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CON VERGEN CE PROPF.RTII: S OF A PIES-TYPE

ALGORIT }C 1 FOR N ON -IN TE GRABLE FUNCTIONS

by
Caulton I,. Irwin

1. INTRODUCTION

The aim of this paper is to study the technique used in the FEA-PIES

energy model for approximating non-integrable vector functions. An algorithm

which incorporates this technique to obtain market equilibrium in the presence

of non—integrable functions is described in section 2. The main convergence ,

existence and uniqueness theorem is stated and a geometric interpretation of

the algorithm is given for n = 2. Section 3 indicates some effects of a linear

coordinate transformation on the algorithm and contains an illustrative example.

The proofs are in section 4.

The complete report on the FEA-PIES energy model is contained in [5]. A

description of the quantitative analysis as well as an interesting example

problem is contained in Hogan ’s paper [3]. The mathematical structure ,

algorithms and comp utational experience are presented in [4]. The algoi~ithm

considered below can be viewed as a sub-algorithm of the PIES algorithm.

Hopefully, the methods of proof and observations will aid in understanding the

convergenc~ of the PIES algorithm and will indicate its connection with

quasi-Newton methods as surveyed in [1].

Suppose P~ is a supp ly price function , 
~D 

is a demand price function and

e - 

~D 
If e is integrable, i.e., e = VE for some function E from R’~ into

then , provided E is convex , calculating q~ such that e(q*) = (0, . . .. ,o)
is equivalent to solving the optimization problem

min E(q) .



(2)

In this case , -E represents a net social surplus function and

so this welfare measure of the economy is maximized at q~ .

If e is not integrable , which in general is the case for n > 1 , the

problem of obtaining q~ with an optimization process can be ~pproathed by

approximating e with an integrable function ~~. A vecLor such that ~(~ ) = to , . . .,O)

is then obtained as a solution of

(1) m~n ~ (q)

and may be taken as an approximation to q~ .

For the functions in PIES it is actually 
~D that fails to be integrable and

so the approximation technique is applied only to 
~D For the algorithm described

in section 2 , the same approximation technique is used , but it is applied to

- 

~D 
In either case, an int egrable ~ results.

2. THE ALGORIT fN AND CONVERGENCE THEO REM

Let J (q ) denote the Jacobian matrix of e at q,  i .e. ,  J~ (q) is an

n x n matrix whose 1th row is (Ve.) (q). The PIES technique for approximating a

non-integrable vector function with respect to to the point qt is simo ly to

define At as the vector fun ctIon such that

diag J~ (q)

and
At t te (q ) e(q ).

This provides that has coordinate functions given by
At At

(2) e
1 
(q) e. (q1, . . .

t t t tej (q1, . . . , q1•~1, q1, q1÷1, . . . , q~
)

for i 1,. . . ,n.

i~t is iritegrable since it has a diagonal Jacobian matrix; in fact,
At Ate V t

____- .- - ____.—

~

- ~—- - —- - ---—-—-—-.-----—- — - - — -



(3)

where

(~~ ) 
~t( )  = ~~

‘

q
t;q] e

- -

= j ~ 
e
1

(q
1
, q2, • ~ 

q~) dq1
4:11

~ r~ 
e2(q1, ‘12~ 

q~ , • . , q~ ) d~2
q2

e~ (q
1
, . . • ~~~~~ ~~~~) d~~.

The point can now be obtained via (1). By letting ~~~~ = a sequence

1 2 *
q , q , . . . is generated which may converge to a point q such that e(q ) =

(0, . . . , 0). Refer to this algorithm as SUB-PIES. A diagram of SUB-PIES

and for comparison purposes a diagrats of PIES is shown In figure 1.

Assume for the discussion that for each i = 1, . . . , n, there is an

interval I~ [a1,b1] so that if R = I~ x . . . x ~~~ then

(4) e
1

(q) c 0 for q
1 

= a1 arid ~ I~ all. j  ~~ 1;

(5)  e~(q) > 0 for q
~ 

= b1 
and q

~ 
€ I~ all j  

x I;

(6) ~e1 is defined and continuous on R for j  = 1, . . . ,
q
3

~e.
(7) there is an € >  0 so that ~~~~~~~~ > c on R.

