard the papers by

Luchak (1956) , Wishart (1959) , Kotiah et al. (1969), Schassberger (1970)

are significant. The first three of the above papers supply the prac-

ticality of the approach , whereas the last paper provides the theoretical

basis for the procedure.

A common technique in system approximation is to use a simpler

system either to derive an approximate measure of performance or

suitable gounds for them. For instance Maaloe (1973) uses simple

relations existing between mean waiting times of M/M/l and M/M/s

systems to provide an approximation value of the mean waiting time
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in an M/Ek/s system. Gross (1975) examines the effect of using

an N/N/s model to approximate a G/G/s model. His results indicate

that when estimating mean value measures of congestion, the sensi-

tivity to the exponential assumption is more pronounced whereas it

is not as pronounced for cost optimization models. Chandy et.al.

(1975) study a queueing network with a direct application of Norton ’s

theorem (Chandy et.al, 1975b) which implies that the properties of a

subsystem in a queueing network can be obtained by replacing all queues that

are not of interest by a single queue with equivalent load characteristics

(also see Saner and Chandy (1975), Chandy, Herzog and Woo (1975)).

Another approach in the treatment of queueing networks occurring in

computer systems Is that of Avi—Itzhak and Heyman (1973). First,

exact results are obtained for a closed—system model in terms of

cycle times and server utilization. These results are then used

to develop approximate results for an open system model. For other examples

of the use of simpler systems see Ghosal (1970) and Rosenshine (1976).

Nonstationarity in the arrival process can also be effectively

handled through approximations. Moore (1975) provides methods for

partitioning the time axis into intervals with stationary character-

istics and approximates a M(t)/G/l queue by an M/G/1 queue during

these periods.

Using simpler systems, upper and lower bounds for system perfor-

mance measures have been derived in several cases. Brosh (1969)

derives mean total time spent by a customer in a priority aueueing system

by essentially changIng~ the priority level of the customer so as

to provide a worse and a better case. Brumelle (1971) obtains bounds

for mean waiting time in a G/G/s system by constructing two single

server systems; one of them uses a share of the original load to give

an upper bound and the second uses a service rate s times faster than

—-- - --- • ------ - - - -  ---• • • 
~~- -a~~ - -  -_ _  _ _ _ _ _ _ _ _-
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the original one to give a lower bound. A further improvement on the

upper bound for mean waiting time in the system G/N/s is obtained

by Brumelle (1973) by the waiting time in an associated G/N/l queue.

Yu (1974) bounds a multi—server queue with recurrent input and

Erlang service times by a simple G/Ek
/l queue. Kotiah (1977) uses

a linear programming techniaue to provide bounds in Markovian systems.

Simpler bounding systems can be obtained by modifications to

the queue discipline. Under low traffic situations Bloomfield

and Cox (1972) obtain lower bounds for mean waiting time by ignoring

the waiting times of customers other than the one being considered.

In the context of a traffic queue at a signalized road intersection

Bhat and Prabhu (1975) obtain upper and lower bounds by sweeping

the traffic arriving during a green period to the right and left

extremities of the period [also see, Bhat, Wheeler and Fischer (1974)].

Replacing a general distribution by one that has the same moments

is an appealing approach. Kuczura (1973) approximates the overflow

process of an M/M/s/s system by an interrupted Poisson process which

is alternately turned on and off for exponentially distributed lengths

of time. The approximation is obtained by matching the first two or

three moments of the two processes. To study the mean waiting time

of a C/Gil queue, Ijarchal and Harris (1976) use an Ek/E
~
/l queue and

match the first four moments of the random variable representing the

difference (service time — interarrival time).

A problem of great interest in telephone work relates to predicting

the blocking probability of an overflow stream of traffic in a group of

channels operating as a loss system. An anproximation widely used is the

equivalent random method which replaces the system under consideration by

an equivalent loss system with a Poisson input. For details of this method

see Wilkinson (1955), Cooper(l972) and Holtzman (1975).
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There are queueing systems in which more than one class of

customers share the resources. A relatively simple procedure to derive

the performance measures of such systems is to consider the two classes

separately and improve the accuracy of approximation by successively

using the most recent results for one class in the derivation of results

for the other (see Bhat and Raju (1977)).

