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CHAPTER 1

INTRODUCTION

1.1. Overview and Thesis Organization.

In the past decade, several constructive proofs of the Brouwer
and Kakutani fixed point theorems have emerged. These proofs have been
developed into slgorithms (known in the literature as complementary
pivot algorithms) which search for fixed points on unbounded regions.

In turn thesge algorithms have been used to solve problems arising in
economics, engineering and cther branches of applied mathematics. An
important application for which this method was awkward was that of
optimizing an objective function subject to both equality and inequality
constraints (hereafter referred to as the general constrained optimi-
zation problem). One result of the dissertation is the most efficient
complementary pivot algorithm to date for handling this problem. The
second major contribution of this thesis is a general structure on
fixed point problems which, when present, enables one to work in a
lower dimensional space. It is shown that the general constrained
optimization problem may sometimes be formulated as a fixed point
problem possessing this property.

The basic approach adopted in this work for handling the general
constrained optimization problem is to use an implicit function (derived

from the equality constraints) to solve for some dependent variables in




terms of the remaining independent ones. Under certein circumstances,

a fixed point algorithm may be used to search for optimal values of the
independent variables while Newton's method for solving nonlinear systems
of equations is used to determine values of the dependent variables.
Theoretical conditions on the original functions are developed to
guarantee that the fixed point algorithm converges to a solution and
various techniques are devised to enhance the overall efficiency.

To help ascertain the value of this method, comparative computer
tests are run against the Generalized Reduced Gradient (GRG) algorithm
which is a well established nonlinear programming code. This method was
selected as the basis for comparison because, to the author's knowledge,
it is the best commercial code for solving the general constrained
optimization problem (see Colville [8], Nishiyama, Simkin and Takeuchi

[LO], Lasdon, Warren, Jain and Ratner [34]). Seventeen test problems

were taken from various sources. The fixed point code solved all seventeen

and GRG solved sixteen. This supports the robustness of the fixed point
approach. As to the computer times, the fixed point code proved to be

as fast or faster than GRG on the lower dimensional problems, As the

dimension increased, however, the trend reversed and on a forty dimensional

problem GRG was approximately eleven times faster. The conclusion is

that when the dimension of the original problem can be sufficliently reduced

by the equality constraints, the fixed point approach appears to be more

effective.




The dissertation consists of seven chapters. Chapter 2 contains
the essence of the dimension reducing property along with several examples
of where this structure arises in applications (of principal interest is
the general constrained optimi.ation propbiem). Under certain circumstances,
the algorithm Jescribed in Chapter 7 can be used to obtain a solution to
this problem. Some theoretical conditions on the original functions which
ensures that the algorithm converges to a solution are established in
Chapter U4 while Chapter 5 deals with all of the computational consider-
ations. Chapter 6 proposes various techniques to improve the efficiency.
Finally, Chapter 7 presents the results of the computer tests along with

the appropriate conclusions.

1.2. Historical Development.

The history of the computation of fixed points dates back to 1929
when Knaster, Kuratowski and Mazurkiewicz [30] gave the first constructive
proof of the Brouwer fixed point theorem using Sperner's lemma, It was
not until thirty eight years later that Scarf (48], using the ideas of
complementary pivot theory developed by Lemke [35] and Lemke and
Howson [36] in 1964, produced the first algorithm to approximate fixed
points of continuous functions from the simplex into itself. Cohen [7]
simultaneously developed a constructive type proof of Sperner's lemma,
Many ideas closely related to fixed point computation were anticipated
by Hirsch (27] in 1963 wherein he gave an existence proof by using a

certain constructive technique to reach a contradiction.




The combinatorial techniques of Scarf's algorithm have various
other applications in mathematics and economics as shown in Scarf and
Hansen [25]. One example of this is approximating solutions to convex
minimization problems in which the feasible region is compact and non-
empty. Another example is the special case of Kakutani's fixed point
theorem [28] in which the compact convex subset involved is a simplex.

