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Preface

This thesis investigates the application of a discrete C-Star (c*)

transient response controller to the unstable longitudinal dynamics

~ of the YF-16 Lightweight Fighter Prototype Aircraft. A reduced state

model of the aircraft is developed from wind tunnel data and a.nalyzed~
for open loop stability. This model is transformed into a discrete
time domain state model and a discrete cost function applied to de-
velop a controller capable of tracking a commanded response with zero
steady state error within the confines of a defined el envelope bound-
ary. The effects of both a Zero Order and First Order Hold on the
system C* response are analyzed using a digital computer simulation.
Topics such as sample rates, weighting parameters, saturation effects,
and migration of closed loop system roots are also presented.
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thesis effort. Finally, I wish to express the love I hold for my wife;
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Paul D. Monico

ii




Preface

List of Illustrations

Table g Contents

Idst of Tables . < o o o o o o o

List of Abbreviations and Symbols

Abstra@b e @ e o o o o © ©° o o o o

I.

II1I.

Intl‘oduction e o o o o o o o

Background . . . . . o o
Problem Statement ., . .
Order of Presentation .

Mathematical Model and the Reduction

Equations of Motion

Directional Convention . . .
Trim Angle of Attack . . . «
Rigid Stability Derivatives

YF-16 longitudinal Equations

.
L]
.
o

f Mot

i

Analysis of the Equations of Motion and
System Stability . « « ¢ ¢ ¢ o o o &

Analysis of Equations of Motion

Characteristic Equations . . . .

Response ©(t) to Inputs
Aircraft Actuator Servo

Control System Model and the c* Concept

Control System Model . « « « « o o &

& Concept

L]

.

.
on

Continuous to Discrete System Transformation

Continuous System State Model
Discrete State Model . . ¢« « ¢ o &

Z0H, Optimal Controller and Simulation

Development

Zero Order Hold Device , « « « &
Penalty Function . « « ¢ ¢ ¢ o o

Computer Program and Simulation

Closed Loop System Eigenvalues .

iii




Table of Contents

m. Simﬂation ReSUltS o L] . . . L % & ¢ .

Typical Results . . « « o « &

Modification of Control Scheme . .
Simulation Observations . . « « &
Saturation Effect . ¢ ¢« ¢ o o o &
Root Migration . . .« ¢ ¢ o ¢ o &

VIII. Conclusions and Recommendations . . .

Conclusions - . . ¢ s o o @ o o o o
Recommendations . . « ¢ o o o o &

BAIDLIORYBDPRY o « o o 4 9 % v e s e le e e s

Appendix A:
Appendix B:
Appendix C:

Appendix D:

Appendix E:
Appendix F:
Appendix G:
Vita . ..

Determination of Iength to Tail
TRANFUN Program Input/Output .

Continuous State Variable Equation

Develomment- . v o v e o oie Bl s

Develorment of the Recursive Optimal

COMETOL: &' 70 % R e e e e e e

Simulation Computer Program . .

Zero Order Hold Simulation Output

Plotting Algorithm. « « « « o &

iv

Page
85
91
95

105
110

16
118

151
168

173
181




omﬂm\n&*umpg
(]

E o

=

E & R P

15

16

17
18

19

List of Illustrations

Zero Static Stability ¢« ¢« ¢ ¢ ¢ ¢ o o o ¢ o o
Negative Static Stability (Unstable) . . . .
Directional Convention . . ¢« ¢ ¢ ¢ ¢ o o o &
Roots ofSetAEéuations o s BB B O 5
Roots of Set B Equations . . o « o« ¢ ¢« ¢ o &
Short Period Approximation Roots (Set A) . .
Short Period Approximation Roots (Set B) . .
Open Joop System . « o ¢ o o o o o. 0o s o o o
Open Loop Pole-Zero Locations (M = .8) . . .
Open Loop Pole-Zero Locations (M =1.2) . . .

Theta/Delta H Response to Step Input
Omnlaoop M=.8,SeaLeve1 e o o o o o o o

Theta/Delta H Response to Step Input
Open ILoop M=1.2, Sea Level o « ¢ o o & & o«

Impulse Response, M= .8 . ¢ ¢ ¢ ¢ o o o o &
Impulse Response, M = 1.2 . ¢ ¢ ¢ o ¢ ¢ o &
Block Diagram of Servo and Aircraft . . . . .
Closing Loop on Servo and Aircraft . . . ..

Aircraft Plus Servo Root Locus
u = .8, sea Ievel L] . . L] Ll . L] L] ® L] Ll L] L ] L ]

Aircraft Plus Servo Root Locus
M = 1.2, Sea Iﬂvel L] L] L] L] L] L] L] L] L] L] L] L] L]

Continuous State Space System Representation

Servo/Tracker System Representation with Bias

Introduced to Define Xs. s, Other Than Zero .

Discrete System Servo Controller Scheme . . .

C*TimﬂietoryEnvelope R

Page

30
31
33
34
36

36

37

& BE B & @

&

L7

52




|
I
i
|
|
i
|
|

25

L

28
29
30
31
32
33
34
35
36
37
38
39

Nature of Optimal Controls « « « ¢ ¢ o o o ¢ o o
Simplified Computer Program Flow Diagram . ., . .
FLAG = 1 Simulation Closed Loop System . « « « «
Simplified Simulation Flow Design. . . « « ¢ o« &«
Simplified Flow Diagram of L; and Ny Calculation
CAL Thwmbprint o o o o 6 0 o6 0 6 0 % o' a.4 »
Thumbprint in S-Plane . ¢« ¢« « o« ¢ « o o o o o o
Thumbprint In Z-Plane < .« o o o ‘s o o o o o s
State vs Time (T = .02, R=Q=1, Z0H) . ...
Output vs Time (T = .02, R=Q=1, ZOH) . . . .
Control vs Time (T = .02, R=Q =1, ZOH). . . .
Updated Control Plus Slope Projection Scheme . .
Control vs Time (T = ,01, R=Q=1, FOH) . . .
Control vs Time (T = .02, R=Q =1, FOH) ...
Sample Rate vs L, Gain (Q =1, Variable R) . . .
Sample Rate vs Nda (Q=1, Variable B) . + « « &
States vs Output (T = 1/30, Q =1, R=200) . .
Output vs Time (T=1/30, Q=1, R=200) . . «
Control vs Time (T =1/30, Q=1, R=200) . . .
Curves of Constant R and Variable Sample Rates .

Root Curves of Constant Sample Rate but
Variable R vs Target Root Values . . « o o o o«

Page

62
70
e

7
81

88

92
9k
9k
98
100
107
108
109

112




Table

II
III
Iv

VII
VIII

P4

pans
XIII

List of Tables

Physical Specifications « ¢« « o« o &«

Atmospheric Conditions

Data SuUmmary . « o« o o « « o o o o

C* Terms Defined o+ ¢ o o oo o o e

and ﬁa Matrices as a Function
SampleRate........-...

Specified vs Actual Sample Rates

ZOH vs FOH Control Scheme . « . .

Summary of Cases Investigated

Optimal Lﬂ Gains

Optimal Nd Gadns: oo ss ol
a

Opt‘iml N d . Gains . L] . . ES .

(]

timal N Gadns oleist e e
o P

L] L] . . L] .

Summary of Time to Reach Steady State .

Summary of Gain Effects o« ¢ o o o o o &«

Page
15
15

50

61
(]
93
96

99
101
102

103
104




Abbreviations

A/C
AFIT
CAL
cDC
D/A

FL
FOH
FS
HT

MAC
SL

Symbols

=1

a.C.

Q* n'tﬂl w) OP n'Pl

List of Abbreviations and Symbols

Aircraft

Air Force Institute of Technology
Cornell Aeronautical Iaboratory
Control Data Corporation

Digital to Analog

Fly-by-Wire
Flight Level
First Order Hold
Fuselage Station
Horizontal Tail
Imaginary

Mach

Mean Aerodynamic Chord . 3
Sea Level
Static Margin

Zero Order Hold

Continuous system dynamics matrix
Aerodynamic center

Discretized version of continuous A matrix
Variable coefficients

Continuous system output matrix
Discretized version of continuous B matrix

C-Star longitudinal response criteria

viii




W

Symbols (Continued)

c -

ol
1

Cq -
C -
F
xa.
C -
FZ,
cogo =
CL -
CL -
Cn -
q
C -
mu
Co -
Cm -
Cn -
C. -
Cx -
q
C -
*u
Cc -
X

Observation matrix
Mean aerodynamic chord length
Coefficient of drag

Coefficient of drag due to a change in
angle of attack

Discretized observation matrix

Effect on the forces in the X direction
due to the deflection of the elevator

Effect on the forces in the Z direction due
to the deflection of the elevator

Center of gravity
Coefficient of left

Change in coefficient of 1ift with angle
of attack

Pitch moment stability derivative due
to pitch rate

Change in the pitching moment due to a
change in forward velocity

Change in pitching moment due to a change
in angle of attack

Effect of the rate of change of angle of
attack caused by w on the pitching moment
coefficient

Pitch moment stability derivative due to
deflection of horizontal stabilizer

Coefficient due to acceleration of gravity

Change in force in the X direction due to
a change in pitch rate

Change in force in the X direction due to
a change in the forward velocity

Change in force in the X direction due to
a change in the angle of attack

ix




Symbols (Continued)

Del

2 )

G(s)
H(s)

Change in force in X direction due to a change
in rate of angle of attack

Change in the Z force due to a pitching velocity

Change in the force in the Z direction due to a
change in the forward velocity

Variation of the Z force with angle of attack

Variation of the Z force with rate of change
in angle of attack

Z force stability derivative due to deflection
of horizontal stabilizer

Transformation/work matrix

Specified sample rate

Error between © and 6,

Function of

Acceleration due to gravity

Forward transfer function of system
Feedback transfer function of system
Identity matrix

Mass moment of inertia about Y axis of aircraft
Integer counter

Cost functional

Discrete cost functional

Counter or imaginary axis

Gain

Discrete value of time

Normal acceleration gain constant
Pitch acceleration gain control

Pitch rate gain constant




(1 x 3) Ricatti gain used to calculate Ny
(1 x 1) Ricatti gain used to calculate Ly
Scalar control gain

Duration of simulation run

Length to tail from quarter chord point of 1
wing to quarter chord point of horizontal i
stabilizer

Mass of aircraft
Finite number

1 x 3 matrix feedback gain; elements are Ng_,
Ngg and Ny "
L]

Normal acceleration
Discrete algebraic Ricatti solution matrix
phugoid oscillation

Pitch rate, the angular velocity of the aircraft
about the Y axis

Dynamic pressure

Discrete trajectory error weighting penalty
Discrete control penalty weighting
Wing area