Assume further that

(8) k1. sup ~~~~~~~~ 
(q)~A~~(q )I q € R, j  � 1) < ~

and let k denote the n x ri m atrix (k~~ ) where = 0 for i = 3., . . . , n.
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(5)

Let p ( k )  sup ( 1A I~ ~ is an eigei~’ial ue of J - ) , i . e . ,  p ( k )  is the spect ral

radi us of k .

It shou).d be noted that in PIES , P~ is integrdbie , sin ce it is obtained from

a l1r1’.~dr programming procc~ss analysis , but it is not ev~rywhere differentiable.

On tu e other hand , 
~D 

is differentiable but not necessarily integrable. The

result is that e 
~s - 

~D 
for PIES functions is not necessarily differentiable

and not necessarily integrable. In order to concetrate on the non—integrability

aspect, condition (6) will be assumed for the functions in SUB-PIES.

Our main theorem concerning SUB-PIES is

Theorem 1. Suppose (4), (5) ,  (&)  and (7) hold. If p ( k )  < 1, then the

sequence q1, q2, ... generated by SUB - PIES converges to a point q* such that

e(q’) = (0 , ... , 0). Furthermore q~ is unique.

Proof. See part 4.

Two situetions in which p(k ) < 1 can be seen by applying the Gershgorin

circles Theor em , see [7]. One case is when k... < ~~~~~~~
- for 5 ~ i. This condition

expresses the econu~ ic reality that the quantity demanded and produced of a

good is nor’e strongly related to its own price than to the cross prices .

Also , it has been pointed out , [2 ], that if we let k.  = max (k . .  I i�i )
and i~ denote the n x n matrix ( J . . )  where i~ .. = (k .  if 5 � I

if 5 = 1 ,

then f is similar to the symmetric matrix k where

k . .  = v5 . k ..
3.) 3. )

~~p !y~ r.p. Cershgori n ’s Theore m again , this time on k , we find that

p(k ) � p(j ~) p (i~) < 3.

proVided

(
~~) f~ (/ ~ + •. •  -f + + ... .~. ,/~~ ) < j . for i 1, ..., n .

It is i n te r e s t i n g  to notc t i i . it  any one of the ‘S can be ~ir~itrarily large

provided the othr ~r (n- i)  of the k 1 ‘s arc “sei~ ll enough”.
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t A t ea1 q1 q1 q1

Figure 2

The geometric interpretation of the induction step in SUB-PIES can be

seen clearly for n = 2. Let S. denote the level set of e. for function value
1 3.

0 , i .e.,

S1 
= {q € R e1

(q) 0) for i = 1,2

Obviously q~ € S1 
n S2. 

At q
t as shown in fi gure 2 , the integrable approximation

At At At
e is de fined by (2 )  and when the corresponding E is minimized a point q

is obtained so that

(Vp) (~5 = ~t(~t) = (0,0).

We have
At At At At At
e
1 

(q ) = e1 
(q1, q2

)

At t
= e1 

(q 1, q2
)

‘O

I~t t
~~° (q1, q2

) c S1 ; also ,

— . . -  - - . ~— -- --- - - ---- - -- - —- -



(7)

At At At At Ate2 (q ) - e2 (q1, q2
)

t At
= e2 (q1, 

~‘2~

= 0

t At
arid so (q1, q2

) ~ S2
.

The geometric interpretation is that as determined by the optimization

scheme in (1) is the first coordinate of the intersection of the line q2 =

with the level set S1. Similarily, is the second coordinate of the

intersection ...r the line q1 q~ with the level set S2
. Let qt+l =

In order to estimate the error = I ~~~ - q1 and to get an indication

of the proof of theorem 1, let be defined implicitly on 12 by e1(u1 (q 2
) , q2 ) =  0.

Then , S1 is the graph of u1 and since ~~~~ 
= u1 ( q ) , we have

t ti- i *~ t
= I q1 — q1 I = I 

~1 
(q
2
) - u

1

t

= j j
~ ~ ~~~q2

4 (
:2

)1

� II u~ H J q2 - q2
where fl 4 = sup (Ju~(q2)I q2 € 12

).

