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CHAPTER 1

1NTP~O~ JCTIO N

1.1. Overview and Thesis Organization.

In the ~et:;t lecade , sever si constructive proofs of the Brouwer

and Kakutani Ci Te I point theorems have emerged. These proofs have been

developed into algorithms (knc sn in the literature as complementary

pivot aigoritn!n~ which search for fixed points on unbounded regions.

In turn these alg~irithm s have been used to solve problems arising in

economics, engineering and other branches of applied mathematics. An

important application for which this method was awkward was that of’

optimizing an objective function subject to both equality and inequality

constraints (hereafter referred to as the general constrained optimi-

zation problem). One result of the dissertation is the most efficient

complementary pivot algorithm to date for handling this problem. The

second major contrtbution of this thesis is a general structure on

fixed point problems which, when present, enables one to work in a

lower dimensional space. It is shown that the general constrained

optimi~’ation problem may sometimes be formulated as a fixed point

problem possessing this property.

The basic approach adopted in this work for handling the general

constrained optimi~~t ion problem is to use an implicit function (derived

from the equality constraints~ to solve for some dependent variables 
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terms of the remaining independent ones. Under certain circi.unatances,

a fixed point algorithm may ‘be used to search for optimal values of the

independent variables while Newton ’s method for solving nonlinear systems

of equations is used to determine values of the dependent variables.

Theoretical conditions on the original functions are developed to

guarantee that the fixed point algorithm converges to a solution and

various techniques are devised to enhance the overall efficiency .

To help ascertain the value of this method, comparative computer

tests are run against the Generalized Reduced Gradient (GRG) algorithm

which is a well established nonlinear programming code. This method was

selected as the basis for compar ison because, to the author’ s knowledge,

it is the best commercial code for solving the general constrained

optimization problem (see Colville 181, Nishiyama, Simkin and Takeuchi

[140], Lasdon, Warren, Jam and Ratner [314]). Seventeen test problems

were taken from various sources. The fixed point code solved all seventeen

and GRG solved sixteen. This supports the robustness of the fixed point

approach. As to the con~puter times, the fixed point code proved to be

as fast or faster than GRG on the lower dimensional problems. As the

dimension increased, however, the trend reversed and on a forty dimensional

problem GRG was approximately eleven times faster. The conclusion is

that when the dimension of the original problem can be sufficiently reduced

by the equality constraint s, the fixed point approach appears to be more

effective .
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The dissertation consists of seven chapters. Chapter 2 contains

the essence of the dimension reducing property along with several examples

of where this structure arises in applications (of principal interest is

the general constrained OOt. ~~~~~t~LOfl pro~n.ein). Under certain circumstances,

the algorithw described in Chapter 5 can be used to obtain a solution to

this problem. Some theoretical conditions on the original functions which

ensures that the algorithm converges to a solution are established in

Chapter 4 while Chapter 5 deals with all of the computational consider-

ations. Chapter 6 proposes various techniques to improve the efficiency.

Finally, Chapter 7 presents the results of the computer tests along with

the appropriate conclusions.

1.2. Historical Development.

The history of the computation of fixed points dates back to 1929

when Knaster, Kuratowski and Mazurkiewicz DO] gave the first constructive

proof of the Brouwer fixed point th~~rem using Sperner’s lemma. It was

not until thirty eight years later that Scarf [48}, using the ideas of

complementary pivot theory developed by Lenke [55] and Lemke and

Howson ~36] in 1964, produced the first algorithm to approximate fixed

points of continuous functions from the simplex into itself. Cohen [7]

simultaneously developed a constructive type proof of Sperner’s lemma.

Many ideas closely related to fixed point computation were anticipated

by Hirsch [27] in 1965 wherein he gave an existence proof by using a

certain construct ive technique to reach a contradict ion.
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The combinatorial techniques of Scarf’s algorithm have various

other applications in mathematics and economics as shown in Scarf and

Hansen 125]. One example of this is approximating solutions to convex

minimization problems in which the feasible region is compact and non-

empty. Another example is the spec ial case of Kakutani ’ s fixed po int

theorem [28] in which the compact convex subset involved is a simplex.

There were, however, several deficiencies with these methods.

Theoretically, the general version of Kakutani’s theorem could not be

proved and computationally there was no way to “continuouslyt’ obtain

more accurate approximations. Furthermore, in higher dimensions, these

algorithms were highly inefficient.

In 1970, Eaves [11, 12] developed an algorithm for computing a

fixed point of the point to set map in Kakutani’s theorem. Then in 1971,

Eaves [13 1 and Eaves and Saigal [15] and, independently, Merrill [38]

developed techniques for overcoming many of the computational difficulties.

The computer results of these new ideas are reported in Merrill [38],

Saigal, Solow and Woolsey [47], Gochet, Loute and Solow [25], Wilmuth

[55 ] and subsequently elsewhere. Since 1975 various other researchers

have contributed to the field including Todd [51 ,52], Kuhn [52,33],

Garcia [21,22], Fisher and Gould [17], Gould and Tolle [24], Kojima [31],

Engles [16], Friedenfelds [19], Eaves [14], Saigal [1414,145,46] and

Kellogg, Li and York [29]. Currently there are over one hundred papers

relating to fixed point computation and complementary pivot theory,

and an extensive bibliography may be found in Eaves [114].
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1.3. Notation and Preliminaries

The notation is developed here and is used consistently throughout

the thesis. To begin with let

rn-dimensional euclidean space .

The following variables wiLl always represent vectors in euclidean space:

a, b, u, v, w, x, y, z, and the variables £ , m , n and s will denote

their various dimensions. Any point x C Rm should always be thought of

as a column vector. The row vector corresponding to x will be denoted

by ~
T. If x and y E then let (x,y) be the (ni+n) column

vector whose first m components are those of x and whose last n

components are those of y. The ith component of a column vector x

will be denoted by a subscript, e.g. x1, where as superscripts refer to

elements in a collection of vectors. Thus n different vectors in

might be represented by x
1
, ... , x”. Whenever possible the superscript

k will be used for infinite collections and sequences.

Let x, y C Rn and a € R1 with a > 0 then

= x1y1 = inner product,

x < y means x. y. for each i = l,...,n,

x < y means x~ K y~ for each i = 1, . . .
= euclidean norm,

B(x,a) = open ball of radius a and center x

= (z C Rn / Ik _z~ < a]
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Some special notation for matrices is also needed. All matrices

will contain real numbers. The variables A , U, V and W will, always

stand for matrices and I is reserved for the square identity matrix.

Its dimension will be implied by the context (as will the size of the

vector 0). If U i~ an (m x n) matrix and V an (ni x 2) matrix then

by [tJ,V] is meant then (m x (n + 2)) matrix whose first n columns

are those of U and whose last 2 columns are those of V. In this

context an n-vector may be thought of as an (n x 1) matrix. The only

case in which confusion can possibly arise is when U and V are real

numbers with U < V. In thi~ case [U,V] can also be the closed interval,

i.e. (x C R
1
/U < x < VI, depending on the context. The ith column of

U will be denoted by U 1 and the ith row of U by U
1 . Also it

will sometimes be necessary to associate a column of a matrix, sa~j A ,

with a vector x . This will be done by the notation A 
(x)’ Note

also that if y C R~ then Uy is well defined because y is a column

vector. Also if W is a (n x n) matrix its determinant will be denoted

by det(W) . Finally define

= sup[~JuyII/y C R~ and ~ = 1)

A great many different functions are required for (a) the

property of decomposability in Chapter 2 and (b) the various constrained

optimization problems of Chapter 14. For this reason, f, g, h, p, q, r, t,

F, G, L, P and Q. will always represent functions. Observe that if

h:Rm 
~ t, then for each x C Rm, h(x) generates a column vector
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h(x) € whose ith components is Ii~ ( x ) .  Furthermore , f , g, h, r

and F will be related to iecomoosability whereas p, q, r , t , G, P

and Q will be used for the constrained optimization problems. Point

to set maps will be represented by H, S and T.

The handli.ng of seqi~euces also requires some discussion, for

example, a sequence of vectors will be denDted by (x ~ ) where it is

understood that ~c = 0,1, . . .  or Ic. = 1,2 , . . .  as implied by the context.

A subsequence wiiL he thought of as a subset K of the positive integers

and will be written tt t~
k
1, k C K

U . If the given sequence converges to x

it will be written ~(xk] x f ~r k ~-* ~~~
“ and for a subsequence,

—~.x  for k C K” . x is said to be a cluster point of iff

there is a subsequence K such that — *x for Ic. C K.

For sets, the variables X, Y, Z and 0 will always be used.
m

If X is a subset of B then

bd(X) = boundary of X

cl(X) = closure of X

hull(X) = convex hull of X

int(X) = interior of Y

X~ = the set of’ all non-empty subsets of X .

If X and Y are subsets of R
m and if w Rm and f:X -4Y,

T:X ~~~~~~~ then

7



X Y (x + y. ’x C X , y C Y)

X Y = ( ( x ,y)~~x X , y C

w + X (
~ 

+ X

x \y — [x X x  ~ Yl

f~X~ = If(x)/x C Xl

T(X)  U T ( x )

Theorems, lemmas, etc. ~i’e numbered sequentiaLly within a chapter

and the following conventions have been adopted:

D . i . j  = jth definition of Chapter i

L.i.j = jth lemma of Chapter i

T . i . j  = jth theorem of Chapter i

P.i.j = jth problem of Chapter i

C. i . j  = jth corollary of Chapter 1

A.i.j = jtti assumption of Chapter 1.

Some preliminary definitions and results will be drawn upon in

later chapters. These notions are presented here.

Definition 1.1. Let 0 be an open subset of Rm. The function

n . . . -h:0 -~~ R is said to be differentiable at a point x E 0 1ff there is

an (n ~ ni) matrix Dh(x) (called the Jacobian matrix) such that

u r n  Ih (z )  - h(x)  - Dh(x) ( z-x)~I = 0
IIz-x lt —‘0
7C 0

8



h is said to be ~ifferentiahie o~ 0 1ff h ~s differentiable at

each point of 0. When h ~s a funct ion from () into B1, the

(1 ‘< n) matrix Dh(x) 1..; called the grad i ent o~’ h at x and its

transpose is written ~~~~~~ The function h is said to be twice

differe ntiable if’~’ h i s  i i f terentiable and if the mapping Dh is also

differ~ntiablo. Th~ second Jerivative of h at x is written D~h ( x ) .

3up :~~se a f~unction Q:I~
’ ~ Rn -.,R2 is differentiable at a point

m n .(a ,b ) C r~ ~ B . ihe (2 ~~ (m ~
- n~ ) matrix a,b, will frequently

be written [D Q(a , b ) ,  D Q ( a .b ) j  where D
~

Q(a ,b) is the (2 x m )

matrix corres oc~~in~ to the derivative of Q with respect to the

variables in :~~
“ and L c( a , b~ for the sane in B”. A similar idea

is applied to ~rs~ ients.

It will. often be necessary to use the derivatives to obtain

bounds . Ortega and RhineN~lc1t [~~l] provide several such theorems and

they are stated fcr  use in t~sis thesis as:

Theorem 1.1. Let f :X - - -
~ be differentiable on th e convex open set

inX c R .  Then

- f ( x)~ < sup [~~Df( x ÷ ~ (z-x~ ) ~ € 0, 1]) ~z-xII

for all 7. x~~~X.

Proof. See Theorem 5.2.5 of Ortega and i~~ineboldt [al].

9



Theoren 1.2. Let f:X —~ R E
~ be twice continuously differentiable on

the convex open set X Rm . Then

lIt( z) - f (x )  - Df(x)  (z -x II sup( !!D
2
f(x + A (z-x) ) j / i~ C [0,13) ~y-x~

2

Proof. See Theorem ~~.5.6 of Ortega and Rhineboldt (141]. (1

If the functions involved are convex then a slightly weaker notion

of differentiation exists. (It is assumed that the reader is familiar

with terms such as “convex function,” “convex set,” etc. Rockafeller

[~5], Stoer and Witzgall [50] and Mangasarian [57] deal with most

of these notions.)

Definition 1.2. Suppose 0 is a subset of Rm and h:0 -4R1
~ is convex.

The (n ~ m) matrix W is a subgradient of h at x C 0 1ff

h(z) > h(x) + W(z-x) for all z C 0

The set of all subgradients of h at x is denoted by ~h(x).

There is a relation between D.l.l and D.l.2 which is stated in

Theorem 1.3. Suppose 0 is an open subset of R
m
. A convex function

h:O —,R~ is differentiable at x € 0 iff ~h (x) = (Dh(x)).

Proof . See Theorem 2 5 . 1  of Rocliafeller [143]. II

10 
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Corollary 1.1. If a convex function h:Rni .—
~ B
1 is differentiable then

h(z) > h(x) + (Vh(x), z-x ) for all ~ C B5’

Proof. By T. l . 5,  Vh(x) C ~h(x) and the result follows from D.1.2. fi

Some other concepts related to convexity are:

Definition 1.3. A convex function p:R5’ -, R1 U (+ ø~~) is proper 1ff

there is an x C R
m 

such that p(x) > -.

ni 1Definition 1.14. The epigraph of a convex function p:R — R  U (+ oo )

is ((x,z) C x R~’/z > p(x)) and is written epi(p).

Definition 1.5. A convex function p:Rm _÷Bl U (+ o’) is closed 1ff

epi(p) is a closed set.

Definition 1.6. The domain of finiteness of a convex function

p :R m 
—‘ R

1 
U f -i- oo) is [x  C Rm/p(x) < ) and is written dom(p).

Definition 1.7. The vector d C Rni is said to be a common direction

of recession of the convex function h:Rm —‘ R” 1ff there is a scalar

b and a vector x C Rm such that

h1(x + Ad) < b for all A > 0 and I = 1,.. .

11



Point to set maps are required for transforming some optimization

problems into fixed point problems. Only certain classes of point to set

maps can be used in fixed point computation. Some of these concepts are

‘ now developed.

m ni *Let S:R —
~ (B ) be a point to set map.

Definition 1.8. S is said to be convex 1ff S(x) is convex for

each x C Rm.

Definition 1.9. S is said to be upper semi-continuous (u.s.c.) 1ff

whenever
k

(1) [x)-., x

(2) yk C S(x
k) for each k = 1, 2 , . . .

k(3) ty I — ky

then y C S(x).

Definition 1.10. A point to set map S is usable 1ff S is non-empty

convex and u.s.c.

Several results concerning point to set maps were proved by Merrill.

They are stated as

Theorem 1.14. Let 0 be an open subset of R”~ and suppose t :O -4R 1 U ( -i- oo )

Then the point to set map T:dom(t) —‘ B’5 defined by T(x) = x - ~t(x)

is usable.

Proof. See Theorem 10. 14 of Merrill [38].

12



Theorem 1.5. Let X be a Rubset of R’5. Also let S:cl(X) .~~,

and T :R m 
\ int(X)  ~ (R~~~ be usable point to set maps. Then the

inpoint to set map H:R —~ (R ) defined by

S(x) if x € int(X)

H(x) = hul l (S(x)  U T ( x ) )  If x C bd(X)

T(x) if x ~~
‘ cl(X)

is also usable.

Proof. See Theorem 2.6 of Merrill [38]. II

A final definition which is needed is that of isotonicity.

Definition 1.8. A function h:Rm —* B” is isotone iff h(x) < h(z)

whenever x, z C R
ni and x < z.

15



CHAPTER 2

DECOMI~ SAB11ITY IN FD~ED IOINT PROBLEMS

2.1. General Theory and Examples for Functions.

Given a function F mapping a nonempty subset Z of B5

into itself, the fixed point problem is that of finding a z C Z

with F(z) = z. The basic idea behind decomposability is to place a

structure on F such that a fixed point may be computed by working in

a lower dimensional space . Several examples of where this structure

appears in applications is also presented. This structure is described

by

SDefinition 2.1. Let Z be a nonempty subset of R and let F:Z - *Z.

The pair (F,Z) is said to be decomposable 1ff there are positive

integers in and n whose sum is s, nonenipty subsets X of Rni and

Y of R~ whose cross product is Z together with functions f:Z —,X,

g:Z -~Y and h:X —~Y such that for each x C X,

(1’, F(x,h(x)) = (f(x ,h(x)),g(x,h(x))).

(2) If x = f(x,h(x)) then h(x) = g(x,h(x))

The first condition states that F may be decomposed into two separate

functions f and g with f providing the f irst  m coordinates of

F and g providing the remaining n coordinates. The second condition

is a special relation between the functions f, g and h which will
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be used to establish the connection oetween fixed points of the lower

dimensional prob lem and fIxed points of F . The lower dimensional

probleta will be one of ~‘indIng a fixed point In Bin. More specifically,

defining the fun ctIon c:X -. X by r(x) = f(x,h(x)) the next theorem

shows that any ~Ixed point f r yields a fixed point of F. This

ther ~s

Theorem 2.1. If (F,Z) is decomposable then x C X satisfies

x = f(x,h(x)) iff ~x,h(x)) = F(x,h(x)) where X and f are obtained

from L~.2.1.

Proof. Suppose first that x = f(x,h(x)). By property ( 2 )  of D.2.l,

h(x~ = g(x,h(x)). Thu s (x,h (x)) = (f(x,h(x).g (x ,h(x))) =

the last equsUty being justified by property (1) of D.d.l. This takes

care of the necessary part of the theorem. For the sufficiency part

suppose (x,h(x)) = F(x,h(x)). From property (1) of D.~~.l it follows

immediately tbat x f(x,h(x’i ) as desired.