Short period oscillation

Laplace operator

S-plane conjugate roots

Sample rate or thrust

Actual sample rate used

Time to peak overshoot

Period of the phugoid

Period of the short period oscillation

xi E




Symbols (Continued)
- Total forward velocity of aircraft

&5

u - Velocity component of the aircraft in the
X axis direction also the Z-plane X axis

u - Control vector

u(0) - Initial value of control

Veo - Cross over velocity

v - Z-plane imaginary axis

WT - Nominal weight

x - State vector, elements ;‘l 5 —"2’ §3

;ac - Distance from fi_xed control point to aero-
dynamic center divided by chord length

-x;.'g - Distance frox.n fixed control point to center
of gravity divided by chord length

;s.s. - Steady state value of state vector

x(o0) - Initial values of state vector

:—r - Output vector

a - Angle of attack

a, - Angle of attack from trim

A - Incremented change in the variable

6, - Deflection of the elevator

5, - Deflection of the horizontal stabilizer

8., - Commanded defection of horizontal stabilizer

4 - ' Damping ratio

e - Longitudinal damping ratio of the
phugoid oscillation

&, - Longitudinal damping ratio of the

short period oscillation

a-»
&




Symbols (Continued)

i' * - Pitch angle
9, - Commanded pitch angle
?’ ® - Angle between horizontal and X stability axis
i P - Atmospheric density
T - Time variable
w, - Damped natural frequency
w, - Undamped natural frequency
=k - For all

rowe

xiii :




AFIT/GGC/EE/77-8

Abstract

The YF-16 fighter aircraft represents a radical departure from
conventional aircraft design. Reduced longitudinal static stability
results in an aircraft which is unstable in subsonic flight; a
characteristic of considerable challenge in its control aspects.

The present analog, fly-by-wire configuration of the aircraft's control
system makes it an attractive candidate for digital control adaptation.
Such a scheme, if successful, could mean a more compact, lighter, less

failure prone, and more adaptable control system.

This thesis investigates the feasibility of a discrete digital
flight controller for the YF-16 through the design and analysis of an
optimal discrete controller at M = .8 at sea level. The investigation
is limited to the longitudinal pitch axis only. A reduced state, short
period approximation mathematical YF-16 model is developed from avail-

able data. The open loop stability and response characteristics of the.

model are shown to be unacceptable, necessitating the use of closed
loop compensation. The minimization of a discrete cost function is
used to develop a recursive discrete control formula which uses present

values of output and past error information to successfully control

this intentiohally unstable aircraft system. The thesis discusses ard

incorporates the concept of a proposed c® (c-star) handling qualities
criterion in the determination of acceptable response. The concept ii
of C*, which blends system states, is incorporated as an integral part
of a closed loop, discrete control model for the YF-16, Digital com-

puter simulation, using a Zero Order Hold (ZOH) or First Order'Hold

i i e S e e N

: (FOH) control scheme, results in a stabilized system model whose output

xiv




falls within the bounds of a defined C* envelope, and capable of per-
forming the limited tracking task of following a 1-G climb, pilot,
input command. Typical results in the form of plotted time history
information are discussed. Results of the simulation show the ZOH
superior to the FOH control scheme in reducing the elapsed time to
reach steady state. The time required to achieve steady state is
also shown to be appreciably uneffected at sample rates greater than
T = 1/50 second. More frequent sampling, however, does result in the
production of smaller controls., The variation in optimal feedforward
and feedback gain for various combinations of sample rate and cost
function penalty parameters is also presented in tabular form. An
increase in the control penalty weighting (R), while holding the
sample rate constant, is seen as having the same effect on the elapsed
time for the transient response to reach a zero error steady state
value, as decreasing the sample rate, while R is held constant. In
either case, the elapsed time increases, -

The possibility of actuator saturation due to excessive control
movement rates is pointed out and discussed in relation to the simula-
tion conducted. Finally, an investigation of the closed loop system
complex conjugate root migrations show R as being inversely proportional
to the system natural frequency (w.), with the trajectory error penalty

weighting (Q) determining the damping ratio ().
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INVESTIGATION OF A DISCRETE C-STAR
TRANSIENT RESPONSE CONTROLLER FOR
THE YF-16 AT A SELECTED FLIGHT CONDITION

I. Introduction

The introduction of flight control systems totally based upon an
electrical primary flight control system, emphasizing feedback, such
that vehicle motion is the controlled parameter, is a recent occurrence
in aircraft flight control system design. This is in part due to the

infancy of its technology and the sense of security attached to proven

mechanical flight control systems. In an effort to dispel this resis-

tance, and add to the literature, but moreover, to analyze some of the

problems encountered in such an approach, this investigation develops
a linear time-invariant model of the YF-16 Lightweight Fighter Proto-
type and combines with it a digital flight control system capable of

tracking step inputs.

Background
The important credentials of any would be air-superiority fighter

are its speed, maneuverability and loiter capability.
Speed is enhanced by lightweight aircraft components which con- :
tribute to favorable thrust to weight ratios; maneuverability is
enhanced by the aerodynamic design including the displacement control
surface technique used; and loiter capability is enhanced by low fuel

consumption and low failure rates. In many instances, one attribute

is enhanced at the expense of another. More often than not, the




resulting design reflects a compromise of these important attributes
and a corresponding compromise in the resulting aircraft performance.

With these considerations in mind, the design of fighter aircraft
becomes a challenging task and is a subject of intense interest in the
Air Force. The YF-16 Lightweight Fighter Prototype was designed to
meet this challenge. It represents a radical departure from conven-
tional aircraft design in an attempt to achieve an optimal blend of
speed, maneuverability, and loiter capability.

With a length of just over forty-six feet, a wing-span of thirty-
one feet, and a maximum weight of 27,000 pounds, the YF-16 is cons‘der-
ably lighter and quite a bit smaller than most present-day fighters.
Less discernable to the eye, however, the YF-16 exhibits a novel center
of gravity (cg), aerodynamic center (ac) relationship. A short dis-
cussion of this important relationship is in order.

If the aircraft center of gravity is located at the aerodynamic
center, there is a condition of zero static margin or neutral stability
(Fig. 1). This situation, though not unstable, could present a diffi-
cult dynamic situation for a pilot to control. If the cg is moved aft
of the ac, the aircraft becomes unstable (Fig. 2). The aircraft will
not maintain a trim condition and if disturbed, will continue to pitch
up or down at the induced rate. The amount the cg is aft or forward
of the ac is the margin of stability. If the cg is aft of the ac, the
static margin is termed negative while a cg ahead of the ac describes

positive static stability.
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Fig. 1. Zero Static Stability.

Static Margin

Cells

Fig. 2.

Negative Static Stability (Unstable).

Traditionally, aircraft have been designed to be aerodynamically %

stable (positive static margin) in the longitudinal mode.

In addition

to allowing for a trim condition, this traditional design tends to

bring the aircraft back to a straight and level attitude when disturbed




from a trimmed flight condition. Were it not for this intentionally
designed-in characteristic of static stability, a pilot would be
continuously adjusting and compensating to keep the aircraft flying.

In subsonic flight this type of stability (positive static
stability) is desirable; however, as the aircraft passes through the
transonic region (Mach B g 1.27) and becomes supersonic, the ac moves
aft., Here, its statically stable nature becomes detrimental., In ef-
fect, since the ac is now further aft of the cg, the statically stable
aircraft becomes "super stable." This means that the aircraft displays
greater resistance to any disturbance which might cause it to move from
its stable attitude. When such disturbances result from control com-
mands transmitted by a pilot, the aircraft, not being able to discrim-
inate between a gust or legitimate command, resists. This is an
obvious handicap for a modern high-performance fighter which is expected
to display exceptional agility in maneuvers at supersonic speeds.

The obvious solution to this problem is to reduce the longitudinal-
stability margin in order to make the aircraft more maneuverable at
supersonic speeds. Such a solution, however, would cause an aircraft
to be unstable in subsonic flight., Such a situation could not be
tolerated. This obvious dilemma existed for sometime, until recent
developments in automatic control system technology offered a solution.

The solution to this dilemma takes the form of what is called a
fly-by-wire (FBW) control system. Instead of a complex network of
mechanical linkages, this system uses electronic signals to relay
requested response requirements from the pilot to electro-hydraulic
servos which move the control surfaces. In a constant-G climb; for

instance, as the aircraft response to a command begins, the response




is fed back to the flight control computer where it is compared to the
pilot's G requirements. When the two match, the signal is nulled; no
further control is applied. The aircraft maintains the constant G
climb until the command is changed.

The YF-16 uses such a system. However, the relaxation of static
stability and all its performance benefits have not been without cost.
Since the YF-16 is intentionally designed to maintain from seven to ten
percent negative static margin, the stability of the aircraft is reduced
to the extent that the YF-16 is unstable in pitching motion at all sub-
sonic airspeeds. Therefore, with an airframe intentionally designed to
be unstable in subsonic flight, the YF-16 relies upon the flight con-
trol system to maintain tight closed-loop control over its unstable
dynamics.

The fly-by-wire control system is used to keep a tight rein on the
aircraft, especially during the subsonic portion of the flight envelope
where it is inherently unstable. Because of the implementation of re-
laxed static stability technology, the flight control systems acts as
a compensator to fill in for the inadequacy of the aircraft design in
terms of stability. The end result is that the YF-16 is not only
stabilized but has the advantages of reduced drag as a result of the
unstable airframe design and greater ease of maneuverability especially
at supersonic speeds. As the gains and compensation networks in the
control system are changed, the stability of the aircraft can be varied.
The advantage, then, is that in subsonic flight, the aircraft can be
made stable, to fly in the conventional manner, and in supersonic

flight, the stability can be relaxed to allow greater maneuverability.
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At present, the controller for the unstable pitch axis is a complex
analog computer. Gain adjustments are controlled by this on-board de-
vice. Gains are "scheduled" as a function of flight conditicn in an
adaptive control scheme, For example, one particular airspeed,
altitude, angle of attack and pitch rate might identify a particular
gain from the schedule of possible gains, while a slightly different
airspeed, angle of attack, and pitch rate might identify another. In
its analog configuration, the present controller is not only bulky and
difficult to mechanize, but also presents problems in terms of future
modification.

With some appreciation for the present control configuration of
the YF-16 just described, it has been suggested that digital computers
be substituted for present analog computer controllers (Ref. 5). This
suggestion is reasonable in light of the advent of small digital com-
puters and recent advances in digital integrated circuits which make
the digital computer an attractive candidate as a controller. Much
effort has been expended in researching this proposed substitution
approach (Ref. 18).

