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ABSTRACT

generalized measure of performance is defined as a weighted

combination of the ergodic queue length distribution where the weights

are general functions of the system parameters. The paper presents a

• sequence of upper and lower bounds for this measure of performance in the

G/M/1/N queue with FIFO discipline. The bounds are used to derive a

sequence of approximations with bounded errors. The upper and lower

bounds are shown to converge to their corresponding exact values. The

technique used is based on the imbedded Markov chain analysis and consid—

ers only subsets of the steady state equations to derive the bounds.

Initial computational experience is encouraging and has indicated that the

approximations are viable for heavy and medium traffic conditions.
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1. INTRODUCTION

Consider a single server queue with a finite capacity N and ‘first

come, first served ’ discipline. The arrival epochs form a recurrent proc-

ess and an arriving customer leaves the system without service if the

number of customers in the system is N. The service times are independ-

ent and identically distributed random variables with negative exponential

distribution with mean ~~~~~ In an extended Kendall notation a system of

this type can be identified as C/Nil/N. This queue and its generalization

G/N/s/N (with s servers) are combined loss and delay systems occuring in

telephone trunking and communication problems.

:1
1.1 Preliminary results:

Let t
1
, t 2, t 3, ... be the arrival epochs in the system , and

U = t — t be independent and identically distributed random variables

with 

n-i

P[U < x} = A(x), x > 0

and E[U ]

Let Q(t) and 
~n 

be the number of customers in the system at time t and

just prior to the n~
1’ arrival respectively. Because of the exponential

nature of service times, { Q ,  n = 1,2,3,.. .} is a finite Markov chain imbed—

• ded in the stochastic process {Q(t), t > o} with transition probabilities
O < i , j < N , where

P P[Q 
~~
j
~Q — i i

ii n+l n

-lix i+l—j
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clearly ,

i+l
P~~~= l —  Z P N > i > 0

jl  
—

and 
~Nj 

= 

~N—l ,j 
N 

~~ i ~ 0

Let 
~
( = (q

0
, q

1
, 

~~~~
• ‘  q~) denote the steady state probabilities of the

number of customers in the system just before an arrival occurs. Then it

is well known that ~ is the unique solution to the system of equations

~~~P = ~~~ ,~~~~1 = l  (1)

where P is the one step transition probability matrix and is given by:

l_
~~O

_
~~l ~l

• .

N-l
1- E ~~ a • a a

o N—i 1 0

1 - 
N~l 

~~ 
aN...l

where we have written

aj = e~~~ 
(~~c) dA(x) (2)



• The method of imbedded Markov chain as applied to G/N/i is due to

Kendall [11], and further use of the approach is presented in Prabhu [14],

Keilson [10], Bhat [2], Laslett (13] and most recently Raju and Bhat [15].

r
1.2 A Generalized Measure of Performance

Measures of performance are functions of system parameters I, ~.i, N ,

etc. They are needed in operational analysis where the best parameter

values which optimize system performance are sought. Measures have been

used since Erlang ’s work “The Rational Determination of the Number of

Circuits” [3] where the probability of loss to the system is minimized.

For the history and development of operational models and their measures

see Bhat [1] and for a recent survey see Crabill et al (5]. Typical

measures of performance are expressed in terms of cost of service per

customer, waiting cost, lost customer cost , server utilization , etc.

[Hillier [8]]. Since the most commonly used measures can be written as a

linear combination of the steady state probabilities, a natural extension

will be the generalized measure:

N
Z = Z a

1 q . ,  (3)
i~0

where {~~} are general functions of the system parameters. For applica—

tions of this measure see Evans (6] and Kotiah (12].

This investigation considers the evaluation, bounding and approxima—

• tion to the generalized measure as defined in (3) as a necessary step

toward optimizing the system performance. Early experimentation with (3)

3
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using some general distributions shows that Z
N is nonconvex, nonconcave,

and even inultimodal. Since optimizing a generalized function (as Z
N
) is

likely to call for a large number of functional evaluations, a fast tech-

nique to evaluate Z
N 

is needed. Moreover, the bounds can be used in a

Branch—and—Bound framework, and the approximations can be utilized to

obtain approximate optimal solutions. Existing analytical techniques are

fairly complicated to be extended for operational analysis, but a technique

as in [15] is promising for the fast numerical results that we seek.

The paper is divided into five sections. Section 2 investigates

the ratio properties of the steady state distribution . Such properties

will facilitate calculating the steady state distribution and reformulat-

ing the steady state equations to help develop the bounds. The suggested

sequence of upper and lower bounds to Z
N is presented in section 3. A

sequence of approximations that seems to work best for heavy and medium

traffic is given in section 4. Computational experience for the approxi-

mation is given in section 5.

It should be clear that all the results presented here using the

arrival epoch steady state distribution can be easily modified for the

arbitrary time distribution. This is true by virtue of Hokstad ’s [9]

result which shows that

= 
p 

IrK l  , K = 1, 2, ... , N

where Ir
K 

is the arbitrary time steady state probability that there are K

customers in the system [see also Tak~cs [16] and Heyman [7]].