Replacing f(x,h (x ) )  by r(x~ one may more easily see what

T. 2 .l  is saying. It is saying that if (F,z) is decomposable then

finding a fixed point x of r yields a fixed point of F namel.y

(x,h(x)). The importance of this is that finding a fixed point of r

involves working in Htm 
instead of RS. Some conditions under which

F and r may be expected to have fixed point s is developed in

15

—_ _  --



~ww-_ - - 
~~~~~~~~~ 

— 
- ~ ____—._.___ - - — — — — -

Corollary 2.1. Suppose ~F.Z) is decomposable and that f, g, h, X

and Y are obtained from D.~~.l. In addition suppose that f and h

are continuous and that X is compact and convex. Under these conditions

F has a fixed point.

Proof. L~t r~X — *X by r~x~ = f(x,h(x)) for each x C X. This function

is continuous since f and ~ are continuous an~ siri~s the composition

of continuous functions is continuous. Now apply the Brouwer fixed point

theorem to r to obtain the existence of an x ~ X such that r(x) = x.

By T.2.l, (x,h(x’j) is a fixed point of F.

The following examples show the value of this rather straight-

forward observation. The first example, although hypothetical, shows the

poteDtial of decomposability by reducing an (n+l)-dimensional fixed point

problem to a 1—dimensional problem. The second example is equality con-

strained optimization. The third example is a partially linear systems of

equations and the last is the Bilinear Complernentarity Problem proposed

in Wilson [514].

Example 2.1. Let a. b C with a < b. Set X = [a ,b] and

Y = B”. Thus Z = X “< Y = [a,b ] x RX
~. F will be constructed to satisfy

the hypotheses of C.~~.1 in such a way that the function r will be a

mapping from Ia , b] into a , b ] .  Thus finding a fixed point of F

will be reduced th finding a fixed point of r and that will be a

1-dimensional problem. To actually construct this F let f :Z — i X

and h:X -- Y be arbitrary but continuous functions. Define g:Z —‘ Y

1~.
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by g(z) = h(f(z~
\ for all z € Z. Finally let F(z) = ( f ( z ), g (z ) )

for all zC Z.

ProposItion 2.1. (F,Z) is decomposable.

Proof. CondItion (l~ of D.2.l is true by construction of F so only

condition (2’ needs to be verified . To this end let x C X with

x f(x,h(x)). Applying h to both sides of this yields h(x) = h(f(x,h(x)))

= g(x,h(x~) as desired.

Proposition 2.2. F has a fixed point.

Proof. (F,Z) is decomposable and satisfies the hypotheses of C.2.1,

thus F has a fixed point. II

From the proof of C.2.l it is apparent that In order to compute a

fixed point of F one need only be computed for r:X — X, and finding

a fixed point of r is one of searching [a,bJ as opposed to searching

r a,b] ~‘< R”.

Notice that f and h were completely arbitrary except for

their continuity, thus they may be made nonseparab le, nondifferentiable,

etc. Also this example shows that there are problems (F,Z) whose

fixed points would not normally be computable because of the large

dimensionality yet if (F,z) is decomposable in the proper way one

can find the fixed point in a 1-dimensional space .

17



Example 2 .2. In thiz exatr~ le , a nonlinear programming problem (~~P)

of the form

(P.2.1) mm F(s)

s.t. G(z) = 0

z C

5 1 s nwhere P~R —p B and G:R —~ B is put into the framework of decompos-

ability. Since this was the problem which motivated the concept of

decomposability all of Chapter 14 has been devoted to a complete

theoretical analysis of this problem. In this section a connection

between the NLP and decomposability is established in loose terms and

a rigorous approach is presented in Chapter 14.

In order to show that P.2.1 is in fact a special case of decompos-

ability one must (a) find a fixed point problem which is related to

P.2.1 and (b) show that this fixed point problem is decomposable.

Eaves [11] and Merrill ~38] have discussed extensively the

fixed point formulation when the NLP is in the form of either (i) uncon-

strained optimization or (ii) inequality constraints with the

existence of a point at which all constraints are strictly feasible.

Clea rly P .2.1 does not fall into either of these categories (even when

the constraints 0(z) = 0 are replaced by G(z) < 0 and -0(z) < 0).

So the question becomes how to transform an equality constrained

problem into an optimization problem of type (i~ or (ii) as described

above. Three possible methods for doing this are now presented, the

last of which led to the concept of decomposability.
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Method 1. Constraint relaxation.

In this approach the equality constrained problem is replaced

by a sequence of problems of type ( i i) .  This is done by introducing a

tolerance for the constraints. Formally let (a
k) be a sequence of

vectors in R~ with ak >0 for each k = 1,2,... and with (ak ) — , O

for k —
~~~~~~. Consider the family of optimization problems .

mm P(z)

s.t. -a’~ < 0(z) < a
k for k 1,2,...

z C

Under certain circumstances each of these problems is of type (ii) and

one could then use existing methods to partially solve the kth problem.

Under additional circumstances one might expect the limit of the solutions

(assuming such a limit exists) to be a solution to P.2.1. Computational

results from this approach reported by Merrill [38] were extremely dis—

couraging and so this approach was discarded.

Method 2. Lagrangian approach .

In this method one defines the Lagrangian function L:R8 X Rn ~ B
1

by L(z,u) = P(z) + (u,G(z)). One can then show (see Mangasarien !57 ]

for example) that a necessary condition for (z,u) to solve P.2.1 is
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V
2L(z,u) 

= VP(z) + uT X~(z )  o

V
~
L(z,u) = G ( z )  = o

assuming of course that P and G are differentiable functions on

R
S x R”. This is a system of (n+s) equations in (n+s) unknowns which

may be transformed into a fixed point problem by defining F:R5 x R” — R~ XB
n

by F ( z , u) = (z ,u) - (
~
7
~
L(z,u),v

~
L(z,u) ) .  This f ixed point formulation

has increased the dimension of the original problem from s to ( s + n ) .

This is exactly contrary to the concept of decomposability and so this

approach was also discarded for this work.

Method 3. Decomposability.

This approach is motivated by considering the special form of

P.2.1 in which the equality constraints are linear, for then these

equations can be used to solve for some of the variables (called the basic

variables) in terms of the remaining variables (called the nonbasic

variables). If the rank of the linear transformation is n then there

will be exactly n basic variables (referred to herein after by the

vector y = (y1,.. ~~~~~ Correspondingly there will be tr s-n non-

basic variables (referred to by the vector x = (x1,. . ~~~~~~ 
These

observations are formalized in

20



1~
-
~~

- • —

Proposition d..~~ Let W be an (n ~~- s~ matrix and w an n-vector such

that 0 ( z )  Wz + w for each z C F~ . If  rank(W~ = n then there is a

UI ~~fl I / Tflfunction h :R —~ P suco L f l ~~it G x ,h ’x  0 f o r  each x -. R

Proof . Since rank (W) n there are (n x m) and (n ~ x i )  matrices U ~~

V respectively sucn that after permuting the column s of W,

(1) W = 11J,V] and (2) V is- nonsingular . D ef i ne h :R m 
-
~~ R~ by

h ( x  = -V~~ (w  + ux). To ve r if y that G(x,h(x ) = 0 note that

~ (x~h ( x ) )  = W(x ,h ( x ) )  + w

= [U , V] (x,h(x)) + w

= Ux + Vh(x) ÷ w

= Ux - (w + Ux) + w

= 0 .

In the case that the constraints of P.2.1 are nonlinear , con-

di tions si~yb e p 1aced on the function G wh ich ensures the conclusion of

Proposition 2 .3; namely, that there is an h~Rm — ÷ R ~ such that

G(x , h ( x )  = 0 for each x C Rm. In this case the function h is an

implicit function and conditions for its existe~-ice are established in

Chapter 14. From here on,the function h will always be the mapping

described above. Furthermore, this function will be used in showing

P.2.1 is a special, case of decomposability.

Once the existence of this function h has been established one

may then eliminate the basic variables (along with equality constraints’l

from P.2.1. The result is an unconstrained optimi zation problem which

takes the form
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(P . r~.? )  am p~ x) = P(x,h(x) )

s .t .  x C P

Sinc th~~ is a sdn im ~ ::~~~on p r r L i e m  s~f typ e ( i )  thr r e  is a fixed r “m t.

formulst~cn of . 2 2 , naneiv tha’~ rf f inding an x C such that

x - 1p(x) = x rrovid~ d p is d i f fe rentiable ( .~ee Merr i l l  
~~~

] ) .

These res arks ar~ iO~ I :~ ari!’ed an? 3tated in

Propositfon ~~~~~~~ L’~t Z = R 5 Rm x Rn and suupose there i~ an
. 0 fl , , . mh:’- -4B such that C x .h (x) ) = 0 :or each x C  B . Also suppose ~~~.

G ond h axe ±f fe re r ~ti~bIe ~~ their respective iomains. Let F :Z — Z

be defined by F(x ,y)  = (x ,y)  - Y P (x ,y ) + 7 P (x ,y) T D h ( x ) .  G(x , y ) ) .

Then (E ,~~\ is decomposable .

i ro f . Le~ ~ ~~~~ , Y = R11 and define f :d  —~X by f~ x ,y )

x - ‘7~~ ’ x ,y - ,: . y) T Dh(x and ~efinc g : Z  ~~Y by g~ x ,y )  =

fo r e~ ch (x ,~~) C 7 . Now one rvr ,’ verif ~- the coin it~.cn : of D . ” .l wi th

X , Y , f , g ari~

~ tiall y li r.ear systenn of • :‘~ ~~ rnr . ?rA t ? . i s  cXC)’1;:~~~~~
- .

~~~~ i~~~ ’ Lied t~ sr  ~ving an s b., s syst.~m of

c’ ~ .t ~~~ n wh ?ch r , -
~~r . ’ c f  ~x~ m ar ~ c c c  r . Let :. W he ~n (xx  

~ s) :‘ri t r ix

ar ~ ~ an n - c  ‘ -
~~~~. ittso let E:i~” ‘c F ’ _.3 RUI be an ir t r c r ~

‘ ;n’ ~~ ion . The crigina ,L r ~~b~ cc~ may be r t st ed  as that uI f in  log a
S

z u R U cl~ 1 ‘~~‘;

15 ’ 7,)  = 0

~iz I- 0

_-



The next proposition gives a condition under which there is

a decomposable fixed point problem whose solution solves the original

system of equations.

Proposition 2.5. Let Z = R5. If rank(W) = n then there is a function

F~ Z —
~ Z such that (F , Z) is decom posable.

Proof. In order to prove this, the appropriate sets and functions will

be created. In particular let X ~m and Y = Rr
~. Since rank(W~ = n

there are (n ~‘< mn) and (n ‘< n~ matrices U and V respectively such

that after rearranging the column s of W, (1) W = [ U , V ] ,  and

(ii) V ‘is nonsingular. Define f~Z — IX , g:Z —~÷Y and h:X —,Y by

f(x,y) = E(x,y) + x, g(x,y) Ux + (V + I~y + w, h ( x )  = -V~~(Ux + w ’~

for each (x,y) C Z. Now D.2.l may be verified .

Example 2. 14 .  The Bilinear Coniplementarity Problem. This problem arises

in economics and was introduced in Wilson 15 14~ and may be stated as that

of finding x, y C R1
~ such that (a) x, y > 0, (h) x = Uy + u and

(c) x~ i~ (V 
~~
y) for each i = 1,...,n where U and V are

(n x n) matrices and u is an n—vector. Through the rest of this example

it is assumed that

(1) V is nonsingular .

(ii) Z’i = (z C R~~z~ > 0, (V 
~~~

. z) > 0) is nonempty for each i = 1,... ,n.

(iii) There is no z C with z 0 and VTz > o.
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Let z’ C R~ be such that vT5, 0. Now define f:R~ x ~ R~ by

x
1y. 

+ x1 - (V i,y); g:R
”~ B° ~~~ by g(x,y) =

n
~V ) ~x1

y1,..., x y )  and h :R —~ R by

z C Z1 if i is the first integer such that x1 < ~~

h(x)  = z ’ if x > 0 and (y > 0/x = Uy + ul is empty .

y if x, y > 0, x T,Ty + u

n n n nAs usual define t :P ‘
~~ R —~ R x B by

‘ n nF x ,y~ = (f  x . ’r , ~~x , y ) )  f o r  all (x ,y )  C R ~ B

~~~j~’~si t icn . ’ . If Z = ~“ ,cr , (F ,z~ is decomposable.

Ii
rcof , Let X = Y = . Then t 1.~ re sets together with the functions

f , g ‘sn h wii be shcI~n to sat i~~fy D. 2. i . Only condition (2) of

D.2 . 1 nee is veri~~?cat jon so let x C with f(x,h ( x ) )  = x. Then by

constructIon .

“ x 1 h1(x)  + x1 - V 1, h (x ) .  . . . , x
n

h
n

(X
~ 

+ x~ - ~V~~,h (x
’
~)) =

arx i hence

x1h1(x)  ‘V 1, h (x ) x h ( x )  = “V , h(x) )

so

(x 1h1( x ) ,  ... , x h ( x ) )  = v Th( x)
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Multiplying both sides of this by vT )~~ yields

h(x) (V
T)~~ (x1

h1
(x ), ...  , x~h~ (x )) = g(x,h(x))

Proposition 2.7. If f(x,h(x’? ) = x then x >0.

Proof. Suppose not. Then there is a j between 1 and n such that

x .  < 0 . Let i be the f i rs t  subscript with x~, < 0. By the definition

of h, h(x) = z whe re (V 
~~

, z) > 0 and z~ > 0. From the fact that

f(x,h(x~ ) = x it follows that x~h~ (x) = (V ~~h(x)) hut the left

side is strictly negative and the right side is greater than or equal to

0. This contradiction shows the claim.

Proposition 2.E.~ If f(x,h(x)) = x then h(x) > 0.

Proof. Suppose not . Then there is an i between 1 and n such that

h.(x) < 0. From Proposition 2.7 it may be assumed that x > 0 and con-

sequently that h(x) = z’ where vT~
, > 0. By the fact that f(x,h(x)) = x

it foilo~~ that x
1h.(x) = (V .,h(x)) but the right side is strictly

positive and the left side is less than or epal to 0. This contradiction

shows the claim.

Proposition 2.). If (x ,h(x ? ) = F(x,h (x)) then (x,h(x) ) solves the

BLCP .
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Proof. From Propositions~~.(and ~.‘3 both x and h ( x )  are nonnegative.

Using the fact that f(x,h(x)) = x one may conclude that xihj(x) 
=

(V~~~h ( x ) )  for each i = l . .. . , n. T’inally s ince h ( x )  > 0  and by

assumption ( i i i )  it follows that x = Uh (x )  + u. Thus in fact (x , h ( x ) )

solves the BLCP .

In this section the concept of a decomposable fixed point problem

was discussed and several examples of this prope ity  were presented. The

most interesting example was ontimization with e n j ali ty  constraints. One

would like to be able to handle both equality an~ inequality constrained

problems, however, in order to do this  it appears neceos ry to enter the

f ramework of point to set maps. The next section is devoted to this

extension.

General Theory and Examples for  Po int to Set Maps.

Given a nonempty subset Z “f RS and a point to set map

S:Z ~~ Z~ the fixed point problem is that of f inding ~i z C Z such that

z C S ( z ) .  The basic idea is to put some structure on S which allows

one to solve an equivalent problem but in a lowe r dimensional setting.

This property is a straightforward generalization of the one described

in the previous section. Corresponding to D.2 .l  is

Definition 2.2.  Let Z be a rionempty subset of B5 and let S:Z —
~ 

“

be a nonernpty point to set map . The pair (s ,2Y’ is said to be decomposable

2~



1ff there are positive ix~te~eru m and n whose sum ts s, nonempty

subsets ~ ~‘f and ~? of B’1 whose cross oroduct is Z together

with nonetnpty point to set maps Sf:Z ~~~~ S g :Z _
~Y’X’ and a funct ion

h:X •-# Y xc ~ch that for eacC~ x L X ,

(1’ S (x , h ( x ~ ) = ~~~~~~~~~ S
g
(X 7 h(X))•

(
~ ) if ~ s. .. f~x , h(x~ ) then 1x(x) C S

g
(X ~h(X))

The f i r s t  conditl n states that at each x C X the set S(x ,h ( x ) )  may

be expressed n~ the cross product of the sets 5 1, (x , h ( x ) m and S (x.h(x))

The sec”nd. con* ~~,r i~ a ~pcclal relation between ~~ S~ and h which

will bc used to establish the connection between fixed points of the

lowe r dimensional problem and fixed points of S.

One would expect that D.2.2 reduces to P.fl.l in the special case

where S(z) is a ~et con ;~ sting of a single point for each z C Z.

This is established in

Proposition 2. 10. Let F :Z —~ Z and define the point to set map

S:Z —~ by :~(z)  = (F(z’l )  fo r each z C Z . Then (F,z) is a

decomposable function iff ?F ,Z) is a decomposable point to set map.

Proof. Assume first that (F,z) is a decomposable function and let

X, Y, f, g and h be obtained from D.2.l. Define the point to set

maps 5~ .Z —~
X 1 and Sg:Z ~~Y* by Sf(z) = (f(z)) and Sg(z) = [g(z))

for each z C ~~~ . It is now an easy matter to verify that X, Y, 
~~ 

5g
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and h satisfy D.2. ~~. Th is t akes care of the necessary part of the

proposition. To go the other way suppose (s,z) is a decomposable

poi nt to set map . Let X .  Y, Se., 5g and h be obtained from D.2.d.

To sh~w that (F,z) is decomposable, functions f aol g will be con-

structed in such a way that together with X, Y and h they will satisfy

D.2.l. Simply define f(z) to be any element of~ Sf(z) and similarly

for g(z). To verify condition (1) of D.~~.l let x C X. Then from the

decomposability of S,

F(x,h (x)) C [F(x ,h(x))) = S(x,h(x)) Sf
(x,h(x)) x S~ (x,h(x))

= ((f(x,Is(x)), g(x,h(x)))) ,

the last equality being justified because Sf (x~h ( x ) )  and Sg (X~h ( X ) )

are sets with only one point. Hence F(x,h(x)) = (f(x,h(x)), g(x,h(x))).

Condition (2) is trivial to verify .

This result has shown that , on the surface , D. ~ .2 is the proper

generalization of D.2.l. The next theorem is the analog to T.2.l .

Theorem 2.2. If (s,Z) is decomposable then x X satisfies

x C S~ (x,h(x)) iff (x,h(x)) C S(x,h(x)) where X and S~. are obtained

from D.l .~~.

Proof. Suppose first that x d
f(X,

h(x)). By property (2) of D.~’ .�,

h(x) C Sg (X~h(X))~ Thus (x ,h(x)) u S~ (x~h(x ’) \ S
g
(X~h(X) ) = S(x,h(x)),

the last equality being justified by property (1) of D. 1.2 . This takes

28
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carp of the necessary part of the t .he ,r e s~. For the suff ic iency par t ,

suppose (x,h(x ) ~ S(x,h(x )). Fr u r  prop ert y (1) of D .2 .2  it follows

immedia tely that x 2 Sf (x , h(~~) )  H er i red .

f’~ f i n ~ r1f the poir.t to set map Sr :X -~ X~ by S (x) = S
f(x.h(x))

one may mo~’e ee~~i1 y see ‘cha t T.~~.2 is saying . It is saying that if

(s,z) is d~ co o~ c ’ ~~b ie  then f i nd in ~1 a fixed po in t  x of Sr yields a

fixed poin t of S nu ’nci~v (x,h(x)). The importance of this is that

fi ndiry U. fixed point of 5r ~nvolvos working in Rm instead of R5.

The next task i s  to ~ielop some conditions unoer which S and Sr
may be expected to hav e fixed uoint s .

Corollary 2.2. o~o,,e ( 3 . 2)  is decomposab2e and that i~ ~‘idi ti~ n

is us able (i .e. ~u”nes~pty conv ex and upper semi—continuous).  Suppose

also that h is continuous . If K is compact and convex with in t (X )

nonempty trien S has a f i ’~u~d point .

Proof. Define ~,, :X _~2* by S~,x ” = ~f
(x,h(x)). S is a usable

point to set map since the composition of usable maps is usable (see

Theorexa 1, . p. 1l,~ of Berge 
~~). Nc~: apply the Kakutani fixed point

th ecr c ’~ 2~~ to to cb t ain the existence of an x C X such that

x S (x). By ‘
~‘.2.�’, (x,h (x~) is a fixed point of S. 1

Two ex amples of the proper ty of decomposability are discussed.

The fl rst example , although hypothetical , shows the power of decomposability



by reducing an (n÷1)-dimensional fixed point problem to a 1-dimensional

problem. The second example is optimization under both equality and

inequality constraints.

Ebcwnple 2.5. Let a, b C B
1 with a < b. Set X = a,b] and Y = Rn.

Thus Z X x Y rr [a,b) ~ R
’1. S will be constructed to satisfy the

hypotheses of C.2.2 in such a way that the point to set map 5r will be

a mapping from [ a,b 1 into ia,b]*. Thus finding a fixed point of S

will be reduced to finding a fixed point of 8r ’ and that will be a one-

dimensional problem. To actually construct this S let h:X .-~ Y be

an arbitrary continuous function and let Sf:Z ~~~~ be any usable point

to set map. Define Sg :Z ~~~~~~~~~~ by Sg (x,y) = h(Sf(x,y) ) .  Finally define

S:Z —~ Z* by S(x ,y) = S
f
(x~Y) x S

g
(x ,y)  for each (x ,y) C Z.

Proposition 2.11. (S,z) is decomposable.

Proof. Condition (1) of D. ~ .2 is true by construction so only condition

( 2 )  needs to be verified. To this end let x C X with x C Sf
(x,h(x)).

Applying h to both sides yields h(x) C h(Sf
(x~h(x))) = Sg (X ~

h(X))

as desired. II

Proposition 2.12. S has a fixed point .

Proof. (s,Z) is decomposable and satisfies the hypotheses of C.2 .2 ,

thus S has a fixed point.
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From the proof of C.2.2 it is apparent that in order to compute

a fixe l point of S, one need only compute a fixed point of Sr :X _,
~

and this is a problem of searching a,bl as opposed to [a,b] x R’1.

Notice that S~. and P were completely arbitrary except for their

continuity properties. This example shows that there are problems (s,z)

whose fixed points wculd not normally be computable because of the high

dltnensionai.ity yot ii’ (S,z) is decom posable in the proper way, one can

find the fixe l point in a ~-dimensiona1 space.

Example 2.E. With tha concept of a decomposable point to set map it is

pocsible to show that , under certain circumstances , the general nonlinear

pro~I’asLrsing problem of the form

S 1
tr~ n p(:’l P:R —,P.

s.t. G~Z) = 0 ~Lcre G :R8 
~~~~

/ - s 2Q~z) ~- O  Q~R —~R

z E R 5

may be set up as a. decomposable point to set map fixed point problem.