A digital controller would have the advantage of being more com-
pact, of less mechanical complexity, lighter, less failure prone, and
more adaptable to changes in the form of software adjustments to modify
control laws. However, with these advantages, are associated new prob-
lems not encountered with the analog controller. Two such'problems,
among a list of others including the areas of sufficient word length
and adequate memory size, are the identification of an adequate recur-
sive digital control algorithm and the determination of the sampling

rate with which to implement this algorithm.
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Problem Statement

Along this vein, the problem addressed in this study is the design
and analysis of an optimal discrete controller at a selected flight con-
dition for the longitudinal pitch axis of the YF-16 using a specific c*
(pronounced C-Star) performance criteria. The scope of the analysis is
limited to the consideration of the unstable longitudinal mode of the
YF-16 only. It is this mode which is applicable to the c* performance
criteria. Additionally, it is pitch response which is the most
divergent dynamic mode.

The cases of both Mach .8 and Mach 1.2 at sea level and 30,000
feet for trim angles of attack are considered. These particular
flight conditions were selected based on the availability of data
(Ref. 13 and 14), and in consideration of the fact that high subsonic
flight at sea level is considered the most critical area for pitch
response for this aircraft. Here, control surface deflections produce

the greatest dynamic effect on the statically unstable airframe,

Order éf Presentation

In an effort to develop, simulate, and discuss a suitable discrete
control concept for a pitching model of the YF-16, the remaining chap-
ters of this investigation are organized as follows.

In Chapter II, non-dimensional stability derivatives for Mach .8
at sea level for a three degree of freedom aircraft model are developed.
The corresponding derivatives for the three remaining flight conditions
are also listed. The model is derived from available wind tunnel data.

In Chapter III, the equations of motion developed in the preceeding

chapter are investigated. The nature of the open loop system stability




and the character of its response performance are discussed.

In Chapter IV, a discrete model of the proposed control system is
presented. Additionally, the concept of c* as a plausible stability
criteria is presented. This approach, which has gained some popularity,
uses a linear blend of normal acceleration, pitch rate, and pitch accel-
eration to define proper pérformance. The C¥ concept is included as an
integral part of the proposed control system.

Chapter V details the development of a discrete system model from
its continuous representation. Also included is the development of the
observer matrix needed to transform the system states into usable c*
parameters.

Chapter VI presents the mathematical development of the optimal
discrete controller using this o* performance criterion and the recur-
sive digital control algorithm which results. Also discussed is the
concept of a hold device. The chapter concludes with a discussion of
the structure of the software developed for this investigation and
used to implement the controller concept. This program, as a function
of sample rate, determines the optimal gains to be applied in the con-
trol algorithm to achieve satisfactory transient o* response of the
system. Various assumptions and limitations are also discussed along
with the simulation technique conducted. The controller is simulated
at various sample rates using a CDC 6600 Digital Computer. The migra-
tion of the closed loop system roots as a function of sample rate is
investigated along with saturation effects on the horizontal stabilizer

servo, Using the simulation, an attempt is made to identify a minimum

sample rate which, based upon the saturation limit of the pitch control




servo and characteristic root locations, still‘results in a response
within defined c* envelope bounds,

Chapter VII discusses observations on the controllability of the
system resulting from the simulation effort. Typical results are
presented and explained. The effects of sample rates and cost function
penalty weighting variations are also included.

Finally, in Chapter VIII, the conclusions drawn from this inves-

tigative effort are presented and recommendations are discussed

pertaining to further research.

y r——




Before the implementation of any controller and an analysis of
its effectiveness can be undertaken, an adequate mathematical model
of the aircraft must first be developed. The purpose of this chapter
is, therefore, to develop a mathematical model of the YF-16 for longi-
tudinal pitching motion. Generalized equations of motion are first
presented and then reduced in complexity through the use of simplifying
assumbtions. The remainder of the chapter presents the development of
rigid stability derivatives which constitute the individual terms of
the equations of motion. These derivatives are summarized in table

format at the conclusion of the chapter.

Equations of Motion

As explained in the preceding chapter, this investigation is
concerned only with the longitudinal pitching mode of the YF-16.
Therefore, disregarding the negligible cross-coupling effects of
lateral-directional motion, the small perturbation equations of motion -

which describe the dynamics of the aircraft follow:

g 4 = < ’ = .
%'l' @ - ¢-",,‘:‘b -Lc‘_u-c‘: * -_ccx‘o-d’(ease)o = d"x (1)
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These equations are Blakelock's non-dimensional equations of motion

/ .o =
b\+[-E¢ w-¢c i|+[Fnb.5¢c o©)\:=C
.) b e Spe Ju "‘J— 9 (3)

for the longitudinal axis of an aircraft and will be used to model
the YF-16, Their development will not be presented here but can be

found in Reference 1. Definitions of individual equation elements

are included in the previous List of Abbreviations and Symbols, p.viii.

The various non-dimensional coefficients in these equations are

referred to as stability derivatives. The equations can be simplified :

somewhat by the judicious elimination of three of these derivatives.
It is possible to eliminate c‘,x._‘ Y qu , and cmu terms from the
equations thus considerably simplifying the modeling equations.

As Blakelock points out, (&a and Cxq , the effect of downwash
from the wing on the horizontal tail and the effect of pitch rate on
drag, respectively, have negligible contributions to the equations
and are usually neglected.

Cmu , a term resulting from slipstream, thrust, and flexibility
effects, is the change in pitching moment due to a change in forward

velocity. As pointed out in Reference 1, this term can be safely




neglected for jet aircraft. Using these simplifications for all the
flight conditions in this study results in equations (1), (2), and

(3) being expressed as:

.ﬁ_x d’- c“k‘i i -c"& " -cw<c°‘ @) e o cF (h)
2 Yo

ARTEI I Sop Blailbm = S0y s
-Czku. ( c cz;‘)x-cl: + ( #.ﬁcls)e-cw(:ouq ‘C’Et(”

e & w2l I"’_é_a ¢. 6l =c¢C
2x "« e g ax ¥ e (6)

As Reference 1 points out, the forcing function of Can can be
approximated as equaling zero, while Cp, and Cma equal Cp e and
(;'sc‘g , respectively. Now, substituting for the forcing functions

on the right-hand side of equations (4), (5), and (6), with the nota-
tional difference that Sk » the deflection of the horizontal stabilizer,
replaces $L= , the deflection of the elevator, since the YF-16 .has a

movable horizontal stabilizer and no elevator, the equations tecome:




ﬂ.‘i—c&.-f-cx:t-f-C(CO@e &
L | o R 6

/7 I oo =
de a.edls| B s o] :="C
[."‘i!i my" "':':l [sia 2u "‘5-9] “‘;L“‘ (9)

In laplace notation the equations become:

L3 ’ 4 :
[%;— “ - C'x.h]u-(b) -[C,‘]OL(*) -[cu(cot @)] 6(‘) s O i




In order to evaluate and apply these equations to the YF-16, the

various terms must be replaced by actual values. The remainder of this
chapter presents the detailed development of each of these stability
derivatives for the flight conditions at Mach .8 at sea level. Flexible
aircraft effects will not be considered.

As a prelude to this development, the following directional

convention is presented.

Directional Convention
A positive control force produces a negative surface deflection

and causes a positive moment about the pitch axis (Fig. 3).

+
5 Hor, Stab.
Pitchi - s Trailing Edge
Mbmentlg Deflectlo? )
5 Positive h
Control Stick
Direction

Fig. 3. Directional Convention.

Note that for the horizontal stabilizer control surface, trailing
edge up is defined as negative, i.e., &o zn™—>pitch up.

The rigid stability derivative calculations are based on stability
and flight control data furnished by General Dynamics Convair Aero-

space Division (Ref. 13 and 14).

e R




The configuration chosen was that of a clean aircraft (i.e.,
gear up, flaps retracted, etc.) with external fuel tanks removed.
The physical specifications and atmospheric conditions listed in

Tables I and II apply.

Table I
Physical Specifications

Nominal Weight (WT) 16,519 1lbs

Wing Area (S) 280 ft2

Mean Aerodynamics chord (©T) 10.937 ft

Mass Moment of Inertia (Iyy) 39,199 ft-lbs-sec2

Distance from T/ of wing MAC
to /L of Horizontal Tail MAC ( Q‘) 15.66 ft
(See Appendix A)

Table II
Atmospheric Conditions

Altitude Sea Level 30,000!' (FL 300)
Mach No, .8 1.2 .8 Lo
Density (p) 3
slug/ft .002378 .002378 | .00890 .000890
Dynamic Pressure (q) | 949.44 2136.24 | 282,02 634,51
1b/ft2
Velocity (%)
ft/sec 893-6 B“‘ooh 796.08 ll9l+ol

15




As a preliminary step, it was necessary to determine the trim

angle of attack for the selected flight condition (M = .8, sea level).

Trim Angle of Attack
At the trim condition #g's = 1.0.

#qa = S ¢ s @, - 1o
3= &4 o e (13)
3 99940 (389 | o5 +. O78x_| = 10
16,519 b
." o = .73. (M)
-

Here, it has been assumed that the pitching moment and drag equations
are satisfied at this trim angle of attack. This angle of attack was
used to extract data from the various graphs and tables found in

References 13 and 1k.

Rigid Stability Derivatives

The purpose of this section is the determination of exact values
of the stability derivatives at M = .8 at sea level needed to mathe-
matically model the aircraft. These derivatives are based on a
stability axis system with its centroid at the wing quarter chord
and waterline of 91.0 inches. Detailed definitions of each derivative
beyond the short definitions found in the List of Symbols on page viii,

are found in Reference 1 and will not be included here,

16
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ae. Ch\&:
This derivative was extracted directly from the data tables
(Ref. 14).
Cny; = -1.520/Rad (15)
b. Cl..‘ :
= €(Cm. ~ & ¢
T
15.666" (5 )
Cz, = -1.0611/Rad
c. Mass (M):
B weight _ 16,519 1bs g
e 32.1725 ft/sec® (17)
513.45 slugs

Forward Vel (U):

Speed of sound at sea level
c 1117 ft/sec

.8 (1117)

893.6 ft/sec




e. Dynamic Pressure (q):

o- gt

w ANElD e R
2

q = 9L9.44 1b/ft?