•
L __ 
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2. RATIO PROPERTIES OF THE STEADY STATE SOLUTION

In this section we focus on the properties of the ratio of steady

state probabilities

r . = 
~~~~~~~~~~ , i = 1, 2, ... N.

We show that it suffices to generate a single sequence r
1, 

i = 1, 2, ..., K ,

independent of N, to calculate the steady state distribution for any of the

queues

G/M/l/ i, G/M/l/i + 1, ... , c/N/i/N , ... with the same general inter—
arrival and exponential service time distributions.

Theorem 1: The arrival epoch steady state distribution of the

G/M/l/N has the form

q0 c
0

= c~ q~~~1 , 
i = 1, 2, ..., N where (4)

c~ > 0 and unique, and

= a
0
/{ l — a

1 
- 

~~
_i ~~~ 

N—~—l 

K+l j~ l 
cj+~

}. (5)

cN 
= a

0
/(i — ct,~) ,

N N
c l/ {l + E 11 c .}0 K 1 i =l

Proof: The proof proceeds by induction on i, i = N, N—i , ..., 1 where we

solve the steady state equations (1) recursively and then apply the

normalizing condition.

_ _ _ _ __ _ _ _ _ _ _ _ _



For i = N , we solve for the last equation in 
~
( 

~ 
=

Defining c
N 

= a
0
/ ( l  — a

0
) we get = c

N ~~~~_ 1 
and the theorem is

true for i = N. Assuming = c
K ~~~~_ 1 

for K = N, N — 1, ... , i + 1, and

solving for the (i+l)st equation in the system of equations g 2 = g
~ 

yields

0
0

g a1

aN .
aN .

or q
1 1 

a
0 

+ q .  a
1 + ... + ~~~~~ aN .  + ~~~~ 

a
N l  

= q.. Noting that

= c
~+K ql+K~l = 

~~~ 
c
1~ .}q.. and rearranging we get

a
0 

= q
1~l 

— a1 - 
N1-l 

aK+l 
j~ l 

~~~ - 

~~~~~~~~~ 
~~~~~~~ c~ ÷~ }

which leads to the form given in (5) and therefore the induction is

complete.

N
Now applying the normalizing condition E = 1 and substituting

i=O

C
1 

C
2 

... ci q0, we get
N K

q0 l/{i + ~ II Cj
} c

0 .
K l  i—i

6
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N
It is known that {q.} can be uniquely determined by solving equa—

0
tions (1) , hence their respective ratios CK ~~~~~~ K = 1, 2, ..., N

are also unique.

Define r. = c~ ~~~~~~~~~~~~~~~ , i > 2

= c
N 

= (6)

r2 CN..~l 
= 

~~~_1/~~~_2

Then from theorem 1,

r1 
= a

0
/ [l  - a1 - a~_ 1 ~~~ CN_i+j+l 

- 

~~~~~ ~~~ 
c~_~÷~÷~

] ;

but c
N ~~~~~ 

= r.., and therefore

i—i i—2 K
r

~ 
= a

0
/ [l  — a1 — a . 1  II r . .  — 

~ 
II r i . ] ,  I > 2

K—i j 1  (7
= a

0
/( 1 — a0)

The sequence r. can be generated recursively and independently of the system

capacity N. That is, the sequence ~r1
} for GIN/i/N

1 
is the same as that for

G/ M/l /N 2 , G/M/ 1/N
3 

Hence the {r~} is a generating sequence for the

• class G/M/1/N with the same interarrival and service time distributions.

To study the behaviour of G/M/l/N~ for different system capacities

N ., {r~} provides a computational convenience. It suffices to generate Cr
1
)

once as in (7) and for every N > 1, {q }
N 

is given byj

O7
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q~ 
= rN_I+l q1_1 , i = 1, 2 , ... , N

(8)
N 1

• q
0 

= l/[l + II r
N K÷l]i=l K=1

Table 1 gives ~~ I 1, 2, ... , 10 for four different interarrival

time distrbutions (two erlangian, an exponential, and a hyper exponenetial

distribution). Note that from this table steady state distributions for

systems with the given interarrival and service time distributions and

N < 10 can be determined based on the following lemma.

Table 1

* **coy .447* .577 1.000 2.134
K=5 K=3 K=l P

1
=.i

r
1 3.169 3.684 4 5.049

r
2 5.668 5.252 4 3.118

r
3 6.781 5.984 4 2.094

r
4 7.334 6.328 4 1.784

r
5 7.576 6.487 4 1.707

r
6 7.669 6.556 4 1.689

r
7 7.699 6.585 4 1.685

r
8 7.705 6.597 4 

• 

1.684

r
9 7.706 6.601 4 1.684

7.706 6.603 4 1.684

-AKx K K-i
* e (AK) x 1• For Erlangian family, dA(x) = 

— 
— , coy =

** P ]•XX
For Hyperexponential family , d A(x) 2p

1 X e + 2p
2 ~
\ e

p1 1 - p 2 coy 
/2p~ p 2 

- 1

• 8

-
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• Lemma 1: Let {q~~)} and {q~
2)
} be the steady state distributiot~s of the

two systems C/Mit/N
1 

and G/M/ l/N 2 where all factors other than N1

and N2 are the same for the two systems. Then we have

q
(l) 

/q~~~ = q
(2) 

~~~ , N~ - i, N~ 
- I > 0 (9)

N
1
—i+1 N

1
—i N

2
—i+l 2

Proof: Both sides of (9) are equal to r., where r. is independent of N
1

and N
2
.