There were, however, several deficiencies with these methods.
Theoretically, the general version of Kakutani's theorem could not be

1

proved and computationally there was no way to "continuously" obtain
more accurate approximations. Furthermore, in higher dimensions, these
algorithms were highly inefficient.

In 1970, Eaves [11,12] developed an algorithm for computing a
fixed point of the point to set map in Kekutani's theorem, Then in 1971,
Eaves [13] and Eaves and Saigal [15] and, independently, Merrill [38]
developed techniques for overcoming many of the computational difficulties.
The computer results of these new ideas are reported in Merrill [38],
Saigal, Solow and Woolsey [U47], Gochet, Loute and Solow [23], Wilmuth

[53] and subsequently elsewhere. Since 1973 various other researchers

have contributed to the field including Todd [51,52], Kuhn [32,33],

Garcia [21,22], Fisher and Gould [17], Gould and Tolle [2L4], Kojima [31],
Engles [16], Friedenfelds [19], Eaves [14], Saigal [Lk,L45,46] and
Kellogg, Li and York [29]. Currently there are over one hundred papers
relating to fixed point computation and complementary pivot theory,

and an extensive bibliography may be found in Eaves [14].
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1.3. Notation and Preliminaries

The notation is developed here and is used consistently throughout

the thesis. To begin with let

m . .
R = m~dimensional euclidean space .

The following variables will always represent vectors in euclidean space:
a, b, u, v, w, x, y, 2z, and the variables /¢, m, n and s will denote

their various dimensions. Any point x € R® should always be thought of
as & column vector. The row vector corresponding to x will be denoted

T e

by x. If x¢€R"

and y € R® then let (x,y) be the (m+n) column
vector whose first m components are those of x and whose last n
components are those of y. The ith component of & column vector x
will be denoted by a subscript, e.g. Xy where as superscripts refer to
elements in a collection of vectors. Thus n different vectors in R"
might be represented by xl, S xn. Whenever possible the superscript

k will be used for infinite collections and sequences.

Let x, yE€ R® and a € R* with & >0 then

(x,y) = E?:l x;¥; = inner product,

x < y means xg < ¥y for each i

i
=
B

i

x < y means Xy g_yi for each i Lo oyl

Mxil = [(x,x)il/? = euclidean norm,
B(x,a) = open ball of radius &a and center x

{z € B*/||x-z] < a)




Some special notation for matrices is also needed. All matrices
will contain real numbers. The variables A, U, V and W will always
stand for matrices and I 1is reserved for the square identity matrix.
Its dimension will be implied by the context (as will the size of the
vector 0). If U is an (m x n) matrix and V an (m x £) matrix then
by [(U,V] 1is meant then (m X (n + £)) metrix whose first n columns
are those of U and whose last £ columns are those of V. 1In this
context an n-vector may be thought of as an (n x 1) matrix. The only
case in which confusion can possibly arise is when U and V are real
numbers with U < V. 1In thid caese ([U,V] can also be the closed interval,
i.e. {xE€ Rl/U < x < V}, depending on the context. The ith column of

U will be denoted by U and the ith row of U by Ui . Also it

A
will sometimes be necessary to associate a column of a metrix, say A,
with a vector x. This will be done by the notation A )" Note

also that if y € Rn then Uy 1is well defined because y is & column

vector. Also if W is a (n X n) matrix its determinant will be denoted

by det(W). Finally define

full = sup{lluyll/y € B* and [yl =1} .

A great many different functions are required for (a) the
property of decomposability in Chapter 2 and (b) the various constrained
optimization problems of Chapter L. For this reason, f, g, h, p, q, ¥, t,
F, G, L, P and Q will always represent functions. Observe that if

n:R" 5 R%, then for each x € R", h(x) generates a column vector




(0]

n(x) € 8% whose ith components is hi(x). Furthermore, f, g, h, r
and F will be related to decomposability whereas p, g, r, t, G, P
and Q will be used for the constrained optimization problems. Point
to set maps will be represented by H, S and T.

