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I. INTRODUCTION

A new method of enhancing the detectability of narrowband signals in the presence
of broadband noise has recently been introduced [1,2,3]. This method, called “adaptive
line enhancement,” is based on the Widrow-Hoff least-mean-square (LMS) adaptive algorithm.
As shown in Fig. 1, it is implemented with a two-channel processor in which a delayed version
of the input data is adaptively filtered and subtracted from the instantaneous input data.

The difference between the delayed and instantaneous data serves as the error signal €(j) for
the LMS algorithm, which governs the frequency response of the adaptive filter in such a way
that the power of €(j) is minimized.

Operation of the adaptive line enhancer (ALE) of Fig. 1 can be understood intuitively
as follows. The delay causes decorrelation between the noise components of the input data
in the two processor channels while introducing a simple phase difference between the sinus-
oidal components. The adaptive filter responds by forming a transfer function equivalent to
that of a narrowband filter centered at the frequency of the sinusoidal components. The
noise component of the delayed input is rejected, while the phase difference of the sinusoidal
component is readjusted so that they cancel each other at the summing junction, producing
a minimum error signal composed of the noise component of the instantaneous input data
alone.

Use of the ALE to detect sinusoidal signals in uncorrelated or “white” noise is dis-

cussed in [1], [2], and [3] 1 In this application any value A of delay can be chosen. The
ALE can also be used to detect sinusoidal signals in correlated or “colored” noise [2]. In
this case it is often necessary to choose a relatively large value of A to insure decorrelation
between the noise components in the two processor channels.

The ALE with unit delay (A = 1) is identical to the instantaneous frequency tracker

of [4] .2 The ALE and instantaneous frequency tracker are further shown in [5] to be forms
of adaptive linear prediction filter. A comprehensive treatment of linear prediction filtering
techniques is given in [6] and [7]. The LMS algorithm was first applied to the design of an
adaptive prediction filter in [14]. A recent hardware implementation of an 8-weight LMS
adaptive linear predictor and its application to instantaneous frequency estimation, speech
encoding, and other similar problems are discussed in [8].

The advantages of adaptive line enhancing with respect to conventional digital
Fourier analysis have been discussed with some controversy in the literature. A comparison
in [1], using figures of merit based on output signal-to-noise ratio, indicated that the ALE
required less data to achieve a given level of detection performance. This comparison was
shown to be in error in [9], and a correction presented in [10] indicated that performance
with a given amount of data was equivalent. A definitive comparison based on statistical
detection theorv, however, has not yet been published. Considering the fundamental

I Detection is accomplished by digital Fourier analysis of the adaptive filter weights [1,2] or adaptive filter
output [3].

2In this application a modified maximum entropy spectral estimate is computed from the adaptive filter

weights.
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differences between the two methods it appears likely that eaci will have advantages in

different applications.3 As suggested in [11], the ALE in many applications is effective
over a wide range of input signal and noise parameters with little a priori information. Both
[10] and [11] have also emphasized its ability to resolve closely spaced narrowband signals.

Since the ALE is a new type of processor, many questions regarding its performance
and advantages remain to be answered. The goal of this paper is to analyze its steady-state
behavior with a stationary input consisting of multiple sinusoids in uncorrelated noise. It
will be shown, using the method of undetermined coefficients, that the L X L Wiener-Hopf
matrix equation describing the steady-state impulse response of an L-weight ALE with
arbitrary delay or “prediction distance” A may be transformed into a set of 2N coupled
linear equations, where N is the number of sinusoids in the ALE input. This set of equations,
which decouples as the adaptive filter becomes longer, provides a useful description of the
interaction between the sinusoids introduced by the finite length of the filter. The derived
impulse responses and transfer functions form an analytical basis for comparing in terms of
L and A the various techniques of obtaining spectral estimates with the ALE for this class of
input signals. These results also offer a means of comparing spectral estimates obtained with
adaptive line enhancing and those obtained with other techniques.

II. ANALYSIS

A. Determination of Appropriate Models
The Widrow-Hopf LMS algorithm for the ALE is as follows [14]:

Wj+1(k) = wj(k) +2u [x(j) xG-A-kK)-x(G-A-k)

L-1
'zXG-A-Q)wj(Q)],k=O,l,...,L-l (1
=0

where wj(k) is the jth update of the kth weight of the ALE; u is a scalar representing the

influence of the input x(j) on the (j + 1)st update of w(k); and L and A are, respectively, the
number of weights and the delay.

For uncorrelated stationary inputs it has been shown [4, 14, 15] that, starting with
an arbitrary initial weight vector, the expected value wj(k) in (1) converges to the solution of
the Wiener-Hopf matrix equation, provided that 0 <u <1 /)‘max’ where )‘max is the largest

eigenvalue of the data autocorrelation matrix:

lim E[wj(k)] =w*k),k=0,1,...,L-1 )

j—’w

3Comp:u'isons of various spectral estimation methods, including Fourier and maximum entropy methods (but
not adaptive line enhancing), are presented in [12] and [13]. Performance is shown to depend on a number
of factors, including the amount of data available and the input signal-to-noise ratio.