Recalling the notation from (8) ,  I I  u3 fl � so ,

(10) � ~t-l

Similarily we can obtain that

(i i)  � k 21A~~~ 

.:~ . -. - - - , 
~~~~~~~



(8)

Ilotice that the iiurn5er k12 rcprc’nent:; an upper bou~
d on the slope of

with respect to q2 as well as a bound on ratios of c..~r t d m f l  pa r t ia l  derivat ions

Which can be related to the dem~md e]~ sticjti~~ in PI’~~. Sm iler comments

hold for k21 as well as for k
15 

in general.

3. EffECTS OF A LiNEAR COORDINATE CHA NGE

In general, the convergence of q1, q2, . . . as generated by SUB-PIES

depends upon how closely the level sets of e
1 are 

approximated by the q1 
=

“constant” coordinate planes. This is because the q. - “constan t” coordinate

planes are also the level sets of ~~~. In terms of extending the applicability

of SUB-PIES and making it more comparable with PIES it is suggested to impose a

new linear coordinate system (r1, . . . , r) on q—space so that r
1 

= “constant”

coordinate planes arc first order approximations to the level sets of e1 at

some point w E R. This suggestion is illustrated in figure 3 for ri = 2 in

which w = qt, ~~ is the approximating point determined by using the r-coordinate

system and is determined as before in the q-coordiflate system.

q2 _____ _ _ _ _

- r1 
= constant

qt N
~~~~~~~~~~~ r2 = cons~~nt

q1~

Figure 3



(ci )

The coordinate transfornation needed is r Oq where 0 
~~~~~ 

If exists

then we can let f(r) = e(0~~r) and at ten j~t to apply SUi3-PIES to f(r). The

following theorem show s that the coord~nut c  change offers a local advantage in

terms of satisfying the conditions for convergence of SUB-PIES .

Theorem 2. If 0
_i 

exists, then there is a neighborhood N of s = Ow so that

if R ~ N , then p(k) < 1.

Proof. The theorem is true because

8f. 10 i f i �j3. (s ) =

j  3. i f i = j

~f.
and —i- is a continuous function of r. See section (ii ) for details.

ar.
tThe coordinates can be changed to “suit the problem” at each q where

[J (q tfl ~•l exists, thus suggesting a variation on the SUB—PIES aig6rithm.

Also, a single coordinate change with respect to a point in the vicinity of the

equilibrium can produce a ~;ituation in which the hypothesis of Theore m 1 is

satisfied. This is illustrated by the following example.

Example 1.

Let e (e
1, 

e
2
) be defined by

e
1

(q1, q
2
) ~~ q1 

- q2 + 10

e
2

(q 1, q2) q~ -F 2q
1 

- q2

for ~
. � q

1
< 3

7 � q2
� 11

Then / \
J~(q) - (1(q) 

.! (q)\

~~~~~q) 2
()

— -i
— ~

\~2q1+2 -1

-- . - - . -- - - - - .
~~~~~~~~~~~~~

. - — -



(10)

and
k~ ) sup sup 

~
q 3

-
~~~ q 1

2q
k 
1 

= sup —---
~~--—- = sup j2q i-2j = 8.2 q 1— l I 1

Clearly the conditions for convergence are not satisfied in the q- coordinates .

Let w (2,10), then 0 
~~~~~ 

~~~~~ 0~~ = ~~~ - (_2 2
’
\.

~~6 ~i) ~-l2 1
~/

In r-coordinates determined by r Oq we have f ( r )  e(8 1 r) and so

( Vf) (r )  (Ve) ( 0 1 r) 0~~

~~~+l2

4q1 t 8 
1
~q1

+ 3)

where q1 =

In the r-coordinates , 2 
—

_ _ _ _  
< 1  for q1 2

q
1~

J-4q1 
-F 8

= sup 1 for �
4q1 +

wh ich ticans that p(k) < 1 for any R such that  R E f  qJ  q1 � ½) .
Also

(r) = 
~
-j- (-~ - + U) >

af 2
eric 

~~

-

~~
--- (r) - 

Ti (‘4q1 
1- 3) >

for any R c. {q~q3. ~ ~~~~~ 
which me ans c = fulfills condition (7).



( i i )

It can be show that

f1(—l l ,r2
) < 0 r

2 c [--4 ,5]