The existence of the generating sequence Cr .) can also be observed

from the results of Raju [15], where a monotone nondecreasing sequence

{a~} is used to calculate the steady state distribution for the G/M/l/N

system. The derivation of these results is based on a fundamental recur—

sion used in inverting the system of equations (1).

Theorem 2: [Raj u and Bhat (15]]

The steady state arrival epoch distribution of the C/Mu /N system is

given by: -

aN_l i 
- aN 2 ~~ 

1 — a0 a0
= 

aN l  
‘ 

= 
aN_i ‘ ~~~~ aN l

where

a0
1

a1 
(1 —

aK+l - 

~~~~ 
a
K~~
} , K > 1

9
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According to Theorem 2 and by virtue of the uniqueness of Cr1}, r1 
will

take the alternative form

— 

a
0 r — 

a
0
(l— a

0)r
i

_
l a  2 l — c t

0
— a

1

(10)a~~2 
— a~~3r. = ,i a — a .—2 —

i—i 1

Often , one would like to increment N to N ÷ 1 or decrement N to N — 1 to

study corresponding effect on both the steady state distribution and

other measures of performance. Theorem 2 gives rise to some interesting

properties as in the following lemma.

Lemma 2: The steady state distribution for G/M/l/N+1 system is given by

(N+l) 
— 

(N) aN l  . 
> 1

aN ‘

and (11)

(N+l) aN-iq
aN

Proof: Using Theorem 2,

(N+l) 
— 

aN l  
— a

N l l  aN l (j l) 
— aN 2 ( i l) aN lq1 

— 

a
aN N-i a

N

= 
(N) aN—i

q1_1 aN

1 = q
(N+l) 

+ 
N-~1 

q
(N+l) 

= q
(N+l) 

+ a N l  
N-~l 

q
(N)

i l  aN i=1 i—i

= q
(N+l) 

+ 
aN...l ~ q

(N) 
= q

N+l +
aN j =O i 0 aN

hence the result.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3. BOUNDS FOR THE MEASURE Z
N

Consider the optimization model

N 
—

P
N
: mm Z

N 
= Z a. q. = a q
1=0 1 1 —

(12)

s.t.

For a given general interarrival time distribution , ~i , and N the system

of equations (12) has a linear objective function and linear constraints

N+1in ~~~. The feasible region is a single point s~ C E which is the soju—

tion to the steady state equations. It is known from the theory of linear

programming [4] that a relaxation of the feasible region yields a solution

which is a lower bound to the objective function Z
N of (12). A speciali-

zation of this approach is used in Kotiah (12], to prove that the proba-

bility of zero delay for M/D/2 is larger than that for M/M/2 with the

same traffic intensity and to obtain bounds on the average queue length

for an M/M/s mixed queue. Here we develop bounds on the generalized measure

ZN using a particular relaxation for

Definition: Let the ~th relaxation PRi of be defined as

PR: mIn Z a gN

• s.t.
0 ’ 0

(q0, q1
, ..., ~~ 

— —

1 a1 a0

~~~ : : = (q
0
, q

1
, . . . 

~~~~~~~~~~~~ ~~~ 
(13)

• a1 a0
• a1 a0

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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N

~ q
1

1 , q~~> O
i=0

Thus the .th relaxation reduces the constraint set to the last i constraints

along with the normalizing condition.

Using the sequence Cr1
} and Theorem I we can write PR

1 
as

PR .: mm Z
N 

a
q~ 0
s.t.

— 
~~~ _1 

= 0

• (14)

r . 
~~~~~~~~~ 

— 

~~~~~ 
= 0

N
Z q. l
1=0

The constraints in (14) are equality constraints and can be substituted

in the objective function to give the concise form of PR1
.

N—i—i
PR~ : mm Z

N 
a. + h .

i O

N-i-i
E q. + q . h . ls.-t. i N—i :i.
i0 (15)

where

= 

~~~~~ 
+ 

aN—i÷l 
r
1 

+ ... + aN r~r~~1 ..

h~ = 1 + r1 + r~ r . 1  + ... + r~ r~~~1 
. ..r

1
,

where (r~} are known for the class C/Mu /N , N > 1. Now any solution of

(15) will provide a lower bound on ZN
.

j 12
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Definition: Define the ~th lower bound LB . of ZN as the optimal solution

to (15). Theorem 3 gives the explicit form of the lower bounds.

Theorem 3:

Z
N 

> LB . = mm Ca
0
, a

1
, ..

~~~~ aN—m- l’ hi/h.), N > i > 1

Proof: PR
i is a linear programming primal problem with one constraint.

• Defining DR . as the dual problem of PR
1 with w as the dual variable,

we have:

DR
1
: max 1. w

V

~~~~~

w < a ~

w < a
— N—i—i

h . w < h .1 — i

By simple inspection , the optimal feasible solution to DR
1 
is

= mm Ca
0
, a

1
, ..., aN j l~ 

h1/h .}, h1 > 0

* —*Also since w is optimal feasible to DR ., an optimal solution Z~

to the primal PR~ exists (see [4])  and

* —*w Z
1
< Z

N

Definition: Define the 1th upper bound UB~ of Z
N as the optimal solution

to the following:

13

• — — — - — —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -•~~—•— ~~~— • —— —— • - • • - •—~~ — —~~~• • • - -



~‘1

— 
N—i—l _

max Z
N 

= ~ a~ q~ 
+ 

~~~~~~~~~ 
h .

i=0
(16)

N-i-i
s.t. 