For approximating more complex systems, many of these different

characteristics could be used at different stages. Some examples of

such efforts may be found in papers such as Leibowitz (1961), Half in

(1975) , Willemain (1974), and Rosenshine and Chandra (1975).

Many system approximations are heuristic in nature. The quality

of such procedures depend very much on intuition and creativity. Justi-

fication for the use of heuristic methods is no~t because they are

analytically sound , but because experimentation has proved that they

are useful in practice. The basic approach is to observe the system,

relate it to some other system with known behavior and then make

an educated guess about the behavior of the original system. For

instance, Cosmetatos (1974) derives approximate formulae for the

steady state queue size and waiting time distribution in the system

Gl/Nts, by observing the similarity of the mean waiting time curves

drawn against the coefficient of variation of the inter—arrival time

distribution , when the traffic intensity is kept constant for different

number of servers. By this procedure he obtains approximate results

that ar’ within 5% of the actual value. Bhat and Fischer (1976) have

derived ~pproximate results such as blocking probability and waiting

time in a two class heterogeneous multiserver system with Poisson

arrivals , in which one class acts as a loss system but the second

acts as a delay system. A key to this procedure is the observation
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that the.nrobabi-lity of blocking is relat5ively insensitive to the ratio

of the service rates of each class, which allows them to assume eaual service

rates. Conolly (1975) considers Poisson queues belonging to the class

of generalized birth and death process as essentially renewal models

with “effective” inter—arrival and service times (actual intervals may

be dependent on queue size).

Nozaki and Ross (1976) provide an aDproximation for mean waiting time

in a multi—server queue M/G/s, by assuming the ecuilibrium distribution

form for the remaining service time of customers in service at the time of

arrival. The expression involves the distribution of the number of busy

servers, for which an a~~roximate formula similar to the exact distribu-

tion in the queue MiNis, is derived .

Given above are only some examples of the use of heuristic approaches

in approximations. To some extent all approximations can be considered

to have some heuristic elements in it; but in system approximations they

are in abundance.

Process Approximation

Representation of a mathematical model follows the identification

of the system model. Many times, the basic process underlying the math-

ematical model is so complex that a direct analysis does not become

worthwhile for the situation. One alternative would be to simplify the

system model itself as described above. The second alternative is to

identify simpler process whose analysis is either known or can be

derived , that has properties similar to the basic process. Dif-

fusion approximation , fluid approximation, and the use of asymptotic

or limiting results are examples of such procedures. System approx—

mation techniques described in the pervious section can also be
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looked upon as a form of process approximation , when the availability

of a simpler underlying process is the motivation for such an effort.

System approximation techniques suggested by Moore (1975) and Bhat

and Prabhu (1975) are examples of such situations.

Fluid approximation, as suggested by Newell (1971) is mostly

an engineering approach. It starts with some crude and naive esti-

mates and relationships between system elements and improvements are

made in them as the analysis proceeds. The essential concept is to

consider the arrival and departure processes in the system as fluid

flowing in and out of a reservoir. Because of its deterministic

nature when the output rate (service rate) is in excess of the

input rate (arrival rate) the fluid approximation results in an

empty queue. In view of this a proper setting for its application

would be a short term analysis of a queue or the behavior of an over-

saturated queue (when the arrival rate exceeds the service rate).

Also the particular significance of its usage would be when the

arrival and service rates are time dependent. Then if A(t) and D(t)

are the arrival and departure processes, with rates X(t) = dA(t)/dt

and 1.1(t) = dD(t)/dt respectively , an approximate expression for the

queue length Q(t) at time t can be given as

Q(t) Q(O) + A (t) — D(t)