In order to do this , many of the concepts developed in Chapter 14 are

rec~C red and in order to avoid duplication,  a proof of exactly how this

can be lone is postponed until Appendix A . RecaU however , that

decomposability is the property of being able to solve a particular fixed

point problem by solving a lower dimensional fixed point problem, so in

order to apply this concept to the nonlinear programming problem it will be
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necessary to (a) find a fixed point problem which is related to the NLP

and (b~ show that this fixed point problem is decomposable . Chapter 1,

deals with (a) and Appendix A deals with (b). The approach is very much

related to the one developed in Example 2.~i.

In this section the concept of a decomposable point to set map

was discussed and several examples were presented. The next section is

a further generalization of these motions .

2.~~. Generalizations.

A generali~ation of decomposability for functions and then for

poi nt to set maps is developed.

Definition 2 .3. Let Z he a noneinpty subset of RS and let F:Z .-~~ Z.

The pair (F , Z ) is weakly decomposable iff there are positive integers

m and n whose sum is s, nonerripty subsets X of Rn and Y of Rn

together with functions f:Z —~X, g:Z .-,Y, h:X —~Y and c:X x Y .—~Z

such that for each x C X,

(1) F(c(x,h(x))) = c(f(c(x,h(x))),g(c(x ,h(x)))).

(2)  If x = f ( c( x,h(x))) then h(x) = g(c(x,h(x))).

(3) c is 1—1.

Note immediately that when c is the identity map on X x Y this

definition is exactly that of decomposability of (F ,z). Whenever

(F , Z) is weakly decomposable , X , Y, f, g, h and c will refer to

the corresponding sets and functions derived from D.2 . 5 .
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As one would expect there are straightforward generalizations

of T.2..l and C.2.l which may be stated as

Theorem 2.3. If (F , Z) is weakly decomposable then x C X satisfies

x = f(c(x,h(x))) 1ff c(x,h(x)) F(c(x,h(x))).

Proof. Suppose first that x = f(c(x,h(x))’~. By condition ( 2 )  of

D.?.3. h(x) g(c(x,h(x))). Thus

c(x,h(x)) = c(f(c(x,h(x))), g(c(x,h(x)))) = F(c(x,h (x:))

the last inequality being j ustified by property (1) of D .2.3 . This takes

care of the necessary part of the theorem. For the sufficiency part ,

suppose c(x ,h ( x ) )  = F(c(x,h(x))). From property (2) of D.2.3,

F(c(x,h(x))) = c ( f ( c ( x ,h ( x ) ) ) ,  g (c (x ,h ( x ) ) j )  and s~.nce c is 1—1

it follows that x = f(c(x,h(x))).

Corollary 2.3 . Suppose (F ,Z) is weakly decomposable . Suppose In

addition that f , h and c are cont inuous and that X is compact

and convex. Then F has a fixed point.

Proof. Define r :X —~X by r(x) = f(c(x,h(x))) for each x C X. Note

that r is continuous because f, c and h are and because the

composition of continuous functions is continuous. Now apply the Brouwer

fixed point theorem to r to obtain the existence of an x C X such

that r(x) = x. By T.2.3, c(x,h(x)) is a fixed point of F.
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A simil’~r concept exists for the point to set map case .

Definition 2. 14. Let Z he a nonempty subset of R5 and let S:Z ~~~~

be a point to set map . The pair (S,z) is weakly decomposable 1ff there

are positive integers m and n whose sum is s, nonempty subsets X

m uof B and Y of R , functions h:X —* Y and c:X x Y —~ Z together

with point to set maps Sf :Z — , X ~ and. Sg :Z —~ Y~ such that for each

x

(i~ S(c(x,h(x))) = c(S f (c( x,h ( x ) )  x S
g(C(X~h(X~

) ) ) ~
(2) If x € Sf(c(x ,h(x))) then h(x) C S

g
(C(X~h(X)))~

(5) c is 1—1.

Note that when c is the identity on X \ Y this definition is exactly

that of decomposability for (s,z). Whenever (~~, Z) is weakly decomposable,

X~ Y, Si., S , h and c will refer to the corresponding sets. point to set

maps, and functions of D.2.

As one would expect there are straightforward generalizations of

Proposition 2.10 , T .~~.3 and C.2 .5 .  They are stated as

Proposition 2.13. Let F:Z ~~~ Z and define the point to set map S~Z —, Z~

by S(z) = ( F ( z ) J  for each z C Z. Then (F,Z is a weakly decomposable

function iff (S , Z is a weakly decomposable point  to set map .

Proof. Assume first that (F,z~ is a weakly decomposable function and

let X , Y , f , g, h and c be the sets and functions obtained from 1 . 2.3.

Define the point to set map s Sf :Z .~,X* and Sg :Z ~*Y* by Sf(z) =(f(z))

and Sg(Z
) = (g(z)) for each z C Z. It is now an easy matter to show

that X , Y, Si,, 5g’ h and c satisfy D.2.14. This takes care of the
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necessary part nf the theorem . To go the other way suppose (s,Z~ i~
a weakiy decomp~ sable ooint  ~o set map . Let X , Y , h , c , S

~ 
and S

be the sets , functi r.~ arid point to set map s obtained ± roni D.2.14. To

show t h -~ (F,z is a weakly decomposable function, 1 and g will

be c~ nstructed in such a way that togethe r with h , c , X and Y the:~

satisfy P . 2 .3 .  ~ i’::o1y def ine f ( s)  to he any element of s~ (z) and

sin~i~ arly fo~’ g ( zh  To v er i f y  condit ion (l~ of D .2.)  let x X.

Then

F ( e ( x . h ( x ) ) )  C (F(c x ,h ( x ) ) ) J

2 (c (x ,h ( x ) ) )

c(2f~c(x,h(x))) x 3g (C(X~
h (X ) ) )

= c ( [ f ( c ( x , h ( x ) ) ) )  >c [g ( c ( x , h ( x ) ) ) )

C (c(f(c(x ,h(x~ )), g(c(x,h (x) ) ))~
so

F(c(x h(x))) (f(c(x ,h(x~ )), g(c(x,h(x))))

as desire :. Conilti~on (2) of iT. 2 .3 is trivial to verify and this corIJetes

the proof .

Theo rem ~~~ 12 (s , Z~ is ~emJc ]y decomposable then x C X satisfies

x 2 3~(c(x,h(x))) 1ff c(x,h(x ) C S(c(x,h(x))).

Pro of. Suppose first that x C Sf (c(x , h ( x ) ) ) .  By property ( 2 ) Of P.

h ( x )  ‘ Sg(c(x 7 h~ x))). Thus

c(x,h(x ) c(S~.(c(x ,h ( x ) ) )  “c Sg(c(x~h(x”))) 
= S(c(x,h(x))~
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the last equality being justified by condition (1) of D.2.14. This takes

care of the necessary part of the theorem . For the sufficiency part

suppose c(x , h(x ’)  C S(c (x , h ( x ) ) ) .  From condition (i)  of D .2. 14 and

the fact that C is 1-1 it follows that x S(c(x ,h ( x ) ) )  as desired .

Corollary 2.14. Suppose (S,z) is weakly decomposable. Suppose in

addition that S~, is a usable point to set map and th~t h and c

are continuous. Suppose also that X is compact and convex with

int(X) nonempty. Under these conditions S has a fixed point.

Proof. Define 3
r~~ 

—~X~ by S
r(X) 

= S
f(c(x,h(x))). S

r 
is a usable

point to set map since the composition of usable maps is usable (see

Theorem 1’ , p. 115 of Berge [3 ) ) .  Now apply the Kakutani fixed point

theorem [283 to Sr to obtain the existence of an x X with x C S (x).

By T. 2.14, c(x,h(x)) is a fixed point of S.

This chapter has dealt with the structure of decomposability as

it applies to functions and point to set maps. Several examples of’ this

were pointed out, the most interesting of which is optimization with

both eiuality and inequality constraints. The next step is to find a

method for solving these problems. Chapter 5 develops an algorithm

which may sometimes be used to solve the fixed point problem and Chapter 14

shows how to convert the optimization problem, into a fixed point problem.
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CHAPTER 5

AN ALGORITU1M FOR COMPUTING F]J(ED POINTS

5.~ . Trian.gulltions.

In this chapter an aLgorithm which attempts to comp~:te fixed

points of certain point to set maps is described . It was developed dy

Merrill [38] in 197]. A slightly more general version was independently

and sitr~ultaneous~iy developed by Eaves and Saigal :15]. In very general

terms the aigorithis attempts to compute the fixed points of a sequence

of piecewise linca r (F~ ) functions approaching the original function.

Under certain hypotheses each of these points may be computed in a

finite number of steps. Under additional circuL:~ tances there will be

a cluster point of the sequence and that will be the desired fixed

point. To use this approach it is necessary to nave (a) a computerized

method for generating the soquence of PL approximations, (b) a systematic

procedure for atte’npting to move through these pieces of linearity in

search of a fixed point and (c) some conditions under which one might

expect the method to find such points in a finite num :er of steps.

Ti~ese are the three sections of this chapter.

Let M be a nonempty subset of Rn and S:M —s (Rfl” be a

usable point to set map whone fixed point is sought. In order to construct

a PL approximation f to S it will be necessary to break up M into

piere~- (called sirmn iexes which fit to~ethvr in a very special way and
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on which f1~ will actually be linear and continuous. This partition

of M is called a triangulation. Before rigorously defining this

concept it will be helpful to understand its building blocks, namely,

the siniplexes.

Definition 3.1. For each i = O,...,m define an i-simplex in to

be the convex hull of (i+l) points of Bm in general position. Given

these points, say x°~ ..., x1, the i-simplex is then hull([xO,...,x
1 ) ) .

Let T = hUll([XO,...,Xm)) be an rn—simplex of R’11. The points

,~
m are called the vertices of t .  Note that they are actually

0-simplexes. One can also Generate very natural 1-simplexes from T

ilby considering any pair of vertices say x and x and then forming
ii i

hull((x , x 2)) In general one can generate for each j 0,...,i a

j.~ tmplex from T by choosing any subset of (j+l) of the original
i i . i I

vertices, say x 0 
, x ‘~ and forming hull((x o 

, x ~fl.
These are called the j-faces of T . With these concepts in hand the

notion of a triangulation is quite understandable.

Definition~3.2. Let M be a nonempty subset of Em and be a

finite or countable collection of m-simplexes. Let for i = 0, . . . ,m

be the set of i-faces of members of . Then is a triangulation

of M iff

(1) M =LJ(T/T C~~~) .

(2) Each pair of m-sirnplexes are either disjoint or meet in a common face .
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(5) i~a:h (rn—i ) nn ~~-x i n ‘J,’) ., oLi crI~ s to at. most two r~— r ,np~exo

(Those 5)—I) sio~ Lex es ~2i~ ch belong f~~~ vxavtiy vn m—nimplex are

called ‘oc noa~ (in- i~)-nirrr1exes .

(14 ~~ cn point . 1 n M hr~n a n oh~ crh :cd meeting only finite nany

Ti— s~mp~exen )f ‘
~~~~~

Prorerty (1) states that M is the oJor of JI the r—sitnp~ oes

in ‘727 Ir~po :t i~~ 2) ens (5) 2 en cr ’~~e hc-~ thene :~—s i’~oiexec must f i t

together and nrc ; 
~~~ (h) ~u irerteec that enrJ- r: 1~~~ d~ n ibset of M

meets ;nl~ f ini t e L:; nany m-simylexes of Thi s is needed for the

prc~~ of’ fin~te ~~~Vcrgence. A genera1iza~ icn of ibis notion is pre:cnte

in Eaves I l1~ an ‘~~nec pertincnt references inclscle Cairns [51 , Todd

[51.5;~1. Kuhn St.:. t a f  cmi flansen ~25].

The t r i n t .~ ~~~ nan :~senI to ger1erate c PL ap: roximation

to P thrc-igh the use of ~be vertices 2~ . First consider a map

f :~~ 0 —~ ~;m I cy f(x) C 5(x) for each x C 
~~ 

There is a

unic :ue  extension of f to a PL map f~ :M _~~ defi ned by

= ~ 1 f~x~ )

wh~ r~ x C b:il (fx0, . . .  , X )) and x ~~~ ~~x1. Note that

by plc;:ert:i (2) of D.5.2. fL is  well defi ned since ea ch  x M has a

unique representation in this form . Furthermore , is linear on

each T 2 ~~~~~~~~. This map ~L is called a Pb approximation to S induced

by - A measure of ho~ clo sely f~ approximates S is  given by

mesh(~~ ) sup[rnax[~ u-vL u, v ~ tI 1 r C ‘2)7) .



The algorithm is going to attempt to find a fixed point of f1~.

If it is successful it will terminate with an rn-s irnplex

0 rn - .-r = hull((x x J ) ann an x E  T with r (x) = x. This may be

expressed as the existence of multipliers ~~~~~, , ~~~~ R1 such that

[(f(x°) - x°,l), ... , (f(~~ ) - ~
m i~ j (~

O~~~~~~m~ = (o,...,o,1~!

> 0 for i = 0, 1, ... , rn

Setting x = 7’
1
~x
1 

yields f
L
(x) = x. Such an rn-simplex is said

to be completely labeLLed. The next question is how to systematically

move through the triangulation in search of this special simplex. This

is the topic of the next section.

5.2. Moving Through a Triangulation.

No direct search procedure was found; instead, a method based

on a triangulation of Rm ~ ~o,l] (in which all the vertices belong to

either Rm X (01 or R
n 
x cl)) was developed. An example of such a

triangulation is depicted in Figure ~.l for the case m = 1.

FI&JRE 3.1
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It is not hard to cee t1 a~ 
t} .o COl1~~~t 1 5: nt u~~sirnplexes ly ing in

rn .- r n •R ~ (0) .L r ’oucec a l;r~as~~ntatlnn f r( sn does those in i~ 
‘~ (U.

If r i~ such an ~;—sin nPnx let ( c ) ’  denote th e in l i n ed rn—simplex in

E
m obtained by ~aojping the L : ~~t ~-c:r ’1i aate of each point of r .

Recall  t . s~t t~ ohJ e s t tv ~i ~s to f i :u i  a cu cp 1 s t e ~ y labelled

simplex in Rm . flie alg o r iJ iD  :111 be designed in such a way that i2

there is such ~~ ~-nimpl ex it w i ] 1  lie in Rn X ~lJ . More specif icall y

- - - . 0 rnthe algor~thn wilt start s~th a Dp€cial -c-simp lex i of R ~~. [0k.

