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CONVERGENCE PROPERTILS OF A PIES-TYPE
ALGORITHY FOR NON-INTEGRABLE FUNCTIONS

by
Caulton L, Irwin

1. INTRODUCTION

The aim of this paper is to study the technique used in the FEA-PIES
energy model for approximating non-integrable vector functions. An algorithm
which incorporates this technique to obtain market equilibrium in the presence
of non-integrable functions is described in section 2. The main convergence,
existence and uniqueness theorem is stated and a geometric interpretation of
the algorithm is given for n = 2. Section 3 indicates some effects of a linear
coordinate transformation on the algorithm and contains an illustrative example.
The proofs are in section 4.

The complete report on the FEA-PIES energy model is contained in [5]. A
description of the guantitative analysis as well as an interesting example
problem is contained in Hogan's paper [3]. The mathematical structure,
algorithms and computational experience are presented in [4]. The algorithm
considered below can be viewed as a sub-algorithm of the PIES algorithm.
Hopefully, the methods of proof and observations will aid in understanding the
convergence of the PIES algorithm and will indicate its connection with
quasi-Newton methods as surveyed in [1].
is a demand price function and

Suppose P, is a supply price function, P

S D
e = PS - PD. If e is integrable, i.e., e = VE for some function E from R” into
Rl, then, provided E is convex, calculating q* such that e(q*) = (0, . . .. ,0)

is equivalent to solving the optimization problem

min E "
an (q)




(2)

In this case, -E represents a net social surplus function and
so this welfare measure of the economy is maximized at q¥.
If e is not integrable, which in general is the case for n > 1, the
problem of obtaining q* with an optimization process can be approached by
approximating e with an integrable function &. A vecior a such that 2(&) =fa, . ; . 0)
is then obtained as a solution of

(1) m‘iln e(q)

and a may be taken as an approximation to q%.
For the functions in PIES it is actually PD that fails to be integrable and

so the approximation technique is applied only to P For the algorithm described

D
in section 2, the same approximation technique is used, but it is applied to
Pg - PD. In either case, an integrable € results.
2. THE ALGORITHEM AND CONVERGENCE THEOREM

Let Je(q) denote the Jacobian matrix of e at q, i.e., Je(q) is an

: .th
n x n matrix whose 1

row is (Vei) (g). The PIES technique for approximating a
non-integrable vector function ¢ with respect to to the point qt is simply to

o A .
define et as the vector function such that

Jgt(q) = diag J_(q)
and
etq®) = e(q.

A ¢ .
This provides that et has coordinate functions given by

(2) & (@)= & (a;, - - . »q)

= t t t t
= ei (ql, e o o q‘l"‘l’ qi’ qi+l, « s s qn)
foris 1, o' s 5 W

At is integrable since it has a diagonal Jacobian matrix; in fact,

R




(3)

where
(3) £%a) = f}gt at

> 1 - t TL e
£ Ft el(ql, q2, e e o 3 Q_n) dql
9

2 - t t -
+ [qt ez(ql, Qps Ags + + - > qn) dq2
9
Nt

I e
+ Iq: en(ql, SIS qn) dqn.

1

A < ¢ s A
The point qt can now be obtained via (1). By letting qt+ = qt a sequence

€2
> o

3 &
g s qQ . . is generated which may converge to a point q such that e(q ) =

(0, . . . 5 0). Refer to this algorithm as SUB-PIES. A diagram of SUB-PIES
and for compariscn purposes a diagram of PIES is shown in figure 1.
Assume for the discussion that for each i = 1, . . . , n, there is an

interval I; = [a;,b;] so that if R = I) x . . . X I» then

(%) ei(q) < 0 for Qg = 3 and qje Ij all j = i;

(5) ei(q) > 0 for 9 b, and qj € Ij all j = ij;

(6) de;
e, is defined and continuous on R for j =1, . . . , N3
3
aei
(7) there is an €0 so that " > € on R.
i

Assume further that

aei 3ei
(8) kij = sup (Isag-(q)1/155;<q)| l QeR,j=ri)<ew

ané let k denote the n x n matrix (kij) where kii =0fori=1,...,n.
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Let p(k) = sup {]XI A is an eigenvalue of k}, i.e., p(k) is the spectral
radius of k.

It should be noted that in PIES, P is integrable, since it is obtained from

S
a linecar programming process analysis, but it is not evaprywhere differentiable.
On the other hand, PD is differentiable but not necessarily integrable. The

result is that e = Po - P for PIES functions is not necessarily differentiable

s
and not necessarily integrable. In order to concetrate on the non-integrability
aspect, condition (6) will be assumed for the functions in SUB-PIES.