The handling of sequences also requires some discussion, for
example, a sequence of vectors will be denoted by {XK) where it is
understood that ¥ =0,1,... or k =1,2,... as implied by the context.
A subsequence will be thought of as a subset K of the positive integers
and will be written ”{xk], k € K'. If the given sequence converges to x
it will be written "{xk} —x for k —» «" and for a subsequence,

"{xk} —»x for k€ K'. x is said to be a cluster point of {xk] iff
there is a subsequence K such that {xk] % for k€ K,

For sets, the variables X, Y, 2 and O will always be used.

If X 1is a subset of R° then

bd(X) = boundary of X ,

¢l(X) = closure of X,
hull(X) = convex hull of X ,

int(X) = interior of X ,

X* = the set of all non-empty subsets of X.

If X and Y are subsets of R" and if w< R" and £:X —»f,

T:X - Y* then




X+ Y=(x+yxEX yEY ,

S

>~
»
(24
=
<
»
T
~><
<
a

XN\Y = (x€EX/x¢gY),
£(X) = {f(x)/x € X] ,
X} = U 2(x)
*x<X
Theorems, lemmas, etc. are numbered sequentia.ly within a chapter

and the following conventions have been adopted:

D.i.j = jth definition of Chapter i ,
L.i.j = jth lemma of Chapter i ,
T.i.j = jth theorem of Chapter i ,
P.i.J = jth provlem of Chapter i ,
C.i.j = jth corollary of Chapter i ,
A.i.j = jth assumption of Chapter i.
Some preliminary definitions and results will be drawn upon in

later chapters. These notions are presented here.

Definition 1.1. Let O be an open subset of R". The function

h:0 » R* is said to be differentiable at a point x € O iff there is

an (n x m) metrix Dh(x) (called the Jacobian matrix) such that

lim Ila(z) = n(x) = dh(x)(z-x)|l =0
z=xl[ -0

7z € 0




h 1is said to be differentiable cn O iff h 1is differentisble at

'
each point of 0. Wher h is a function from O into R, the

(L x n) matrix Dh(x) 1s called the gradient of h at x and its
transpose is writtem WVh(x). The function h is said to be twice

differentiable iff h 1is differentiable and if the mapping Dh is also

differentiable. The second derivative of h at x is written D°h(x).
Suprose a function Q:R™ x R —aRz is differentiable at a point

A S n
fa,b) € Rex R, 4

be (£ x (m+ n)) matrix (s,b) will frequently
be written {DXQ(a,b), DyQ(a,b)j vhere DxQ(a,bB is the (£ x m)
matrix corresponding to the derivetive of @ with respect to the

variables in R° and UyQ(a,b) for the same in R®. A similar ides

is applied to gradients.

It will often be necessary to use the derivatives to obtain
bounds. Ortege end Rhineboldt [41] provide several such theorems and

they are stated for use in this thesis as:

Theorem 1.1. Let f:X _>Rn be differentiable on the convex open set

), R". Then

i£(z) - £(x)]| < sup({IDf(x + A(z-x))]|/\ € [0,1]) llz=x||
for all 2z. x € X.

Proof, See Theorem 5.2.3 of Ortega and Rhineboldt [4l]. |
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Theorem 1.2, Let f:X - R® be twice continuously differentiable on

the convex open set X = R, Then
l£(z) - £(x) - DE(x) (2-x)|| < sup{I°£(x + A(z-x))I/A € [0,11) lly-xI? .
Proof. See Theorem 3.3.6 of Ortega and Rhineboldt [L41]. l

If the functions involved are convex then a slightly weaker notion
of differentiation exists. (It is assumed that the reader is femiliar

"n n

with terms such as "convex function, convex set," etc, Rockafeller
{43], Stoer and Witzgall [50] and Mangasarian [37] deal with most

of these notions.)

Definition 1.2. Suppose O 1is a subset of R" and h:0 - R? 1s convex.