•
Z q~~+ q~~1

h~~~~i

Theorem 4 gives the form of the upper bounds .

Theorem_4:

ZN < UB~ = max G0, a1, ..., aN—i—l’ h~/h 1}

Proof of this theorem is similar to that of Theorem 3.

Theorem 5 shows that the sequence LB1, ~ = 1, 2 , ..., N is monotone incres—

ing and converges to Z
N 

for i = N.

Theorem 5:

.—*
Z. < Z  < Z  , 2 < i < N — li—i — i —  N — —

with

ZN 
= Z

N

Proof: By Theorem 3:

Z
N 

> Z
1 for all N—i > 1 > 1

Let F be the set of au feasible solutions to PR ., and let F be the1 1

set of all feasible solutions to 
~N’ 

then since PR
11 is a relaxation

to PR~.

F C F
i 

C F~~1

•

~ 

•~~~~~~~~~~~~~~~ •• •~~~ • •



r~~~~
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~~

with

F = F
N.

hence

—* —*Z > Z  > Z
N —  1 —  i—i

and
• 

ZN =
~~~~

A similar result can be obtained for the convergence of the sequence

of upper bounds UB. to ZN
.

Thus Z
N is shown to be trapped in a sequence of intervals that can

be made arbitrarily small by virtue of the convergence property,

mm A~ < Z
N 

< max A , i 1, 2, ..., N (17)
0<J< N—i O<j<N-i

A • = 

a~ 0 < j < N—i—l

h
i

/hi j N—i

To illustrate the applicability of the bounds consider the following

profit functions:

• (1) The coefficients {a
j
} are monotone increasing in j ,  the

number of customers in the system, e.g.,

N
~ j

X 
q
j ~ x > 0

j =0

15
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(2) C. } is monotone decreasing sequence in j ,  the number of

customers in the system, e.g.,

N
Z2 E (l — jy) q. , y > 0

j=0

(3) is the sum of the above two sequences,

Z
3
= Z

l
+ Z

2

Table 2 shows the bounds to Z
1
, Z2, Z 3 for E

5/M/1/5 system with x = .4 ,

y = . 2  f or p = = .8 , 2 , 4, 10. The generating sequence Cr1
} is given

for each p. The results show that the bounds are tighter under heavy F
traffic conditions since they rely more on 

~~~~ ~~~~~~~ • rather than

• q0, q1 They also show that, in general, we should expect either the

upper or the lower bounds to be useful.

F The form (17) suggests different approximations to Z
N
. For example

ZN 1/2(LB
1 + tJB m ) where the error will be known not to exceed l/2(UB . — LB .),

1 < i < N—i. However, an epproximation of a particular importance and inter-

pretation is the Z
N 

AN_i = 1lmThm as shown in the following section.

16 
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Table 2

zl Z2 Z~i
p 1 r . (Lfl ., l.jt~.) (LB., 1513.) (LB ., UB .)

.8 1 .487 (0.000, 1.792) (.134 , 1.000) (1.000, 1.950)

2 .639 (0.000, 1.668) (.270, 1.000) (1.000, 1.938)

3 .675 (0.000, 1.517) (.412, 1.000) (1.000 , 1.930)

4 .681 (0.000, 1.317) (.562, 1.000) (1.000, 1.880)

5 .682 (0.840, 0.840) (.721, 0.721) (1.561, 1.561)

2 1 1.638 (0.000, 1.839) (.075, 1.000) (1.000, 1.950)

2 2.430 (0.000 , 1.800) (.119, 1.000) (1.000, 1.920)

3 2.769 (0.000 , 1.778) (.141, 1.000) (1.000, 1.919)

4 2.891 (0.000, 1.765) (.152, 1.000) (1.000, 1.918)

5 2.929 (1.756, 1.756) (.156, 0.156) (1.913 , 1.913)

4 1 3.619 (0.000, 1.865) (.043, 1.000) (1.000 , 1.950)

2 5.668 (0.000, 1.853) (.056, 1.000) (1.000, 1.920)

3 6.781 (0.000, 1.851) (.059, 1.000) (1.000, 1.910)

4 7.333 (0.000, 1.850) (.060, 1.000) (1.000, 1.910)

5 7.576 (1.850, 1.850) (.060, 0.060) (1.910, 1.910)

10 1 9.607 (0.000, 1.884) (.018, 1.000) (1.000 , 1.950)

2 15.603 (0 .000 , 1.882) ( . 0 2 1 , 1.000) (1.000 , 1.920)

3 19.421 (0.000 , 1.882) (.021, 1.000) (1.000, 1.904)

4 21.810 (0.000, 1.882) (.021, 1.000) (1.000, 1.904)

4 23.233 (1.882 , 1.882) (.021, 0.021) (1.904, 1.904)

17
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4. APPROXIMATIONS TO THE GENERALIZED MEASURE Z
N

Here we develop a sequence of approximations for Z
N 

based on A.N . ~

Definition: The m~
h approximation Z~ (i’1,2, ... ,  N) to Z

N 
is given by

the solution to the system

N
mm E a. q
@O N—i ~

s.t. ...

r1~~~1
_ q

~~= o

r q  — q  = 0
2 N—2 N—i 

(18)

— q
N~~÷l 

= 0

aN—i + ~~~~~~~ + • + aN 1 (19)

where q. are the approximated steady state probabilities , N > > N — 1.