—
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where E [ -] denotes expectation and w*(k) is the kth component of the L-dimensional
vector W*, which is the solution of the Wiener-Hopf matrix equation:

R-w* =g. (3)

~ o~

In (3) 5 is the L X L data autocorrelation matrix with elements (B,)Qk = ¢xx(Q - k), where

¢xx(Q) = E[x(j) x(j + Q)] is the autocorrelation function for x(j), and P is the L-dimensional

vector with components (B)k = ¢xx(k + A).

Further, for the case of uncorrelated input vectors, the covariance of the weight-
vector noise in steady state has been shown [ 1, App. D] to be given by

lim cov [W; - W*] = stmin! )
j—»oc
where
L-1
Emin = ¢xx(0) it W*(k) ¢xx (k + A) (5)
k=0

is the minimum mean square error of the finite length Wiener filter W* and I is the L X L

identity matrix. The weight vector noise is inherent in the estimation process used in the

LMS algorithm and results from performing spectral estimates in a finite observation time.
(Note that an exact solution of the Wiener-Hopf matrix equation requires an infinite time
history of data, since the exact values of ¢, (%) are required.) The weight vector noise

results in an excess steady-state mean-square-error output, so that the ALE error never reaches

the theoretical minimum Emin'
A useful measure of the difference between actual and optimal performance is the

“misadjustment,” defined as the dimensionless ratio of the average excess mean square error

to the minimum mean square error [16]:

average excess mean square error
M = Yeras q : (6)

Emin

The theoretical expression for M‘derived in [16] is
M = ulL¢,,(0). 7

Note that (7) was derived under the assumption that the input data are uncorrelated and tends
to be smaller than the measured misadjustment when the data are correlated. Note also that
the magnitude of the excess error can be made arbitrarily small by making u arbitrarily small,
since a decrease in u results in an increase in integration time during the adaptive process.

The weight vector noise produces noise in the ALE transfer function. Assuming
Gaussian statistics for the weight vector noise, it has been shown [1, App. D] that when the

Tl S 3 e




input noise power in x(j) is large compared to the input signal power, the noise in the
transfer function has zero mean and a steady-state power which is given by

Luv? (8)

where v? is the input noise power. It has also been shown [14, 16] by diagonalizing R that
transients in the mean weight vector consist of sums of exponentials with time constants
given by

2 9

where )\p is the pth eigenvalue of R. In general, a precise treatment of the dynamics of the

LMS algorithm is complicated due to the difficulties in diagonalizing R. Note, however, that
the dynamics of E[wj(k)] for the important case of a sinusoid in white noise have been

described in [17] by diagonalizing R.
Among the first to consider the convergence of (1) for correlated data was Senne
[18], who demonstrated that E[wj(k)] does not necessarily approach w*(k) when x(j) is

correlated. Further, Senne demonstrated that both the asymptotic excess mean square error
and the time constants ™ increase as correlation increases. Daniell [19] showed that,

although the weight vector may be biased away from W* in steady state, it can be made
arbitrarily close to W* in the sense that given any number 8> 0 there exists a “ﬁ> 0 such

that for all 0<y<#ﬁ

lim sup E[IW; - W*2] <.

J-m

The assumptions made by Daniell included ergodicity as well as asymptotic independence
and uniform boundedness of the conditional moments of the observable given the past data.
As noted by Kim and Davisson [20], this last assumption is rather strong and is not satisfied
in a number of important cases. In [20] Kim and Davisson have also considered the con-
vergence properties of adaptive algorithms similar to (1), for correlated stationary input data
and were able to show that, under certain assumptions concerning the input data, the mean
norm-square of the weight vector deviation converged to asymptotic bounds which can be
made arbitrarily small by decreasing the adaptation constant. However, the derivations in
[20] require that the adaptive algorithm form its gradient estimate by some averaging of the
input data as opposed to using instantaneous data values as in (1). Therefore, the results in
[20] do not strictly apply to (1). Other results and references on the convergence proper-
ties of (1) for stationary correlated input data are discussed in [17] and [29].

Even though general convergence properties of (1) for stationary correlated input
data are very difficult to obtain, it is still reasonable to assume that, for suitably small values
of u, E[wj(k)] will converge, within a good approximation, to w*(k) in many cases of

practical interest. This assumption, as noted in [1], generally holds in practice, and it will




be used in this paper to derive the expected values of the “ teady-state ALE weights for
stationary inputs consisting of multiple sinusoids in white noise. To verify that the
analytical results obtained from the finite length Wiener filter model (3) do in fact describe
the steady-state performance of the ALE, experimental results have been obtained using a
hardware implementation of the ALE for several special cases. The analytical and experi-
mental results are compared in Section III and are shown to be in good agreement.