Our main theorem concerning SUB-PIES is :

Theorem 1. Suppose (&), (5), (6) and (7) hold. If p(k) < 1, then the
sequence ql, q2, ... generated by SUB - PIES converges to a point q* such that
e(q*) = (0, ... 5, 0). Furthermore qﬁ is unique.

Proof. See part 4.

Two situations in which p(k) < 1 can be scen by applying the Gershgorin

circles Theorzm, se2 [7]. One case is when kij < for j # i. This condition

n-1

expresses the economic reality that the quantity demanded and produced of a

good is more strongly related to its own price than to the cross prices.

Also, it has been pointed out, [2], that if we let ki = max {kij | §=i}
and kK denote the n x n matrix (k,.) where k., ={k, if j = i
ij ij i
o x4 =4,

~

then k is similar to the symmetric matrix k where

l
]
§1

~
Aoplying Cershgorin's Theorem again, this time on k, we find that

p(k) < p(k) = p(kK) < 1
provided

(2) /-l?i(/?l*r“'*&l:—l‘*& +...f/l?;)<1 forr I » Ly asvy B

itl

It is interessting to note that any one of the k; 's cen be arbitrarily large

provicded the other (n-1) of the k; 's are "small enough".

———— e A —




(6)

The geometric

seen clearly for n
0, i.e.,

S.

1

Obviously g* € S, n

Qt is defined by (2) and when the corresponding E

is obtained so that

We have

in

= {qeR | ei(q) = 0} for i

e

Figure 2

terpretation of the induction step in SUB-PIES can be

2. Let Si denote the level set of e; for function value

A

vE®) (43 = 8t4Y) = (0,0).

At (At At)

&t (q%) = &

* (ql, q2)

m

t
so (3;, q2) Sl ; also,

At qt, as shown in figure 2,

= 1,2
the integrable approximation

S 5% At
minimized a point q

e e ———————. . o




DU I—

(7)

At At B At At At

e, (q7) = e, (ql. qz)
L t At
= e, (43, a)
=0

t At
and so (ql, q2) €S,.
o e S Ay A . piiiar o e
The geometric interpretation is that qi as determined by the optimization

scheme in (1) is the first coordinate of the intersection of the line q, = q;

- - . 3 . A - 3
witn the level set Sl' Similarily, q; is the second coordinate of the
5 : = . : A
intersection of the line q, = qz with the level set 82. Let qt+1 = qt.

t+l

o~
9 ~ 9 | and to get an indication

In order to estimate the error AI = | Q

of the proof of theorem 1, let u,

HER N t+1 _ At _ s
Toen, S, is the greph of u) and since ¢, " = q; = uy (q,), we have
t t+l ®op L t b
ot
2 ]
. l j E v (q,) dq2l
)
t
G | o
s”* u (g, da,
9%
¢ 1t ”
<1l Il | of-a |
] 1
where || u, || = sup {lul(q2)| l q, € 12}'

'
Recalling the notation from (8), || vy 1] = k12 so,

t t-1
(10) Al < kl? A2 :

Similarily we can obtain that

t t-1
(11) A2 3 k21A1 :

— et e e

be defined implicitly on I, by el(ul (q2), q2) =10




(8)
Notice that the number k,, represents an upper bouid on the slope of S1
with respect to q, as well as a bound on ratios of certain partial derivations
vhich can be related to the dewand elasticities in PIES, Similar comments

hold for k,, as well as for kij in general.

21

3. EKFECTS OF A LINEAR COORDINATE CHANGE

In general, the convergence of ql, q2, . « . as pgenerated by SUB-PIES
depends upon how closely the level sets of e, are approximated by the i =
"constant'" coordinate planes. This is because the q; = "constant" coordinate
planes are also the level sets of Qg. In terms of extending the applicability
of SUB-PIES and making it more comparable with PIES it is suggested to impose a
new linear coordinate system (r., . . . , rn) on g-space so that r; = “"constant"
coordinate planes are first order approximations to the level sets of e; at
some point w € R. This suggestion is illustrated in figure 3 for n = 2 in

=~k

which w = qt, q is the approximating point determined by using the  r-coordinate

system and at is determined as before in the  g-coordinate system,

= constant

Figure 3




(9)

The coordinate transformation nceded is r = Oq where 0O = Je(w). If 0—1 exists
then we can let f(r) = e(0~lr) and atteipt to apply SUB-PIES to £(r). The
following theorem shows that the coordinate change offers a local advantage in
terms of satisfying the conditions for convergence of SUB-PIES,

Theorem 2. If e'l exists, then there is a neighborhood N of s = Ow so that
if R ¢ N, then p(k) < 1.