It wilt. then ge: orate a (ocssibt y ir.f~n~te) sequence of t adjacentu

- - 0 1 1 . .(m -~t~ and in— np1~~~e~ a , ~~~~ , a , T .~~~~~. in cuch a way that if

lies in x 11) then ; ‘ is thn  ~esi red rn- simplex  see Figure

I

~~~x ( l) -— —

[0)  V - V~__ V

FIGURE 5.2

Thi~ movement wil l  now be a~e rsathernat~ cat y r1p rc s.

Pix  a tr:~ nCc~ Oti ~: sf  hm x [0, 1] c cli t~~
- tt each vertex

may be expresse~ c~~ a vector (x . u) wt~€re x C an i a t: (0 , 11.

For each such vertex define a column vec:~c R~~
1 by

~x,u)



(f’(x)—x, 1; if ~ 
1

(x,u~
(w-x ,l) jf u 0

where (w,0) (. R
m 

\ [0) belongs to the interior of a unique rn-simplex

r°. This vector w is called the starting point, since it is from

this initial simplex , i 0 , that the search will begin. Finding an rn-simplex

in Em [1) which eontains a linear approximate fixed point is equivalent

to finding a basic solution to

()~) (O,...,0,1) >0 for I = 0...., m

such that the columns of A which form the basis corresponds to vertices

of an rn-simplex in Rm x [1) .

To start the search for this m—simplex compute a basic feasible

solution to this system of equations which uses columns of A correspond-

ing to the unique rn—simplex 10 huil(((x0,0), . . .  , (Xm,O ) } )  in

x [0) containing the starting point (w,0). The reader will find

it useful to refer frequently to F igure .5•

(x~,l) (x3,l)

::::_____

FIGURE 3.3



is a boundary rn-simplex of the triangulation and by property

(5) of D . 3 . 2 , it belongs to exactly one (mfl)-sinipiex , namely, a0. Let

rn-fl 0 0(x .1) be that vertex which when ~ioined to produces a . In

Figure 5.3 this ve rtex is (x , l ) .  Proceed by bringing 1 (xm+l l)

into the basis. Some column will d rop from the old basis. This vertex

corresponds to one of the original vertices (x°,O) ,  . . .  , (~~ ,O) say

(x d , O ) .  Let t 1 to the rn-simplex obtained from a° by dropp ing (x1 ,O).

In Figure j.i this corresponds to moving from to 1 after having

dropped (x0,O). By property (5) of a triangulation s ince T 1 is not a

boundary rn-simplex it must belong to exactly two ‘ m+l \ -simplexes. One

of them is o~ . Call the  other one a 1. This again corresponds to a

new vertex (x~~
2
,u~ for which A (x tfl+2 u) may be brought into the

basis. Continuing in this manner the sequence of ru and (m+l)-simplexes

to, ~0, ~~~~
, . - .  is generated and each rn-simplex has a basic solution to

( ) .  Now only one of four things can happen with this seouence .

Case 1. The algorithm repeats an (rn+l)-simplex to ~hich it has already

- - .- been. Merrill [3] has shown that this cannot happen if the dropping

vertex is chosen by a lexicographic resolution technipue such as proposed

in Dantzig {()J or Gale 120]. Hence cycling may be avoided and this ease

need not be considered .

Case T~ The algorithm hits a boundary rn-simplex in Rn ~ 101 . This case

cannot arise ber 1ace the only rn-simp lex in R
m 
~ (0) with a solution to

(u- ) is and Case 1 rules out the possibility of ever returning to a°
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Case 5. The algorithm hits a boundary rn-simplex in Em ~ [1) . In t h i s

case the algorithm has succeede t and this rn—simplex is the one containing

the linear approximate fixo l point.

Case 1-i. An infinite sequence of distinct rn and (m+ l’l-simplexes is

generated. In this case the algorithm is said to have failed.

Since Case I and Case ; cannot occur, one would like some conditions

on the point to set map S which ensures that Case ~i cannot arise. Then

only Case 5 can happen and this is what ~s desired . Befo re proceedi n g

to give some suf f ic ien t  conditions on S which rule out Case 14 , a subtle

point must be cleared up. In describing the algorithm it was stated

that a new column A (x u) will be brought into the existing basis.

The fact that this may always be done is a consequence of the nonnegativity

requirement of 2 and the boundedness to the solution set to (*)

caused by the fact that ~~~ ~~ = I. The question of f ini te  termination

is addressed in the following section.

5.~ . Conditions for Finite Convergence.

Recall that the algorithm generates a sequence of m and

(rmf-l)-siuiplexes ~ , (-r
O 

c
l
, .. - One way to prevent this sequence

from being infinite is to force it to remain inside some compact set.

then by property ( 14 ) of D.3.?, the sequence must be finite. The way to

accomplish this is to give conditions on S which guarantee that outside
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of some compact set there is no solution to (*), and since each rn—simplex

generated by the algorithm satisfies (*), the path cannot leave this

compact set. This is the essence of

m
Theorem 3.1. Let S:R —~ (R ) be the usable point to set map whose

fixed point is sought and let be a triangulation of Em X [0,1)

as described above . Suppose there are positive numbers a and b and

a point x’ in Rm such that if z ~ B(x’,a) then ~z’-z, y-x’) < 0

for all y G B(z,h)N
N
B(xt ,a) and ~ € S(z). If mesh (~~) < b then

(a) A linear approximate fixed point of S is computed in a finite

number of steps.

(b) Any linear app roximate fixed point lies in B(x ’ . a+b).

Proof. See Theorem 5.1 of Merrill [ 3 8 ] .

For each application, the hypotheses of the theorem are shown

to hold and thus finite convergence is guaranteed. All that remains is

to talce a sequence (~~ 1~) of triangulations of Rm x ~O,lJ with the

property that mesh(’~
’
~) —~~ 0 as k —* oo. Now a seauence of fixed

points will be generated and a convergent subsequence will be enough

to yield a fixed point of S as is stated in

Theorem 3.2. Let (~~
1~) be a sequence of triarigulations of x 0,1]

as described above (i.e. rnesh(~~
’
~) 

.
~~~~~~ as k -, o o) .  If there are

positive real numbers a and b together with a point x ’ and
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the point to set nap S which satisfy the hypotheses of T.5.1 then

(a) Each linear approximate f ixed point lies in B(x’,a + b) and will

be computed in a f ini te  number of steps.

(b) Either ~
k 

~ S(x
k) for some Ic or any cluster point of (x~~

is a fixed point of S, where is the kth linear approximat e

fixed point.

Proof. See Theorem 5.2 of Merrill [58].

The only thing left to develop is a computerized method for

k . kgenerating the sequence [‘hi ) of triangulations with mesh (~~ ) —~ 0

as k —p 00 • Various people have had needs for triangulatioris and have

developed their own, e.g. Kuhn [32], Scarf and Hansen [25], Eaves [thj,

Merrill [38). Recently Todd [52] developed a very elegant way to

generate a sequence of triangulations as described above. They are

referred to as “Union Jack” triangulations. The current version of the

computer code uses this method and computational results have indicated

that it ~ ~juite efficient.

~- is completes the description of an algorithm which attempts

to compute fixed points of usable point to set maps. The next chapter

deals with conditions under which this algorithm may be applied to equality

constrained optimization problems.
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CHAPTER 14

TRE APPLICATION OF DECOMPOSABIlITY TO

EQUALITY CONSTRA INED OPTIM IZATION

14.1. Introduction and Preliminaries.

Consider the problem

(P.14.1) mm P(z) P:R5 — 4R1 U (+c ~)

s.t. G(z) = 0 where G:R S 
~~~~

Q(z) <0 Q:RS B2 U (+ 00)

S
z~~ R

The objective of this chapter is to state some sufficient c--nditions on

the functions P , G and Q such that (1) P.14.1 may be formulated as

a fi xed point problem and (2) the algorithm described in Chapter 3 can

be used to solve the resulting problem. Since global convergence is

sought one might expect that the conditions obtained will be very restric-

tive. This is in fact the case; however, computational experience is

indicating that the method is viable on a reasonable class of problems

(see Chapter 7). More specifically the first step will be to develop

conditions on P, G and Q. so that P. 14.1 may be solved by finding the

fixed point of some usable point to set map. The second step will be

to put additional conditions on these functions so that the resulting

point to set map will satisfy the hypotheses of T.5.2. This will ensure

global convergence of the algorithm.
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Under the next two assumptions, Merrill [38] developed a fixed

poLt formulation for the following special case of P. 1i .l

(P. 14.2) n u n  p (x )  p :R - B1 U (+ ~
)

where —

s. t. q(x) < 0 q:R
m 

~ j  [÷ 0 0)

- Si
x - . R

Assumption 14. 1. Assume that p and q are closed proper convex functions

with dorn(q~ ) = Em for each i = 1, . . . ,  2 .

m 1
Assumption 14..~ Define the function t:R —,R by

t(x) = ma.x(g~ (x)/i = 1 2). Assume that [x R’~~t(x) <0) belongs

to int(doni p). (The function t will have this interpretation for

the remainder of the thesis.)

m
Now one can define the point to set map S:R .-, (B ) by

x - ~p(x)  if t(x) < 0

8(x)  = x - hull(~p (x) U ~t(x)) if t(x) = 0

x - ~t(x) if t(x) > 0

The first thing to verify is that S is usable.

Theorem 14.1. If A .14.l and A .14.2 hold then S is usable.

Proof. See Theorem 12.1 of Merrill [38).
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The relationship between fixed points of S and solutions ti

P.14.1 is stated ifl

Theorem 14.2. If A. 14.1 and ~~~~ hold and if inf(t(x) 7x ~ E
m) < 0 then

x ’ S(x’) iff x ’ solves P.14.2.

Proof. See Theorem i~.3 of Merrill [38].

Unfortunately this theorem does not guarantee that the algorithm

described in Chapter 3 will con~pute a fixed point of S. In order to

accomplish this it is necessary to have

Assumption 14..~~ Assume the function q has no common direction of

recession other than 0 (see D.l.7).

Now algorithmic convergence is established in

Theorem )~~ 5~ If A .14.l-A .14.) hold then the hypotheses of T.3.2 are met

and in addition if a = inf[t (x1/x € R~) then

(a) The condition a > 0 may be detected in a finite number of steps.

(b) The condition a = 0 implies that any fixed point of S is

feasible for P.14 .2.

(c) The condition a < 0 is a necessary and sufficient condition for a

fixed point of S to solve P.14,2 and the algorithm will compute a

linear approximate fixed point in a finite number of steps.

Proof. See Theorem 12.3 and Corollary 1. 14.1 of Merrill 38).
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The next ~~~~~ ste~ is to find so’~ie method f t ransforming ~.14.i

into a :-u~b1em ~f the t~~r~i P. ’4 . .  Perhap s the fi rst thing that comes ts

mind is to rep~~t~e the ~ ,‘~iL tt ~ -~‘n~~ raints d~ z~ = 0 ~y two equivalent

inequality constraints 0(z) < 0 and -0(z) < 0. Unfortunately, in th is

case part (b~ of T. 14. says that the algori thm can only be expected t~

generate a fea.;iL~e point . Thus it is necessary to find another acuroach.

This is Ja ne in the r~uxt section.

14.2. Transforming Equality Constrained Optimization into a Fixed

Point Problem.

In the spirit of decomposability the idea is tu- -.ise the equality

constraints to solve for some of the variables (called the basic variables 1

in terms of the ~-~~ t (called the nonbasic variables). Thus the original

variables z -I B5 will often ~-e written (x ,y~ for x and y

x being the nonbasic variables and y being the uasic variables. In

order to show how and when this can be done, define a point to set map

Si -. flH on R by 11~x) = (y R C1çx,y~ 0 ) .  Note H(x~ might be empty

so let X = (x L Em 
H~x~ is noneinpty). The next two assumptions will

allow the proper transformation of P.!..l into P.~~.2.

Assumption 14.14. Assume X = R
m
.

Ass umption 14..~ Assume H(x) is a singleton for each x E X.

From A. 14.5 it is possible to define a function h:Rm~ 9R
n

by h(x~ = that unique element of 11(x). Hence G(x,h~x ) )  = 0 for each

x E R m . 
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Frcir. A L .14 it ~s ~‘c ~irie t~ ri~~. - ‘ : t j  rio p :i~° —
~

Q
rn 
~~P by (~~ . = !L~,h (x ~~ ~~~~~~~ ~~~~~ ~~~~x . r i ’ ’: res~~~Lt 1ve -

Th~~ is ~~e ~k~-ir~- tr ,:f~ rua t~ c:~ ~r P . !4 ~ nt t~. . .. as is ~stah~ i ;~.ed

in

T h e o - h .~~~ If A . h . b ~ri:’ A .  i . ~ ho1~. ~~ - if h .  p ~nd ~ are deiThed

as abc~e t:~er x ~o1ve~ u~ 14~2 i~~’ (x , 111x)  ) ~~) lVeS  P . 14.1.

Proof. C~~ u - ;~ - ir s t  that x rolves P. 4.2. Th-~~ (x.i~(x ))  is fe~u~ible

for P. -’ .]. sin-c J~~ ,hx ) = 0 :t:~~ Q(x,h~x~ ) K 0. In order to shuu

that ( x , o ( x ) )  a-ot:2aily o~~li~es P. 14 . 1 let (x ’ ,y  ) be any other fea~ : ole

sc .u t ion  to 7.’-.L it ~~ - he stown t~.at P~ x, h ( : : ) )  P (x ’ ,y ’) .  Since

:1 -. } ( x ’ ) = [h(x )I one n~,cd o~~ sh~ u t nu t  P x , h ( x  ) < P(x ’ ,h ( x ’

out th1~ ~ollo--s from the opt ir ia 1ity ~f x fc-r P . 14 .2 since P(x ,h(x,)

= p (x  p(x ’ )  = P ( x ’ , h (x ’ ) ) .  This Dr oves ~~ r~eoessar’, part of the

thec re”~.. For the ffici~ no:,- , ivp~ -;~~c (x , h (x)  solves P. 14.1. The~

x is cer ta in t y feas~ b1e ic r  P. - .2 . r order to show that x ec~ - 
~Ly

solves i- . 14 .2 let ~ he any - cc feasible s o lu t i o n .  It must be sho- .~n

that p(x  < p x ’ ) . Since ~
‘x ’ . h (x ’ ) )  is r i L s o  ~casih u for p.~~.i U

follows that ~ (x)  ~~~~~~~~~~ -
~ P(x’ ,h(x ’ ) )  = r~~ :’~ as de.~ired .

Now that t }i~ t ransfo rrn~ t i cn  of P. 14.1 int~ P .14 .~ has been e~ i~~~iishu—1

it is ~csirab1e to h .~.ve ~o n l t T o n s  on P, b , and ~ wh~ c c ensures A . ~~- 1—

ii . - - . 5. The nc~-:~ theorem puts suf f ic ien t  c’~r Jlt i -ns on G which makes

A . 14. 14 and A . 14.5  hold . It is a modif icat ion of the i m p l i c i t  function

theorem and i~ sta~ u i ~ as

51

- —--



m n n
Theorem £ 4 5 Let G:R x R — *R be continuously differentiable on

x and suppose there is a point (a,b) ~-L R
m x R~ such that

(1) G(a,b) = 0 and (2) the matrix E = D G(a,b) is nonsingu]~ r. Also

suppose there is a constant 0 < ?i, ~ 1 such that

III - E 1D G(x,y)I~ < 7~ for all (x,y ) Em ~

Under these conditions A .)!.14 and A.14.5 hold.

Proof. It will be shown that there is a unique function h:Rm —, R’1 such

that G(x,h(x)) = 0 for each x t R . To this end define a new function

m n n -lL:R x R — R  by L(x,y) = y - E G(x ,y ) . For each fixed value of x,

L will be shown to be a contraction mapping and hence will have a unique

fixed point h(x) Rr
~. Note that L(x,h(x)) h(x) iff G(x,h(x)) r- 0.

To show that L is a contraction map in the y coordinate, the constant ~

in the hypothesis will be used to conclude that

- nL(x,y) - L(x ,y’) < ~~y-y’ for all y, y’ a R

So it is necessary to bound IL(x,y) - L(x ,y ’)II . This is precisely the

essence of T.1.l. In order to apply it, the function L need only be

differentiable in the y-coordinates which of course it is and in fact

D L(x ,y~ = I - E~~D7
G(x ,y)

Upon applying the bound in T.1.l,
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~L~ x .y )  - L (x ,y’ 1 < .~~;p( 1D~1
L (x ,y A’ (~- -: ‘)) - O < N’ ~o 1) ~y-y ’ I
- E~~ C y ~~~’ :. -:, ‘ ) ) ,~~0 

~~~
‘ < 1 )  y-y ’~

~ 
;
~di~ --y ’

th e last ineqoo2 Uy he!ii~ 1.ct~fi ed by the nypot~ cc is .  Thus in f~ c~ L

is a contracolor.  ~~~~~~~~~ in the ,!—cc~~o;~natE- c C’r eoo~. r~ixet value ~f

the x—co ~ i ir.atec and r h ~~~S :‘c~~~ e~ es the prcv f.

Corollary 14.1. I~ ) is linear and has rank n then A. 14J and A .~- .5 -hd.

Proof. Let G(x y) = Ux + °v + -~ ~there V is an ~n 
-
~~ ri n~nsin~~.~

matrix, U is an n x m uacrc - :  and is an n-c - c : t ~ s- . Chc -ose any

with 0 < ~~ < 1 and set (a.b) (~~. ~~ 
i
c) . Nc- .- the ~Lyn ~ tce~ es of

T. 14.5 hold so A . . . . 14 ~~ A. - .5 do also .

~i1cpcsin~ now that tfci:, function h ( x )  exists , condi tions can be

placei~ on P. Q arU h so tb~ t A .14.i.—AJ. .~ ~o1 .

Proposition 14.1. i 14JDp ,)~~p P and Q aro closed proper corive~ f ~nc

and that ~~~~~~~~~~~ x ’ , x ” C Em such that P~x ’ ,h (x ’ ) )  00

Q(x ’ , h (x ’’ ) < . If h s l i r eor  tL-~n A. 14 .l hc-~ s.

Proof. It must be shown that p and q &r-e o~~~- e l  proper convex

functions with dom(c . )  = for each i = 1 fl nce h ts

defined on all of R
m (b j  A . 14 . 14) , dom(q.~ = for each i = 1 

I
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Ne~t p is shown to be convex . To do this let x , W and ?~ 2 [0 ,1].

Then the linearity of h and the convexity of P it follows that

p(?’~c + (1—N)w) = P ( 7~X + ( l-7~)w , h ( ?~x + (l—?~) w ) )

= p(~~ + (1-)~~w , lth(x) s- (1-A)h(w))

P(A(x ,h(x)) + (i-?\) (w ,h(w)))

< AP(x,h(x)) + ( l— ~~) P ( w , h ( w ) )

= ?\p(x) + (l-~~) p ( w~

That p is closed and proper is straightforward. A similar argument

shows q to be a closed proper convex function also.

In order to weaken the assumption that h is linear it is

necessary to p lace additional structure on P and Q. This is done in

Proposition 14.2. Suppose P and Q are closed proper convex functions

and that there exists x ’ . x ” RSi such that P (x ’,h(x fl ) < co and

Q(x ”,h(x ”)) < ~~~ . Suppose in addition that P and Q are isotone

(see D.l.8) in the y-coordinates for each fixed value of the x—coordinates .

If h is convex then A .14.l holds .

Proof. As in the previous proposition, dom(q1
) RSi 

for each 1. = I,. ..,2 .

Next p is shown to be convex. To do this let x, wh Em and

[O ,lj. From the convexity of h,

+ ( ].—~~~w )  ?~h(x) + (l—)\ h(w)

and since P is isotone in the y-coordinates it follows that
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P(Ax + (l-?~)w , h(.\x + (l-A)w)) < P(Xx + ( l-A )w , Nh(x) + ( l—A )w , ?%h(w))

= P(A (x, h(x) ) + (l—?i~)(w,h(w)))

< ?~.P(x,h (x)) + (l-l~) P(w ,h ( w ) )

the last inequality being justified by the convexity of P. The left

most side of the inequalit y is p(?~c + (l-~)w) and the right most side

is ~p(x) + (i-h) p (w). Hence p is convex. That p is closed and

proper is straightforward . A similar argument shows q to be a closed

proper convex function. II

Proposition 14.15. If dom (P) = R5 then A .14.2 holds.

Proof. Obvious.

Proposition 14.14. If Q has no common direction of recession other than

O and if h is linear then A. 14.3 holds.

Proof. This is done by contradiction so assume d € is a nonzero

common direction of recession of q. Then there is a b E B1 and an

x € Rm such that q1(x + ?.~d) < b for all 7~, > 0 and i = l,...,t.