Lemma 3: Z1 
= h1/h . and the approximated steady state probabilities

{q
j
} are given by

-• 

= 

q • d N — i < j < N

0 otherwIse.

where d = aN l /ai l , and Cq~~~} is the exact steady state solution

to the corresponding G/M/1/N system.



Proof: First observe that equations (18) and (19) are the steady state

equations for the corresponding G/M/1/i system expressed in terms of

ratios Cr .). Let Cq~
’}~~~ , be the solution to C/N/i/i system, then

r (i)_ ~j)~ o1 
q1_1 q

1

r 
(j)_ (1~2 q1_2 q1_1

(1) (i) 
—r

1
q
0 — q

1 — O

q~
i) 

+ q~
(i) + •.  .+ q~

1) 
= 1

hence

A 

— 
(I)

—

will satisfy (18) and (19).

Also from lemma 2:

q
(N) 

q (N~l) ~~~~~~ = (N— 2) aN—3 
= • = 

(N-K) aN—K—l
~~~ aN— i. 

q~ _2 aN_l ~~~~~~~~~~ aN—i

letting K = N — I,

(N) (i) aj_i
— 

~ J — ( N — i )  
aN—i. 

or

= q = q
(N) 

d , where d = ____

Also system of equation (18) implies

A — A —l A —I. Ar J = [r r r ]aN—i i N—i+1 i i—i N—i+2 j j—~ j 

_ _ _



— -~~ -- —  -- ——• 
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Substituting into (19) gives

aN—i = l/h
~

and back substitution into the objective function gives

=

Thus the 1
th 

approximation can be viewed in different ways. The approxi-

mation uses a G/M/l/i system to evaluate the last i + 1 probabilities and

sets q. = 0, j < N — 1. Also the approximation overestimates the last
3 aN li + 1 probabilities by multiplying them by d = 

a > 1 (Note the monoton—
i—l

icity of Ca.)). The following figure shows the relationships among the

approximation, the G/M/l/N (exact) system, and the G/M/1/i system.

G/M/1/N ~~ q1 1~
N— iJ [~N_1

App. G/M/1/N ~0 0 . 
~~ F aN — i l • ~~N_l aN I

C/N/ i/ i [
~

o J q1j • 
~~~~ ~

Thus t he quali ty of t he 1th app roxima t ion ( to be measured quan t itat ively in

the following section) depends on the factor d and the traffic intensity

p = A/ii. The closer the d to 1 the better is the approximation. A heavy

traffic situation justifies setting the first few probabilities to zero. It

has been observed in experimentation that d is also related to the traffic

intensity such that heavier traffic provides values of d which are

20
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closer to 1. The following table shows d for different levels of approxi-

mations i = 1, 2, 3, .., N — 1 for Erlangian systems (0< cov < 1), and

Hyperexponential systems (1 < coy < 
~) under various traffic loads.

_ _  _ _  _ _  

d

• A u c o v N 
1=1 1=2 i=3 i=4 1=5 i=o f i=7 1=8 i—9 i=iO

2 1 .447 10 1.241 1.074 1.008 1.008 1.002 l.000 {_ —

4 1 .447 10 1.044 1.006 1.000 _____•

101 .447 10 1.006 1.000

2 1 1.000 10 1.332 1.142 1.006 l.O31;i.ols
l
l.oo7 l.oo3 ~~~~~~~~~~ 1.000

4 1 1.000 10 1.066 1.015 1.00311.001 1.000

10 1 1.000 10 1.010 1.000 f• 2 1 2.134 10 1.416 1.255 1.173 1.121 1•084 1•057 F 1•036 1.o2iL.0o9 1.000
4 1 2.134 10 1.112 1.056 1.031 l.017!l.010 l.0051l.002 1.001 1.000 1.000

10 1 2.134 10 1.021 1.000

Using the bounds (17) it can be easily shown that the approximation

also bounds the measure Z
N such that

Z1 
> Z

N if z
1 

> max (a.),
— 

0<j<N—i—l ~
and

Z~ < Z
N 

< n u n  (a ).
— 

0<j<N—i—i

The following lemma shows that if {a
j
} is a monotone increasing sequence

the approximation will bound Z N from above. An important special case is

— - n thwhenever a
j 

= ~ , n = 1, 2, 3, ... which gives the n raw moment of the

distribution of customers in the system.

Lemma 4: Let {a~} be a monotone increasing sequence , then

ZN
< Z

i , i < N — 1
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Proof:

N 
— N-i—i N

Z
N 

= E a. q
~ = E a.q. + 

~ ~~ . q .
.]0 j=0 ~ j=N—i ~

— N N
• 

~ aN— i—i (1 — E 
~j
) + E ~~ . q.

j=N—i j=N—i

— N
- = a

N l l  + 
j=~ —i 

~~j 
—

+ - 
~~_1_1)q~ , by lemma 3

— — N A A

= aN— i— i — aN— 1— 1 Z q
~ 
+ Z.

j=N— i

A N A
= Z~ , since Z q. = 1.

j=N—i ~
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5. COMPUTATIONAL EXPERIENCE

The approximation procedure as presented in the previous section has

been coded and used to obtain computational experience for E
K/M/ l/N

(K—Eriangian) systems and H~/N/l/N (Hyperexponential) systems. These two

families of queues are commonly used in the literature since they cover

the full range of the coefficient of variation (coy) and they provide a

generating formula for the elements = 0, 1, ..., N. This speciali-

zation does not simplify the approximation procedure but does simplify

the coding effort.