Proof. The theorem is true because

afi 0 if i #j
dr. (s) = S <
Jj 1. afa = 3

of.
and 3;3~ is a continuous function of r. See section (4) for details.

The coordinates can be changed to "suit the problem'" at each qt where
[Je(qt)]—l exists, thus suggesting a variation on the SUB-PIES algorithm.
Also, a single cocordinate change with respect to a point in the vicinity of the
equilibrium can produce a situation in which the hypothesis of Theorem 1 is
satisfied. Tnis is illustrated by the following example.

Example 1.

Let e = (el, e2) be defined by

el(ql’ q2) =1n q = q, t 10

iy
e (qy, 9)) = q) + 29y - q,

X
for 5 < qls 3

7 s q2S ) 1t E

Then
de de
1 1
J e e ()
e(q) aql(q) 54, (q
Jde de
2 2
== (q) 5= (q)
aql 3q2
2
9




(10)

and
-1
k12 = sap szl- = sgi [qll = 3
I3,
2q +2I
1L
k,, = sup —=—' = sup [2q +2| = 8.
21 q ‘—l‘ qQ 1

Clearly the conditions for convergence are not satisfied in the Q- coordinates.

Let w = (2,10), then © = Je(w) Sl =l and e'l = %T’ -2 21\.

6 =X -1 8

In r-coordinates determined by r = 6q we have f(r) = e(e—l r) and so

(v£)(r) = (ve)(0! p) 07t
¥ :-}:—l' - 2 + 12 2 -1
4 1
= 1
4ql 4.8 ;ql+ 3
where q =g {r).
In the r-coordinates, 2. . 1
lql | <1 forg, ==
k = sSup —- 1 2
L - i+ 12
| Q l
l-uql + 8| :
k21 e i U for q, 2 =
1 2
l uqi + 3'

which means that p(k) < 1 for any R such that Re{ q| q, 2 k).

Also
of
1 1 2 3
— (r) = = (-= + 11) > =
arl 11 1 11
of
2 R
and — (r) & = 3
or,, 11 (uql +.3) » 1

for any R ¢ {QIQl 2 %J which means ¢ = 3.  fulfills condition (7).
>




(11)

It can be show that

fl(—ll,rz) <0 r, € [-4,5]
fl(—7, r2) >0 Py ¢ [-4,5)
f2(rl, -4) <0 r, € [-11, -7]
fz(rl, 5) >0 r) € [-11, -7]
i.e., conditions (%) and (5) are satisfied for Il = [-11, -7] and

I2 = [-4, 5]. R= Il X 12 in  r-coordinates is contained in {q] q, 2 %)

so all the conditions for convergence of SUB-PIES are satisfied. The
equilibrium point qx can now be obtained.
The following theorem is a "local" converse of Theorem 1.
ot

s &«
Theorem 3. Suppose g is an equilibrium point, i.e. e(q ) = (0, . . . , 0),

-1 _ #o-1 p e *
and @ © = [Je(q )] ~ exists, then, locally, SUB-PIES converges to q in the

r-ccordinate system given by r = 0q.
Proof. Theorem 2 and an implicit function Theorem provide that the
conditions for convergence of SUB-PIES are satisfied. See section (4) for

details.

4. PROOFS
In Theorem 1, assume there are intervals I, so that (4), (5), (6) and (7)

A
hold and let qt be a point of R. Let the functions et and E' be defined by

equations (2) and (3) respectively. Condition (7) guarantees that the Hessian

R At . e
matoix, vzﬁt, is positive definite; therefore, et is strictly convex on R and

. s .9 At
‘ so has a unique minimum at q where
At. A
| (9) &@H = EH @ =, ..., 0.

‘ Letting S; = {q | ei(q) = 0}, it follows from (9) that




(12)

At At At At At
(10) ei(q ) = e, (ql, & & s qn)
2 t t At t £
= ei (ql’ L ] qi_l; ql$ qi"’l’ BR8Ny Q.n)
=0
e S t A :
and so (ql; © oo e 395 15955 Qs - - e s qn) € S;. This point can be interpreted

as a partial equilibrium with respect to the ith quantity. Equation (10) also
A A
guarantees that qz € Ii and so qt € R. By an implicit function theorem there is

a function u, defined on Ri = Il e o e Ii—l x Ii+1 3 e e s b a5 In so that
e;(q5 « . .y 9 g (e, 0 oy Qi > Q4490 = - - o qn){ Ugys =+ = »9) =0
for all

a, = (ql, c et 5 Q5 95 Q5uqs - s e s qn) € R,.