It will be shown that (d,h(d)) is a nonzero common direction of

recession of Q. Clearly (d,h(d)) is nonzero since d is. From the

linearity of h it follows that f or all 7~ > 0 and i = 1, . . . , £

Q~ ((x ,h(x)) + A (d ,h ( d ) ) )  = Q~(x + M ,h(x) +

= Q~(x + 7.4, h(x + 7~d))

= q~ (x + 7.4)

< b.

Hence (d,h(d)) is the desired common direction of recession of Q.

and this contradiction proves the claim.
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In order to weaken the assumption that h is linear it is necessary

to place additional structure on P and Q. This is done in

Proposition 14.5. Suppose h is convex. Assume also that Q is convex

and isotone in the y-coordinates. If Q has no common direction of

recession other than 0 then A.14.3 holds.

Proof. Again this will be done by contradiction , so assume d € Em is

a nonzero common direction of recession of q. Hence there is a b C

and x € such that q.(x + 74) < b for each ?~> O  and i =

To construct a nonzero common direction of recess ion of Q let W

(an (n x m) matrix) be a subgradient of h at x (see D.l.2). It will

be shown that (d,wd) is a nonzero common direction of recession of Q.

It is clearly nonzero since d is. From the definition of a subgradient ,

h(x) + ~(wd) < h(x + 7~d) for all 7., > 0;

and since Q is isotone in the y-coordinates it follows that for all

7. ,> O and I = 1,...,t,

Q1(x + 74, h(x) + ?..Wd) < Q1(x 
+ 7.4, h(x + 7.,Wd))

= q1(x + 7.4)

Hence (d,wd) is the desired common direction of recession of Q and

this contradiction proves the claim.
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:n applications it is very often the case that neither A .14j nor

A. 14.5 will h o n . Take for example the function G:R --* R
1 

by

G(x.y) = x2 
+ y - 1. In this case X = -1,11 and H(x~

- for each x 2 X. One would like to be able to find

a fixed point formulation of .- .~i .l ~n which the resulting point to set map

is usable. There are several problems that immeliately present themselves .

The f i rs t  i-s that the function h is no longer well defined . Recall

that for  each x C F ~ b
’x) was that unique element such that

G(x,h(x)) = 0. In the current situation there may be many choices for

h(x) (since H(x) need not be a singleton’
~. Even supposing one were

able to construct this choice function h(x), the next problem is that

h is a mapping from X into R”. If, as before , one were to define

p(x) = P(x,h(x)) and q(x) = Q(x,h(x)) for each x 2 X then A .14.i

will not hold unless X -r Em . If X ~ B
’5 then the resulting point to

set map may not be usable (even though X might b-~ compact and convex).

No usable point to set map has been found to overcome these difficulties,

however, one which is very close and has worked in practice is described

in:

Theorem 14.6. Suppose X is a compact convex subset of with x’ C X.

Suppose further that A .14.5 holds so there is an h:X ~~~~ such that

G(x ,h(x ) = 0 for each x € X. Let p:X —* R
1 

U [+ oo)  be defined by

p(x) = P(x,h(x)) and let q:X —* be defined by q(x) = Q(x,h(x)

and suppose p and q are closed proper convex functions on int(X~.

mThen the point to set map S:R -~~ (R ) defined by
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[x , )  if x ~~
‘ int(X)

s(x) x - ~p(x) if t(x) < 0

x - hull()p(x) U r~t(x)) if t(x) = 0 if x int (X)

x - ~t(x if t(x) > 0

has the following properties:

(a) If x’ € int(X) then any fixed point of S belongs to int(X).

(b) If x’ E int(X) then any fixed point of S solves the problem

mm p(x)

s. t. q(x~ < 0 provided a = inf(t(x),’x € int(X)) < 0

x € Int(X)

(c) The algorithm when implemented on S computes either a fixed point

of S or a point in bd(X).

Proof. Part (a) . Let x -2 S ( x ) .  Suppose contrary to the conclus ion

of (a) that x I int(X), then 3(x) (x ’) and so x 00 x ’ 5 int(X).

This contradiction establishes that any fixed point of S belongs to

int(X).

Part (b) . Let x € S(x). First it will be shown that x is

feasible, i.e. n ( x )  < 0 and x € i~ t ( X ) .  Part (a) shows that

x € int (X ) and by hypothesis a < 0 hence q (x~ < t(x) < 0 for each

I = 1,..., 2. Thus x is feasible. If t(x) 0 then the fact that

x is a fixed point of S yields 0 € ~p( x) and the optimality of x

follows from the convexity of p on int(X). If, on the other hand,

t ( x )  = 0 then 0 00 Na ’ + (1- 7.,)b’ for some a’ ~ ~p(x~ and b’ € ~t(x)
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and A € 0, 1). Since a -c 0 and t ( x )  = 0 it follows that 1.,> 0

whence a ’ 00 [( l -A )/ ? Jb ’ . lo see that x is actually optima l let

z € int(X) be any othez feasible point. It must be shown that

p ( z ) > p(x). By the fact that is feasible and that b’ u

0 > t (z )  ~~ t(x) + (b ’ , z— x ) (b ’ , z— x )

and since a’ C ~p(x)

p ( z )  > p(x)  + (a ’,z-x)

00 p(x) — [(l—7~ .
’7.] (b’,z—x ) > p(x) -

This shows that x actually solves the problem .

Part ( c ) .  The proof will be done by showing that the algorithm

generates a point x C X with the additional property that if x ~ bd (X )

then x € S(x). To actually construct this x, consider a sequence of

triangulatlons of Rn x [0 , 1] whose mesh is going to 0 for K —~- c o .

For each fixed value of K the algorithm will generate a seouence of rn

and (m-f-1)-simplexes such that each rn—simplex is completely labelled. Since

this collection can never leave a compact set it must be finite and so

there will be a completely labelled a-simplex, say tk = hull(I(xo~,1) (~~~,l) ) )
Ok mk -conseque ntly there are scalars 7, , ... , 7., > 0 together with points

Ok Ok mk ~ mkz € S(x ), ... , z E Si~x ) such that

~ 7.,
ik ik ~ A

ik
x
ik

1=0 i=O

~ 7.
ik 1

1=0
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Since the mesh(?)~~) is going to 0. it follows that there are points

x, z0 , . . .  , z~ C R
m together with nonnegative scalars 7~O ,

and a subsequence K such that

(1) t~~~
1k j -4X for kE K and each i = O ,...,m.

(2) (~
11
~) —* z1 for k C K and each 1 = 0 , . . .  , rn .

(~~) (A1k) ~~
) 7 \

1 
for k € K and each i =

- r,Ifl i i(14 x = .~. A z .

First it will be sho~n that x ~ X. If x I X then (z lk
) —~ x ’ for

k C K and each I = 0, . . .  , m. Hence x = x ’ C int(X). This contradiction

establishes that x C X.

Next it will be shown that if x 9~
’ bd (X) then x € S(x) . So

suppose x ~ bd(X~ . Then x € int(X) and hence 3 (x)  is a convex set.

To show x C S(x) it will be shown that z1 
€ S(x) for each i = 0.... ,m

and thus x 00 

~~ 7..
1

z
i 
C S(x). To see that z1 C S(x) for each

j  00 9,...,rn note that S(x)  is usable on int(X so by the upper

semicontinuity of S and (1) and (2) above, z
1 5 S(x) for each

i = 0 , . . . ,m. This concludes the proof.

Throughout the entire chapter it has been assumed that A.14.5

always held anr~ an example was presented where A .14.5 did not hold. It

will be shown that there is a possible method for dealing with this type

of problem but certain aspects of the approach render it computationally

infeasible. If A .)L .)4 holds then the function h(x) will choose a

very special element of H (x) in such a way that x solves P . 1 4.2

if f (x,h(x)) solves P.14.1. Unfortunately no computationa l implementation

for this choice function has been found. This function is described in
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Theorem h~ 7. Suppose H(x ~ is compact and convex for each x € }~° and

that P is continuous. Suppose further that for each x C there

is a y C H(x)  such thst Q(x ,y ) < 0 . Then the choice function

h: Rm 
-~~ R’~ defined by h ( x )  any solution to

mm P(x,y)

Q(x ,y ) 0

y C H(x)

sati-~fie~ x ~ . 1ver p •
I~~~~~ 2 

~~f 
(x,h (x ) )  ~.-olves P.

1
~~l.

Proof. Suppose firr~ t . .~t x ‘~olves P.14.2. Then (x,h(x ) is feasible

f.~r P.•..1. Let ~x ’ ,y ’) ~e an~,’ other feasible solution for- P.14.1.

Then by the i t- f t ~~ . tion of h. P~x’,y’) > P(x’,h (x ’)) p(x’~ -> p(x~ 
00 P(x,h t x ) )

and so ‘~-: ,h (x.~ ~int ’~a1ly ~o1ves Pi~.1. This proves the necessary part

of the theore n , For the suff ic iency part ou~’pnne (x,h(x)) rolves P.1 - .i .

Then x is certai,nly feasible for P.14.2. Let x ’ be any other

feasible point for P.14.2. Jc rnu~~
’- be shown that p(x’) > p(x). Since

(x’,h(x’ ) )  ~r feas~ t i,e for P.~..i it follows that

= P(x ,h(x) ) < i~ x ’ , h(x’ ) ) = p(x ’ )

This chapter has dealt with theoretical conditions on the original

functions F, G and Q which allows the algorithm described in Chapter 15

to solve p.14.1. It is now time to focus on the computational aspects of the

problem. It will also be desirable to find some techniques to increase

the efficiency of the algorithm. These are the topics of the next two

chapters. 
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CHAPTER ~T.

COMPUTER CONS IDERA TIONS

5.1. IntroductLon and Preliminaries.

In the previous chapter a theoretical approach was suggested for

solving P .~Ci . There is however a consUerable gap between the theoretical

framework and an actual computer implementation. In this chapter a

computational meth. d based on the previous theory is rieveloped in detail.

The first step in ~~~~ direction invo !ves a careful analysis of exactly

what quantities must be computer and methods are proposed for accomplish-

ing these tasks efficiently . It will become evident that the amount of

work required is quite large and one naturally asks i f there are ways

to reduce the computational effort. This topic however will be reserved

for Chapter 6.

Given P.~4.l recall that for each x R’~, H (x~ = (y5R ~/G(x,y) =0)

and X = (x C Rm/H(X\ is nonempty). At the end of Chapter 14 it was shown

that the case where H(x) was not a singleton for each x C X, was a

very difficult and seemingly unmanageable problem. Therefore for the

duration of this chapter, A .14 .5 will be assumed. Also recall that the

following point, to ret map was developed to solve P.14.1,

[x ’) if x l  int(X)

Sx) = x - .
-
~p (x) if t(x - < 0

x - hull (~p(x
’
~ U it(x)) if t(x) = 0 if x C  int (X )

x - . t (x )  it  t(x~ 0



where x ’ C X.  ~~ 
- -.~~.y, recall ho ..’ the a lgori thm of Chapter ~ wi l l  attempt

to f ind  a fixed po int of S. I t  w i l l  u se a t ri-.&r~~’~1~C on of Rm 
~ :0 , 1]

- - .  - . - - . r c  min whic~ the vert~ co”- L~.c in et t he~ - :~ [0 or R ‘. (1). The

- 0 - (Ualgor..tir rt~ r -~ with c speclel a-c - .plex , say, r~~~~~~Lx .1) ( x  
,~~ fl

containing the ~rt~ ng ~- - ~~nt (W ,O) ? rt 
~~ in it~ interior. - ‘an-

sequent ly there ~s a bas a feasible solution A to

(o, . . . , ,

A > O

where

( .f ( x ” -x , 1) for some t ’(x) C S(x ~ if u = 1

A =(x , u)
(w— x , 1) if u = 0 -

The method proceeds to generate a ver tex  in the triangulation of the foro

(x ,u~ wtth u 15 fP , l ) .  For each such point it ~s necessary to corn ; te

/ ~ 
This vec ” or wiU be brought into the current basis c’-rl a. x , u /

dropping vertex will cc onicuely determined. This in turn will gen€-r ~.te

a new incomi ng v~i’tex and the procesr is repeated . N ot e  that -n-he n then

incoming vertex (x,u) has u 00 0 , the computation of A ( x u ’ is very

s ir n u le , howe - ’  -r when u = 1 it is necessary to cenerato a point

f ( x )  8(x) . The flow chart of F igure 5.1 shows the necessary como tions

t a  accomplish this. The fis’~ t three computr ~~~~~ are discussed in the

next section and the other four computations are handLed in the last

section.
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Exit with A
Enter with (x, 1)~

(x,l) C Rm ~< 
to be brought into

L

~

!

~

!

~ 

~~~~

(1) x 15 int(X)? No
41

~~~~~~~~~~~~~~

(3 [~~~mpute h(x) s~~T]
G(x,h(x)) = 0

___________I____________(4) T Compute t(x) 00

1
ina.x(Q

1
(x ,h ( x ) )/ i  = 1, . .. ,

~
j

1 
(6)

FIGURE 5.1
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5.2. Solving Nonlir.en vstems o~j~~ ations.

Step ( 1) of r igure 5 . i  is ascertaining if x e. int (’X ) .  Amongst

other things, this requires ietermüning if ti~er-~ is a v - R~ such that

G(x,y)  = 0. Since ~h~s is attc-rnptinc to solve a particular nonlinear

system of n equations i’: n unknowns it is going to be a difficult

task. f- r-i~ computational methods exist for accompli shing this.

Ifl the proof of T.~J .5 ,  for exrrnj-~ e, a contraction mapp ing app roach was

designed , however it is felt that the hypotheses of this theorem are too

strong and that in most applications the f000tl oc G will not satisfy

these conditions . A mcre stable computational tool was sought . In the

event that these const ra~- n ts satisfy some differentiabilit y conditions ,

Newton ’ s method may he applied. These conditions are cripplied in

Theorem ~.l. Let x X be fixed and suppose y € Rn is such that

u (x ,y 00 0. Suppose G is ao nt~ nuoosly differentiable (in the y-coor-

dinates) in some neighborhood of y and that D U ~x ,y)  is nonsingular

at y. Then there is a neighborhood 0 of y such that for  any

0 k .y C 0 the seqrncn. c (y ) defined s.d’

~k+1 = ~k 
- D;

b
G(x,Y

k G(x,yk), k = 0,1,...

converges to y.

Proof. See Theorem 1O.~~.2 of Ortega and Rhineboldt [1411. II
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Optimally one would have hoped for a stronger version of T.5.l

in which the sequence (~
k) converged to some y € R~ iff G(x,y) = 0,

that is to say iff x C X. This of course is not the case as It is

poss ible for Newton’s method to diverge and yet x 15 X . Furthermore

there is no way of determining if x € int(X). No way around these

difficulties is known so in practice when Newton’s method fails it is

assumed that x ~
‘ int(X). This action has not caused any difficulties

in the test problems reported in Appendix A. Note that when Newton’s

method fails it is easy to compute f(x) € S(x) provided x ’ C X is

available. If such an x ’ is not available at the start of a problem,

a Phase I method for attempting to find such an x’ exists. The next

propos ition shows how to set this up.

Proposition 5.1. Consider the problem

n
(P.5 .1) ruin ~ Z

1i=l

st. G(x,y) + z = U

z

nz E R

Then x’ € X 1ff there is a y ’ C Rn such that (x’,y ’,O) solves P.5.1.

Proof. Suppose first that x ’ € X . This means there is a y ’ C

such that G(x’,y ’) = 0. Thus (x’,y ’,O) is feasible for P.5.1. To

see that it is actually optimal note that the objective value is bounded
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below by 0 and since (x’,y ’,O) actually attains that value it must be

optimal. To go the other way suppose (x’,y ’,O) solves P. .l. From the

feasibility conditions, C-(x ’ ,y ’ )  = 0 and hence x ’ C X.

As a result of this proposition it will now be assumed that x ’ 15 X

is available and returning to Figure 5.1(2), this completes the description

of what to do if Newton ’s method fails to converge.

Note that when implementing Newton’s method it is necessary to

supply an initial starting point y0 € R~ from which to iterate. A good

choice for y
0 will hopefully mean that fewer iterations are required

for convergence. On the other hand a poor choice ~might lead to slow con-

vergence or no convergence at all. Under certain differentiability assump-

tions on G, a tangent plane approximation can sometimes be used to generate

a good initial starting point . This is the essence of

Theorem 5.2. Suppose G is twice continuously differentiable and that

the point (a,b ) C R~’ x R~’ satisfies G(a,b) 00 0 with DyG(a.b) non-

singular and let x 15 Rm . Then there is a constant e, such that

0 0 2G(x,y )fl < e~ (x,y ) — (a,b)!I

where

y
0 

= b - D;
1
G(a,b)(D~

G (a,b) (x_a) )

Proof. Since G(a,b) = 0 and by the definition of y0,

G (x ,y0) = G (x ,y0) - G(a,b) - D
~
G(a,b)(x_ a) - D~G(a~b ) ( Y °_b)

00 G(x ,y°) - G(a,b) - DG(a,b)(x-a,y
0-b)
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Set e sup(IID
2G((x,y°) + A((a,b) - (x ,y0) ) ) ~ /O <. 1~ 1) < ~~~ . The

result now follows from T.l.2.

The reason this starting point was chosen was because all of the

quantities needed to generate it will already have been computed by the

algorithm . That is to say, at the moment the algorithm needs a starting

point for Newton’s method it will have a point (a,b) with G(a,b) 00 o

and it will have computed _D;
1G(a~b) D~

G(a,b). Therefore, to compute

y
0 all that needs to be done is a matrix multiplication and an addition .

This concludes the analysis of Newton’s method and it will henceforth be

assumed that Newton’s method has converged to y C Rn with G(x,y) = 0.

According to Figure 5.1(14) one must now compute

t(x) = max[Q1(x,h(x))/i = 1, .. .  , 2)

Following this however it will be necessary to generat e either an

a’ C ~p(x) (if t(x) < 0) or b’ C ~t(x) (if t(x) > 0). It will be

shown in the next section that under certain conditions these quantities

may be obtained from the original functions P, G and Q.

5.3 . Computing Subgradients.

In this section it will be shown that if P, G, Q and h

satisfy some differentiability conditions it will be possible to compute

subgradients of either p(x) or t(xi . First it will be shown how to

compute Jp(x) and Dq (x) from the derivatives of the initial functions

P, G and Q, and they in turn will be used to compute subgradients.
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Proposition 5.f. Suppose F, G, Q and h are differentiable at some

point (x,h(x)) with x C int(X). If in addition D G(x,h(x)) is non-

singular then p and q are differentiable at x and

7p(x) = 
~
7
~
P(x,h(x)) + (~7yP(X~h(X )))T Dh(x)

Dq(x) D~
Q(X , h ( X ) ) + D Q(x ,h(x) ) L)h(x )

with 
-

]Dh(x) = _D;
1 
G(x,h(x)) D G(x,h(x))

Proof. That p and q are differentiable follows from the chain rule.