For different combinations of N, A , ~i , and coy , a set of 100 problems

were solved for the 1th approximation i = 1, 2, .., N — 1. The cost

coefficients {a
j
} were randomly generated as uniform (0, 1) variables for

each problem. Thus the resulting generalized measures Z
N, Z. are on a

(0 , 1) scale. The choice of the different parameters was designed to re-

flect the effect of traffic intensity, coefficient of variation , and

system capacity (N) on the quality of the approximation.

Two measures were used to evaluate the ~~~ approximation, the absolute

deviation J Z N 
— z~j, and the percent deviation IZN 

— Z . I / Z N , I = 1, 2 ,

N — 1. For each problem set and each i, the mean and variance of the

above two measures are given as

DEV (I) mean abs. deviation

SD (I) variance abs. deviation

PDEV (I) mean percent deviation

SP (I) variance of percent deviation

23
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I1-
Scaling the cost coefficients should not affect the percent deviation while

it should scale the absolute deviation with the same factor. Tables 3, 4,

and 5 present our computational experience.

Clearly the approximation works best under heavy traffic loads. For

p = 5, the approximation (i = 2) gives rise to a max deviation of .0082

and a max percent deviation of 2.5%; for p = 10, max deviation drops to

.0019 and max percent deviation drops to .6% over the range of coy and

N considered . This fact combined with the simple formula for this

approximation

= 

a~~2 
+ r

2 aN-l 
+ r

2r 1 aN
2 i + r 2 + r r

makes it an efficient approximation for heavy traffic. For medium traffic ,

similar results can be obtained for i = 3, i = 4. Over the range of coy,

it seems that the approximation performs better for smaller values of

coefficient of variation. A comparison of table 6 with the appropriate

tables 3, 4, and 5, shows that the approximation yields better results for

smaller values of N.

As expected from the derivation the approximation can not handle low

traffic conditions. Clearly an approximation that uses q0, q1, q2,

should yield good results in which case the ~th approximation will be a

function of r
N, 

rNl . . . .,  rN .  rather than r1, r2, ..., r~ .

Finally we believe that the simplicity of the formula and the deriva-

tion of the bounds, the approximations, and the generating ratios for the

C/Mu /N system have great potential in the optimization of this class of

queues.
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Table 3: Hp/M/1/lO System

*
coy A I DEV(I) SDOIP PDEV(I) SP(I)

2.134 1. 1. 2 .1006 .0055 .2043 .0245
3 .0790 .0034 .1582 .0131
4 .0638 .0020 .1299 .0089
5 .0516 .0014 .1055 .0061
6 .0432 .0011 .0885 .0050
7 .0305 .0005 .0618 .0022
8 .0240 .0004 .0493 .0016
9 .0175 • .0001 .0352 .0006
10 .0000 .0000 .0000 .0000

F 2.134 3. 1. 2 .0209 .0002 .0504 .0024
3 .0117 .0001 .0274 .0008
4 .0073 .0000 .0180 .0004
5 .0045 .0000 .0106 .0002
6 .0029 .0000 .0070 .0001
7 .0018 .0000 .0044 .0000
8 .0010 .0000 .0025 .0000
9 .0005 .0000 .0013 .0000
10 .0000 .0000 .0000 .0000

2.134 5. 1. 2 .0082 .0000 .0246 .0010
3 .0040 .0000 .0123 .0003
4 .0022 .0000 .0067 .0001
5 .0010 .0000 .0030 .0000
6 .0005 .0000 .0016 .0000
7 .0002 .0000 .0007 .0000
8 .0001 .0000 .0002 .0000
9 .0001 .0000 .0002 .0000
10 .0000 .0000 .0000 .0000

2.134 10. 1. 2 .0017 .0000 .0057 .0001
3 .0006 .0000 .0022 .0000
4 .0002 .0000 .0008 .0000
5 .0001 .0000 .0003 .0000
6 .0000 .0000 .0001 .0000
7 .0000 .0000 .0000 .0000
8 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000
10 .0000 .0000 .0000 .0000

• *~~~y coefficient of variation.
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Table 4: M/M/l/lO System

coy A li I DEV(T) SD(I) PDEV(I) SP(I)

1. 1. 1. 2 .1190 .0062 .2410 .0271
3 .0898 .0039 .1820 .0180

• 4 .0783 .0033 .1595 .0154
5 .0651 .0022 .1333 .0109
6 .0489 .0014 .1016 .0071
7 .0443 .0009 .0917 .0042
8 .0355 .0006 .0730 .0028
9 .0231 .0002 .0476 .0011

_________________ -- 
10 .0000 .0000 .0000 .0000

1. 3. 1. 2 .0088 .0000 .0230 .0008
3 .0028 .0000 .0072 .0002
4 .0010 .0000 .0027 .0002
5 .0003 .0000 .0009 .0001
6 .0001 .0000 .0003 .0001
7 .0000 .0000 .0001 .0000
8 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000
10 .0000 .0000 .0000 .0000

1. 5. 1. 2 .0020 .0000 .0061 
• - - 

.0001
3 .0005 .0000 .0015 .0000
4 .0001 .0000 .0003 .0000
5 .0000 .0000 .0001 .0000
6 .0000 .0000 .0000 .0000
7 .0000 .0000 .0000 .0000
8 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000
10 .0000 .0000 .0000 .0000