~~~~ r2) > 0 r
2 e [— 4,

5)

-4) < 0 r
1 c [-11, -7)

5) > 0 r1 ~ 
[-11, -.7]

i.e., conditions (4) and (5). are satisfied for I~ [-11, — 7] and

1
2 

= [~4, 5).  R I~ X 1
2 in r—coordinates is contained in {qI q1 

� ½)

so all the conditions for convergence of SUB-PIES are satisfied. The

equilibrium point q~
C 

can now be obtained.

The following theorem is a “local” converse of Theorem 1.

*Theorem 3. Suppose q is an equilibrium point, i.e. e(q ) = (0, . . . , 0),

and ~~ l = [J (q ))
~~~ exists, then, locally , SUB-PIES converges to q* j~ the

r-coordinate system given by r = Oq.

Proof . Theorem 2 and an implicit fun ction Theorem provide that the

conditions for convergence of SUB-PIES are satisfied. See section (4) for

details.

4. PROOFS

In Theorem 1, assume there are intervals I~ so that (4) , (5), (6) and (7)

hold and let qt be a point of R. Let the functions and Et be defined by

equations (2) and (3 )  respectively. Condition (7)  guarantees that the Hessian

mat .’ix, V2f
~~, is positive d:finite; therefore, is strictly convex on R and

so has a unique minimum at q where

(g) ~t(~t) (v~~) (at ) = (0 , . . . , 0) .

Letting S
i 

{q J e1(q) = 0) , it follows from (9) that



(12)

(1.0) 
At(

At
) = ~ ~~~~~~~ . . . , 

~~ t t- C.  (q1, . . . , q. 1, q., . . .
= 0

and so (q
~, . . . , q~_1, ~~ q~.f1, . . . , q~) ~ S.,. This point can be interpreted

as a partial equilibrium with respect to the ~th 
quantity. Equation (10) also

guarantees that € I~ and so E R. By an implicit function theorem there is

a function u. defined on R. = I 
~ . . . x 

~~- ~ x . . . 
~ I so that1 3. 1 1—1 1+1 fl

e~~(q1, . . 
‘ 
q1_1, u1(q1, 

~~~~~~~~~~~~ 

q1~ , . . . , q~
), q1÷1, . . . , q~) = O

for all

ci . = (q1, . . . , q~_1
, q1÷1, . . . , cia

) € R..

Note that Si., is the graph of u1.

Letting = q We obtain

(11) = Iq~~ -
I t t—l

= iu1(cz~
) — u~ (ci 1 )

= 
t 

vuil

~~~t a~.
= 2 J c j 

~~~~~~ dq~
t-l

:j �i

ft t

�:~ ::: r~ ?~.j 1  J ~~~ji~

- -  ——---.~ - -~~~~- - ~~~~~~~—- ---- —- - - - - ----_



(13)

ae.
t 1

~~ f~
i

j=]. J ~~ 
i

j~ i

k . .  -.

j �i

k.. -1

j—l 1] ~
) �~

where the k . .  ‘s are defined by (8) .