The (n x m) matrix W is a subgradient of h at x < O iff
h(z) > h(x) + W(z-x) for all z €0 .

The set of all subgradients of h at x 1is denoted by dh(x).

There is a relation between D.1l.1 and D.1.2 which is stated in

Theorem 1.3, Suppose O 1is an open subset of Rm. A convex function

h:0 —» R® 1is differentiable at x € 0 iff ah(x) = {Dh(x)).
Proof. See Theorem 25.1 of Rockafeller [43]. ||

10




Corollary 1l.1. If a convex function h:Rm —,Rl is differentiable then

h(z) > h(x) + (Vh(x), z-x) for all z € R" .

Proof. By T.1.3, Vh(x) € oh(x) and the result follows from D,1.2. ||

Some other concepts related to convexity are:

Definition 1.3. A convex function p:R" Srb U {(+ »} 1is proper iff

there is an x © B such that p(x) > - «.

Definition 1.4. The epigraph of a convex function p:R™® SRYU {+ »)

is {(x,z) € R® x Rl/z > p(x)} and is written epi(p).

Definition 1.5. A convex function p:Rm —;Rl U {+ o} 1is closed iff

epi(p) is & closed set.

Definition 1.6. The domain 9£ finiteness of a convex function

p;Rm SR U ftw] is {x€ Rm/p(x) < o } and is written dom(p).

Definition 1.7. The vector 4 € R is said to be a common direction

of recession of the convex function h:Rm-a Rn iff there is a scalar

b and a vector x € Rm such that

hi(x+7\d)§b forall A0 amd fe=1l,...,8,

Ll




Point to set maps are required for transforming some optimization
problems into fixed point problems. Only certain classes of point to set
maps can be used in fixed point computation. Some of these concepts are
now developed.

%
Let S:R" - (%) be a point to set map.

Definition 1.8. S 1is said to be convex iff S(x) is convex for

each x € Rm.

Definition 1.9. S is said to be upper semi-continuous (u.s.c.) iff

whenever

(1) (<) >x

(2) yk € S(xk) for each k = 1,2,,
(3) 5" >y

then y € S(x).

Definition 1.10. A point to set map S is usable iff S 4is non-empty

convex and u.s.c.

Several results concerning point to set maps were proved by Merrill.

They are stated as

Theorem 1.4, Let O be an open subset of R® and suppose t:0 -;Rl U {+ ]
Then the point to set map T:dom(t) — R* defined by T(x) = x = 3t(x)

is usable.

Proof. See Theorem 10.4 of Merrill [38]. I

12



Theorem 1.5. Let X be a subset of R°. Also let S:cl(X) — (R "

m . m, *
and T:R \ int(X) - (R") be usable point to set maps. Then the

m m, ¥
point to set map H:R — (R) defined by
S(x) if x € int(X)
H(x) = hull(S(x) U T(x)) if x € ba(X)
T(x) if x ¢ c1(X)

is also usable.

Proof. See Theorem 2,6 of Merrill [38]. I

A final definition which is needed is that of isotonicity.

Definition 1.8. A function h:Rm -—»Rn is isotone iff h(x) < h(z)

= it
whenever x, z € R and x < z.

1>




CHAPTER 2

DECOMPOSABILITY IN FIXED POINT PROBLEMS

2.1. General Theory and Examples for Functions.

Given a function F mapping a nonempty subset 7 of R®
into itself, the fixed point problem is that of finding a z € Z
with F(z) = z. The basic idea behind decomposability is to place a
structure on F such that a fixed point may be computed by working in
a lower dimensional space. Several examples of where this structure

appears in applications is also presented. This structure is described

by

Definition 2.1. Let Z be a nonempty subset of R° and let F:Z - 7.

The pair (F,Z) is said to be decomposable iff there are positive
integers m and n whose sum is s, nonempty subsets X of R® and
Y of R whose cross product is 2 together with functions f:Z —X,

g:Z->Y and h:X - Y such that for each x < X,

(1) F(x,h(x))

n

(£(x,h(x)),g(x,h(x))).