B. Steady-State Impulse Response and Transfer Function of the ALE for Multiple Sinusoids
in White Noise

Using the Wiener-Hopf model for the ALE response, (3) may be expressed in compo-
nent form as

L-1
D @~k WA = 6y (8 + 4),0< <L - 1. (10)
k=0

When x(j) consists of N sinusoids in white noise,

N
bxx () =00 8(K) + D 0,2 cos wpk (an
n=1

L)

where §(k) is the Kronecker delta function (i.e.,8(k)=0ifk+0and 6(0)=1). In(1 1) o,
is the power in the nth smusond w,, represents the frequencies of the sinusoids, and 00 is
the white noise power. If gy ¢ 0, then R is positive definite (as shown in the Appendix),

and a unique solution to (3) exists.
The inverse of R can be calculated explicitly, for the special case when Oy x(K) is

given by (11), by the repeated use of a well-known matrix inversion identity sometimes
referred to as Woodbury’s identity [21]. This identity has been used by a number of authors

to analyze B_"l and/or W* when ¢xx(k) is in the form of (11). Zeidler and Chabries [3]

used this identity to analyze the steady-state properties of the ALE for one sinusoid in white
noise, and the use of the identity has been discussed by Lacoss [12], Frost [13], and Marpie
[30] for purposes of examining different methods of spectral estimation. This inversion
identity has also been used by Shapard et al. [22] for purposes of adaptive matrix inversion;
by Edelblute et al. [23] to analyze different criteria for optimization of acoustic signal
detection; and by Capon [24] to analyze a technique for high resolution frequency-
wavenumber spectrum analysis. The application of Woodbury’s identity to obtain W is,
however, quite tedious and does not resolve many questions concerning the ana]ytnc struc-
ture of w*(k) if N is much larger than two.

In this paper it will be shown that solutions for w*(k) which provide insight into the
basic analytic structure of the steady-state ALE impulse response for an arbitrary number of
sinusoids can be obtained by an alternate technique called the method of undetermined
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coefficients. The method of undetermined coefficients assumes a solution for w*(k) in
terms of unknown constants and substitutes this assumed solution into (10) to obtain a set
of equations for the unknown constants [25,26]. Since a unique solution to (10) exists as

long as 002 % 0, a solution to the set of equations for the unknown constants provides the

unique solution to (10). It will be shown that for an L-weight filter with N sinusoids present
in the input data sequence, the method of undetermined coefficients effectively transforms
the set of L coupled equations in (10) into a set of 2N coupled equations. This then leads to
a simpler set of equations whenever L>2N. (A procedure similar to this was introduced by
Zadeh and Ragazzini [25] for solving the integral equations (analogous to (10)) for the
optimum, finite length, continuous predictive filter. This analytical technique was also used
by Morgan and Craig [8] to solve (10) for one sinusoid in white noise.)

The form of the assumed solution for w*(k) for N sinusoidal inputs of the form
specified in (11) is

2N o
w
wii)= ) A, (12)
n=1
where for notational convenience w4\ is defined as -—wn(n =1,2,...,N); the Wp4) are

thus the negative frequency components of the input sinusoids. Substituting (12) into (10)
with ¢, (¢) given by (11), and equating coefficients of exp (wHforr=1,2,...,2N)in

the resulting equation, leads to the following 2N equations in the 2N constants Ap,

Az,...,AzNZ
2N jw A
(<]
A+z'y A w gl e yhall o g (13)
r ’
n=1 it L+2"02/"r2
n#r

where in (13) °%+N is defined as unz (n=1,2,...,N)and Yrn IS given by

i g

L+ 2002/°r2 §id ej(“’n -wp)

Yen (14)

The solution of (13) for the A, completely determines w*(k) through (1 2).4 Since N is

much smaller than L in many cases of practical interest, (13) often provides a much simpler
set of equations than (10).

A number of interesting analytic properties of w*(k) can be observed through
(12)~(14). First, (12) implies that when the input to the ALE consists of N sinusoids and
additive white noise, the mean steady-state impulse response of the ALE can be expressed
as a weighted sum of the positive and negative frequency components of the input sinusoids.

4 As shown in the Appendix, (13) has a unique solution.




From (14), it is seen that the coefficients Yens which couple the A, together in (13), are
j(w,—w. )L (w,~w
proportional to (1 —ej(w“ v )(1 —ej( " r)), which is the L-point Fourier transform
of exp (jwpk) evaluated at w,. Note that from the form of the Yrp it follows that

ApiN = Xn (n=1,2,...,N), where the overbar denotes complex conjugate. This relation

is of course necessary to insure that w*(k) is real. A plot of Fypp! versus Amewn—wr,

given in Fig. 2(a) for two different filter lengths and for 2”02/°r2 = 1, shows that, when L
is large or when Aw,, is some integral multiple of 2x/L, Yrn €an be neglected. When

Ay 0, Yo (L/2)(ar2/002)/(l + (L/2)(or2/002)): and further, as L becomes large, the
ratio of the peaks of Iyl at Awm, =2p+ 1)n/L to (Ve at Awm= Oforp=1,2,...1is

given approximately by 1/(p + 1/2)w. The first two ratios, for instance, are 0.212 and
0.127. Therefore, even if a particular Aw,, is close to the filter resolution, i.e., within the

first several peaks of Fig. 2(a), the associated Yrn could possibly be neglected in (13) without
creating serious error in w*(k), especially if (L/Z)(orzlooz)/(l + (L/2)(ar2/002)) is much
smaller than 1. A specific case when some of the Yrn ¢an be neglected is presented in
Section I1.C. Note also that as ar2/002 becomes very small the v, approach zero. This is
indicated in Fig. 2(b), where [vpp! is plotted for two different filter lengths and for
20%/0,% = 50.