Q(0) + f
t A(T) d T - J ~ ~i(~~)dT.
0 0

A stochastic analogue of the fluid approximation is the

diffusion approximation. In this procedure we replace a queueing

process with jump transitions or with continuous and jump trans—

itions by a continuous process which reflects the main characteristics
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of the original process. Diffusion processes are governed by

stochastic differential equations incorporating the infinitesimal

mean and variance of the process. Let

EfQ(t+T) — Q(t)} f
t+T

[x( ) — 1.1(x)]dx

[A (t) —

where the arrival and departure rates A (t) and u(t) are considered

to be nearly constant over times as compared to 1. The quantity

X(t) — U(t) is known as the infinitesimal mean of the process at

time t. Also, let

a2(t) = Var {Q(t+r) — Q(t ) }/t

be the infinitesimal variance of the process. Denoting the distribu-

tion of the process Q(t) by f(x,t) (note that, Q(t) is considered

to be a continuous process in this approximation), under this approx-

imation, the function f(x,t) is assumed to satisfy the Fokker—Planck

equation

• af(x,t) 
— af(x,t) + a 2 (t) a2 (x ,t)

at 
— — [  (t) — 

~i(t)] ax 2 ax 2

Diffusion approximation is usually related to heavy traffic (service

rate close to the arrival rate) since we need the time variable to

be large as compared to intervals between transitions. Under heavy

traffic idle periods occur very infrequently and therefore one could use

the zero state as a reflecting barrier of the process without degrading

the approximation much further (note that a diffusion process can

drift towards states below 0, whereas a queueing process remains

on the non—negative side of the axis).
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The equilibrium distribution of the resulting process can be

limderived in most cases as f (x) = f ( x ,t ) .  If necessary it can be

discretized by integrating it over the unit interval n < x < n + 1,

,o r n —  . 5 < x < n + . 5 .

Gayer ’s (1968) analysis of the virtual waiting time of an M/G/l

queue is one of the initial effects in using diffusion approximation

for queueing systems. In this case the infinitesimal mean and

variance for the process are XE(S)—l and XE (S2), respectively where

s is the service time [also , see Gayer (1968)]. Newell (1968) gives

an extensive treatment of a time dependent arrival process using the

Fokker—Planck equation . Heyman (1974) has extended Gayer’s (1968)

results to study the busy period of the queue M/G/l. The transient

behavior of the G/Gtl queue has been approximated by Heyman (1975),

which has been extended to the G/G/k system by Halachmi and Franta

(1976) by similar approximation techniques. Denoting the inter—

arrival time by A and service time by S, f or G/G/ l , the infinitesimal

mean and variance are

X (t )  — p( t) = 
~~i)  

— 

i~~~~)~~ 
~

z çVar(A) Var(S)a (t ) — 

~[E(A) ]~ 
+ [E(S)] 3 ~

For the queue GIG/k, these take the form

A (t )  — u(t) = 

~E(A) 
— 

min(x k)

2 {Var
(A) + min(x ,k)Var(S ) }a (t ) — (E(A) ] 3 [E(S)]~ 

t

where x is the state of the system.

Some of the other applications of diffusion approximation in

queues can be found in Newell (1975), who provides a general setting

for the analysis of the behavior of a sequence of servers in series
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with finite storage in between. Other references that suggest

and elaborate earlier applications can be found in Kimura (1964),

Newell (1965) , Cox and Miller (1965) and Feller (1966).

Diffusion approximation has also been successfully employed in

the analysis of queueing networks. Appropriate references in this

area are Kobayashi (l974a, b) and Reiser and Kobayashi (1974).

Fischer ’s (l971) use of the procedure in analysing alternating

priority queues , Gayer’s and Shedler’s (1973) application in

obtaining the processor utilization in a multiprogramming computer

system are evidence to the effectiveness of this approximation

technique [also see, Fischer (1976, 1977)].

A different approach will be to observe that the process under

study converges in some sense to a diffusion process. Iglehart (1965),

has shown that in the N/N/n queue if we let the mean inter—arrival

time -“0 as n-’~ , then the queue length process (after proper scaling )

and normalizing tends to the Ornstein—lJhlenbeck process. McNeil

(1973) considers a sequence of non—stationary birth and death

processes {x.1,(t)} with input and output rates dependent on N. He

has shown that lim x
N
(t) (after normalizing) corresponds to a non—

stationary Ornstein—Uhlenbeck process. An additional reference in

this class of efforts is Harrison (1973) who considers a sequence of

systems with increasing traffic intensities.