(2) 3If x = f(x,h(x)) then h(x) = g(x,h(x)) .

n

The first condition states that F may be decomposed into two separate
functions f and g with f providing the first m coordinates of
F and g providing the remaining n coordinates. The second condition

is a special relation between the functions f, g and h which will

14




be used to establish the connection between fixed points of the lower
dimensional problem and fixed points of ¥. The lower dimensional
problem will be one of finding a flxed point in Rm. More specifically,
defining the function r:X —»X by r(x) = f(x,h(x)) the next theorem
shows that eny fixed point of r ylelds a fixed point of F. This

ther is

Theorem 2.1. If (F,Z) is decomposable then x € X satisfies
x = f(x,h(x)) iff (x,h(x)) = F(x,h(x)) where X and f are obtained

from D.2. L.

Proof. Suppose first that x = f(x,h(x)). By preperty (2) of D.2.1,
h(x) = g(x,h(x)). Thus (x,h(x)) = (f(x,h(x).g(x,h(x))) = F(x,h(x)),
the last equality being justified by property (1) of D.2.1. This takes
care of the necessary part of the theorem. For the sufficiency part
suppose (x,h(x)) = F(x,h(x)). From property (1) of D.2.1 it follows

immediately that x = f(x,h(x)) as desired. I

Replacing f(x,h(x)) by r(x) one may more easily see what
T.2.1 is saying. It is saying that if (F,Z) is decomposable then
finding a fixed point x of r yilelds a fixed point of F namely
(x,h(x)). The importance of this is that finding a fixed point of r
involves working in R" instead of R®. Some conditions under which

F and r may be expected to have fixed points is developed in




-

Corollery 2.1. Suppose (F,2) 1is decomposable and that f, g, h, X
and Y are obtained from D.2.1. In addition suppose thet f and h
are continuous and that X 1is compact and convex. Under these conditions

F has a fixed point.

Proof. Lzt r:X -»X by r(x) = f(x,h(x)) for each x € X. This function
is continuous since f and h are continuous and since the composition
of continuous functions is continuous. Now apply the Brouwer fixed point
theorem to r to obtain the existence of an x € X such that r(x) = x.
By T.2.1, (x,h(x)) is a fixed point of F. |

The following examples show the value of this rather straight-
forward observation. The first example, although hypothetical, shows the
potential of decomposability by reducing an (n+l)-dimensional fixed point
problem to & l-dimensional problem. The second example is equality con-

strained optimization. The third example is a partially linear systems of

equations and the last is the Bilinear Complementarity Problem proposed

in Wilson [54].

Example 2.1. Let a, b€ R with a<b. Set X = [a,b] and

Y=R". Thus Z =X xY = [a,b] x R®. F will be constructed to satisfy
the hypotheses of C.2.1 in such a way that the function r will be a
mepping from [a,b] into [&a,b]. Thus finding a fixed point of F

will be reduced to finding a fixed point of r and that will be a
l-dimensional problem. To actually construct this F 1let f£:2 -X

and h:X - Y be arbitrary but continuous functions. Define g:2 - Y

16




by (z) = h(£(z)) for all 2z € Z. Fipally let F(z) = (£(z2),g(2z))

for all 2z € Z.

Proposition 2.1, (F,Z) is decomposable.

Proof. Condition (1) of D.2.1 is true by construction of F so only
condition (2) needs to be verified. To this end let x € X with
x = f(x,h(x)). Applying h to both sides of this yields h(x) = h(f(x,h(x)))

= g(x,n(x)) as desired. |

Proposition 2.2. F has a fixed point.

Proof., (F,Z) is decomposable and satisfies the hypotheses of C.2.1,

thus F has a fixed point, t

From the proof of C.2.1 it is apparent that in order to compute a
fixed point of F one need only be computed for r:X — X, and finding
a fixed point of r 1is one of searching [a,b] as opposed to searching
[a,b] X R".