1. 10. 1. 2 .0003 .0000 .0011 .0000
3 .0000 .0000 .0001 .0000
4 .0000 .0000 .0000 .0000
5 .0000 .0000 .0000 .0000
6 .0000 .0000 .0000 .0000
7 .0000 .0000 .0000 .0000
8 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000
10 .0000 .0000 .0000 .0000
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Table 5: E
2
/M/1/l0 System

coy A p I DEV(I) SD(I) PDEV(I) SP(I)

.707 1. 1. 2 .1232 .0071 .2512 .0318
3 .0966 .0054 .1981 .0239
4 .0776 .0036 .1583 .0170
5 .0602 .0023 .1229 .0102
6 .0510 .0015 .1041 .0070
7 .0439 .0009 .0894 .0045
8 .0342 .0007 .0708 .0039
9 .0228 .0002 .0468 .0009
10 .0000 .0000 .0000 .0000

.707 3. 1. 2 .0054 .0000 .0125 .0004
3 .0015 .0000 .0034 .0003
4 .0004 .0000 .0009 .0002
5 .0001 .0000 .0002 .0001
6 .0000 .0000 .0001 .0001
7 .0000 .0000 .0000 .0000
8 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000

- 

10 .0000 .0000 .0000 .0000

.707 5. 1. 2 .0014 .0000 .0039 .0000
3 .0002 .0000 .0005 .0000
4 .0000 .0000 .0001 .0000
5 .0000 .0000 .0000 .0000
6 .0000 .0000 .0000 .0000
7 .0000 .0000 .0000 .0000
8 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000
10 .0000 .0000 .0000 .0000

.707 10. 1. 2 .0002 .0000 .0007 .0000
3 .0000 .0000 .0000 .0000
4 .0000 .0000 .0000 .0000
5 .0000 .0000 .0000 .0000
6 .0000 .0000 .0000 .0000
7 .0000 .0000 .0000 .0000
8 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000
10 .0000 .0000 .0000 .0000
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Table 6: C/M/1/5 Systems

coy A p I DEV(I) SD(I) PDEV(I) SP(I)

.707 3. 1. 2 .0060 .0000 .0177 .0007
3 .0013 .0000 .0037 .0000

4 .0003 .0000 .0009 .0000

5 .0000 .0000 .0000 .0000

.707 5. 1. 2 .0013 .0000 .0036 .0000
3 .0002 .0000 .0006 .0000
4 .0000 .0000 .0001 .0000

5 .0000 .0000 .0000 .0000

.707 10. 1. 2 .0002 .0000 .0005 .0000
3 .0000 .0000 .0000 .0000
4 .0000 .0000 .0000 .0000
5 .0000 .0000 .0000 .0000

1.000 3. 1. 2 .0083 .0000 .0208 .0009
3 .0025 .0000 .0066 .0002
4 .0009 .0000 .0023 .0001
5 .0000 .0000 .0000 .0000

1.000 5. 1. 2 .0022 .0000 .0062 .0001
3 .0004 .0000 .0012 .0000
4 .0001 .0000 .0002 .0000
5 .0000 .0000 .0000 .0000

1.000 10. 1. 2 .0003 .0000 .0009 .0000
3 .0000 .0000 .0001 .0000
4 .0000 .0000 .0000 .0000
5 .0000 .0000 .0000 .0000

2.134 3. 1. 2 .0186 .0001 .0507 .0025
3 .0096 .0001 .0269 .0011
4 .0050 .0000 .0141 .0002
5 .0000 .0000 .0000 .0000

2.134 5. 1. 2 .0081 .0000 .0238 .0009
3 .0037 .0000 .0111 .0002
4 .0013 .0000 .0041 .0000
5 .0000 .0000 .0000 .0000

2.134 10. 1. 2 .0019 .0000 .0069 .0001
3 .0006 .0000 .0022 .0000
4 .0002 .0000 .0005 .0000
5 .0000 .0000 .0000 .0000

28



• •

REFERENCES

1. Bhat, U. N., “Sixty Years of Queueing Theory,” Management Sd ., 15,
180—292, 1969.

2. Bhat, U. N., “Some Problems ~n Finite Queues,” Mathematical Methods
in Queueing Theory, Lecture Notes in Econ. & Math. Syst. No. 98,
Springer Verlag , N. Y., 1974.

3. Brockmeyer , E., H. L. Halstrom, and A. Jensen, “The Life and Works of
A. K. Erlang,” Trans. of the Danish Acad. Sc., No. 2, 1948.

4. Cooper , L., and D. Steinberg, Methods and Applications of Linear Pro-
gramming, W. B. Saunders Co., Philadelphia , 1974.

5. Crabill, T. B., D. Cross, and N. J. Magazine, “A Classified Bibliography
of Research on Optimal Design and Control of Queues,” Opns. Res.,

• 25(2) , 1977.

6. Evans, R. V., “Programming Problems and Changes in the Stable Behavior
• of a Class of Markov Chains,” J. Appi. Prob., 8, pp. 543—550, 1971.

7. Heyman, D. P., “A New Proof of the Queueing Formula H = XC ,” Technical
Report , School of Organization and Management, Yale Univ., 1977.