As Y, = O forall n and r (i.e., as L becomes large) the A, uncouple and are given to
a good approximation by

jw.. A
eJ n

A= SRR 2N. (15)
" L+209%0,2

Eq. (15) is identical to the expression for the amplitude of the mean steady-state ALE im-
pulse response for one sinusoid at w,, in white noise previously derived in [1] and [3].

Therefore, as the v,,, = 0, the ALE for N sinusoids will adapt to a linear superposition of N

independent ALE’s, each adapted to a single sinusoid in white noise. From (12), it is seen
that the frequency response of the steady-state ALE, which will be denoted by H*(w), can
be simply expressed in terms of the Ay

L-1
H*(w) = 2 w(k) edwktl)
=0

2N . : j(wy-w)L
g g € iy
n=1 | CJ n-w

10
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As L becomes large, so that (15) is valid, H*(w) is given to a good approximation by

N j(w, A+ w) L7 e-j(wn + w)L

H*(w) = e
n=1 L + 2 002/0n2 l -e J(wn w)

J(w A-w) ej(mn-w)L

N
z = (17)
e +2a0 l_ej(wn—w)

Eq. (17) corresponds to a sum of bandpass filters (centered at *w), each having a peak value
given by (L/2) SNR /((L/2) SNR; + 1), where SNR, = 0,,%/02. As L~ o, all of the peak

values in (17) approach 1, and the ALE becomes a linear superposition of perfectly resolved
bandpass filters, each with unit gain at its center frequency. Caution must be exercised in
choosing L, however, because as L is increzsed, the weight vector noise is also increased, as
indicated by (8), and the performance of the ALE can be degraded. Therefore, in practice,
a value for L which provides a trade-off between weight vector noise and enhancement
capabilities should be chosen.

C. Approximate Expressions for the Wiener Filter Solution when Specific Interaction Terms
Are Negligible

As shown in Section II.B, the exact Wiener weight vector solution for N sinusoidal
inputs in white noise can be obtained by solving a set of 2N coupled linear equations (13).
For cases in which specific interaction terms are known to be negligible it may be possible
to further reduce (13) to a smaller set of coupled equations which only involve the non-
negligible ., and provide a valid approximation to the exact Wiener weight vector. For

example, consider the case of two sinusoids in white noise in which there is little interaction
between the positive and negative frequency components of the sinusoids but appreciable
interaction between the two positive frequencies (and therefore between the two negative
frequencies). For this case, the correlation function is given by (11) with N = 2.

dyx(®) = 002 8(%) + 012 cos w R+ 022 oS wHk. (18)

Therefore, from (12-14), w*(k) is given by

2k Jo)3k Jw4k

wik
Wi = Ay 69154 Ay SO L 9K 1 a6 19)

where w3 =-w|;wy = -w>; and the A,, are linearly coupled together through the 12
coupling coefficients Y (t;n=1,2,...,4;r% n), which are given by (14). Since the
interaction between the positive and negative frequency components is assumed to be small,

12




the 8 coefficients v{3, Y31, 14> Y41> 723> 24> Y32> Y42 May be neglected, and (13)
reduces to the two independent sets of 2 X 2 linear equations:

JwA
A+21 e ] D
MmN L+ 20020 2 a0
n#r
JwA
A+§7 —-——, r=3,4. 21
m “n L+2002/02 21
n#r

The solution of (20) and (21) gives the following approximations for the A

[ e Al
o 1 erlA ,leeJ“’z
o Bt g - TR B T 0
12721 |L+20p%/01" L+ 20g°/0;
F Jegl jw14 7
I 2 721¢

A2=A4§

=127y i+ 2002052 L+ 120 /012J
where 75 and v, are given by (14). As a numerical example illustrating the difference
between the approximate solution of (19) — (22) and the exact solution, consider the case
when w /2w = 0.25; w2/21r =0.26;L=16:A=5;and SNR| (= 012/002) =SNR,

= 022/002) = 1.0. For this case, the magnitudes of the coupling coefficients between the
positive and negative frequencies are [yy4l = [v42! = 0.047; [ya31 = 1732l = 714l = lvgyl =
0.027; |13l = lr31 | = 0. The magnitude of the coupling coefficients between the closely
spaced lines is |y 2] = 17211 = 1734] = |7431 = 0.86. In Fig. 3 plots of w*(k) derived from

(12) = (14) and from the approximations (19) and (22) are presented. As is seen, the greatest
discrepancy is approximately 10 percent and occurs at the peaks where the four sinusoids in
(19) tend to add constructively.