Notice that f and h were completely arbitrary except for
their continuity, thus they may be made nonseparsble, nondifferentiable,
etc. Also this exsmple shows that there are problems (F,Z) whose
fixed points would not normally be computable because of the large
dimensionality yet if (F,Z) is decomposable in the proper way one

can find the fixed point in a l-dimensional space.

17




Example 2,2, In this example, a nonlinear programming problem (NLP)

of the form
(B.2.1) min P(z)
s.t. G(z) =0
z € RS

where P:Rs —)Rl and G:RS B is put into the fremework of decompos-
ability. Since this was the problem which motivated the concept of
decomposability all of Chapter L4 has been devoted to a complete
theoretical analysis of this problem. In this section a connection
betﬁeen the NLP and decomposability is established in loose terms and

a rigorous approach is presented in Chapter 4,

In order to show that P.2.1 is in fact a special case of decompos-
ability one must (a) find a fixed point problem which is related to
P.2.1 and (b) show that this fixed point problem is decomposable.

Eaves [11] and Merrill [38] have discussed extensively the
fixed point formulation when the NLP is in the form of either (i) uncon-
strained optimization or (ii) inequality constraints with the
existence of a point at which all constraints are strictly feasible.
Clearly P.2.1 does not fall into either of these categories (even when
the constraints G(z) = O are replaced by G(z) <0 and -G(z) <0).

So the question becomes how to transform an equality constrained
problem into an optimization problem of type (i) or (ii) as described
above, Three possible methods for doing this are now presented, the

last of which led to the concept of decomposability.

18




Method 1. Constraint relaxation.

In this approach the equality constrained problem is replaced
by a sequence of problems of type (ii). This is done by introducing a
tolerance for the constraints. Formally let [ak] be a sequence of
vectors in R® with ak >0 for each k =1,2,... and with [ak] -0

for k - o, Consider the family of optimization problems.

min P(z)
s.t. -ak < G(z) < ak for k= Rioan .
zERS

Under certain circumstances each of these problems is of type (ii) and
one could then use existing methods to partially solve the kth problem.
Under additional circumstances one might expect the limit of the solutions
(assuming such a limit exists) to be a solution to P.2.1. Computational
results from this approach reported by Merrill [3%8] were extremely dis-

couraging and so this approach was discarded.

Method 2. Lagrangian approach.
In this method one defines the Lagrangian function L:R8 x R% -»Rl
by L(z,u) = P(z) + (u,G(2z)). One can then show (see Mangasarien |37]

for example) that a necessary condition for (z,u) to solve P.2.1 is
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VZL(z,u) = VP(z) + uTDG(z)

n
o

]
o

VuL(z,u) = G(z)

assuming of course that P and G are differentiable functions on

R® x R®. This is a system of (n+s) equations in (n+s) unknowns which

may be transformed into a fixed point problem by defining F:Rs X Rn —>RS:<Rn
by F(z,u) = (z,u) - (UZL(z,u),vuL(z,u)). This fixed point formulation

has increased the dimension of the original problem from s to (s+n).

This is exactly contrary to the concept of decomposability and so this

approach was also discarded for this work.

Method 5. Decomposability.

This approach is motivated by considering the special form of
P.2.1 in which the equality constraints are linear, for then these
equations can be used to solve for some of the variables (called the basic
variebles) in terms of the remaining variables (called the nonbasic
variables)., If the rank of the linear transformation is n then there
will be exactly n basic variables (referred to herein after by the
vector y = (yl,...,y )). Correspondingly there will be r = s-n non-

n

basic variables (referred to by the vector x = (xl,...,xm)). These

observations are formalized in
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Proposition 2.5. Let W Dbe an (n x s) matrix and w an n-vector such

that G(z) = Wz + w for each 2z € R°. If rank(W) = n then there is a

m

function h:R" —» R" such that G(x,h(x)) =0 for each x € R .