Au
S¢
.l»sﬂl_ _(513.45)(893.6)
¥

(280)(949.44)
Tyy
g S',a
—853— - 39199
5 280 (849.44)(10.937)
= ,0135 sec
S,a
- &
h. 2%
i 2 (893.6)
J:L = ,0061 sec
4. (:W

o, = Me - -513.45 (32.1725)
Sq (280) (949.44)
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| 5. @

i
'»
|

hsk’

C..‘k was determined for pitch up only. Data was available
for horizontal tail deflections of 0° < -10° which, based
upon the previously set convention, causes the aircraft!'s

nose to pitch up.

| C... Al
| .AS =
1 N 4 SL
| o' -
(25)
% A linear interpolation of the data between & = 0° and
if o = 2,5° was performed to determine Cj for . =.73
oL aC,
0° = 1120
J73° = 1126
2.50° = <1140 j
AC
o ad12 (57.3 deg)
as, -10 deg Rad (26)
C‘& = -.6452/Rad
k. g
cmq !
o = O |
q e (27) f
19
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This value was extracted directly from the tables.
q
31
Czq
C. = 2(G. ) 29
= a c = .6981 e
A " (-4.3900)
Zq
m, cx‘
QC. =€ :
§ e e e Lo (30) i
tor €, = B C,, = -001l/deg = .0630/Rad  (31)
c._ = ,0625 (interpolation
result) (32)




The first term on the right-hand side of equation (33)
IT
JU
essentially constant for jet aircraft. Equation (33)

reduces to zero, that is = 0, since thrust is

can now be expressed as:

¢, - -2¢ - U % (34)

or equivalently as:

Acb
c'“= - ac‘ - MAGL[ ‘MACK] (35)
C‘== .0248 (interpolation result) (36)
-aC, = .ou96 (37)
AC, ] Cy ~ &y .
MR - o) =al iy (38)
= .8 ) 00216\8 = 00268
| e = B
= ,0160
. c ] M ‘_c'

cCxe =G -MITR = -.0496 - .0160 (35)

= -,0656




o. (QZ.L:
SR XSy
l* b J“
Czq.__ -Cp - cL*
-Cb t— -0.021&8
C. = (57.3)(.078)
of
L €. = L.4694/Rad
ol
cl‘ =3 L Ca = c"*
C, = -.o8 - .69
ol
Cz‘ = h.A9k2
 Bxy 0
P Z'Sk
Czs“= fleng )
f -
2, hgk o —> ~s0°

(.6981)(~.6452)

-ohsoh

(39)
(40)
(41)

(42)

(40)

3)




Q. C,.‘:
C, = 2Cm  2¢ (1)
« aC, J o
— Etatic margin (S.M.)] . JC. (45)
. o x
- 4 JIC.
- R 2L 5 )

If C,,,‘ is positive, the aircraft is statically unstable.
Recalling the discussion of stability in the previous chapter,
we would expect the YF-16 to have a positive cn. - for this

subsonic flight condition. As shown earlier:

2,

S = belégk/mad (42)
st = [ g - Favc, ] | (&7)
;j E s
S.M. = .04
JC,
Co, = (SM) 5 (15)
= (.04)(4.4694)
C,_d= .1788




As anticipated, c"“)M = ,8, S.L. is positive. A check of

ct-,, ) M= 1.2, S.L. shows this coefficient as negative.

Cu.‘ = (S.M.) (48)

M: l.a.‘ S.L.

(035 .- .56)(5.211}3)
e = -1.0950
o
For this stability derivative then, the model truly reflects the

variable stability aspect of the YF-16, i.e., a shift from in-

stability to a stable nature as the aircraft accelerates past

M=1.0.
r. Czu:
Je
Cq - v&c'k-zf[gf] (49)
or equivalently as:
aC,
Czk= -0, - Mach| Zae (50)

As earlier,

C. = .o0625 (32)
and
-&C, = -.1250 (51)
-A—c-'-‘- ct s o2 cl. L4
M[‘H] - -8[ .8‘-9 ] (52)

s

St e




[ st
M L ]= .8 [ 00625..:1.070&]

M abe ]= .0632

" aC,

Rt S M .'lc,_.-H[T'm (50)
= ‘01250 = 00632

()
™
]

[’

A tabulation of the values just calculated to be used in equations

(10), (11), -nd (12) follows in Table III. Also involved are the sta-

bility derivatives for the three remaining flight conditions. These

values were calculated in the same manner as the case of M = .8 at

sea level, just presented.

Using the appropriate data from Table III, equations (10), (11),

and (12) can be expressed numerically.

YF-16 Longitudinal Equations of Motion ;

M= .8, Sea Level

E.?st + .065{‘ (,k(s) + [0005] é (s) + ‘
[o6a] o(s) = 0 (53) |

l: .1882 ] &(s) +E..73255 + L.A91.2] “(s) - f
[2.70738]) o(s) = a5 S0 (5w)

25



E00933 . .1788] &(s) + [.013532 * .02688] o(s) = -.64523562
55

M=1,2, Sea Level

[1_15065 + .1033] d(s) +(.08B]o'((s) + [.0276] o(s) =0 (56)

[ 1200 ] A (s) + [1.11;655 + 4,8132 ]&(s) -
[1.118625] e(s) = -'361$l.($) i

[—.OOléhs + .7392]0'((3) + [ 00652 + .018553] o(s) = -.5157&(:)( )
58

Analysis of these equation sets is the subject of Chapter III.
Investigation of the corresponding sets of equations for the
remaining two flight conditions at 30,000 feet shows a close corre-
spondence in root locations to the roots of the sets of equations
above. Due to this situation, the remainder of the investigation
will concentrate on the above sets of equations leaving the higher

altitude flight cases for reference and future investigation.

i i e T s, e S i i‘—.m#




Table III

Data Summary
Sea Level 30,000!
v ) v ¥
Mach .8 1.2 .8 g2
“v e ;1300 2.66° 2,05°
mass 513.45 513.45 513.45 513.45
/8 893.6 1340.4 796.08 1194.1
q 949 bk 2136.24 282,02 634.51
L 1.726 1.1506 5.176 3.4510
3:_1 -.0656 -.1033 -.0789 -.1057
s, -.0005 -.0813 —.1061 —.1215
Cy -.0621 -.0276 -.2092 -.0930
=D 0 0 0 0
Cz. -.1882 -.1200 -. 5404 -.2014
4u .0061 .0041 .0069 .0046
Ce,, -1.0611 1.000 ~1.0960 1.000
Ce, b 492 -4.8132 4.0 5554 -4.9278
Cz; -3.0647 -7.8000 -3.8000 -8.1000
Cag, -.4504 -.3610 -.5157 -.4h12
Cng -1.520 .400 -1.500 .100
Com,, .1788 -.7392 .0917 -.9283
L Ve .0135 .0060 <0451, .0202
cmq -4.3900 .. 5252 ~4.490 -4.7182
C"‘S\‘ -.6452 -.5157 -.6017 -.6303




A

III. Analysis of the Equations of Motion and System Stability

Having derived two sets of equations of motion in the preceding
chapter, the YF-16 model can now be analyzed regarding its stability
and response performance., To accomplish this, this chapter begins
with the determination of the characteristic equations for flight at
M= .8, and 1.2 at sea level. For a given system, there is only one
polynomial, termed the system characteristic equation, which determines
the form of the system transient response regardless of the type of
signal chosen as the input. This polynomial is determined and its
roots investigated. Short period approximations of both flight con-
ditions, which assume zero perturbation in forward velocity as the
aircraft maneuvers, are then developed and the roots of the associated
characteristic polynomials investigated. Open loop system responses
to various inputs are discussed. After a brief discussion on the high
frequency nature of the aircraft actuator servo, the chapter concludes-
with a variable gain root locus analysis of system stability for both
flight conditions.

For reference, the modeling equations are repeated here.

M= .8, Sea level (Set A)

[1.7265 + .0656] «1(5) +[ .0005]0,((3) +[.0621] 0 (s) = 0 (53)

[-1882 ] e + [ 173258 + wssue] ) - [2.70038] ot) =
- 44504 S“(s) (54)

[.00935 - .1788] :((s) +[ .01.3582 + .02683] e(s) =
-.6452 Skw (55)




M= 1.2, Sea Level (Set B)

i ’ o
Ll.lSOés + .103;Jli(s) +[ .0813]01(5) + .0276] e(s)

E.IZ] li(s) + [1.1&653 + 4.8132 ei(s) - :1.118625:‘ e(s)
-.361 §,(8)

[—.00161+s + .7392] o’L(s) + [ .00(’>s2 + .0185551 o(s)
-.5157 $,(9)

(56)

(57)

(58)

The first set of three equations will be referred to as Set A while

the latter as Set B.

Analysis of Equations of Motion

The characteristic equations for both sets of equations were

determined using a digital computer subroutine specifically designed

for control systems analysis (Ref. 16). Details of the formatted
structions and computer results are presented in Appendix B. The
results of this analysis, the model characteristic equations and

respective roots, are as follows:

Characteristic Equations

Set A:

.040369s* + .213799s° - .310934s° - .012018s - 002090 = O

Set B:

L0079155% + .056299s> - 1.059076s° + .O9LL5ks + 002448 = 0

in-

(59)

(60)




The negative terms in equation (59) are indicative of roots in
the right half of the S-plane corresponding to an unstable situation.
This is not the case in equation (60) where all roots appear positive.

This is confirmed, as the results of Appendix B show, by factoring the

characteristic equations into their corresponding roots.

Characteristic Rootsof Set A

Real

«1223932E + O1
-.2093674E - 01
-.6478175E + 01

Characteristic Roots of Set B

Real

=-.3511721E + 01

Iuag

0.
.T804O15E - 01
.6967083E - 30

SEag

.1790868E - 01
-.1790868E - 01
+1099289E + 02
-.1099289E + 02

These system root locations can be shown pictorially in the S-plane of

Figure 4 and Figure 5.

Set A

Fig. 4. Roots of Set A Equations.




The root in the right half plane confirms the unstable nature of
the system described by Set A. The conjugate roots, close to the
imaginary axis, are conventional phugoid roots due to the low fre-
quency and correspondingly long period associated with their oscil-
latory motion, while the two remaining aperiodic roots (Ref. 4) are

considered as short period roots.

Set B ‘Jau

K= =} 70.99
' P

|

| S

l b
ooy

O Y ) 3

' >

I

| [

|

x- -

Fig. 5. Roots of Set B Equations.,

For the Set B flight condition, unlike Set A, the roots indicate
that the system is stable (Fig. 5). Again, the phugoid roots lie
close to the imaginary axis while the remaining two roots appear as
normal short period roots. Such a shift in system characteristics,
from the unstable case of Set A to the stable situation of Set B, is
due to the variable location relationship of the center of gravity
and aerodynamic center, as a function of Mach number, discussed in

3

Bdn [adat e aant 4

gl 2 e 4o




Chapter I. This relationship is expressed in the stability derivative
C.. o discussed earlier and is the key term in determining the stability
of this system of equations.