III. EXPERIMENTAL RESULTS

In this section we apply the analytical results obtained in Section II for N sinusoids
in uncorrelated noise to the specific cases of a single sinusoid in white noise and two
sinusoids in white noise. Experimental verification that the steady-state response of the ALE
is in fact described by the Wiener filter model for these cases is provided. The experimental
date presented in this paper were obtained on a variable length hardware implementation of
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approximations (19) and (22) for a particular case d.eﬁned in the text.

the ALE which employed 9-bit linear quantization in the upper (input) channel and 4-bit
log quantization in the adaptive filter (reference) channel of Fig. 1. Filter lengths of 8, 16,
32, 64, 128, and 256 weights can be obtained with this hardware. Experimental plots of the
frequency response of the ALE in steady state were obtained by “freezing” the weights at a
particular instant (after adaptation), and applying white noise to the input of the stationary
filter and spectral-analyzing the resulting output. The value of udy (0) used in the o peri-

ments was sufficiently small that weight vector noise was negligible. The noise spectrum was
obtained from a thermal noise generator whose output was filtered by a —48-dB per octave
low-pass filter with its =3-dB point at 1.8 kHz. The input noise spectrum was thus only
approximately flat in the region of interest. The major sources of experimental error were
the low-pass characteristics of the input noise spectrum and quantization noise. Input levels
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for all experiments were controlled to insure that the error due to quantization noise was
approximately 2 percent. All the experimental curves presented in this section were obtained
directly from x-y pen plots of the spectrum analyzer output. All the theoretical curves were
obtained by evaluating the quantity of interest at 10 X L different frequency values between
w =0 and w =x. The input sampling rate was 3.9 kHz in all cases.

A. One Sinusoid in White Noise
For this case the correlation function ¢XX(Q) is given by

byx(® = 002 5(Q) + 012 cos w L. (23)

Therefore, from (i2)—(14), w*(k) is given by

jwik —jw ik
wrk)=A €1 + Ay 0 24)
where
= 1 1 jwy A —-wid
Aj=A,= g 2[eJ 1 —712e) 7 (25)
L+200 /01 l-I’ylzl
and
1 1 _e—2jwlL
£ 4 x (26)

L+20g2/02 | .39

In this particular case, v, represents coupling between the positive and negative frequency
components of the real sinusoid. Note that as vy, = 0, i.e., as the frequency components
become uncoupled, w*(k) is given to a good approximation by

SNR

w*K) = TSNRL2)

cos wy(k +4) Q7
with SNR = 0‘2/002. Therefore, as long as there is negligible coupling between the positive

and negative frequency components of the sinusoid, the steady-state impulse response of
the ALE is a sampled cosinusoid at frequency w) which has been shifted in phase by w 4.

The amplitude of the cosinusoid is SNR/(1 + SNR(L/2)). This result was also obtained in
[3] and discussed in [1, App. D]. However, as 7|, becomes appreciable, the amplitude and

phase shift of the steady-state ALE impulse response begin to change considerably, as is
observed in (24) - (20).
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Fig. 4 represents the results of an experiment carried out on a 16-weight ALE with
A = 8 samples, Moy (0)=5.12 X 10‘6, and an input sinusoid with SNR = 012/002 =(0.557
and frequency ‘*’l/ 27 = 0.0039.5 For this frequency there is appreciable coupling between

the positive and negative frequency components of the sinusoid. Experimental plots of the
input and ALE output power spectrum (plotted on the same relative log scale and denoted
by Sy(w) and Sy(w), respectively) are presented in Fig. 4(a). In Fig. 4(b) three curves are

presented. The first two curves are experimental and theoretical linear plots of |[H*(w)| and
the third is a linear plot of the function

| 1 Huapd |y Koy T el
IG(w)lE—~§—2—' e -
L +20p°/0; I _e‘J(wl + w)
¥ j - w)L
- erIA 1 - ej(wl fes (28)
i ej(w] - w)

where A = 8. The term |G(w)| in (28) is the Fourier transform of w*(k) with Y12 = 0. This
curve is included to show the effects of the coupling coefficient Y12 on the frequency

response of the steady-state ALE. As is seen, the effect of the coupling coefficient is to
reduce the peak values and null depths in [H*(w)|. Neglecting the coefficient when
w) << 2m/L can give rise to serious errors, as is observed in Fig. 4(b). It should be noted

that there is excellent agreement between the theoretical and experimental curves of
[H*(w)| with respect to the location of the peaks and nulls. There is some discrepancy in
the two curves, however, with respect to the amplitudes of |[H*(w)|, especially in the higher
frequency ranges. This discrepancy is mainly due to the nonflatness of the noise spectrum
used to generate the experimental curve. As a further means of comparing the experimental
ALE steady-state weight vector and the Wiener weight vector, the misadjustment M defined
by (6) was determined with measured values of the steady-state ALE mean square error
output. For the case represented by Fig. 4, M was found to be approximately 1 percent.
The theoretical misadjustment, calculated with (7), which includes gradient estimation noise
only, was approximately 0.01 percent for this case. (In these experiments gradient estima-
tion noise was a negligible source of error compared to quantization noise and other factors.)