Numerical Approximation:

Numerical approximation can be defined as a simplification which

is brought in while actually manipulating the arithmetic expressions

leading to an evaluation of certain measure . If we identify an

approximation ~ as — x + 6, where x is the corresponding exact
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value and 6 is an unknown small quantity, then we call a “point approx-

imation” if 6 is unrestricted in sign, and we call a “one sided approx—

imation” (or an interval approximation) if 6 is restricted in sign. Clearly

the more we know about the properties of 6 the more reliable the approxi-

mation will be, and we would like 6 to be as small as possible.

The queue G/G/i presents many difficulties in deriving exact results

for its performance measures Several attempts have been made to obtain

approximations. More successful of these are the heavy traffic approxi-

mation (a point approximation) and upper and lower bounds (giving an

interval approximation) for the mean waiting time given by Kingman [1962,

1965, 1970], Marshall (1968) and Suzuki and Yoshida (1970). All these

efforts are based on the fundamental relation

W = max[0, W + S + T ]n+l n n n

where W
n is the waiting time of the 

~th customer, 5 , is his service

time and T , the time interval between the (n_l)5t and the ~
th 

customer.

Writing U = S
n 

— T and denoting the idle period by I, one gets the

result 
22 iT E[I ]

— 

—2E [U] 
— 

—2E [U]

where is the probability that an arrival finds the system empty and

u rn W E W and lim U E U. Since exact values for E[I] and E[I2] are

not available except in cases such as exponential inter—arrival time ‘,

an upper bound for E[W] can be obtained as

E[W] < 
Var[T] + Var [S]

— 2(E [T]  — E [ S) )  (2)

When p is close to 1, Kingman (1962) has shown that the upper bound
for EIW) is a good approximation for E[W] itself. Furthermore , by

using central limit theorem on the basic random variables {u 1, hen

_ _  _ _  - __--_ _ _ _ _
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has also shown that under heavy traffic , the waiting time distribution

under equilibrium conditions is exponential.

Lower bounds for E(W ] have been derived by both Kingman (1970)

and Marshall c1968). Marshall shows that

E[W] > 2.

where 9.. is the unique solution of the equation

x .f [ l  — K(u)]du (x > 0)

where P[U < u] K(u). Kinginan’s (1970) alternate bound can be given as

E w > 
E[Ot)

2]

~ I - 2(E[T]-E[S])

where it = max [O,UJ . Comparing the bounds, Kingman points out that

Marshall’s bound is sharper in light traffic (p<<l) whereas his bound

is sharper in heavy traffic. Nevertheless, it should be noted that

both lower bounds require the knowledge of the distribution of U,

whereas the Kingman upper bound depends only on the first two moments

of the inter—arrival time and service time distributions. For a concise

discussion of bounds and approximations reference can be made to Gross

and Harris (1974 , ch. 6).

Another approximation for E(W] can be obtained by writing

1—p and E(I2] E[U2], where p is the traffic intensity of the

system. Then we get from (1),

E[W) 2[EIT
2
I+ E 1 S

2
1 
~~
2E(T]E[S11 (3)

Comparing these approximations for systems with one of the inter—arrival

time or service time distributions exponential, Bhat [1974] has shown

that the simple approximation given in (3) is in fact better than the heavy

traffic approximation given by (2) except when C [S] >> C ET] where

C stands for the coefficient of variation.
V
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An additional effort in providing a better approximation for

E[W] is that of Marchal (1974), who incorporates the coefficient of

variation of the service time distribution Cy(S) by suggesting

E[W - 

(u+c2 t si 
~~ + Var[S]

- 

\~
_2
~~2[5]) ~~

( [ ]  — E [S])

which is identical with the Kingman heavy traffic approximation when

p=l. Marchal has also provided an alternate lower boundr P2C2 S + p(p-2)1
E[W] 

~ L 2(l—p) J E L T]

which incorporates only p and the coefficient of variation of the

service time distribution (also see, Marchal [1976, a and b] and

Kleinrock [1976, ch. 2]).

Using Martingale theory Ross (1974) has derived upper and lower

bounds for the mean delay in the G/G/i queue. Even though they are

somewhat sharper than the ones described above, they are much harder

to evaluate.

Extending the Kingman upper bound (2) the following bounds may be

given for E[W] in the multi—server queue G/G/s.

E ~ < 
Var [T] + VAR(S/s)

~ — 2(E[T] — E[S/s])

which is essentially the G/G/i result with a modified service time.