Since in both cases, the phugoid roots are well behaved and stable,
a short period approximation disgarding the phugoid oscillatory mode
is sufficient to adequately model the system., Additionally, it is the
rapid, transient response of the aircraft, represented by the short
period mode, which is of interest, Again, based upon Reference 1,

the short period equations can be expressed as follows:

[E’i‘,-cz ]é(n . [ %‘:‘. .o] o(4) - Cz& $n(4) (61)

b 2 Loy 2 . T . :
[Eene g ][ 2 ra Jowa 6

The Set A equations feduce to the following:
(1.726s + L.49k2) o () + (L.726s) O(s) o -.45045;«) (63)

(.009272s - .1788) &(s) + (.0135s% + .026779s) O(s) =
-.64528,\(:) (64)

Likewise, the Set B equations reduce to:
(1.1506s + 4.8132) oL (s) + (-1.1506s) o(s) = -.361&(:) (65)

(-.00164s + .7392) e&(s) + (.006s> + .018553s) O(s) =
-.51575,5:) (66)
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The TRANFUN analysis program (Ref. 16) is used in a similar
manner as presented in Appendix B. Results show the characteristic
equation of the short period system described by equations (63) and
(64) to be:

.02330153 + .12289532 - .1882536s = O (67)

which produces the following roots:

Real Imag
0. o.
«1240223E + 01 o.
-.6514491E + O1 (0]

In the S-plane, these appear as shown in Figure 6.

M= .8, S.L. o

— ¥ -

(.8 12y

Fig. 6. Short Period Approximation Roots (Set 4)

Again, the instability is present while the root locations, due
to the simplification, have migrated less than one percent. The pole
at S = 0 results from the fact that (ED was taken as zero in equations
(61) and (62) which effectively eliminates the effects of gravity.

The system transfer functions of the reduced Set A equations (63)
and (64) become:
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o(s) _ -.26095 (s + 185.132)

3».‘—“ (s - 1.240223)(s + 6.514491) (68)
o(s) _  -47.61337 (s + 2.686213) :
s“m s (s - 1.240223)(s + 6.514491) (69)

The same process can be pérformed on Set B equations (65) and (66).

The resulting short period characteristic equation is:
& - -
.0069s” + .04834s” + .93982s = O (70)

The roots of this equation are:

Real Imag
0. 0.
-3 . 501 -ll . 130
-3 . 501 +l1 . 130

In the S-plane, these appear as shown in Figure 7.

M=1.2, S.L. J'w

* - ”On

Fig. 7. Short Period Approximation Roots (Set B)
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As expected, the system remains stable with only a minor shift

in the root locations. Also, an additional root at the origin is
introduced for the reason given earlier.
The two short period approximation transfer functions of Set B

equations (65) and (66):

al) _ - s + 277.0
() (s + 3.501021 + 11.13J3) (71)

o . -86.03576 (s + 3.729762)
i) s (s + 3.501021 + 11.13j) (72)

where W, , w, S", and T» become:

]

11,667 Rad/sec
11.130 Rad/sec

£
]

73
S = 3 e

Tp = 539 sec

Response to Inputs

A further appreciation for the dynamic characteristics of the
system can be gained by looking at the open-loop system response to
various inputs.

The transfer function % (Fig. 8) is used to demonstrate this
response. This particular transfer function is chosen since pitch
(0), and ultimately pitch rate (8), are of interest in investigating
the longitudinal dynamics of an aircraft. The digital computer pro-
gram PARTL is used to calculate the various responses (Ref. 10).
Figure 9 shows the pole-zero locations of the basic airframe for the

M = .8 condition at sea level reflected in equation (69).
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Fig. 8. Open Loop System.

The instability of the model in this flight condition is evident from
the pole which lies in the right half plane. Figure 10 shows the
pole-zero configuration based on equation (72) for the M = 1.2 case
at sea level. In this flight condition, the stability of the model

is reflected by the fact that all roots lie in the left half plane.

J'w

~é.s -8 r.ay
E,
}
Ow k( s+a.¢8c)
S S(sa)(s+esr) |
3
Fig. 9. Open Loop Pole-Zero Locations. J
;
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X= =% 1413
| _
I
|
|
& &
—1.'I|
I
R
|
x_ -i
Ou) _ k(s+37a9)

Sl.(*) T g(s+352 //.zsj)

Fig. 10. Open Loop Pole Zero Locations,

Noting that F(T) represents © in the plots which follow, Figure lla
shows the response to a step horizontal stabilizer deflection for
the M = .8 at sea level case; while, Figure 1llb shows the corres-
ponding response for the high Mach case.

The need for some type of control is clearly apparent in both
cases., Figure lla shows a very rapid parabolic divergence in the
system for the M = .8 case. Figure 11b shows a lightly damped
oscillation superimposed on a ramp type response. Here, although
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the response to the constant step input, as expected, is ramp-
like and stable, the light damping indicated by equation (73)
to be § = .3, is unsatisfactory. These response characteris-
tics are more obvious in Figure 12, In this set of figures,
the input is similar to a unit impulse. This input is given
physical significance by imagining a pilot pulling back on the
control stick slightly and then immediately returning the stick
to neutral to null the command, Such a rapid series of commands
should cause the nose to pitch-up as the aircraft attempts to
begin a climb and then quickly lowering as the command is
removed.

Figure 12a, reflecting the low Mach condition, is very
similar to Figure 1la. Again, a rapid parabolic divergence
results as the aircraft pitches up and continues to do so even
when the command is removed. This phenomenon definitely re-
flects a dynamically unstable condition. Figure 1l2a, however,
reflects the stable nature of the high Mach condition since the
aircraft returns to a stable steady state after the perturbing
command is removed. The extremely light damping ( ¢ = .3),
more evident here than in Figure 11b, remains unsatisfactory.
For both flight conditions, these plots show the resp&nse of
the open-loop is unacceptable., Some type of feedback control

scheme is definitely necessary.

38

VT




THETA/DELTA H RESP., TO GTEP.OFEN LOOP,M=.8,SL

1€0.00 200, 0C

120.00

T T T Ld 1

e
.00 0.40 0.80 1.20 1.60 2,00 2.40 2.80
T _(SEC)

Fig. lla, Step Response at M = .8,

THETA/DELTR H RESP. TO STEP,CPEN LOOP,M=1.2,SER L.

22,00

FET)

.02

rd

T 1 e - r : Al
.J0 0.80 1.61 2,480 o 3.20 4.0 4.80 H.80
ARSI IR e el S . .4

Fig. 11b., Step Response at M = 1.2,
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100.00

80.00

wx10°
60.00

0
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—o.
~—

20.00

IMPULSE RESPONSE AT M=.8,SEA LEVEL

.00

.00

: ¢ T T T T

0.80 1.60 2.40 3.20 4.00 4.80
T _(SEC)

§.60

Fig. 12a. Impulse Response at M = .8,

FIT)
4,00 GLBQ B8.00 , 10.00

2.09

.00

IMPULSE RESPONSE AT M=1.2, SER LEVEL

u.00

3 T T T

0.€0 !f;ﬂ 2.40 3.2 4.00 4.80
T _(SEC)

e —— - e o m.

5.60

Fig. 12b. Impulse Response at M = 1.2,




Aircraft Actuator Servo

Before proceeding any further, the dynamics of the aircraft
servo, which positions the horizontal stabilizer, must be considered.
Reference 13 indicates that the command servo transfer function for

this aircraft is:

S“‘(&) % (52)2
e,w £ + 2(.7)528 + 52 (74)

while that of the power actuator is:

Sléﬁ » 20
Sk (3 s + 20 (75)
e

These are integrated with the aircraft dynamics as shown in Figure 13.

Power Actuator

Command Servo Servo
¢
_ec_‘),. ‘ (52)2 a(" 20 | Aircraft ¢
s2 + 2(.7)52s+522 ied Dynamics

Fig. 13. Block Diagram of Servo and Aircraft.

The open loop transfer function of the cascaded network becomes:

O _ K gain (Zero of A/C Dynamics)
6 (s (s + 36.4 + 37.135j)(s + 20)(Poles of A/C Dynamics) 76)
<
41




The conjugate roots produced by the command servo (-36.4 + 37.135j)
are to the extreme left in the S~plane. Their effect on the system can
be safely disregarded because of their high frequency. Their only ap-
preciable effect would be the introduction of a small phase lag in the
system. Therefore, the command servo will not be considered further
in the remainder of this investigation.

Having accomplished this simplification, the system reduces to

the closed loop representation shown in Figure 14.

Actuator Aircraft

Servo Dynamics

Fig. 14. Closing Loop on Servo and Aircraft.

Tﬁe effect of the addition of the actuator servo to the system
can now be analyzed. Use of the ROOTL computer program (Ref. 11)
produces a variable gain root locus for each flight condition. The
Mach .8 results appear in Figure 15 while Mach 1.2 results appear
in Figure 16.
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The results of this root locus analysis, in which a rudimentary,
unity feedback system is implemented, indicate that the high Mach
case can be stabilized for a limited range of gain. Figure 15 points
up a different situation. Here, no value of gain will stabilize the
system. Compensation* , beyond more gain adjustment, is required for

this flight condition.

Summary
This chapter, through the development and investigation of P4

system characteristic equations and system input responses has shown
the open loop dynamic character of the YF-16 modeling equations to
be unsatisfactory. A short period approximation of the system,
varying only slightly from a fully developed model considering both
phugoid and short period oscillating modes, was shown to adequately
represent the system. Additionally, a root locus analysis pointed
out the need to compensate the system especially for M = .8 flight
at sea level.

I; is the compensation of this critical flight condition re-
flected in the Set A equations, which will be the focus of attention

for the remainder of this investigation. The application of a classi-~

cal lag compensator for analog implementation might suffice; however,
as intimated earlier, investigation will focus on the implementation
of a discrete optimal controller scheme specifically designed for

digital computer implementation. |

*Ccmpensation: the introduction of additional equipment into a system '
to reshape its root locus in order to improve system
performance,




IV. Control System Model and the gf Concept

The purpose of this chapter is to present the development of a
discretely controlled system model of the YF-16 incorporating in its
design consideration the handling qualities response criteria it
First, the general form of a discrete servo control system model is
presented, This is followed by a discussion of the C* concept and
its application to the proposed model.