In Fig. § experimental and theoretical plots of 20 log IH"= (w1 )l are presented for

different input SNR. These data were obtained from an 8-weight ALE with A = 199
samples and w; /27 = 0.098. Note that the two curves agree within the experimental error

of the measurements. (The bars in Fig. 5 denote the estimated variances of the measure-
ments.)

SIn this section all frequencies have been normalized to the sample frequency; arrows in the figures denote
the actual location of the input sinusoids.
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B. Two Sinusoids in White Noise

For the case of two sinusoids in white noise the autocorrelation function of the input
is as given by (18). The expected value of the steady-state ALE impulse response can be
expressed as a sum of sinusoids as in (19), where the amplitudes of the sinusoids A, are the

solution of (13).

Figs. 6-8 represent the results of three experiments carried out on a 32-weight ALE
which illustrate the effect of the variable prediction distance A on the impulse response and
transfer function of a finite length linear predictive filter. In these experiments the frequen-
cies of the sinusoids were wl/21r = 0.0768 and w2/21r = 0.09984. In Figs. 6 and 7,

o 2/a 2= aaz/o 2= ;in Fig. 8, o 2/0 e l and o 2/a 2= 0.36. Experimental plots of the
1790 2190 1790 2 /90

ALE input and output power spectrum (in dB) for these cases are presented in Figs. 6(a),
7(a), and 8(a). Figs. 6(b) and 8(b) compare the experimentally measured transfer function
of the ALE with the analytical results obtained for A = 6 samples, L = 32, and the frequen-
cies and SNR’s of the two sinusoids defined above. Figs. 7(b) and 7(c) compare the experi-
mentally measured impulse response and transfer function of the ALE with theory for the
case where A = 19 samples and all other parameters are identical to those chosen in Fig. 6.
As shown in Figs. 6(b) and 8(b), when A = 6 samples there is a deep null in [H*(w) | at
w=(w) t wz)/l = w,,: whereas, when A = 19 samples (Fig. 7(c)), the null is practically
gone. The null at A = 6 samples and the two highest peaks in the transfer function in
Figs. 6(b) and 8(b) occur in spite of the fact that the frequency resolution of the filter is too
coarse to resolve the two input sinusoids. It should be noted that the phase difference be-
tween the sinusoidal components of w*(k) in (19) has shifted the locations of the two high-
est peaks in |H*(w) | away from the frequencies of the input sinusoids, as indicated in
Figs. 6(b) and 8(b).

For the case of two sinusoids which are separated in frequency by Aw = Wy =Wy,
the delay which is required to praduce the null effect shown in Figs. 6 and 8 will become
larger as Aw — 0. To verify this, note that |H*(wav)| for the two sinusoids in Figs. 6-8

is given to a good approximation by

| - eJAwWL/2 | -eAwL/2 v
T XY R T ™ 5 29)

!
H*(w,y)i = |A

In (29) we have neglected the effects of the negative frequency components of the sinusoids
(which is a good approximation for the parameters in Figs. 6-8). Under this assumption,
A} and A are given by (22). Eq. (29) can then be expressed in the following form:

[H*(way)l = /a2 + b2 + 2ab cos Aw((L = 1)/2 +4) (30)
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Figure 6. Performance of 32-weight ALE with input of two sinusoids of equal power

in uncorrelated noise; delay A= 6 samples; up, , (0) = 3.6 x 1076, (a) Power spectra

of input S_(w) and steady-state output Sy(w). (b) Experimental and theoretical steady-
staie trans’t‘er function (H*(w)!.
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Figure 7. Performance of 32-weight ALE with input of two sinusoids of equal power
in uncorrelated noise; delay A= 19 samples; M, (0) = 3.6 x 1076, (a) Power spectra

of input S, (w) and steady-state output Sy(w). (b) Experimental and theoretical steady-
state impulse response w*(k).
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From (30), it is seen that IH*(wav)I obtains a minimum when A satisfies the following
condition:

Qn+ Dm

L-1_
At S Y

=(n+ 1/2)/Af agn

where n is any nonnegative integer (such that (n + 1/2)/Af > (L - 1)/2). For the special
case when olz =~ 022, then a = b, and the first zero of IH*(wav)l occurs when A = (1/2) { 4

(1/Af) = (L - 1)/2. For the case when Af=0.023 and L = 32, A = 6 samples, which agrees
with the value of A that produced the deep null in Figs. 6(b) and 8(b). The results expressed
by (29)—-(31) and Figs. 6(b) and 8(b) indicate that it may be possible to improve the resolu-
tion of two sinusoids in H*(w) by varying the delay A so that (31) is satisfied. This variation
of resolution with A is similar to the dependence of the periodogram resolution of sinusoids
on their initial phase (30, 31].
Experimentally measured values of the ALE weights and the derived values of w*(k)
are compared in Fig. 7(b) for A = 19 samples. Experimentally measured values of H*(w)!
for the ALE and the theoretical [H*(w)! of the Wiener filter are compared in Figs. 6(b), 7(c),
and 8(b) and indicate good agreement between theory and experiment. As mentioned in
connection with Fig. 4, there are larger discrepancies between theoretical and experimental
values of [H*(w)! at frequencies nearer the cutoff frequency of the input noise spectrum.
When the number of weights of the adaptive filter is large enough to resolve the fre-
quencies of the sinusoids, the peaks in [H*(w)! will correspond to the true locations of the
sinusoids, as shown in Fig. 9. All of the parameters in Fig. 9 are in correspondence with the
parameters in Figs. 6-7, except that A = 15 samples and L is increased to 128 to provide
improved frequency resolution. The agreement between theory and experiment in Fig. 9(b)
is seen to be good. The experimental curves of the input and ALE output power spectra for
this case (Fig. 9(a)) clearly indicate the line enhancement capahilities of the ALE, which are
achieved by suppressing the uncorrelated noise.
Table I gives measured values of misadjustment, as well as theoretical values from (7),
corresponding to the experimental values used in Figs. 6-9.
]
1
|