This result, originally suggested by Kingman (1965) has been studied

by Suzuki and Yoshida (1970). A bound later suggested by Kingman

(1970) has the form

E[W < 
sVar[T] + VAR[S ] + (1 — l/s){E[S]}2

— 2(sE [T] — E ( S])
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Bounds for some generalizations of the G/G/l queue have been

derived by Marshall (1968b). Some of the cases discussed by him

are queues (i) with arrivals in batches of random size, (2) with

service in batches of fixed size and (3) with added delay for the

first customer in a busy period. Marshall and Wolff (1971) consider

bounding the difference between the mean queue length found by an

arriving customer and the arbitrary time mean queue length in the

C/Gil system. It is also shown that, for C/Gil, the dif f e r ence

between the mean virtual wait and the mean actual wait does not

exceed one half the mean inter—arrival time. Holtzman (1971) derives

an upper bound for mean waiting time in a Poisson input single server

priority queue by considering waiting time as composed of four distinc t

parts and obtaining upper bound for each of them.

Heathcote and Winer (1969) take a somewhat different approach in

deriving approximations for the moments of waiting times in the C/Gil

queue. Using an expansion related to the central limit theorem,

they express E[W ] — E[W], as an infinite series. Now knowing E[W]

one could estimate E[W ] by approximating the series. Other papers

considering approximations and bounds for mean waiting time in G/G/l

and G/G/s queues or their special cases are Granot, and Lemoine (1975),and

Harrison (1973).

Approximation techniques have been used for deriving information

on other performance measures as well. Rider (1976) approximates the

emptiness probability to solve for the average queue size in a time

dependent M/M/l queue. Natvig (1974) approximates the transition

probability P10(t) of the transition of the number in the system from

1 to 0 in time t, in a single server Markovian queue with discourage-

ment by simplifying the expression derived through inversion. Bene~

(1959) gives an approximation for p .  the probability an arriving
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customer finds n busy channels in a C/Mis/s system. In Bene (1961),

an approximation for the covariance function of the number of busy

channels in an MiNis/s system is also provided. Another paper dealing

with the approximations for covariance function of the number of

busy channels in an M/N/s/s system is Descloux (1965). Approximations

for Erlangs loss formula and its derivatives have been given by Jagerman

(1974) by truncating a complex series. In these papers, related mostly

to teletraffic theory, the technique used is analytical and manipulative.

For other papers belonging to this class , readers are referred to

Saaty (1961), Cooper (1972), Holtzman (1975) and references cited under

Holtzman (1975).

Many of the exact queueing results are given as transform expressions

that are difficult to invert. Numerical inversion of Laplace transforms

is a convenient technique when such results are needed. Some of the

initial papers on this technique are Gayer (1966), Weeks (1966) ,

Dubner and Abate (1968), Chiu, Chen and Huang (1970), and Stehfest

(1970). Nance, Bhat and Claybrook (1972) have applied the different

methods presented in the above papers to invert the transform of

the busy period distribution of an MiGi1/N type queue occurring in a

timesharing system. Abate, Dubner and Weinberg (1968) have applied

the inversion method to the transform of the waiting t ime distribution

for a mass storage device . It must be pointed out though, that in

the process of numerical inversion of transforms it is desirable to

experiment with more than one technique since their performance is

highly dependent on the original function .

~ A recent inversion technique given by Kne~iey and Fischer (1977)

discretizes the time parameter and approximates a Lanlace Transform

by an infinite series. Recursive relations, then provide the needed

numerical results . Al—Khayyal and Gross (1977) approximate and bound

—— •———— - —— ——— — - . — - — . _ _ t — -
~~

—————.. —_•_ •__ - — -— — — - — —
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the root of the functional equation associated with the Gu M/s queue

to give bounds and approximations for stead state measures of effective-

ness and probabilities. Another approach based on transforms has been

given by Kotiah (1976) for Markovian systems. (These procedures are

classified under numerical schemes since the approximation is made on the

results of analysis. Nevertheless it is appropriate to mention that the

outcome of the procedure is an approximation at the process level.)