The preceding chapter pointed out the unstable nature of Mach .8
flight at sea level for the YF-16. A requirement for some type of con-
trol system for this novel aircraft in this flight regime was repeatedly
demonstrated. At this juncture, several options are available:

a. Synthesize a continuous control law using classical

techniques and adapt it to a digital computer;

b. Synthesize a control law using continuous optimal control
theory and again adapt it for a digital computer; or

c. Synthesize a control law using discrete regulator/
- servo theory (Ref. 18)

The latter approach is addressed here, due to its direct digital
design nature. The theoretical approach which is implemented was
first developed by Sandell (Ref. 12) and is similar to the more recent
proposals of Stengel (Ref. 15) and lee (Ref. 8). Lee points out the
equivalence of his approach with that of Stengel; however, lee's
application is to a statically stable aircraft for a fixed sample
rate. Here, a discrete optimal control formulation with a discrete

quadratic performance index will be tested on a statically unstable




airframe for a variety of sample rates taking servo saturation effects
into consideration.,

As opposed to a regulator problem where perturbed states are re-
turned to zero steady state values, this controller scheme will produce
a sequence of controls to force the trajectory of the aircraft to follow
some input reference signal introduced by the pilot. Pilot dynamics are
not considered beyond the intimation that maneuvering commands originate

with him with no time delays.

Control System Model

Recall that the continuous control system model as depicted in
the state space representation of Figure 17, is based upon a continuous,
linear, differential system of equations. The system is considered
deterministic with no uncertainty or random inputs present while E,

x and ;, represent the control, state, and output vectors, respectively.

»l

Dynamics of

a ¥y
Controller }= = idlreraft Observer
(Plant)
Lt

Fig. 17. Continuous State Space System Representation.

It should be noted that the observer matrix with its associated output
vector ; could be incorporated into the controller. However, for the

purpose of clarity, it is desirable to separate the two. The above

L7




figure, closely represents a regulator controller in that no external

commands enter into the control scheme., If an external command signal
is introduced into the system, the regulator problem is biased to fol-
low that signal. The problem would then enter the realm of a servo or

tracking problem. Such a situation is depicted in Figure 18.

o=y

| { : — -
Pilot 7. | Dynamics of | X% y

: CommandI | Controller Aircraft Observer

B 2 i B

Fig. 18. Servo/Tracker System Representation with Bias
Introduced to Define Xg,6 g, Other Than Zero.

Since a commitment to a discrete approach for digital computer
implementation has been made, a digital equivalent of Figure 18 is
necessary.

The proposed equivalent control system representation appears in

Figure 19.
o(KT) g :
C.&%) com | Discrete |IKT) Hold J y(t)
-y Controller |
|
I ¢
)
! (a
L- ------ J

Fig. 19. Discrete System Servo Controller Scheme.
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The symbolic T in Figure 19 represents the sample rate or how
often samples 6f the continuous system are taken. The dashed line
indicates that all switches close in unison. The continuous air-
craft dynamic model is represented by the familiar linear equation

set:

$ & e (77)
y = Cx (78)

where I, E, and C are the dynamics, control and observer matrix,
respectively (Ref. 3). Other than determining what A, B, and C
are, it is necessary to define the system states (X), the system

output (¥), and the nature of the input command (Coommang)e

#*
C__ Concept
In 1966, Tobie, Elliott, and Malcom introduced the C* concept as

a new longitudinal performance criterion as an outgrowth of the Cornell.
Aeronautical Laboratory "Thumbprint" (Fig. 26), and in response to an
effort of determining what levels and types of handling qualities are
required by pilots (Ref. 17). The C* criterion is an example of speci-
fying short period handling qualities in terms of aircraft parameters

familiar to a pilot (8 and N,) while still including the traditional

short period frequency (w,) and damping requirements ( { ). As these

authors point out:

"It appears likely that the pilot responds to the
motions that naturally tend to dominate the air-
craft's characteristic response., For example, at
low velocity where N, cues are weak, pitch cues 1 4
would be most important. At high velocity where ]
very slight pitching may accompany sizable accelera- i
tion changes N cues would predominate., It is

L9




postulated that the pilot then responds to a
blend of pitch rate and normal acceleration,
with the blend rates varying in accordance
with natural variations in aircraft response.
The blend of response parameters has been
named C¥,v

c* is defined by the following expression:
zZ 2 [}

where the units/values of Table IV apply.

Table IV

gﬁ Terms Defined

Term Units Value
3* :
C g's variable
Nz g's variable
8 Rad/sec variable
) Rad/sec2 variable
K, g's-sec2 1.0 (arbitrarily chosen as unity)
K 's-sec \'} &
o g co_ (where Vo, = LOO ft/sec)
32.2
L g's-sec distance to c.g. from pilot
gravity
S0 = 5k
32.2
*

Voot cross over velocity at which
the normal acceleration and
pitch rate give equal cues
to the pilot.
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*
The acceptable range of the C transient response to a step input falls
within the appropriate bounds of the C* time history envelopes of

Figure 20. The four regions indicated have the following significance:
I - Optimal response (aerial combat, ground attack,
and penetration);
II - Not as critical response area (air refueling, cruise);
III - Category for conditions not covered by I, II (loiter);

IV - Power approach (landing).

These regions have a direct correlation with the category system of
MIL-F-8785B (Ref. 9).

With this background in the evaluation and meaning of the c* con-
cept as a well defined criterion on the handling qualities of an air-
craft, the system model (Fig. 19) can be put into perspective.

In this study, the c* envelope will be used to measure the response
of the system with satisfactory response defined as falling within the
innermost C" boundary limit. The output of the system (y(t)) is re-
placed by the term C:ct; C:ct(t) being the actual system c* response.
In this manner, the ¢* response becomes a function in the performance
index of the system. Additionally, the input to the system ccomggzd
is replaced by Cgom(t) which represents the desired C* response re-
quested by the pilot. In a physical sense, the YF-16 model is asked
to track a pilot step input command, here chosen as unity since it
lies in the center of the envelope bounds. In the YF-16, using a side
mount control stick, the pilot inputs a desired steady state value of
the c* parameter to the controller which is then required to have a

%*
short period response which tracks the system C response to the
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Fig. 20. C¥* Time History Envelope (Ref. 8)
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commanded C¥ value, It is apparent that the observer matrix (C) must
transform the system states (X) into a blend of system states now
redefined by equation (79) as Cgct(t) .

The next chapter will determine the nature of this transformation

matrix based upon a definition of the system states in equation (77).
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V. Continuous to Discrete System Transformation

This chapter presents the transformation from a continuous sytem
representation to a discrete system representation necessary to continue
development toward the discrete model presented in Figure 19.

The chapter begins with the continuous system state model. Here,
the nature of the observer matrix, which transforms the system states
into a C* representation, is developed. The chapter concludes with a
brief discussion of the discretization process used to represent the

continuous system in discrete time.

Continuous System State Model

Recall from Chapter IV that an open loop linear continuous system

can be defined by the first order state variable equation set:

= T1) = THKD) + Bou(y) (77)
y(t) = T x(t) (78)

It is necessary, therefore, to transform the three original equations
of motion (equations (1), (2), and (3)) into such a representation for
their implementation in the controlled system model developed in the
previous chapter (Fig. 19). This is done as detailed in Appendix C

using the short period approximation with the resulting state variable

equation being:

e




3 -2.603975 1.0 -.260965 || & 0

| 3 & | = | 15.058542  -2.682339  -47.676367|| 8| +| ©
S 0 0 -20.0 S.| |20
(182)

The resulting dynamics matrix (A) is (3 x 3) while the control

matrix (B) is seen to be (3 x 1). A check of the controllability of

' |
the system, determined by assuring that §:-A-B-:K2§ # 0, shows the

system is completely controllable.

Referring now to the output equation:
y(t) = T x(t) (78)

We can replace the output vector y(t) by C:ct(t') as discussed in the

previous chapter. The resulting output equation is:

" Cact(t) = C X(t) (80)

As shown earlier, c* is a linear blend of Ny, 6, and © expressed as:

c* = KN, +Kz8 + K58 (79)
or equivalently as: .
° z
*
c = E(é Kz Ka] o| N 1
¥ (81)

It is evident that a mismatch exists between the states required
*
o to calculate C , indicated in equation (8l) and the actual system

i states, developed in Appendix C, and shown in equation (182). Some ﬁ

transformation matrix T must be found to transform system states to
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the required states needed to calculate C*. This situation is ex-
Y pressed in equation (82) where some conformal, (3 x 3), D matrix is
I shown accomplishing the transformation.
- % - - - - T
‘ Nyi= 1| Dyy D2 D3| .| &
% By Bgy B ] Si (82)

’.;,

Three linear combinations of o¢ , ) , and SL must be found which
are equal to 6, N,, and 5, respectively.

The first expression is the trivial relationship:

3 & Dyjo¢ + Dy, & + DBS;, (83)

3 o 0 + 106 + O SL (8L)

For the next equation,

7 N = D21°( + 0226 + DZBSL' (85) - : j

recall that,

i o %[e.L] =Ku[é—&] e

T4 From Appendix C, equation (174) shows o as:
. C: . ¢
Hom ol % 108 + Wl § (174)
K, i
% This equation can be substituted into equation (86) leading to.the

following development:
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b

N cl«. o > +
Nz = Ku[e - (—k, + lo© cTt“‘ IOJ (87)
k“ I k‘k
N, = [- T Cl*] o+ l- T Cls;‘] gl.. (s88)

From this development, it is now evident that:

By = = t_": Cz, (89)

D22 - g (90)
WA W

D,, = ot ;|

23 k. h o

Similarly, Appendix C, equation (78 ) shows the relationship of o to
o, é s and Sk as:

o =4il¢ k¢ Ky 5+ % c ¢
R R XA O c'}]s : E[T' o el )

Q L]

which completes the development of the D matrix by defining D31, D3p,

4 C +k kg
k‘[ h“ —ki,c'.-i Cl‘] ) T C‘,,.& + C.}

2

and D33 as:

and _i_ _&c,d + Cm
’ ka[k, ™ zsk Sl.]

respectively.
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Having determined D, equation (82) can be written as:

—ka g
*, e i 9

=2
]

i f
|
|
|

| &
oo i - 3 ch.-fc ]A EC +
& L_u:[c :c c,]l a[ « ";]l'a[k. g JJ LS*J (92)

Substituting this expression into equation (81), the resulting

- * .
expression for C is:

[ l l G e
AR 1.0 0 o
| |
c*=[xéxz Ka] -_‘:_uc,__‘ i ° ._o%ch 8
l | ¢
| Hale 4o | L
»["1“ “]. [c‘ ;], I“q'c“ ‘J I

This expression can be simplified to:

|
! o
* |-k o : e \I-kke ] .
Tt hona sy Begfeca s
! |
4)

Substituting into this expression the appropriate values from Table III,
Table IV, and the value of K, = .1;_ = 27.75155 based on .8 Mach at sea

level, results in the following expression:
[ 4

¢ = 77.685 11,428 -9.921{ .| 6
S, (95)
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Equation (95) fixes the value of the C observer matrix indicated in

Figure 19. It is this matrix which will transform the system states
into the system scalar output C*. Additionally, the system is found
to be completely observable since the determinant of I}Tzﬂré'ri(f\v)aé-r]
is nonsingular,

The continuous system described by equations (182) and (95) is
then completely controllable and observable which provide the sufficient

conditions for the regulation of the system output.