Proof. Since rank(W) =n there are (n X m) and (n x n) matrices U and
V respectively such that after permuting the columns of W,

n

(1) Ww=1[U,v] and (2) V is nonsingular. Define h:R" SR by

hx) = -v'l(w + Ux). To verify that G(x,h(x)) = O note that

G(x,h(x)) = W(x,h(x)) + w

it

[U,V] (x,h(x)) + w

i

Ux + Vh(x) + w

]

1}

Ux - (w+ Ux) +w

L I

In the case that the constraints of P.2.1 are nonlinear, con-
ditions may be placed on the function G which ensures the conclusion of
Proposition 2.3; namely, that there is an h:R" — R such that
G(x,h(x)) =0 for each x € R'. 1In this case the function h 1is an
implicit function and conditions for its existence are established in
Chapter 4, From here on,the function h will always be the mapping
described above, Furthermore, this function will be used in showing
P.2.1 is a special case of decomposability.

Once the existence of this function h has been established one
nay then eliminate the basic variables (along with equality constraints)
from P.2.1. The result is an unconstrained optimization problem which
takes the form

2l
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(P.2.2) min p(x) = P(x,h(x))

Since this is a minimization problem of type (i), there is a fixed point.
formulation of P.2.2, namely that of finding an x € R"  such that

x - Pp(x) = x provided p is differentiable (see Merrill [38]).

These remarks are now summarized and stated in

Proposition 2.4. Let Z =R® = R® x R® and suppose there is an

n:R" 5 8% such that G(x,h(x)) =0 for each x € R°. Also suppose P,
G and h are differentiable on their respective domains. Let 4 -2
be defined by F(x,y) = (x,y) - (V,P(x,y) + 7&P(x,y)T Dh(x), G(x,¥y)).
Then (F,Z) is decomposable.

m n

Proof. Let X =R, Y =R  and define f:Z X by f(x,y)

i ! 52 iy , p 3
=% - V.P(x,y) - Vyt (5 Y) Dh(x) and define g:2 =»Y by glx,y) =y +G(x,y)
for each (x,y) € Z. Now one may verify the conditions of D.2.1 with

1

K Ly EeE e Th: ii

Lxample 2.5. Partially linear systems of equations. In this example,

decomposability will be applied to solving an s by s system of
equations in which some of them are linear. Let W be an (n x 8) matrix
and w be an n-vector. Also let E:Rm X Rn - R® be an arbitrary
function. The original problem may be stated as that of finding a
z € R® such that

E(z) =0,

Wz + w=0 ,
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The next proposition gives a condition under which there is
a decomposable fixed point problem whose solution solves the original
system of equations.

S

Proposition 2.5. Let Z = R°. If rank(W) = n then there is a function

FiZ —» Z such that (F,Z) 1is decomposable.

Proof. In order to prove this, the appropriate sets and functions will

be created. In particular let X = R* and Y = R°. Since rank(W) = n

there are (n xm) and (n x n) matrices U and V regpectively such
that after rearranging the columns of W, (i) W = [U,V], and

(ii) V is nonsingular. Define f:Z - X, g:Z ->Y and h:X - Y by
£(x,y) = E(x,y) + x, g(x,y) = Ux + (V+ I)y + w, b(x) = -V " (Ux + w)

for each (x,y) € Z. Now D.2.1 may be verified. I

Example 2.4. The Bilinear Complementarity Problem. This problem arises
in economics and was introduced in Wilson [54] and may be stated as that
of finding x, y € R® such thet (a) x, y >0, (b) x =Uy +u end
(e) X,y = (V.i’y> for each i =1,...,n where U and V are
(n X n) matrices and u is an n-vector. Through the rest of this example
it is assumed that

(1) V 1is nonsingular.

(i1) g o f{z € Rn/zi >0, <V.i'Z) > 0) 1is nonempty for each i =1,...,n,

T

" with 23>0 and V'z>0.