8. HillIer, F. S., “Economic Models for Industrial Waiting Line Problems,”
Management Sc, 10(1), 1963.

9. Hokstad , P., “The G/M/rn Queue With Finite Waiting Room,” J. Appi. Prob .,
12(4) , 1975.

10. Keilson, J., “The Ergodic Queue Length Distribution for Queueing
Systems With Finite Capacity ,” J. Roy. Stat. Soc., Series B28,
p. 201, 1966.

11. Kendall, D. C., “Stochastic Processes Occuring in the Theory of Queues
and Their Analysis by the Method of the Imbedded Markov Chain,”
Ann. Math. Stat., p. 338, 1953.

12. Kotiah, T. C. T., “On a Linear Programming Technique for the Steady
State Behavior of Some Queueing Systems,” Opns. Res., 25(2), 1977.

13. Laslett, C. N., “Characterizing the Finite Capacity Cl/N/i Queue With
Renewal Output,” Manag~ement Sci., 22(1), 1975.

14. Prabhu, U. N., Queues and Inventories, John Wiley , N. Y., 1965.

15. Raju, S. N., and U. N. Bhat, “Recursive Relations in the Computation
of the Equilibrium Results of Finite Queues,” Studies in the
Management Sciences, North—Holland Co., Amsterdam, Vol. 7,
pp. 247—270, 1977.

16. Tak~cs , L., “On a Combined Waiting Time and Loss Problem Concerning
Telephone Traff ic ,” Mathematical Institute, Lor~nd E~tv~s Univ.,
Budapest, 1958.

29 

- --•- •~~~~~-— —• •--



- - •  --

~~~

-

UNCLASSIFIED
S ITY CLASS IFICATIO N OF T I-ItS PAGE (Wh .n Oat. Ent.r.d)

REPORT DOCUMENTATION PAGE BEFORE FORM I
~~~~ ----

~~rI~~. 
2. GOVT ACCESSION NO 3. RECIPIEN1” S C A T A L O G  NUMBER

ORF~~~ 8~~ 5 J 
_ _ _ _ _ _  

-

•

4. TITLE (an d Subti tle)  YPF - c  DCD~~~Oy £ oc.II’ .I-, CO V E R E D

~~~~ jBounds and Approximations for a 
Generalized 1 ( ) ~chnical ~~~~~~ _

~I\• IMeasure of Performance in the G/N/i/N Queues L
S. PERFORMING ORG. REPORT NUMBER

7. AUT HOR(.) S. CONTRACT OR GRANT NUMBER(.)

~~~~ ~~Mohamed A.~~haia~~
J 

• 
~~~~~~~ ftl4-75-C_~517~~\

PERFORMING ORGANIZATION NAME AND ADDRESS - ID PROGRAM ELEMENT PROJECT , TASK
AREA & WORK UNIT NUMBERS

Southern Methodist University
Dallas, Texas 75275 NR 042—324—436

I I .  CONTROLLING OFFICE NAME AND ADDRESS 1 ~ 
-

Statistics and Probability Program ‘ FeL.5~~ 4.~~~ 78
Off ice of Naval Research , Department of the Navy ‘ - NuM.cRoF P~~~~~6J~~ II
Arlington, Va. 22217 29 I~i ~ ‘t ~ h.

14. M O N I T O R I N G  A G E N C Y  N A M E  & A O O RE SS (I I  dill.r.n t fran, Controll ing Olfic.) IS. SECURITY C Afs ________

Unclassified L
IS., OCCLASS IFICAT ION/DOW NG*AD ING

SCHEDULE

14. OIST RIB UTION STATEMENT (of  thu Report)

This document has been approved for public release and sale. It s
distribution is unlimited.

17. DISTRIBUTION STATEMENT (of ffi. .b.trac t anI. r.d in Stock 20. ii dIIi.r.n t ironi R.port)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (CantJ nu. on r.v.r. . aide II n.c... y and identifr by block ns b.r)

Generalized performance measures Imbedded~Markov chain
Ergodic queue length distribution Computations chain
Bounds Approximations
G/M/l/N Queue

~0. ABSTRACT (Canhinu. on r.v.r.. aid. if n.c... y —~~ idontS~~ by block nt b.r)

A generalized measure of performance is defined asa weighted combina-
tion of the ergodic queue length distribution where the weights are general
functions of the system parameters. The paper presents a sequence of upper
and lower bounds for this measure of performance in the G/M/ l/N queue with
FIFO discipline. The bounds are used to derive a sequence of approximations
with bounded errors. The upper and lower bounds are shown to converge to
their corresponding exact v~1*~~s. Th~~t~çh~ique used is based on the_ _ _ _ _ _ _ _ _ _ _ _-

DD 
~~~~~~~ 

1473 EDITION OF I NOV 65 IS OSSOLETE
S/N 0102-014- 660 1 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS FASt (SPion Dat e tnt. ,sd)

- - •_  ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
• - -



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  •

UNCLASSIFIED
. . , j 4 ITY  CLASSIF ICA TI ON OF THIS PAGE(Wh on Data Znt.r .d)

20. (Continued)

imbedded Markov chain analysis and considers only subsets of the steady state
equations to derive the bounds. Initial computational experience is encour—
aging and has indicated that the approximations are viable for heavy and
medium traffic conditions.

S

SECURITY GLA UIFICATION OF TI-ItS PAGE(WPI.n Data Entered)

_ _ _ _ _ _  
_ _ _ _