Discrete State Model

Because of the need to implement the control system in a digital
flight computer, equation set (77) and (78) must be transformed into
an equivalent discrete form. When the state model of a continuous
system is given by the equation set (77) and (78), the discrete state
model for the same system with a piecewise constant input is given by

a difference equation set of the form:

X(K+1)T = Ay x(KT) + B, u(KT) (96)
y(KT) = Ty x(KT) (97
where,
I, =M (98)
T AT
5 = o e (99)

and T is the sample rate (Ref. 2).
Numerous methods are available for the calculation of the: state

transition matrix Kd' For example, the "Solution by Functions of a
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Matrix" method (Ref. 2) could be used with the values of the Id and Ed
matrices determined by hand as a general function of the variable T.
Additionally, digital computer software packages are available to
compute the values of Ay and By . This is the method chosen in this
study since the matrices may be determined rapidly for any specified
sample rate in a call to a subroutine nested in a more complex main
program,

In particular, Kd and §d are digitally calculated in this re-
search by use of the digital subroutine DSCRT discussed in Ref. 6.

In the calculation, ﬁd is determined by evaluating the series:

- - o cAad - NT<f NT
By, = IS + -A—S- + A ) v oo ¢ A S
y al 3! NT 7 (100
while,
Kd - T + &k , §d (101)

where S and NT are specified in the call to the subroutine
(see Appendix E).

Examples of Ay and ﬁd for various values of T are listed in
Table V.




Table V
Kd and I-B'd Matrices as a Function of Sample Rate
Iy B
=1 sec 4 d
9521122 ,0189892 -.0122758 -.0020253
2859504 .9506241 -.7653255 -.1647557
| i 0 0 .6703200 3296800
T = l[:ZO sec <
09650 001376 -09975011- -.0009032
-2073 09639 e 5811l— -.08757
0 0 . 7515 @ 2485
T = l"lOO sec
— 7 —
9750 009742 -.004528 [ -.0003916
011467 097I¥3 -oli-265 -.041427
0 0 .8187 g .1813 N




VI. Z0H, Optimal Controller and Simulation Development

This chapter presents the development of the sequence of optimal
scalar controls u(KT) which will drive the system shown in Figure 19
to the commanded steady state value of g* input by the pilot. As
Figure 19 indicates, the controller accepts sampled information about
the system and uses this information to construct control inputs to
the system. The determination of the control law will be accomplished
by minimizing an appropriate discrete penalty function with zero steady
state error. The resulting controls are step-like in nature as shown

in Figure 21.

u(r)/

>
e

—
g S gl
: Y.
) ” ar ar L S #
T N ]
Time (7) 9'.-9.'

Fig. 21, Nature of Optimal Controls.

From Figure 21, it is apparent that the control u(KT) takes

some constant value during the time period between samples. That is:

u(KT) = constant ¥/ (KT) £ 4 < (KH1)T, K = 0,1,2,3,...N )
102
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Additionally, the sample interval (T) remains constant while the magni-
tude of the control is allowed to vary., This series of piecewise con-
stant step controls corresponds to the shift-like, control stick input
commands introduced by a pilot. Although a step command may not re-
present the most common pilot input, the step response implicitly
describes the response to other inputs that a pilot uses. Additionally,
Figure 21 is indicative of the output of a Zero Order Hold device.

This chapter will first discuss the general concepts of a hold
device and in particular, the Zero Order Hold., Next, a discussion of
the discrete penalty function selected with respect to which the per-
formance of the system is optimized is presented. The recursive con-
trol algorithm which minimizes this cost function is then incorporated
in a computer program developed for this investigation. A discussion
of the structuring of this simulation program is presented. The chapter
concludes with the development of the closed loop system eigenvalues.
The determination of these eigenvalues is incorporated as a part of
the software and used to track the migration of system roots as a

function of sample rate.

Zero Order Hold Device

The type of hold device incorporated in a digital control system
can play a decisive role in determining whether the system is stable
especially at lower sample rates, A hold device serves to convert a
discrete time sequence of numbers, separated in time by T-second
intervals, into a continuous time function in order to provide a
suitable input to a continuous-time component. The particular hold

device chosen represents a D/A converter which constructs a piecewise
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continuous control signal from a pulse sequence of numbers each of

which represent a discrete control signal. For a control problem

such as this, it is more appropriate to think in terms of extrapolating
the present control over the time interval between samples rather than
trying to reconstruct some signal which is more along the vein of a i

communications problem,

Between sampling instances, the hold device extrapolates between

the most recent sample and the next to follow.

A power series expansion of a continuous signal u(t) in the

interval between sampling instant KT and (X+1)Tcan be expressed as:

u(t) = u(kr) + & [u(KT)] (t=KT) 4 a2 [w(xr)](t-kT)? + ...
dT 1! dT 2!

W KTt <(k)T (103)

£

Using the higher order derivatives of wu(t), for the purpose of more

accurate extrapolation, can meet with serious difficulties in main-

taining system stability. This is due to the fact that the higher

the order of the derivative to be approximated, the larger the number

of delay pulses required since one time interval must pass for each

discrete control needed in the power series. The accuracy of the

estimate of a derivative is then a function of the number of time

delays. It is these time delays which have an adverse effect on the

stability of a feedback control system. The value of the first deriva- ;'
tive is known from the calculus to be approximated by the simple

difference equation:

.%.. [ u(KT) - u(K-l)T] ~ u(t) (104)

bl
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It is apparent that for this first derivative approximation, both the
present sample value and the immediate past sample value are needed.
For higher order derivatives, the number of past control pulses

required grows larger and larger. For example, the second derivative:

W) = ——1:2— u(KT) = 2u(K-1)T + u(K-2)T (105)

requires three consecutive controls. Equation (103) can be thought
of as a best-fit mth order polynomial approximation of u(t) which

may be rewritten as:

W) =u(kT +7) = AT+ A, 7% .,.Aa_f'1+ AT + A, (106)
where:
" = t-KT
A, = u(KT)
(107)
a = ﬁ!t
a(t)
B = =3

where u(t) and u(t) are as in equations (104) and (105), respectively,
and m = the order of the polynomial.
As Kuo points out (Ref. 7), when m = O the polynomial is of zero

order and the ZOH extrapolator results which generates only u(KT):

ukr+5)| = A, , VY o <T (108)
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where A, 1is equated to u(KT). This makes sense since it is only
natural to require the output signal u(t) to have the value of the
input sequence at the sample time. The Zero Order Hold is therefore

expressed as:

wKT + Y ) = u(XT) (109)

As Figure 21 confirms, the effect of the ZOH is to stretch the
input pulse into a series of rectangular waves of width T. Finally,
it should be noted in the change in system representation from Figure
19 to Figure 23 that the Z0H effect is taken into account in the pro-

cess of discretizing equation (77) into equation (96).

Penalty Function
The cost criterion selected, with respect to which the perfor-

mance of the system is optimized, is of the form of the quadratic

functional:

& T(t) R ﬁ(t)} dt , (110)

Ref, 8)

where Q is the weighting which penalizes the trajectory deviation or
difference between the C*commanded and the C* realized, i.e.,'EEKt),
and R is the weighting on the control where a penalty is exacted for
large corrective control rates,

It is required to determine a discrete control sequence which
will minimise & dlscrete oquivalent of equation (110). Using the

flowt A Teremee sguivalent of the first derivative of the control

ik e Mliiit el o s
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u(t), the cost functional (J) of equation (110) can be replaced by
the following equivalent discrete expression:

Jg =2 [c:om -T E(KT)] : & [C:om - C x(KT) ] +

k:0
[uterr - wem)] * g, [uwyr- wn]} aw

or equivalently as:
& 3% T %
¥* 3
Jd = z { [Ccom e Cact] Qd [Ccom = cact] *
K=0

[u(K+l)T - u(KT)] ’ Ry [u(K+l)T - u(KT)] (185)

As pointed out in Appendix D, the control which minimizes this cost

function is given by:
u(K+1)T - u(KT) = Ld (C:om i c:ct) +
Ng [ x(K+1)T - E(KT)] (235)

which, when evaluated for a few values of K, i.ee, K=0,1,2 . . .,

can be expressed by the recursive equation:
K-1

wkr) = Y L (c?:om - c:ct) + Ny [i’(xfr) - §(0)]+ u(0)
= (112)

where x(0) and u(0) are the initial states and control and where:

R R a . ) o R U e e
Ig =(x<2d-1cld (g -I) By )(C4 (Bq -I) By) - (238)
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& PR =1
Ny = (Kld + Ly Cd)(Ad ey

(240

The matrices k-l N ffz are found from the positive definite solution
d

d
of the algebraic matrix Ricatti equation of the form:

= 3 T, =i ¥
P = Qe t $PE- GPM(MPr-R,) NP S (219)

or from Appendix D for this particular problem:

(Ref. 6)

e s g r-c"'czc'o.1 W2 olle. o o sl olle. 2. ]
-1y -124f |= A =lE| faa TRy -124)| -4 ={|-114 =12,
E Rt l—-f- ¥ S
|
T T T T T
P 0 10} |B of|P P C 1188, 11IF P
- -22 - = 0 Silas. o = & Kda_12, 2
Ve B, 38 14l N o s e
5 o2 %t 3§ % o
2 }:lld ElZd QW Elld ?-lzd e‘d ?d
k1] +y| - [o1]
T - o
I P I P P 5 R 1
= a2~ & ol <22 X &
[ ey 4 |7 T L ; (113)
(Ref. 8)
L 5
where the resulting steady state solution matrix d d| is
—Ir -
P. P
| Wy
used in the gain calculation equation expressed by:
-1
~ T [
K K |=-|["Pl+R, [PP (218)
- |

or more precisely as:




= o - - - = -1-

R & STRRATN IR

[o}
]
'_l

e - {6 |-
PT P I PP P D T
=12. =22 - =12, =22 AR
i B T || 3 | =4 " L 3
(1)

where 211 s pl2d’ and 222 for this application are matrices of
d d

dimension (3 x 3), (3 x 1), and (1 x 1), respectively.