IV. MODIFIED MAXIMUM ENTROPY SPECTRAL ESTIMATES
FOR N SINUSOIDS IN WHITE NOISE

Griffiths {4] has defined a useful expression for purposes of estimating and tracking
the frequencies of sinusoids in white noise. This expression is referred to in [4] as a modi-
fied maximum entropy spectral estimate and is defined as follows:

1

A )

32)
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Table I. Theoretical and measured values of misadjustment corresponding to
experiments of Figs. 6-9.

Theoretical Measured
Misadjustment, Misadjustment,
Experiment Percent Percent
Fig. 6 0.01 4
Fig. 7 0.01 5
Fig. 8 0.01 6
Fig. 9 0.05 3

where H*(w) is evaluated at A = | to obtain an all-pole spectral estimate. As noted in [4],
Q(w) differs by the factor €min (5) from the maximum entropy spectral estimate. When

the input to the ALE consists of N sinusoids in white noise, it is possible to write a closed
form expression for Q, (w) in terms of the amplitudes A, by using (12). The result for Q, (w) is

2N l ej((..)n -w)L I‘z
= Sjw - 33)
L e S nzl T - |

where the A, are evaluated with A = 1. It is interesting to note that Q,(w) evaluated at the
frequency of the rth sinusoid is only a function of A, as well as the SNR of the rth sinusoid.
This can be seen with the use of (13) and (33). The result for Qy(w,) is

Qulwp) = 1A% (0,2/20¢%)2. (34)

Eq. (34) is valid regardless of the frequency separation between the N sinusoids (i.e., regard-
less of the values of the Ter)- Of course, when the frequency separations are very small, the

values Q,(w,) will not necessarily correspond to the maxima of Q,(w). Note that as all the

coupling coefficients approach 0, the A, approach exp (jwr)/(L + 2002/or2), and Qx(“’r)
is given approximately by

Qu(wy) = (. }4ag™) (L + 205210, %)% @)
When L >>2/SNR (SNR, = 6,2/0¢?), Q,(w,) will be given by

SNR,?

2
2 Sl 36)

Qy(wy) =
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Eq. (34) shows that the value Qx(“"r) is, in effect, influenced by all of the other sinusoids at
w = w, (n# ) through coupling terms Yrn- Eas. (35)~(36) show that, as these terms
approach zero, Qx(“’r) becomes independent of all the other sinusoids and depends only on

the SNR of the rth sinusoid. Similar results have also been obtained by Lacoss [12] for the
theoretical peak values of the maximum entropy estimate of one sinusoid in white noise using
Woodbury’s identity. A further discussion of these theoretical results as well as similar results
corresponding to sinusoids in one-pole low-pass noise is given in [32].

For the purpose of comparing Qx(w) and H*{(w), plots of the modified maximum

entropy spectral estimate Qx(w) defined by (32) are presented in Fig. 10 corresponding to
the frequencies, SNR’s, and filter length of Figs. 6-8. The plots of Q,(w) in Fig. 10 were
calculated from the theoretical values of H*(w) computed from the Fourier transform of

the w*(k) given by (I 2).6 It is seen in Figs. 10(a) and 10(b) that, in contrast to the plots of
[H*(w)! in Figs. 6(b), 7(c), and 8(b), the theoretical estimate Qy(w) gives the frequency

location of the sinusoids more accurately.
It should be noted that Griffiths [4] has shown that the instantaneous adaptive esti-
mate Qx(w;j). which is defined as in (32), with H*(w) replaced by

L-|
2 wi(k) emw(k +1)
k=0

where wj(k) is obtained from (1) with A = 1, provides a good frequency estimate of sinusoids
in white noise, especially for high input SNR cases. The theoretical plots of Qy(w) in Fig. 10
indicate that even when the input SNR’s are not very large, ax(w;j) may still provide a very

good frequency estimate of the input signals. However, as the input noise is increased, the
)lgriance in the ALE weight vector noise increases (for u fixed), and the confidence in
Qx(w;j) as a spectral estimate will be degraded to some extent. Baggeroer [27], in deriving

confidence intervals for maximum entropy (MEM) spectral estimates, has considered the
relevant case of several closely spaced sinusoids in white noise. For this case, Baggeroer has
shown that although the MEM has very large peak-to-background ratios, the confidence inter-
vals associated with these peaks can be quite large. In deriving the MEM confidence intervals,
Baggeroer assumed that the MEM estimate is formed by segmenting the input data sequence
into constant length data blocks. Although this particular method of segmenting the data

into blocks is used in most direct, or FFT, methods of spec)\ral estimation, it is not the method
which is used to form the adaptive MEM spectral estimate Qx(w;j). In contrast to segmenting

the input data, the ALE (as noted in [10]) works on a steady flow of data that it weights
exponentially over time. Therefore, unresolved questions arise with respect to the confidence
(especially at the peaks) of the adaptive MEM spectral estimate. Of course, the confidence