Furthermore the Vp(x) and Dq(x) may be written explicitly as

~7p (x)  = 
~
7
~
P(x,h(x)) + (~fy

P(x~h (x)))
T 

Dh(x)

Dq(x) = Dx~
(X
~
h(x)) + D Q(x,h(x)) Dh(x)

It remains only to show that tth (x) = _D ;
1
G(x~h(x)) DxG (X~

h(X) )
~ 

The

function G(x,h(x)) is identically 0 on int (X) so again applying the

chain rule yields

D G(x,h(x)) + O~G(x~h(x)) Dh(x) = 0 .

By hypothesis, D G(x,h(x)) is nonsingular , therefore an exp licit formula
y

for Dh(x) is given by

Dh(x) = -D;
1
G(x,h (x)) D~

G(x,h(x)) . II
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Lemma 5.1. If p and q are closed proper convex functions on int(X)

and tf p and q are differentiable on int(X) then vp(x)  C ~p(x)

and Dq(x) € ~q(x~- for each x C int(X).

Proof. This is an immediate consequence of T.l.5. Il

Theorem 5.3. Let p and q be closed proper convex functions which are

differentiable on int(X). Suppose i is such that q
1

(x) -= rnax{q.(x)/l<j<t)

00 t(x). Then c’q~ (x) C ~t(x) and ~p(x) C ~p(x)

Proof. Let z € int(X). It will be shown that t(z) > t(x) + (vq.(x),z—x )

for then 7q1(x
) 
~ ~t(x). But since t(x) = q (x) and since is

convex,

t(x) + (s7q~(x),z_x ) = q.(x) + (Vq~(x),z—x )

< q~(z)

<t(z)

as desired. The fact that Vp (x )  C ~p(x) is a restatement of L.5.l. U

With Proposition 5.2 and T.5.? it is possible to compute either

an element of ~p (x) or ~t(x) and with these computations under control

all of Figure 5.1 has been dealt with.

This chapter has provided an implementation of an algorithm to

solve Pi-~.i. Several difficulties remain unresolved but computational

tests have shown this method to be quite reliable (see Chapter 7).

ro 
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Specifically, a scheme for computing f(x) C S(x) was analyzed. First

it is necessary to attempt to solve a nonlinear system of equations.

If this is successful it is then necessary to evaluate partial derivatives

and subsequently solve a system of linear equations. This clearly requires

a lot of effort. It is therefore desirable to find ways of reducing

this work. This is the topic of Chapter 6.
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CHAPTER 6

ACCELERATION TECI~(IQUES

6.1. Introduction and Preliminaries.

In the previous chapter a computational method was devised to

solve P.14.1. It was observed that each time a point (x,u) C x (1)

was generated a large effort was required to compute f(x) € S(x). The

purpose of this chapter is to describe various ways of improving the

overall efficiency of the algorithm.

An obvious approach is to try to reduce the amount of work needed

to generate f(x) C S(x). One way of doing this is to approximate S by

a sequence (5
k) of point to set maps. Then instead of generating fixed

points to PL approximations of S (as the algorithm currently does)

one would generate fixed points of FL approximations to The idea

is that it will be less expensive to generate an element of Sk(x) than

one of S(x) . Another poss ible way to save work in generating f(x) 15 S(x)

is to reduce the amount of work needed to compute h(x) by using a

Simplified Newton Method (SNM) (see Ortega and Rhineboldt [141] for

example) or perhaps a Quasi-Newton Method (QNN ) (see Murray [39J or

Broyden, Dennis and More [14]). Whereas ?~ requires a matrix inversion

at each of its interat ions, SNM requires only one matrix inversion for

the entire procedure. Still another idea for saving work is to avoid

computing t(x) maxfq~ (x)/i = 1,... , 2) which requires evaluating

all of the constraints. Instead one might hope to be able to evaluate

the constraints sequentially and stop as soon as a violated constraint
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is encountered. This was observed by Merrill L~~] and he presented an

example consisting of convex functions for which the above idea did not

work. A way around this difficulty has been found and has been implemented

in the computer code.

All of the previous ideas have involved reducing the amount of

work needed to compute f(x) C S(x). Another valuable approach might be

to somehow reduce the total number of times f(x) C S(x) needs to be

computed. One possibility is to use additional structure of P.14.1

such as upper and lower boundes on the variables. A triangulation of

the hyperrectangle defined by these upper and lower bounds has been

developed. Intuitively this would appear to be good since outside of

the hyperrectangle no solution can possibly exist. Yet another possible

way to reduce the total number of times f(x) € S(x) need be computed

is suggested by Saigal [146]. His analysis can only be applied to

P.2.1 in which there are no inequality constraints and requires some

differentiability conditions on the functions. In this case the rate

at which the mesh of the triangulation goes to zero can be greatly

increased. Each of these ideas is now made mathematically concrete.

6.2. Approximation Techniques.

Consider the problem of finding a fixed point of a function

~4 Rm. In many applications the evaluation of’ f can ‘be very ~ime

consuming. It would therefore seem reasonable to attempt to reduce the

amount of work needed to evaluate f. This will be accomplished by
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replacing f by a sequence of functions [f
lc
)• Tinder certain circumstances

the algorithm of Chapter 3 may be used to compute a linear approximate

fixed point of f
k 

in a f ini te  number of steps. and if the sequence of

points thus generated has a cluster point then this can be shown to be

a fixed point of f .  The motivat ion for this approach lies in the fact

that each fk is easier to evaluate than the original f. The circumstances

under which this approach will worJ~ is now developed. It is necessary to

introduce

Definition 6. 1. A sequence [f k ) of functions is said to be wea~cly egui-

continuous iff for each ~
- > 0 there is a ~~. > 0 and an integer N > 0

such that X-z!I < ~ implie s lI fk(x) - fk~~ I ! < for all k > N.

The next two lemmas will be used in the proof of the main theorem~

Lemma 6 .1. If (f k) converges pointwise to f and if ff
k) is weakly

equicontinuous then for any sequence of points [xk) converging to

€ Rm, the sequence (fk(x
k)) converges to f(x).

Proof. Let ~ > 0. By D.6.l there is a ~ > 0 and an integer N1 > 0

such that ~x-yj~ < ~ implies IIf’~(X) - fk(y)~ < €1? for all k > N1.

Since tx
k) converges to x one may choose an integer N

2 
> 0 such

that Vx’~ 
- x~I < F for all k > N

2
. Also since [f

l(
) converges point-

wise to f there is an integer N
3 
> 0 such that IIfk(x) - f(x)II < € 12

for all k > N3. Set N = max(N1,N2.N3). Then for any k > N it follows

that
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~f
k(x

k
) — f(x) II < Ilf

k(xk) — fk (x) + 1If~(x) — f(x) U

< +

= 5 .

The first term is made small by the weak equicontinuity of [fk) and

the second term is made small by the pointwise convergence of’ (fk)

to f. 1

Lemma 6.2. Let (~~
1c
) be a sequence of triangulations of I~° such that

mesh(97/~) —~O as k —, ~~. Suppose further that (f.k) is a weakly equi-

continuous sequence of functions. Let f~~ be the PL approximation to
k

r induced by ~~ (see Chapter 3) . Then for any sequenc e of points

and € > 0 there is an integer N > 0 such that

- fk(xk
) I I  < € for all k > N.

Proof. The proof is done by showing that for large enough N, the

vertices of the a-simplex containing are sufficient ly close to

to apply the properties of weak equicontinuity. Formally then let ~ > 0

be given. Let = hull((x~
k
, ... , x~~))  be an rn-simplex in

containing x’~. Hence there are nonnegative multipliers ?\
0k

, ... ,

which sum to 1 such that ~~ 
~~~ ~,jk jk Let b > 0 and N1 

be chosen

by the definition of’ weak equicontinuity of (fk)~ Choose N,, such

that - ~
ktI < ~ for each ,j = O,...,m and k > N

2
. This m~y be

done since mesh(2~~) -.0 as k -. ~~~~. Setting N = max(N1,N2) it follows

that for all k > N,
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~f~~(x
k) - f~ (xk)Il U~~ ( ~~ ~ik ik) -

j=0

= 1 ~~ A
jk(fk(jk) -

~ ~i f
k
(xJk ) - ?~(x

k
) II

j=O

~ ~jk

j =O

Theorem 6.1. Let [fk) be a weakly equicontinuous sequence of functions

which converges j ointwise to f. Let be a sequence of triangulation

of Rni 
such that mesh(~~~) -.0 for k —, oo , Also let f~~ be the

FL approximation to 1’ induced by 
~~ j  . If (x J is a sequence of fixed

point s of f~~ such that x for k C K (some subsequence), then

x is a fixed point of f.

Proof. It will be shown that If(x)-xIJ = 0 so let > 0. Then for

each k E K ,

fIf(x)-xlI < I f (x )~ fk(xk) I~ + j f
k

(x
k

) - f~~ (x~~~I + II~~ (xk)~xkII +

E~ch of these terms can be made less than €/ 14 for sufficient ly large k.

The fir.~t term can because of L.6.l as can the second by L.6.2. The

third term is 0 because is the fixed point of f~~ for each Ic K.

Finally, the fourth term can be made less than € 1+ since (xk) —,x

for k C K by ~pothesis. The result now follows by letting ~ -~~ 0.
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The next proposition shows that under certain circumstances a

sequence of FL approximations to a uniformly continuous function can

generate a weakly equicontinuous sequence of functions.

Proposition 6.1. Let f:R
m R5’ be uniformly continuous and let

(~~
k) be ~ sequence of triangulations of Rm such that meS~~~~

k
) ~~~

for k -~~ ~~~~. Also let f’~~ be the IL approximation to f induced by

then (f~~) is an equicontinuouo sequence of functions.

Proof. Let € > 0. First choose 5 > 0 such that ~x-yI! < ~ implies

If(x~-f(y)~I < -/3 ‘by the uniform continuity of f. Next choose N such

that mesh(~~
1
~) < 5 for all J~ > N. It will be shown that 5 and N

satisfy the definition of equicontinuity . To see this, let k > N and

x, y C R
ni with Jx-y~ < F~~. Also ~et hull((x

0
~ , ... , x~~)),

Ok mk . . k
hull([y , . . .  , y ‘) be sirnplexes in ‘2~ containing x and y

iespectively. Hence there are nonnegative multipliers 7~
0k, ,

OK mk . ~-~n ik ikand u , . . .  , u which sum to 1 such that x 00 

~~~~ A x and

~-,m ik iky = u y * Consequently

Ilf~~ (x) -f~~ 
(y) <~~!±~~ (x) -f(x) fi + ~f(x) -f(y~ I! ~ If(y~ 

-f~~ (y)  1

= ll~~ A~~(f(x~~)-f(x))JI + jf(x)-f(y)~~+ p J~~ uik (f(y)~f(y~~))II

~ ~ A~ Uf(~~~fflhI + IIf (x )-f (y lI + 
~ 

u f(y~-f(y~~))fl

= 5 .
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In particular, if f is a continuous function from a compact set into

itself then f will be unifo rmly continuous and consequently a sequence

of PD approximations to f will yield a weakly equicontinuous sequence

of functions.

A theorem similar to T.6.l for the point to set map case can be

developed . For this it is necessary to have

K m
Definition C ..~~~~ Let S :R —~ (R ) be a nonempty point to set map for

each K = 1,? Then 13
k
1 is said to converge eguicontinuously

to the nonempty point to set map S if whenever

k(1) C x )  -.x,

(2) 2~ 5k(~~ ) for all k = l,~~,..., and

(7 )  [ k ) —~ z then z C S(x).

Theorem r .2. Suppose is a sequence of’ nonetnpty point to set maps

which converges equicontinuously to a usable point to set map S. Also

suppose there is a compact set C with U
k S

k(Rm) C C . Let be

a sequence of triangulations of with mesh(~ 7
k) --

~ 0 for k —~ c~

and let f~~ be the PL approximation to induced by ~1
k with

a f ixed point of f~~. If x is a cluster point of (x~) then x C S(x).

i roof. The proof is done by showing that x may be expressed as a convex

~jn:b i r t ~on of po~nts in 3(x). The result will then follow since S(x)

k . kLis co~’v. x To begin ‘~.‘ith, x is a fixed point of f . Let

~ x~~~) be an rn-simplex containing ~
k. Hence

mic
‘i~ r y  .

~~~~~~~
‘ iv’ ‘nu~ ; 1~ er~ ~, A which sum to 1



such that ~~ A~~x~~ = ~
k. To say that xk is a fixed point of f~~

0k~~ k Ok mk k mkmeans that there are points z ~ S (x ) z ~‘ S (x ) for which

~~

‘ A~~x~~ ~
1=0 i~0

One would like to be able t~ take limits in this equation therefore a sub-

ik ik 1ksequence K will be found for which Cz ), [x 1, (?~ 3 all coxrverge

for k C K. To do this it Will b~ shown that 17 u1t3 , [x~~), and C A ~~)

each lie in different but compact sets. The compact set containing (z ~~ }

is C by hypothesis. The sequence actually converges to x

• Kfor each i 0 rn. This LS because mesh(~ 7 ) —,O for k — oo .

Finally the lie inside a simplex. Hence there is a subsequence

K along which (z~~
) — z 1 for k € ~ K, (x~~1 — X  for kE K, and

tA
ik
) _~ 

)
~i for k C K and this is true for each 1 00 ~~~~~~ m. Now

one may take limits in the above equation to yield

m m
\~ I ~ i 1
/-~ ?~x =  L

i=( 1=0

or equivalently

‘c-’ i i
X L A s

1=0

Hence x is a convex combination of ~
m
. All that remains to

be shown is that ~ S(x) for each ~ o,..., ni , and this follows

from D.E~.2 since for each i,

(1’) ~~ik~ ~ x for k ‘1 K,

(2) 
ik gk(x ik ) for K C K,

~~ik3 , for k ~ K,

therefore C 3(x) for each i 0,...,m.
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This concludes the approximation section. however, one word of

caution is in order when implementing the idea. If the early approximations

are not good the algorithm might become “trapped ” in the wrong region and

require a lot of additional work to get back to the correct answer, thus

negating the savings. Hence ~ne may wish to think of this as a “tail end”

procedure depending of course on the specific approxirnatio~ .

6,3. Various Modified Newton Methods.

In this section the Simplified Newton Method (SNM ) and the Quasi—

Newton Methods (QNM) are described as possible alternatives to using

Newton~s Method (NM ) for solving nonlinear systems of equations .

Recall ho~i NM will work . For a given point x C Rm it will take

a ta,”ing point y
0 and generate the sequence ~yk3 defined by

Ic -l k K
/ - Dy G(x,y 

) G(x,y ) for K = 0,1 

Notice that it i.~ necessary to recompute D
1
G(x.y~) at each iteration.

The idea behind SNM is to compute the matrix V = D 1’G(x,y
0 

once and

for all and then to generate the sequence ~y
k
j defined by

k+l k ky = y - wG(x ,y ) for k = 0,1 

Figure ~.l shows the difference between these two methods in the 1-

din~~nsional case . The next th~ nren gives conditions under which SNM

may be expected to converge.



Newton ’s Method

-r

Simplified Newton ’s Met

,,
/ 

/

1~~~~~~~~
gv

~ 
y5 y y1 ~~~~

Figure 6.1
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Theorem .~~~~ Suppose G: R
m 

~>< RTI -~ R
r
~ IS continuously differentiable in

the y-coordinates for each fixed value of the x-coordinates. Suppose

also that (x,y) ~ R~ x R
n 

with G(x,y) = 0. and det(P G(x,y’j) ~ 0.

Then there is a neighborhood 0 of y such that for all y0 C 0 the

k
sequence t~ 

) defined by

~k+l y
k 

- D~
1G(x ,y°) G(x ,y’~) ,  k = 0,1 

converges to y.

Proof. The proof’ is clone, by showing that there is a neighborhood 0

of y such that for each y
0 C 0 the function L;Rm . cI (O) — *cf (O)

defined by L(x,z~’ = - D
;
1
0(x,y°) G(x,z) is a contraction mapping

and hence has a unique fixed point namely y. Consequently, since

~k+l = L(x,yk). it must be that [~kl — y .  ~3o all that needs to be

demonstrated is the ?xistence of this neighborhood 0. The first property

that 0 must satisfy is that I must be a contraction m apping on cJ (O).

Thus it will be necessary to show that there is a constant 0 < C < 1

such that

~L (x , z) — L(x,z’) JI < c~jz— z ’fl for all z , z’ C 0.

Therefore it is necessary to bound ~L(x,z) - L(x ,z ’ ) IJ . Since I, is

differentiable in the y-coordinates, T.l.l,inay be used. This bound

specifies that

- .—-—- - - - -.. -• -. • — - - - - - -- ——---- —



I L (x , z ) — L ( x , z ’ ) I I  < SUP(I~DyL(X*Z+A (Z’~ Z))I!/A C [0,l j ) J~z—z ’II . Hence 0

will be chosen so that

su~(!~D~L(x~ z + A (z’— zflI~/A C [0,1]) < c

for some c between 0 and 1. From the definition of L,

III -

< ~D~~G(x,y) D~G(x,y) - D~~G(x,y°) D G(x,y)~I

lD~~G(x,y
°) D G(x,y) - D~~G(x,y0) DyG(X~Z)lI

~
j ~D~G(x,y)Il jD~~G(x,y) -

+ Iç
1G(x~Y

°)Il !lD~G(x~y~ - D~G(x~z)I~

The set 0 will be chosen to make each of these final two terms c/2,

and it will follow that

suP (~1D~L(x ~ z+  A(~~’ - z ) )  I/A c [0,1]) < c

The first term can be made less than c/~’ by using the continuity of

D~G(x,y) to choose a h
0 > 0 such that

IFD;
1G(x~Y) - 

D;

1
G (x ,Y°)FI ~ C/(2IIDy

G(X)YflI )

whe~~ver Iy-y°II < 
~~~~~~ 

Also a < may be chosen together ~dth

a constant e such that



-l 0IID~ G(x,y )II < e

whenever J~y-y
°
~ ~ 

b1. Finally there is a 
~2 

< 
~~~. 

such that

JJD G(x,y) - D G(x,z)II < c/(2e)

whenever )}z-yj l 
~ ~~ 

Defining 0 B(y,o2) does the trick. All that

remains to be verified is that L in fact maps x c I ( o )  into c J ( 0 ) .

To this end let z C cI(0). It nisy be shown that IIL(x,z) — 

~ll s
By T. l . l  and the construction of 0,

J I L(x ,y) —z fl  00 I~L(x , z) — L(x ,y) II
< sup( If D~,,L(x , z + A(y z)) I1/A c [0,1]) llz-yi(

< c~z—y~

~ Ij z-y~I

This completes the proof.

Other variants of NM are the Quasi-Newton Methods (QNM) . Basically

these methods differ from Newton’s Method in that they do not require

a direct computation of’ D~~G(x,y~). Instead this information is

appro ximated by local data. The approximatio n is continually updated

throughout the solution procedure . Davidon [10] and Fletcher and Powell

[18) were amongst the first to study this approach. Only the (n+l)-point

sequential secant method predated their work .
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e .~4. iT se c’~ ~)pper and Lowe r Pounds.

In this. section a d i f f e r e n t  point to set mapping is designed to

solve p • .J4 •2~ The d i f fe r-n ec  is that in the new formulation It will not

be necessary to compute t(x~ = atax{ q1(x) /1 < I 2). Instead it will

be possible to check •~ach constraint for feasibility and stop as soon

as the first infeasible constraint is detected. To do this it will be

necessary t~) assume A .1~.l. The n it is possible to define the following

collection of convex functions t i :Rm
~~, R ’L by t1(x)=max (q.(x)/l<j<i)

for each I = 1,.,., 2, and the following c~~a
’.~1•e point to set m aps

T
l:R m , (~~~

)
X 

b~’ T
1 (x) x - ~t

i
(x) for each i = 1 , . . .,  2. Letting

£ m m~ -
S :R —* (R ) by I~ = x - ~p(x) then one may inductively define

(R~)~ ~or ~ 00 2, ~~~~~~~~~ ..., i by

5
1(x) if t1(x) < o

= bull (51 (x ) U T t(x’) if t’(x) = 0

1 . i f -T (x if t ~x) ~-O

S
0 

is the point to set map whose fixed point will be shown to solve

P.~4.2. First however it is necessary to establish that S0 is usable.

Theorem (~ 14, If A .4.1 holds and if (x/t t
(x) < 01 c int(dotn p) then

0S is usable.

Proof. S~ is usable by T.1.l
~. By T . l .5  one can conclude tha t

is usable. Iterating backwards finally yields S~ is usable.
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The relationship between fixed points of S~ and solutions to

P.14.2 is established in

Theorem 6. 5.  If u inf(t2 (z)/z C R~) < 0 then x S°(x) 1ff x

solves P.14.2.

0Proof. Assume first that x ~ . S (x). It is necessary to show that

(a) x is feasible and (b) if z is any other feasible point then

p(z) > p(x). The feasibility of x will be established by contradiction,

0 
~~~~~

.so suppose x ~ S (x, is infeasible. It will be shown that t2(z) >0

for all z and this will contradict the fact that u < 0. Since

x C S°(x) there is a A
1 
6 [0,1], x1 € S1(x), 2 C T1(x) such that

x = A1x1 +

1 1 1 1
Since z - - T (x) there is a h C ~t (x) with z 00 x-b , hence,

x = A1x1 + (1-A 1) (x-b
1
)

Note that if t1(x) > 0 then 0 and if t1(x) < 0 then 1.