Computer Program and Simulation

Equation (112) is suitable for recursive evaluvation on a digital
computer, along with the terms which comprise it expressed by equations
(114), (219), (238), and (240). Appendix E, contains the digital com-
puter program which follows the analytical solution to the servo
problem expressed by the previous set of equations and simulates a
system equivalent to Figure 19. A simplified flow diagram of the
program is shown in Figure 22, The structure of the simulated closed-
loop system appears in Figure 23 while its programming logic appears
in Figure 24. The linear, time-invarient, continuous-time system
given by equations (77) and (78), having been transformed into the
equivalent discrete-time linear equation set:

x(K+1)T = Ky x(KT) + By u(KT) (96)
¢® (k1) = T, X(KT) (97)

where E& = 6 ,with a quadratic cost functional used to determine
u(KT), is simulated in the algorithm, All the required matrices are

sequentially evaluated for a specific sampling interval with the
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START

? pecify Sampls
i Rate (TDEL)

Set Simulation
Flag ---»=(Flag other than 1
discussed later)

Specify Simulation
duration in seconds
(LONG)

Adjust sample rate for
computer simulation
use (DEL)

Load in continuous system A, B, and C
matrices., (Built internally into
program for this one flight condition,)

F Specify Q and R
weighting matrices

|

| catcutate 1y and §

Run ZOH Simulation :

1

List Results

I Calculate System Roots

1
Plot Results |— —— — — optional

(See Appendix F)
-

Fig. 22, Simplified Computer Program Flow Diagram.
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Gtart Simulation ’
¥

Initialize all
Variables

Print Listing and
Write on Tape Initial
Values

Increase Time and
Iteration Counters

Yes

Calculate New
States and C¥
Output

Print Listing and
Write on Tape New
Values of states,
C*, and control

€
to Stop Yes STOP
imulatio

r Increase Time and

LIteration counters

X

Calculate new
Control

L

Calculate new
states and C¥*
output

®

Fig. 24, Simplified Simulation Flow Design.
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Ricatti matrix equation steady state solution used to calculate the
matrix of feedback gains, The algorithm was programmed in Fortran IV
and was tested on a CDC 6600 digital computer.

Insert (a) of Figure 23 is a breakdown of the discrete plant
dynamics, Since the system being modeled is continuous, some way
must be found to simulate it on a digital computer, For this problem,
the continuous system was discretize& at a rate of 1/500th second,
This rate of plant discretization is kept constant no matter what the
sample rate specified for investigation might be. In other words, the
YF-16 plant is allowed to change states every 1/500th second, Such a
fast rate allows the plant to retain an almost continuous, real-world,
nature while still satisfying the requirement for discretization. It
is important to realize that the sample rate specified for a particular
program run is the discrete rate with which this equally discretized
plant model is sampled.

Initially, the plant was discretized to a rate of some multiple
of the. sample rate. For example, if the sample rate was set to
T = .333 sec., the plant was always discretized to a rate ten times
faster or .033 seconds. However, to standardize the runs, thus
allowing a comparison of results, and remove this factor of ten,
which might influence the results it was decided to standardize
the plant discretization rate. With the "factor of ten" scheme,
however, it was much simpler to determine when it was time to build
a new control, For example, if the sample rate specified was

T= 1/40th second, ten iterations of the plant ( z%g-'= '%5 )s

this time running at 1/400%" second, passed before a new control
was calculated., This latest control was then implemented and retained

(£]
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as the plant control for the next ten plant iterations (ZOH effect)
before the cycle was repeated., It is evident that this factor of ten,
while simplifying the iteration and update scheme, made the correlation
of results from one sample rate to another almost impossible.

The standardization scheme, while eliminating this problem,
introduced the new problem of how to determine when to update the
control. The frequency of control updates now varied with the re-
lationship of the sample rate to the 1/500th second plant discretization
rate., If a sample rate of T = 1/25 second was used, twenty plant
iterations passed (20/500 = 1/25 second) before control updates. :

This was simple enough for even multiples of the plant discreti- |
zation rate but more complicated for non-multiple cases. The problem
could be eliminated by specifying the use of only convenient multiple
sample rates (i.e., T = 1/10, 1/20, 1/50, 1/100, etc.). However, to

retain program flexibility in the use of any sample rate, this limi- ]

tation was not implemented. Instead, the flexibility was retained g
but at the cost of some slight error. The Fortran function IFIX is
used in conjunction with the modulo arithmatic function MOD. This is
best explained by use of an example. If the sample rate is specified
tobe T = 1/30th second, which in the program is referred to as

TDEL = .0333..., the program used the Fortran expressions: *

MODI = IFIX (500.0 * TDEL + .5)
DEL = MODI/500.0

to come up with the adjusted sample rate of DEL = ,034 seconds.
The value of DEL, in this case .034 seconds, is then used through-
out the remainder of the program as the adjusted sample rate to simplify

Th




(’ the calculations. The amount of error introduced, in this case, the

difference between .0333... and .034 seconds, is negligible. A com-
% parison of the sample rate specified, to the actual rate selected by
the algorithm for the simulation appears in Table VI, It is evident
that for specified sample rates -.%.- , where 500/f equals an integer,
exactness between the sample rate specified and the sample rate used
is maintained.

Table VI
Specified vs Actual Sample Rates
Specified Sample Actual Sample
: —PRate (DEL) Bate Used (TDEL)
1/100.0 1/100.0
1/90.0 1/83.3
1/80.0 1/83.3
1/70.0 1/71.4
1/60.0 1/62.5
1/50.0 1/50.0
l 1/40.0 1/38.4
1/30.0 1/29.4
1/20.0 1/20.0
1/10.0 1/10.0 4




Additionally, the value of MODI is used to determine when a control
update should occur using the Fortran modulo (MOD) arithmetic

statement:
If [(MOD (KX, MODI)] 25 1y 2

Here, KK is an integer counter which keeps track of the number of
system iterations. If the value of KK is divisible by MODI such that
the remainder is zero, the program will jump to statement 1 where an

update of the control occurs. For any other value of remainder, the

program will continue using its present value of control. Such a
scheme was used successfully in this study.
Insert (b) of Figure 23 is a detailed depiction of the mechani-
% zation of the discrete controller expressed by equation (96). The
optimal scalar gain Ly and the (1 x 3) optimal gain matrix Ny are
calculated based on the modified sample rate, DEL, just discussed.
Since the control is calculated every DEL seconds, it is necessary
that the gains be based on this same rate. The values of L, and Ny
are determined by sequential calls to subroutines as shown in Figure

25, Additionally, since the input to the simulation is a step of

unity magnitude, a sample taken at any time will also be unity.

That is:

*
C:om = Ccom = 1.0. (115) ;

discrete continuous

Finally, with this unity step input driving the controller, and
assuming the initial control u(0) and initial states x(0) are taken

i

1 : as zero, it is apparent that the first control calculated will have
the value of L;. This is the approach taken in the simulation.
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‘ From Main PrograD

1

(CALL DSCRT)

Discretize continuous A & B
matrices to DEL sample rate

(CALL RIC)

Determine steady state solution
to Ricatti matrix equation

(CALL GAINK)
Determine El (1 x3)
d

and Ez (1 x 1) values
d

(CALL NDID)

Calculate values of f\fd
(1 x3)and Iy (1 x1)

‘ GO TO SIMULATION ’

Fig. 25. Simplified Flow Diagram of Ly and Ny Calculation.

A key element in the determination of the control u(KT) is the

amount of computation time required for its calculation. With the

plant running at a 1/500f'h second state-change rate, the computation

time required for both state-output and control calculations must be
much less than this rate,

This is especially true for the control

1




computation since it must be available on the next simulation iteration
which occurs 1/500th second later, Such a state of affairs is true not
only for this simulation but becomes even more critical when the com-
putationsare done on the type of onboard computer envisioned as the
actual aircraft controller. Such computers are of much more limited
capability in terms of wordlength and speed of computation than the
ground based CDC computer used here. Algorithm computational time can
be kept at a minimum by efficient programming, which limits the number
of computer commands, and by proper sequencing of these computer com-
mands. The most time consuming between iteration computation in this
simulation is taken by the sequence of statements which calculate the
new control, The calculation process has been reduced to five sequential
statements by retaining information from previous control computations
and, for this reason, is assumed to occur in much, much less than
1/500%" second.

This assumption is reasonable in view of the amounts of time small
camputers require for computation purposes. Working on the micro-second
(10'6 second) level, no time problems are envisioned in the various data
manipulations (shift commands, access memory location commands, comple-
ment commands, etc.) pursuant to the calculation of u(KT). By the
elimination of the use of intermediate answers, as presently programmed,
memory access time could be minimized even further lending greater
credence to this assumption.

This assumption of negligible lapse in time for computation pur-
poses is of additional importance when equation (112) is examined
closely. From this equation, it is evident that the calculation of

a(KT) requires knowledge of x(KT). The x(KT) used is the most current
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set of values available, The resulting u(KT) is actually u(KT') owing
to a finite amount of computational time delay. This u(KT') is then
used as the control u(KT) in subsequent state evaluations using

equation (96).

Closed Ioop System Eigenvalues

An additional feature of the program is the inclusion of a sub-
routine (ROOT) which calculates the characteristic ;oots of the closed-
loop system. The location of roots inside the unit circle and their
migration with changes in the sample rate is of interest. Subroutine
ROOT determines these roots by solving for the eigenvalues of the

dynamics matrix of an augmented state space system representation.

This dynamics matrix is determined as follows., Let

K-1
W(KT) = 3§o L, I:C')éom(KT) ~ C:ct(KT)] i
WKHL)T = W(KT) + Ly [cﬁom(xcr) - C:ct(KT)] (117)
c*(xr) = Ty (k1) (97)
WKH)T = WKT) + Ly (Coon(KT) - Ty X(KT)) (118)
W(EH) = WD) + Iy Coom(KT) - Ly Ty X(KT) (29)




AD=A0S3 441

UNCLASSIFIED

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OHIO SCH==ETC F/6 1/3
INVESTIGATION OF A DISCRETE C=STAR TRANSIENT RESPONSE CONTROLLE==ETC(U)
DEC 77 P D MONICO
AFIT/GGC/EE/TT7-8

/

i,




3!

22

Also from equation (112:

u(KT) = W(KT) + ND [ E(KT)] (120)
Now substituting equation (120) into equation (96):

X(k)T = [Kd + By ﬁd] x(KT) + By W(KT) (121)
Equations (119) and (121) are now incorporated into the following equation:

x(k+1)T | |A; + By M

w|

4 x(KT) 0

= A + Coon(KT)
W(K+L)T ~LyCq I _W(KT) Ly e
This last equation characterizes the dynamics of the closed-loop system
of Figure 23. The eigenvalues of the (2 x 2) dynamics matrix of this
equation, as a function of the sample rate, define the stability of the
system in the Z-plane, Subroutine ROOT calculates these eigenvalues.
It is desirable that the resulting short period roots not only lie with-
in the unit circle, insuring system stability, but also that they corr