Inequality (11) can be formulated as

(12) � k where = (i~~, . . , ~t)T
We can now o5t.~li. f~-o.~ (12) that 

~~~~~
, the vector of su~’cessive differences

satisfies

(13) ~t <

Using (13) ai~d s~ and;~:d ri~;uits in matrix analysis, we obtain that the

sequence q1, q2, . . . generritcd by S~JB-PIES is a Cauchy sequence in R provided

p ( k)  < 1. Let q be the point to whi ch q1, q2, . . . converges. To see that

t t t t+l t te.(q ) = 0, let x~ = (q1, . . . , q. 1, q. , q. 1, . . . , q~ ) and recall

from (io) that e1(x ~ ) 0. It can be shown that for ~ach i, ~~~~ .

con v-:rg~5 to q and so by the continuity assumption on e1, e.(q ) = 0;

hence e(q ) = (0, . . . , 0).

It is interesting that uni queness of the equilibrium point also follows

f rt .  the conclit~ on p(k)  < 1. Suppone ~ is another point in R so that

c(~~) (0 , . . . , 0) .  In a manner similar  to how ( 13) was obtained we get



—-- ...- w

(l’l )

— q I

I u . (& .) — u.(a?) I

* 

Vu~~
[cc .; a . ]

n
k . .  h .
1) 3j =3-

j �i

And so ~ � k~~, which implies that

(14) ~ � for all n

where L~ (b..1, . . ,

tIt is clear from (14) that p ( k )  < 1 imp lies b . ( 0, . . . , 0), i.e., ~ q~.

In Theorem 2 , we have 0 Je ( W )
~ s Ow and f.(r) = e

1
(9 1r), so

(15) 
~~

-

~~

-

~

- (r) ( g e . )  (O 1r)

where we ar3 using the notation th. t cLC~
) = the 1th column of the m x ri matrix H.

From (15),

(16) 
____  = [

( V e . ) ( w ) . C
j
(0_’)[

I~-.i;~; ( s)j  
(Ve ) ( w )  . C . ( O ~~ ) J

=

j = i

- —--- - .  —-- - -  -- -—--.. — —-  — - — —- -- —--- ----
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~f .
With the contiin~ity of ~~

—
~~~

- at s, w’~ can ~.u;trantce a IIl~ighborhood N of s so that

for any R = 1
~ 

x . • .x ç fl , p (k)  < 1. /%Lrlifl reference [7) is appropriate here.

In Tneoreni 3, let r 0q ;  1 rlr~(. 2 pravides a neighbo rhood N of

so that p(k) < 1 for any Ft cj N .  Since f
i(r *) = 0 and

~f. .. f

~~
---

~~
- (r’) ( 0
) I

1 j = i

for i l , . . . , n there will  be a set R in the form Xl 
x • x I c N so that

~~~~ (5)~ ( )  and (7 )  hold in the r - coordinate system. Since R N, p(k) < ].

and so a sequence r1, r
2 en rated by SUB-PIES must converge to r.

5. ~ lso ELLA~;f ~~J~

in ter~:; -:-f future wor~-~ it  wo~id be nice to he ahie to deal with functions

~ ~: - ~‘lES vhich are no~ evcrywher~ differentiable and to find explicit relations

between the L. . ‘s an~i the de~~md ela :;ticities . There are also other possibilities
1)

for u?proxiTnatin~ non-integra~ 1e fw.ct i ons , eg. def ine  such th ct

t~~ ’~ 
½[J~(q) +

At t t
and e (q ) e(q ).

it is in teres t in g to note that one step in John Ncuber~er ’s iterativo method of

sol v n j  nor i--~I i r ~ ~‘ p~it’ti.ii di fferential equations is to approximate a non—conservative

v :ctc)r f ield by its “ii eare~.t ” co~i .er v~it ive v~ctor field , see (6]. This method

would perh aps offer another r ans of- ob ta in ing  ~~ It  ha:; been suggested

that us rig ~;ufl—Pii3 in th~ price npaci : would facSJ i i  at rela t ing the demand

‘‘i ;~~
- t i cit i.e to the condi Ii ori~. for  convergence .
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SOL 77—33 “Convergence Properties of a Pies—Type Algorithm for
Non—In tegrab Ic Func t tons”

An a lgor i thm for  determining the marke t equilibrium in the presence

of non—integrable but differentiable excess demand functions is developed .

This can be reviewed as a varian t of the Proj ec t Independent -c Evaluation

System Algorithm. A sequence of approximate market equilibria are ob-

tained by constructing integrable excess demand functions . Conditions

for the existence and uniqueness of the solutions are demonstrated. It

is shown further that the sequence converges to the true marke t equili—

br iuni if a matr ix  re],at ed to the demand elasticities has a spectral

radius less than one . There is a close analogy to known methods for

iterative solution of nonlinear equations. Geometric interpretations and

some effects of coordinate transformation are disc’issed .
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