Since x
1 € S1(x) there is a A2 C [0,1), x

2 C S2(x), z2 € T2(x) such

that
1 22 2 2x 00 ~ x + (1—A )z

Since C T2(x) there is a b2 € ‘
~t
2(x) with 00 x-b

2
, hence

+

-- - — .
~~.- —

--- — 



Substituting this into the expression for x yields

x = + A1(l-~ )x - A1(1-A2 )b 2 + (l-A
1
)x -

Note again that if t’~(x) > 0 then A2 00 0 and if t ’~(x) ~ 0 then

= 1. Continuing in thIs manner yields that for each I = 1,..., £

there is a A1 C [0,1], b
1 C ~t1(x) together with a c C ~p(x) such that

£
x 00 A’ (x-c) + (l-A’~ x - ~~~ e~b

1

i =1

where
i-i

= A
2 and e

1 
= (l-A

1
)( ~
j =1

(It is understood that e1 
00 (1-A1).) Simplifying this one has

(a) A’ c +  ~ e~ b1 = 0
i1

and as noted above

(b) t~(x) >0 implies A1 = 0, for each I =- 1, .  ..,2; and
(c) t

1(x) < 0 implIes ?~ = 1, for each I 1,...,t .

Recall that x is assumed to be infeasible hence for some k, t
k(x) > 0

and consequently by (b), A’ 00 0. Thus (a) reduces to
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(a’) 
~~~~~~ 

e~b~ 
00 0. To establish the desired contradiction it is

necessary to use the convexity of t~ and, the fact that

bi C ~t
1(x) so

t~ (z) > t~ (x) + (b 1
, Z-X) for all z L B51

Multiplying both sides of’ this by the nonnegative number ei and summing

over i yields

(d) 
~~~l 

e
1t~ (z) > 

~~~~ 
e
1t’(x) + 

~~~~ 
elbl, z—x) for all z C

~2 I i,
= L

1=1 
e t ~x) ,

The last equality being justified by (a’). Note that t’(x) is non-

decreasing in I so

(e) 
~~~~ 

eitl(z) < (E~~~1
e1

) t2(z) for all z C B5’ . -

Also note that

(f) 
~~~~~~ 

e1t1(x) > 0

because e1 > 0 and if t1(x) < 0 then by (c) e~ 0. Combining

(e) and (f) into (d) yields

~~~~ 
e1) t2 (z)  > 0 for each z C B51

.
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Finally observe that e
’
~ 00 (1—A’ ) + A’ 00 1 and hence t

2
(z) > 0

for each z C Rn . This is the long awaited for contradictir ’n. Thus far

it has been shown that x is feasible and consequent ly that A’ > 0.

Now let z C Rn be any other feas ible point for P. 1 .2. It must be

shown that p ( z )  p ( x ) .  This will follow from the convexity of p

and. the fact that c C ~p(x) since

p (z~ > p(x) + ~c, z—x)

Hence all that needs to be shown is that (c , z-x ) > 0 , and this will

be derived from the feasibility of z and the convexity of t1.
i~ -.Since b ~~. ~~t - x )

(g) t1(z) > t~ (x) 
- f- 

~b
1, z-x) for each i 00 1,..., 2.

Multiplying both sides of (g) by the nonnegative scalars e1/A’ and

summing over I yields

(h~ ~~~l 
(e
1/At ) t’(z) >~~~~1(e

’/A’ ) t
1 (x) + (~~~1(e

1
,/A
i
)b., z-x)

and from (a),

(h’) ~~~1
(e 1/A’ ) t1(z) > ~~~1(e

1/A~ ) t 1(x ) - (c, z-x)

On the right side of (h’) note that ~~~1
(e’ /A t ) t1(x) = 0 since x is

feasible and since t1(x) < 0 implies e1 00 0 by (c). On the left

side ~f (h’ note that ~T~~~1
(e 1 

A ’ )  t~(z) < T~~1(e
1/A’ t~ (z) by the

mnonotonicity of t~ in i. Combining these two into (h’) yields

89



(i) =1(e
1/A’ ) t~ (z) > - (c , (z -x))

Since z is a feasible point , t (z )  < 0 and hence (c , z—x) > 0 as

desired . This proves the necessary part of the theorem. To establish

the sufficiency, assume x solves P.14.2. It will be shown that

x C 32’1 (x) and an ergiiment is given to show that x ~~. S
2
~~(x). This

argument may be repeated to establish that x C S°(x). Note that

- - ~-l -x u S (x) by T.1. . To see that x ~ S (x~ consider

Case 1: t2~~(x) < 0

-, 2—1 2—2In this case, S (x) 00 S (x) and therefore x S (x) .

Case 2: t2~~ (x
’
~ 0

2—1. 2—1In this case 3 (x) 00 hull(S (x) U T  ( x ) ) .  But x ~ S (x) so

in particular, x C S’ (x). Since x is feasible for P.14.2 these are

the only two possible cases and that establishes the proof.

At this point one would hope to be able to apply the algorithm

of Chapter 3 to this point to set map. Unfortunately there is no guarantee

that a linear approximate fixed point of ~0 will be computed in a finite

number of steps. Merrill ~5~ 1 observed this difficulty and he constructed

an example where the constraints were all convex as was the objective

function yet the algorithm failed because it did not find a linear

approximate fixed point in a finite number of steps. A way around this

difficulty is to ensure that the algorithm never searches for a fLted
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point of the FL approximat~ofl outside of s o e  cuin ~ act se~~. A very n atural

choice would be the hyperrectangle defined by th~ upper and lower bounds

since no solution to P.14.2 can lIe outside this region an~~ay. The

only problem is that P. 14 .2 may have some variables which have no bounds.

Tn this case it is necessary to impose arbitrary upper and l ower bounds .

P~ach tine a new linear approximat e f ixed point Is computed, the artificial

bou nds will be expanded . This is the essence of

Theorem C.5. Let and [vk) be sequences of vectors in Rm

Ic k k
with u < v and ft ) —

~ 
(- co, - ... , - oo) and

~ (+ ~~~, + ~~~, ... , + ~ as k —~~~~~ . Pefine a sequence of problems

mm p(x)

s.t. q(x) < 0

u x < v
- - 5 1x C  R

I kIhen x solves P. 4 . T 1ff there is an N such that x solves P for

k ~-‘ N.

i r - of. Suppose first that solves P.14.2. Choose N such that k > N
k k

-~ plies ii ’~ ~ x < v . If z is any other feasible point of P for

k > N , tnen p(z) ç(x) since x solves P. 14 . . This establishes the

necessary part of the theorem. Suppose now that x solves

aLl  Ic > N. It must be shown that x solves P . lt .2. Clearly x is
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feasible for P.~~.2 since q(x) < 0. If z is any other feasible point

for P.I1..2, then choose k > N such that z is feasible for ~k• From

the fact that x solves ~k, p(x) < p(z). This establishes that x is

optimal for Pi~.2. II

An additional advantage to using a hyperrectangle is that it ma~r

be easily triangulated. The philosophy here is that “if there is no

reason to search outside a given region then don’t. ” Also one would ilk.

the ability to control the “size ” of these simplexes. To show precisely

how this is done let u, v € Rm with u strictly less than v in all

coordinates (u will be the lower bounds and v the upper bounds).

Also let N1, ... , N~ be positive integers. Set M = X~~1[0,N
1] and

C = X~~1[u1,v1]. The idea is to create a linear homeomorphlsm, L,

from M into C. Then any triangulation of M yields one of C by

applying L to each simplex. Michael Todd {52J has developed a tri-

angulation of which when restricted to M yields a triangulation

of M. This combined with the mapping L will provide the desired tri-

angulation of C. It remains only to specify the mapping L~M —s C,

so let •.. i~) C M then define

L(i1, 
~ ~~ 

= u + w(i1,

where



(V
1

— u.,)
0 • o

N.L

(v,)-u
o

a • 0 
(V -U )

This has been implemented into the computer code and choices for

N1, ..., N~ have been left to the user ’s discret~Lrn.

6.5. Other Methods and Future Research.

One of the more effect ive accelerat ion techniques is that of

Saigal [ Li-Li.,~~5]. It applies to the special case of P.14 .2 in which there

are no inequality constraints, that is to say, unconstrained optimization.

Furthermore the hypotheses require that p be a strongly convex twice

continuously differentiable function. In this case he was able to obtain

an increased convergence rate by increasing the rate at which the mesh

of the triangulations goes to zero.

Since the area of acceleration techniques appears to be the most

important, several unsolved problem2 will be presented in the hopes that

if they can be solved, further improvements will be obtained.

For example, in Chapter ~~~, it was mentioned that various

researchers have developed computerizable triangulations of and

of the unit simplex, and with the results of sect ion 6.I~ it is now possible
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to triangulate a hyperfectangle. The next generalization would be to

develop such a triangulation of a compact polyhedral set. This would

enable one to solve a linear programming problem in a finite number of

steps. Another interesting possibility would be to find a sequence

of linear transformations, which, when applied to the original tri-

angulation of R
m 

yields a new triangulation of Rm with perhaps some

beneficial new properties.

Another area which could use some work is the way in which the

basic and nonbasic variables are chosen. This problem has not been dealt

with here and it can only be said that in the test problems of Chapter 7

a proper choice was always evident. In general one will not be that

lucky and it will be necessary to find a method for doing this. The

choice can be critical in the success of the algorithm. The following

example shows that a poor choice of the basic and nonbasic variables

can cause the algorithm to fail.

~ cample 6.1. Consider the problem

mm y - x

s.t. y - x 2 = O

1
x , y € R

The solution to the problem is x = 1/2, y = 1/14 and the algorithm will

compute this answer provided the x variable is chosen as the nonbasic

var iable, whereas if y is so chosen, the algorithm can be caused to

converge to x = y = 0 by choosing an initial point x ’ ~ -l, y’ = 1

with G(x’,y ’) 0.

914
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CHAPTER 7

COMPUTE R RESULTS

7.1. Designing the ~~~~

All of ~tie ~revicus work has been used to develop an algorithm

f - r  solving p • 14 • t un :ie e rather hypothetical conditions . Although con-

vergence has been theoretically established in Chapter 14 the ultimate

value of this (sr for that matter any other) approach can only be

determined by its ‘t ’~tual performance. Therefore seventeen test problems

have been solved and the results are compared against those obtained from

GRG (Genera1~zed Reduced Gradient Method) proposed originally by

Abadie 1]), which, to the author’s knowledge, is the best commercial

code for solving p.14.1.

The first difficultj in designing such a test is to determine a

measure of computational efficiency. Some items which should be con-

sidered .are robustness, “cost” to compute a solution, accuracy of the

solution with respect to the optimal objective value and with respect

to the optimal solut Ion vector, and ease of implementation. Of these,

robustness and overall expense are often considered to be the n~ st

important. Robustness is the ability to handle a wide variety of problems

under various starting conditions. For this reason seventeen distinct

problems are presented and solved, so~~times from different starting

points.
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Having settled on cosi::  as one of the mea::ures of efficiency

the next task is to determine how it is to be caiculated. One possi-

bility is to define coE’ts as tr .~ number of function evaluations. The

reasoning is that very o~’~~n this ~ili be the most expensive operation.

There are several drawbacks to using this statistic as the sole measure

of co ts. One problem is that it totally ignores the amount of work

performed beti~. een function evaluations. Also, function evaluations in

one met~1oJ rr~a~ :e quite different from those of another method. For

example, the fl--ed point code ‘~iil1 require a simplex pivot in Rm after

each gradient evaluation, but it will never evaluate the objective

function. Furthermore, due t,o some of the techniques of Chapter 6,

not all gradient evaluations will require a matrix inverse. On the other

hand, with GRG, the objective function is evaluated many times but no

pivots need to be performed. All these different statistics are reported

in the ensuing tables; however , the conclusion i~ that it is necessary

to let the computer determine ~he total costs via the CPU time.

Even this is very unsatisfactory in that the way the algorithms

are programmed, the access of data and the amount of’ printing can

radically affect the CPU time. Several precautions were taken to reduce

some of these variances. To begin with, both codes were run on the

same computer (IBM 370/l€~5) and on identical partitions of core. Both

were compiled under Fortran H, OPT2 and CPU time was measured from the

very first executable statement to the very last. The fixed point code

was programmed by the author and the GRG code was obtained from Leon

Lasdon and Arv ind Jam through the Systems Optimi zation Laboratory at

Stanford University.
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The final step was to find severteen test problems . One of the

major difficulties here was that many of’ the problems in the literature

had only inequality constraints. Any problem of this kind was discarded

immediately since the entire obj ective was to see how this algorithm

would perform under equality constraints. Since problems of this nature

are, in general. very difficult to come by they will be printed here

along with their sources , kno~in solutions , and various starting point s in

the hopes that other researchers will be able to use them.

7 .2. Tables of  Res~’tts and Conclusions.

This section presents the results of the fixed point code and

GRG on the seventeen problems in Section 7.3. Table 1 gives a summary

of the characteristics of the problems and Tables 2 and 3 give a summary

of the fixed point and GRG methods respectively. In Table 2, the letter

following a number refers to a iifferent starting point as shown In the

problem description. Also in Table 2 , the number of gradient calls

requiring a matrix inverse is reported whereas Table 3 reports all

gradient calls. ORG appears to be somewhat faster in solving problems

1, 7, 9, 12, 13 and 15, whereas the fixed point code seems slightly

faster on problems 2 , 3, 14, 5, 6, 8. 10, 11 and 114. At first glance

there is reason to suspect that the dimension of the problem is a key

factor. A possible explanation for this is that as the dimension goes

up, the number of simplexes traversed by the fixed point algorithm goes

up greatly. In order to test this possibility a forty diinensiona]. problem
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was invented (Problem 16) and GRG proved to be approximately eleven times

faster In solving it. Note that this problem has no inequality constraints.

Since inequality constraints add to the complexity, Problem 16 was

modified by adding upper bounds. This formed Problem 17. An interesting

result was that the fixed point code required almost twice as many pivots

(and consequently almost twice as much time) to solve I’roblem 17 as it

did to solve Problem 16. GRG, on the other hand, actually took less

time to solve Problem 17 than it did to solve Problem 16. This opens

up another area for future investigation.

Nonetheless, the conclusion from these tests is that when the

dimension of the original problem is reduced sufficiently by the equality

constraints, the fixed point approach appears to be more effective than

GRG .
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TABLE 1

PROBLEM 2~SC IPTION

Number of Nonlinearity of Nonlinearity
Problem Number of Eouaiity Lower Upper Ob .iectivc. of
Number Variables Cons t.rai:~t Bounds Bo~ r~ds F~i~ t.ion Constraints

1 1. None i~Lne Quadratic Quadratic

2 1 ~one None Mi !~2 Mi ld

3 3 None None strong Quadratic

3 2 None None Cubic Quadratic

3 2 None Pone Strong Strong

h 14 2 None None Strong Strong

7 5 2 id,ne ] None Strong Strong

5 2 None~~ None Strong Strong

9 5 2 All All Mil~ Mild

10 5 1one None 1 St~ c~ng Strong

11 5 2o~e None St”ong Strong

12 6 14 All A ll D~ sco ntinuour Strong

13 10 3 All None Strong Linear

11+ 11 C All None Strong Linear

15 1 All A 1  i Quadratic Linear

140 20 None None Quadratic Mild

17 hO 20 All All Quadratic Mild



TABLE 2

FECED powr RESULTS

roblein Objective Number of’ Number of Number of Number of CPU
lumber Value Newton Newton Gradient Pivots Time

* Obtained Calls Iterations Calls** Required (in secs )

1 1.39~4 24 1 6 214 .07997

2 .000005 141 40 9 142 .11625

3(a) 961.717 20 59 9 26 .095147

3(b) 961. 717 20 59 9 26 .095147

14 117.062 16 23 16 16 .08295

5 .1655 33 19 33 33 .109146

6 — 14.14969 52 106 29 63 .147~49

7 -2500.57 140 60 140 44 .13192

B - 210.024 86 132 26 107 .20190

9 -50665.3 109 71 34 165 .20931

10(a) .05395 28 38 9 29 .11132

10(b) .05395 26 50 28 .10978

11(a) .02932 40 39 214 1414 .13056

11(b) .02932 37 27 21 38 .12151

11(c) 27.552 144 56 28 149 .13700

11(d) 27.552 1414 56 28 149 .13700

11(e) 27.552 1414 56 28 49 .13700

12 8827.6 58 71 leo 67 .2 3425

13 ~147.760 1 1 1 385 .56465

114 .000120 1 1 1 115 .281489

15 244.9 1 1 1 967 1.99

16 .728142 1427 390 265 577 16.01778

17 .73027 785 717 785 1084 28.06149

*The letter. in parentheses refer to the different starting points.

*4Only those gradient calls requiring a matrix inlerse are reported.

100

- ----

~ 

---~~~~~-- - -~~~~-



TABLE 3

GRO RESULTS

~rob1em Objective Number off Number of Number of Number of CPU
rumb er Value Newton Newton Gradient Objective Time
* Obtained Calls Itera tions Calls Function Calls (in secs)

1. 1.39336 15 7 14 25 .0715

2 0.00000 47 86 9 1314 .1139

3(a) 961.715 30 61. 
- 9 101 .1114.~

3(b) 961.715 40 86 10 135 .12521

14 117.056 28 21 6 so .09472

5 . 1655 13 37 4 51 .07924

6 -14.14969 51 126 14 179 .16045

7 —2500.63 29 34 8 65 .1284

8 -210.1408 73 175 15 255 .2056

9 —30655.5 7 6 16 .08714

10(a) .053948 24 42 8 
- 

68 .1.1519

10(b) -- -- -- -- --

11(a) .02931 54 76 10 1.15 .131454

11(b) .02931 29 51 9 84 .12562

11(c) 1414.022 144 50 10 78 .15835

11(d) 27 . 872 48 111 U. 160 .15617

11(e) 607.017 76 152 15 239 .2007 14

12 
- 

8827.6 5 5 114 .08870

13 -47 . 760 914 1 20 101 . 32137

*4 —— —— —— -- ——
15 21414.9 156 1 57 162 .%266

16 .72839 56 73 130 11 1.4875

17 .73017 3 13 5 25 .14072

*The letters in parentheses refer to the different starting points.
4*ORO failed to obtain correct solution (could be user error) .
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7.3. The Test Problems

Since equality const ra ined optimization problems are, in general ,

difficult to find in the 1itei -~ture, the seventeen problems which were

used for the comparative tests are documented here along with their

sources , known solutions and suggested starting points.

Prob~eni_1.

mm P(x 1,x
2 ) = (x

1
-2~

’ + (x -l) 2

s. t . x1 - - o ~ + 1 = 0

2x -

- 1~~~O

Optimal Solution and Optimal Objective Value.

x ’ = ~~~~ . -~ll)

P(x ’) = 1.3~13

Suggested Starting Point.

x = (~ ,2)

Source. Himmelblau 26].
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Problem 2.

mm P(x1,x ,x7) r (x1
_x~ ) + (x, -x

5
)

14

s.t. x
1 + x1x2 + - 3 = U

Optimal Solution and Optimal Objective Value.

= (i,a ,~~)

P(x’) = o

Suggested Starting Point.

x = (~.4, .5, 0)

Source. Avriel [ 2 ] .

Problem 3.

mm P(x1,x,,x3) 
= 1000 x~ - 2x~ - - x1x. - x~x3

s.t. + . + x + x~ + x~ - 25 = P

+ l~4x2 
+ 7x7 - ~

,() = 0

Optimal Solution and Optimal Objective Value.

x ’ (3.51 12, .2L6988, 3.5-~:17)

P(x ’)  = 961. (1)

Suggested Starting Points.

(a) x = (jo , 10, 10)

(b) x = 
~~~~~ —10, 5)