Note that Si is the graph of .

Letting qt+l = at we obtain
e t+l t
(11) a; = 'qi - qil
i, t t-1
= Iui(ai) - uiﬁli )|
= Vu,
é? el i
hi ,ai]
n t du
= 9 .3 d
b I A, R
j=1 t-1
= %
n qt
j o,
< ZE: —_— dq.
J=l t"l nj
34 | 7o




(13)
o o A
o T S
= - dq.
=1 1|08 i
= 1% [9qg
n
STE:: kij lq? - q?_ll
421 3 J
3
n
A O ey
3=1 J J
3#i

where the kij 's are defined by (8).
Inequality (11) can be formulated as

t At—l

(12) At <k T

n

where at = (Az, T e
e t . v

We can now obtain from (12) that A, the vector of successive differences

satisfies

(13) st <1 e,

Using (13) and standard results in matrix analysis, we obtain that the

e e e e e e e o e e .

sequence ql, q2, + .« . generated by SUB-PIES 1§ a Cauchy sequence in R provided
& 1
p(k) < 1. Let q be the point to which q~, q2, . + . converges, To see that
o ; J, - ;- < 2 S - t
ei(q ) = 0, let x; = (ql, SRR PEPT R PR PO qn) and recall

2
i’

from (10) that ei(xz) = 0. It can be shown that for cach i, xi, X
= ot . %
converges to q and so by the continuity assumption on ey, ei(q ) = 0;

oo
hence e(q ) = (0, . . . 4, O).
It is interesting that uniqueness of the equilibrium point also follows

from the condition p(k) < 1. Suppose q is another point in R so that

e(q) = (0, . . ., 0). TIn a manner similar to how (13) was obtained we get




n
o
~~
=1
(=N
N
1
c
[
~~
R
NP
N

*

oo g O, 1B = G

colunn of the m x n matrix M.

j=1
j=i
And so A s kA, which implies that
(1) A < knA for all n
» T
where A = (Al’ etle Bt An) ”
It is clear from (14) that p(k) < 1 implies A=(0, .
In Theorem 2, we have © = Je(w), s = 6w and fi(r) = ci(e-lr), so
oK,
i = -1 - -1
(15) g (r) = (Ve;) (0 7r) CJ.(O )
J
where we arz using the notation thet CL(H) = the £t
From (15),
afi
(s)l -1
(16) ari“_ : (Vei)(w) . Cj(O ) -
5 (Ve )(w) - ¢ (07
ar,
i
= 0 j£i

T ey s




(15)

of.
Witn the continuity of 5;}— at s, we can guarantee a neighborhood N of s so that
J
for any R = Il X, , X Ip < N, p(k) < 1. Again reference [7] is appropriate here.
S o’
In Tneorem 3, let r = Og ;3 ‘Theorenm 2 provides o neighborhood N of

: %
r so that p(k) < 1 for any R < N. Since fi(r ) = 0 and

af. -

l - X aie

ET (r) = 0 j#i
J

1 j=i

for i=l, . . . , n there will be a set R in the form I, x . . . x In c N so that

1
(4), (5), (6) and (7) hold in the r - coordinate system. Since R € N, p(k) <1

&
and so a sequence pl, r2, . . . generated by SUB-PILS imust converge to r .

5., MISCELLANLOUS
In terns of Ffuture work it would be nice to be able to deal with functions
in SUB-PIES which are not everywhere differentiable and to find explicit relations

between the k . 's and the demund elasticities. There are also other possibilities
I ‘ : ot g e - s
for approximating non-integrable functions, eg. define e  such that

- T
Jet(q) = %[\Ie(q) +J,(q)")

and €°(q") = e(q").
It is intercsting to note that one step in John Neuberger's iterative method of
solving non-lincur partial differential equations is to approximate a non-conservative
vector field by its "nearest" conservative vector field, sce [6]. This method
would perhape offer another mcans of obtaining an ¢t. 1t has been suggested
that using SUB-PIES in the price space would facilitate relating the demand

clasticities to the conditions for convergence.

e ——— e ——— o —— - — —— - ——
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