Approximat ion results are also given in the form of limit and

convergence theorems. A typical form of a limit theorem is to

describe the behavior of a certain process as one of the system para-

meters approaches a specific limiting value. Convergence in queueing

theory has received some attention in the last decade, see for example

the survey paper by Iglehart (1973) ; however , not all such theorems

are meant to be used as approximations. Köllerström (1974) shows that

the waiting time for the G/G/s system, under some general conditions ,

converges to a negative exponential as p-’~l, and then reformulates the

result as an approximation with error bounds. Tomko (1972), for

p<l , gives an approximation to the waiting time W(N) in the queue

M/?4/m/N, in terms of the waiting time W for M/M/m/co, and provides

the rate of convergence. For p—i , W(N) is shown to converge to a

uniform distribution as the capacity N-ø oo, and for p>1 , W(N) is shown

to converge to a normal distribution. The accuracy for approximating

each W(N) with its corresponding asymptotic distribution is also estimated.

Kyprianou (1972) shows that the virtual waiting time conditional on its

still being in the first busy period in N/G/l and d iM/i is asymptotically ,

as p-”i, gamma distributed with two degrees of freedom and mean 4m , where

— 
Var(T ] + Var[S ]

m 2 ( l/ E(T ]  — l/E [S])
Schassberger (1970) approximates the G/G/i queue by a sequence of

queues in which the interarrival and service times for the ~th system
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are Erlangian mixtures , which are convex combinations of Erlangian

distributions. He also shows that the distribution function of the

virtual waiting time in the ~
th 

system converges weakly to that of the

original system. Kennedy (1972) proves a similar but more general re-

sult for the single server queue.

In a way, the numerical analysis of queueing systems carried out

in a series of papers by Neuts (1973) and his co—authors ([Neuts and

Klimko (1973 a, b)] can also be identified as an approximating technique.

It is a system type of approximation , in that discrete phase type dis-

tributions are used for interarrival and service times. In the same

spirit one could include papers that have appeared on other numerical

aspects of queueing systems such as the solution of Chapman—Kolmogorov

equations for birth and death processes. We shall not elaborate on

these topics here since the emphasis in this paper is more towards

identifying different aspects of approximations.

Validation of Approximations

Validation is an integral part of an approximation procedure . It

is needed to support the applicability of the technique and the relia-

bility of results. An applied scientist has to constantly evaluate the

trade—off between the ease of application of a particular technique

and the accuracy of the ensuing results. Therefore we expect the vali-

dation procedure to relate in some way and provide a comparison between

approximate and exact results. Generally, validation of approximations

can be achieved through error analysis , experimation and simulation.

Relative merits of these procedures are discussed in the following para-

graphs.
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In error analysis , the deviation from an exact result is estimated

as a function of the system parameters. For example, if we approximate

by truncating a series , any bound on the remainder of this series will

bound the error. One of the error analysis procedures is to show that

the error converges to zero as one or more of the parameters take a

limiting value (see for example Natvig (1974)). If the result is of

a limit ing nature , then the rate of convergence may help provide an

error estimate (Köllerstrt$m (1974), Tomko (1972)).  For two sided in-

equality results the error is bounded by the length of the interval;

however , one needs to compare the bounds with some exact results as

well (Bloomfield and Cox (1972) and Marshall (l968b)).  Apar t from

inequalities, numerical point approximation is the only approach

through which error estimates are obtained.

Experimentation is the most common validation technique for

approximations. The essential feature of this procedure is to

compare the approximated and the exact results for some special cases

and if the comparison is favorable similar performance is expected

in general . Absence of support for this basis requires careful and

exhaustive experimentation covering a wider range of parameters .

Clearly this approach can be used for any type of approximation. For

example it is used in Bene~ (1959) , Heathcote and Winer (1969) ,

Holtzman (l97la) and Rider (1976) to validate numerical approximations.

Avi—Itzhak and Heyman (1973) , Bhat and Fischer (1976) , Kuczura (1973) ,

Leibowitz (1961) and Marchal and Harris (1976) have used this method

in the context of system approximations . Gayer and Shedler (1973) ,

Heyman (1975), and Reiser and Kobayashi (1974) have used it to validate

diffusion approximation technique . The main disadvantage in the proce-

dure, though, is the lack of certainty that the conclusions drawn

from experimentation can be extrapolated into more general settings .