Source. Margaret Wright 155 1.
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Problem 4.

mm P(x1,x0,x5) -(xi 
+ x

2 
+ x

3 
- 7) 5

s.t. x
1
+ x + x ~~ - 2 = O

x 2 - exp(x
1) = 0

Optimal Solution and Optimal Objective Value,

= (.l7x~~, 1.1961, .7330)

P(x ’) = 117.062

Suggested Starting Point.

x = (0,1,1)

Source. Richard Asmuth--Private Communication.

Problem 5.

mm P(x1,x2,x5
) = exp (x

1x2 
- x~)

s.t. x~ + x~~- 2 = Q

x1x2 -x ~~+ x5 
=0

Optimal Solution and Optimal Objective Value.

x’ = (-.6824gb, .820716, 1.l12q1~)

P(x ’) = .1655032

Suggested St~.rting Point.

x = (—1 ,1,1)

Source. Richard McCord--Prjvate Communication.
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Problem C.

mm P(x1,x9,x3 .x 14) = + (x
1
-l)

14 
+ (x

2—x 5
)4÷ (x,-l)2

s.t. x1x~ + sin(x4 - x5) 
- 14 = 0

2 14
x2 —10 =0

Opt imal Solution and Optimal Objective Value.

x ’ = (2.o33P56, 1.591625, 1.5921401, 1.14008 79)
P(x’) = -4.~496925

Suggested Starting Point.

x = (5.l~~, 3.162, 0,1)

Source. Richard McCord--Prjvate Communication.

Problem 7.

mm P(x1, x2, x5,x4, x5 ) = 1Ox
1x4

-6x~x i-x2x~+ 9 sin(x5
-x
3
) + x~x~4

0 2 2 2 2s.t. x~~+ x 2
+ x

5
+ x 14 + x~~~~2 O O

x1X5
+ x 5 x1 + 2  = 0

5 - x~x4 - 10x1x5 
< 0

Qptimal Solution and Optimal Objective Value.

x ’ = (1.147265, -: .63661, 1.051467, —1.611’ 1, 2.67588 )

P(x ’)  = -2500.55

Suggested Starting Point.

x = (1.091, —).l714, i.: t14, — 1.6114, 2.134)

Source. Modified from Himmelblau [26].
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Problem 8.

m m  P(x1,x~ ,x5,x4, x5):10x1x4 - 6x3x~ + x~x~ + 9 sin(x 5-x5
) + x~x~x~

~ 0 ~s.t. x2 + x ~~+ x
’ + x ~~+ x :_ 2 o = O1 ~

.. S ‘+

x~x4 
+ l0x~x5 

- 5 = 0

-x1x3
-x

5
x4 - 2< 0

Optimal Solution and Optimal Objective Value.

x l = (-.08114522, 5.69258, 2.1487141, .577154 , .173983)

or
= (.0520, 3.69114, 2.14807, .35993, .29777)

P(x ’) = -210.0214

Suggested Starting Point.

x = (1,1,1, 1,1)

Source. Modified from Himmelblau [26].
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Problem 9.

mm P(x1,x0,x5,x4,x4) = 5.55785147x~ + .8356891x1x5 + 57.~ 95239x1 
- 140792.141

s.t. 25.5341407 + .OO56R5Sx,~x5 
+ .0006262x

1x4 
- .OO22O55x

3
x
5 

- 92 = 0

~.30096l + .OO47O26x5
x
5 
+ .00 125147x1x3 

+ .0019085x
5
x) - 20 0

80,51249 + .0071517x x + .0029955x X,) + .OOO2l2l5x~ -100 < 02 )  1 —

-°0. 51.2142 - .007l517x,)x
5 

- . 00299 5x1
x ) - . 0002 ‘l5x~ + 90 < 0

78 < x1 < 102

5 3 <X 2 < 145

2 7< x
3
< 145

27<x 4 < 45

Optimal Solution and Optimal Objective Value.

x’ = 
~

7 - , 33, 29.995, 45, 36.776)

P(x ’)  =

Suggested Starting Point

x (78 .6a, ~~~~~~~~~~~~~ 31.07, 144.18, 35.22)

Source. Modified from Colville [ 8 ] .
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Problem 10.

mm P(x1,x2,x3, x4,x5) = exp(x 1x , x
5

x 14x 5)

s.t. x~ + x + x~ + x~ + x~ - 10 0

x2x3 
- 5x 4x5 0

x~~+ x~ + 1= 0

Qptimal Solution and Optimal Objective Value.

= (—1.71114, 1.5957 1, 1.82725, -.76.5643, — .765(145)
= .05391499

Suggested Starting Points.

(a) x = (_ 2,2,2,_1,_l)

(b) x = (— l ,—l , —1, —l , —l)

Source. Powell [142 ] also Margaret Wright [55].
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Problem 11.

mm P(x1,x2,x5,x4,x~) = (x1-l)
2 
+ (x1-x2)

2 
+ (x)-x.5

)3 + (x
5
—x
4)
4 
+ (x 4—x5

)4

s. t. x
1 + 4 + - 2 - ~ = 0

0

x x  - 2 r Q1)

Optimal Solution and Optimal 0~jective Values.

= (i.iiEi s, 1.22044, 1.5577~~, 1.972 (7, 1.79110)

P(x’) = .029518

= (-~ . 798o’~’, 5.00414, .205371, 5.8714714, -.716623 )

P(x ’)  = 60(.0)6

= (— 1 .2(30 5, 2. 41055, 1.19)486, - .1514259, —1.57103)

P(x’) = 27.8719

x’ = (- . 7o5593 , 2.65570, -.0963618, -1.79799, -~~~. (536)

P(x ’ )  = 44 .021.

Suggested Starting Points.

(a) x = (1,1,1,1.1)

(b) x = ~~~~~~~~~

(c) x = (— l ,3, —l/ 2 , —2 , — 3 )

(d ) x = (—l , ;~, l, —2 , —- ~

(e) x

Source. Miele, Moseley, Levy and Coggins [6}; also Margaret Wright 15 .51 .

109 



- ~~~~~~~~~—
_. 

-~~~~-—

Problem 12.

miii P(x1,x2,x5,x4, x1,x6) = P’(x
1) 

+ P”(x
2)

s.t. x1 
- c + (x

5
x4 cos(b-x6) 

- A cos(b-a))/B = 0

x2 
+ (x

3
x 14 cos(b+x6) — A cos(b-a))/B = 0

(x
3
x4 sin(b-x6) - x~ A sin(b-a))/~ - D = 0

x
5 
+ (x

5
x14 sun (b+x6) - x~ A smn(b-a) )/B = 0

O <Ic 1 
< 14(J() where A = .90798

0 < < 1000 B = 151.078

5140 < x
3 
< 420 a = .00889

5)4o < x4 < )4~O b = 1.148477

-1000 < x
5 
< 1000 c = 500

0 < x 6
< .5236 0 = 2 0 0

and
30 if O < x  < 300

~Pt 
1

51 if 300 < x1 < 14oo

and 
28 if O < x < 1 0 0

~~~ (x
2) = 29 if 100 < x

2 < 200

30 .if 2 0 0< x ~~ < 300

Optimal Solut ion and Optimal Object ive Value.

= (107.85)4, 196.295, 373.8)6, 420 .002 , 21.293, .15327)

P(x ’)  = 8827.595

Suggested Starting Point.

x (390, 1000, 419.5, 5140.5, 198.175, .5)

Source . Coleville ~8J.
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Problem 15.

10 10
mm P(x1,..., x10) ~~ x .(c 1 

+ £ f l ( X j/~~~ x .))
1=1 ,J =l

S.t.X 1 +2x , +2x5
+x

6
+ x

10 - 2 = O

x4 +2x
5
+ x + x

7 
- 1 = 0

1C
5

+ x
7
+ x

8
+2x

9
+x

10 - l = O

where

c = (-6.089, -17. 1614, _~ L1.~Q5)4 , -5.9114, -~)4.721. -114,986,

-2)4.1, —10.708, —26.662, —22.179)

Optimal Solution and Optimal Objective Value.

= (.01406 , . l)47~ , . 7852 , .001)4, .14$~5, .0007,

.O27~ , .0120, .0575, .0969 )

P(x ’) = —14 7 .76 1

Suggested Starting Point.

= (.1., ... , .1)

Source. Himmelblau ~2 6] .
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Problem l~4.
5

mm P(c0, ... , c6, k1, ... , k5) = — 

~~~~~~ 

(c1 
- lS)

l_V
/(l_v )

s.t. k
0 = k6 = lOO

km+i = 1.5k. — c
i , i = 0,..., 5

where

v = )4.502C

Optimal Solution and Optimal Objective Value.

(c’,k’) = (28 .47 )4, ~~~282, 30.159, 51.0147, 52.010, 33.031,

101.526, lO~.702, 103.57)4, 1O3.5-Y~, 102.330)

P(c’,k’) = .000120804

Suggested Starting Point.

(c,k) = (101, 101, ... , l0l’
~

Source. Professor Alan Marine--Private Communication.
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Problem 15.
16 If-

mm P(x 1, . . . , x16) 
1-1 j --l  

aj j (x~ + x 1 
+ 1) (x~ + X

j 
+ 1)

s.t. 
j=l 

b
mjxj C

1 
= 1,. ..,8

where

O < x ~~< 5  j  = l , . . . , 16

~~~~T ~~~~~~~~~~~~~~

c = (2.5, 1.1, —3.1, —5 .5, 1.5, 2.1, 2.5, —l .5’
~ and
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B .  1 2 3 14 5 6 7 8 9 10 11 1.2 13 1.14 15 1

1. .22 .2 .19 .25 .15 .11 .12 .13 1 
—

2 —1.46 —1.3 1.82 —1 .15 .8 1 
—

3 1.29 — .89 -1.16 — .96 -2~9

4 —1 .1.  — 1.06 .95 — .ss -1.78 — . 51

5 — i . 4.5 1. 51 .59 — .33 — .~i3

6 —1. 72 - .33 112 1.25 .21 - .26

7 1.12 .31 1.12 - .2

8 .45 .a6 — 1 . 1 .
~~~~ 

—1.03 . 1

Optimal Solution and Optimal Objective Value.

x’ = (. 04, .792 , .205, .8)44 , 1.27, .935, 1.682 , .155,

1.568, 0, 0, 0, .66, 0, .6714, 0)

P(x’) = 244 .9

Source. Himnibelblau [26].
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Problem I f .
20 140
~- 2mu P(x,,...,x~~) = L x . + ~ x .

- 1 
j=21 ~

20
s.t. x1~20 exp(- ~ x .)  - 1 = 0, 1 < i < 20

3=1

Optimal Solution and Optimal Objective Value.

-.22~458 i~ l < i < 2 O
x~ =

1
.0112514 if 21 < m < 40

P(x ’)  = .7283 99

Suggested Starting Point.

0 if l < i < 20

x. =
1 

1 if 2 l< i< ) 4 0

Source. Proposed by author.
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Problem 17.
01 2mm P(x1,...,x40) = ~~ x . + ~~~ x.

i 1

20
s.t. x1~~0 exp(- ~~~ x . )  - 1 = 0 1 i < 20

- j =l

x~~20< .O1 l < i < 2 O

Optimal Solution and Optimal Objective Value.

-.23025 if l < i< 2 0

xi =

.01 if 2 l < i K  140

Suggested Starting Point.

x. = 0  l < i < 1 4 01 — —

Source. Proposed by author.
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A 1’PENDD( A

With the theory of Chapters 1 and 14 it is now possible to show

that P.14.1 is in fact a special case of decompo~ abi1ity of a point to

set map. This is formally stated and proved in

Theorem. Suppose A .)4.1-A .14.5 hold and that in addition P, (~, h and Q

are all differentiable on their respective domains. Define the function

L :Rm ~~~~ by L(x) ~ P(x,h(x)) + V P(x,h(x))
T 
Dh(x). Then the point

to set map S:R x R —, (R ~ R ) defined by

(x,y) — ((L(x),G(x,y))) if t(x) < 0

S(x,y) = (x,y)-hull (~t(x) U (L(x)))x(G(x ,y)) if t(x) = 0

(x,y) - 3t(x) x (G(x ,y)) if t(x) >0

m n
satisfies (S,R ~ R ) is decomposable.

Proof. Let X = Rm, Y = R”, Z = X x Y. Define Sf:Z --~ (X)* by

x - (L(x)) if t(x) < 0

Sf
(X, Y)  = x-hull(~t(x) U (L(x))) if t(x) = 0

x - ~t (x) if t(x) > 0

and Sg:Z ~ (y)
* by
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Sg (X~Y) = y - CG (x , y ) )

Property (1) of D .2.2 holds by construction. Furthermore, property (2 )

of D.2.2 holds trivially since for each x C R

Sg(X~h (X)) = h(x) - (G(x ,h(x))) = h(x) - (0) = (h(x)). 1

It is of course important to note that under the conditions developed in

Chapter 4, a solution to P.4.1 may be obtained by finding a fixed point of

the point to set map Sr
:X — (X)* defined by S

r(X) 
- S

f(x,h(x)).
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SOb 77—32 “Decomposition in Fixed Point Computation ”

In the past decade , several c o n s t ru ct i v e  proofs of the Brouwer and Kakut ar i :
fixed point theorems have emerged . These proof’s have beezi developed into
algorithms ( known in the l i terature as complementary pi vot algorithms) which
search for fixed points on unbounded regions. in turn these a lgor i l .hms  have
been used to solve problems arising in economics , eng4z.~’ering and other
branches of applied mathematics. An important aoplicat.~~~ for which this
me t hod was cumbersome and inefficient -to use was that of o~~ imi zing an objec-
t ive function subject to bo th equa l i ty  ar id inequal i  t.y constr~~ nts  ( hereafter
referred to as the general constrained optimization prob1em).-~ One result of ~
~hi~ diaoe~~~~t i is t~- most e f fi c i en t - compl ementary p iv ot  algori thm to da t e
f or handling~~~ problem . The second major contr ibuti r i ~~~~hi~ t~~5i~~isa general struc ture on fixed point problems which , when present , ,  enables one
to work in a lower dimensional space. It is shown that the general constrai!r

- optimization problem rriay sometimes he formula t ed as a fixed point problem
possessing this property.

The basic approach adopted in this work t’or handling the general con-
strained optimization problem is to use an implicit  funct ion  ( derived from
the equality constraints) to solve for some dependent variables in terms of
the remaining independent ones. Under certain circumstances , a fixed point.
algorithm may be used to search for optimal values of the independent vari-
ables while Newton t s method is  used to determine values of the dependent
variables. Theoretical condi t ions  on the original functions are developed
to guarantee that the fixed po i nt algorithm converges to a solution and var i-
ous techniques are devised to enhance the overall e f f ic iency .

To help ascertain the value of this method , comparative computer tests
are run against the Generalized Reduced Gra d ien t  (GRO) algorithm wh i ch is a
well established nonlinear programming code . This me thod was selected as
the basis for comparison because , to th e author ’s knowl edge , i t  is the best
commercial code rer solving the general cons t rained optimi zation problem.
Seventeen test problems were taken from var i us sources. The fixed point
code solved all seventeen and GRG solved sh een . This supports the robust-
ness of the fixed point approach. As to the computer times , the fixed point
code proved to be as fast or faster than qRc~ on the lower dimensional problems .
As the dimension increased , however, the trend reversed and on a for ty diinen-
sional problem GRG was afe roximately eleven time s faster.  The conclusion
is that when the dimensi -a of the o r i g ina l  problem can be s u f f ic ie nt l y  reduced
by the equality eonstrn ints , the fixer ~ point approach appears to be more
effect ive .
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