6Corresponding experimental plots of Q,(w) were not available from the particular hardware implementa-
tion of the ALE used in the experiments.
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Figure 10. Theoretical performance of 32-weight ALE implemented as a maximum en-
tropy frequency tracker with delay A=1. (a) With input of two sinusoids of equal power
in uncorrelated noise. (b) With input of two sinusoids of unequal power in uncorrelated
noise.

28




A : i :
intervals for Qy(w;j) can be reduced by decreasing u; however, this will also increase the
L A ; ;
ALE data processing time. Therefore, the usefulness of Q, (w:j) for purposes of real-time
spectral estimation in noisy environments is not yet understood.

V. CONCLUSIONS

The steady-state behavior of the ALE has been analyzed in this paper for stationary
inputs consisting of multiple sinusoids in white noise using constrained Wiener filter theory.
An analytic solution for an L-weight discrete Wiener filter has been derived for N sinusoids
in white noise. This solution shows that the expected values oi the ALE weights in steady
state can be written as a sum of sinusoids and that the amplitude of each sinusoid Ay

(n=1,2,...,2N) is coupled to the amplitude of all the other sinusoids by coefficients which
approach zero as the ALE filter length becomes large. This particular representation for the
steady-state weights is equivalent to a transformation of the L X L Wiener-Hopf matrix
equation to a set of 2N coupled linear equations for the amplitudes A,. When N2> 2, the

transformation method becomes much simpler to use than Woodbury’s identity (which has
been used considerably by a number of authors to examine maximum entropy filtering of
sinusoids in white noise; see e.g. [121], [13] and [30]). Comparisons between the theoretical
expressions derived in Section 11 and experimentally measured impulse responses and trans-
fer functions of the steady-state ALE (obtained from an ALE hardware implementation) for
one and two sinusoidal inputs in white noise were presented in Section Il and indicate the
validity of the analytical models used in Section II. The modified maximum entropy spectral
estimate Q,(w) was also analyzed in Section IV for multiple sinusoidal inputs in white noise.

Since the analytical results presented in this paper were obtained on the basis of constrained
Wiener filter theory for a finite length linear prediction filter with arbitrary prediction dis-
tance, they describe the performance of a much wider class of linear predictive filters than the
specific implementation known as the ALE.

Extensions of the analytical results given in this paper to more general types of
rational input spectra are currently being carried out and will be presented in a future paper.
It has been shown that the method of undetermined coefficients also provides useful analyti-
cal solutions of the discrete Wiener-Hopf matrix equation (3) for general rational input
spectra [28].

APPENDIX
The purpose of this appendix is twofold. First, it will be shown that R is positive

when ¢, (k) is given by (11) with 002 %+ 0. Second, it will be shown that (13) has a unique

solution when 002 % 0. The proof of the first statement is trivial and consists of examining
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the quadratic form of R. Let X be a nonzero L-dimensional column vector and denote by 5T
the transpose of x. Then the quadratic form of R using the notation of (12)-(13), is given as

Ll L D TR T R
£T5,§=002 z Ixr|2+ 1/2 z °k2 z z xrejwk r-n)xn
l'=0 k=1 =0 n=0
2
e z e z o’ Z - hEd (A.1)
=0

However, the last expression for )\(_TB x in (A.1) is strictly positive for nonzero x, and there-
fore R is positive definite.
To see that (13) has a unique solution when 002 # 0, note that it may be expressed

in the equivalent form (by multiplying the rth equation of (13) by L + 2002/"r2)'

B'A=C (A.2)

where B is a 2N X 2N Hermitian matrix with elements
L-1

B)en = Q020D 8-+ ) e
k=0

(e - wpk.

Aisa 2N-dimensional column vector with components (A),, = Ap;andCisa 2N-dimensional
column vector with components (C), = exp (jer). To show that (A.2) has a unique solution
we will show that B is positive definite. Let X be a nonzero 2N-dimensional column vector
and 5“ be its complex conjugate transpose. Then, the quadratic form of B is written as

2N 2N L-1

= k
~H E?\(, = z Ixrlz (2002/01’2) + z 2 X; 2 J(Ur wn) X
r=1 n=1 k=0
& ENP EENE
=Y, I Qog¥o + Sl e & 5 (A3)

As observed in connection with (A.1), the last expression for E,H 2 X in (A.3) is strictly
positive for nonzero X, and therefore B is positive definite.
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