_ _ _  — _ _ _ _ _-
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Simulating a stochastic system has become popular due to its wide

applicability, closeness to reality , and the ability to use statistical

analysis techniques. It is the last property that makes simulation a

seemingly dependable and appealing validation technique. As can be

seen from Fishman (1973) considerable work has been done on the statis-

tical aspects of simulations. But a word of caution is that the analy-

sis is all too often messy and heavily dependent on factors such as

sample size. The general approach is to generate samples of the studied

process and define estimates for the required measures of performance.

If the process is of the regenerative type then the classical statistical

techniques can be used to obtain confidence intervals and percentiles

(see , for example , Fishman (1974) , Iglehart (1975) and Lavenberg and

Slutz (1975)). Otherwise, one has to deal with the usual problems aris-

ing in simulation such as, dependent samples, effect of initial state,

and transient behavior. In either case the simulation model needs

validation , and this is usually done through experimentation (see ,

Rosenshine and Chandra (1975)). Using simulation as a validation

technique is common under system approximations (Chandy, Herzog and

Woo (1975), Halfin (1975) , Moore (1975) and Sauer and Chandy (1975))

and process approximations (Halachmi and Franta (1976) , Heyman (1975),

Kobayashi (l974a ,b) and Reiser and Kobayashi (1974)). For validating

numerical approximations even though error analysis is easier , simula-

tion may also be used (see , Descloux (1965)). However , most of these

authors have satisfied themselves by the relative size of the percentage

difference between the simulated and approximate results. Very few of

them have resorted to a statistical analysis of simulated results and

provide information such as confidence bounds on their estimates.

_ _
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While using simulation for validating approximations it is desirable to

state the accuracy of the simulated results as well.

As discussed above validation takes di f ferent  forms that vary in

their usefulness. We consider error analysis as the most reliable

procedure. However, it is difficult to implement under system and

diffusion approximation techniques. Inequalities may not need validation

if they are tight enough. Nevertheless, it should be noted that

inequalities that are tight are hard to compute and those that are

simple to compute are not tight. Thus a sensitivity analysis of

inequalities over the rest of the parameters may be recommended (Bhat

(1974)). Experimentation and simulation are the more common forms of

validation techniques , but while using them, their limitations should

be clearly understood .

Future Prospects

Given above is a broad picture of approximation techniques used in

queueing theory. Existing work in the queueing literature has been

included in one or the other category of approximation considering the

main thrust of the paper. It must be noted , however, that many times,

a combination of more than one technique may be needed for a complete

solution.

The emergence of approximate results is directly related to the

applicability of systems. Furthermore, except for the well—known

approximations for the mean waiting time in G/G/i and related systems,

most of the simple and applicable results occur predominantly in applica-

tion areas of queueing theory such as telephone t raf f ic  and computer

systems . There is a significant factor in this phenomenon to be noted

by a researcher . Since approximate results are obtained for direct use

in real world problems , they should be easily computable . Therefore it
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does not make sense, except as an intellectual exercise and a theoretical

piece of research to provide a better approximation which is much harder

to compute , than an available simpler approximation. Thus all applicable

approximate results need to be examined from an effort—benefit view

point .

As indicated earlier, validation of approximate results has

attracted considerable attention, specifically in the application areas .

Nevertheless , not enough attention seems to have been paid to the

quality of the validation technique itself. In the case of experi-

mentation, more sensitivity analysis is needed. Wider use of statis-

tical techniques related to point and interval estimation should be

made when simulation is preferred.

Queueing theory researchers have been criticized for studying

systems that are not relavant to the real world. However, it seems

to us that this criticism is largely due to the complexity of

available results in the literature than due to the systems themselves.

If one looks at some of the applied areas of queueing, one finds more

complex systems than the general operations research and applied

probability literature. The distinction is in the nature of .nalysis.

The results found in the applied area literature are applicable, though

approximate. A large percentage of results found in the general litera-

ture are less useful though rigorous. Therefore, if we want to keep

queueing theory as an integral part of operations research and as a

problem solving tool in the general area of applied probability and

mathematics , approximation techniques should be put to increasing use

whenever necessary . The trend during the past decade is in this direc-

tion and there is every reason to believe that this trend is going to

continue further in the coming years , bringing more reliability and

applicability for the techniques used.
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