(1i1) There is no =z € R




Let 2z € R® be such that V'z' > 0. Now define f£:R° x R® — BB by
‘ n n n
fi(x,y> = xiyi + Xg - (V.i,y); &R XR -R by glx,y) =
T, -1 n n
(v™) (xlyl,..., xnyn) and h:R - R by
z€ 2" if i is the first integer such that X, <0
h(x) =4 2* if x>0 and {y >0/x =Uy + u] is empty.
y if x, ¥y20, x=Uy+tu.
As usual define F:R" x R® - R" x R® by
- : ; n n
F(x,y) = (f(x,y), glx,y)) for all (x,y) € R® x R® .
Proposition 2.6. If Z = R" then (F,2) is decomposable,
Proof. Let X =Y = R'. Then these sets together with the functions

f, ¢ and h will be shown to satisfy D.2.1. Only condition (2) of

D.2.1 needs verification so let x € R® with f(x,h(x)) = x. Then by
construction,
fo\ . \ - L =
(xlhl.x, +x V.l, ux)?, ..., xnhn(x, + X \V.n,h(x))) (x

and hence

) = ( ) =

xlhl(x, \V.l,h(x,), s xnhn(x) (V_n,h(x))
so
e

(xlhl(x), R xnhn(x)) = V'h(x)

2L
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Multiplying both sides of this by (vl)'l vields

n(x) = (v)°* (b (x), ooy x b (%)) = g(x,h(x) . |

Proposition 2.7. If f(x,h(x)) = x then x >O0.

Proof. Suppose not. Then there is a j between 1 and n such that
xj < 0. Let i be the first subscript with X, < 0. By the definition
of h, h(x) = z where <V.i’Z) >0 and z, > 0. From the fact that
f(x,h(x)) = x it follows that xihi(x) = (V'i,h(x)) bhut the lef't

side is strictly negative and the right side is greater than or equal to

0. This contradiction shows the claim, i

Proposition 2.8. If f(x,h(x)) = x then h(x) >O0.

Proof. Suppose not. Then there is an i between 1 and n such that

hi(x) < 0. From Proposition 2.7 it may be assumed that x >0 and con-
sequently that h(x) = z' where VTz' > 0. By the fact that f(x,h(x)) = x
it follows thet x,h,(x) = (V'i,h(x)> but the right side is strictly
positive and the left side is less than or equal to O. This contradiction
shows the claim, H

’

Proposition 2.9. If (x,h(x)) = F(x,h(x)) then (x,h(x)) solves the
OpC

BLCP.
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Proof. From Propositions:./and ©.8 both x and h(x) are nonnegative.
Using the fact that f(x,h(x)) = x one may conclude that xihi(x) =
<vi_,h(x)) for each i = 1,...,n. Tinally since h(x) >0 and by
assumption (iii) it follows that x = Uh(x) + u. Thus in fact (x,h(x))

solves the BLCP. I

In this section the concept of a decomposable fixed point problem
was discussed and several examples of this property were presented. The
most interesting example was optimization with equality constraints. One
would like to be able to handle both equality and inequality constrained
problems, however, in order to do this it appears necessary to enter the
framework of point to set maps. The next section is devoted to this

extension.

2.2. General Theory and Examples for Point to Set Maps.

Given a nonempty subset Z of R° and a point to set map
S:Z - Z* the fixed point problem is that of finding a z € Z such that
z = S(z). The basic idea is to put some structure on S which allows
one to solve an equivalent problem but in a lower dimensional setting.
This property is a straightforward generalization of the one described

in the previous section. Corresponding to D.2.1 is

Definition 2.2. Let 7 be a nonempty subset of R° and let 8:2 - 2*

be a nonempty point to set map. The pair (S,2) is said to be decomposable
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iff there are positive integers m and n whose sum is s, nonempty

subsets X of R" and Y of R whose cross product 1s Z together

with nonempty point to set maps Sf:Z - X¥, Sg:Z — Y*¥ and a function

h:X - Y such that for each x ¢ X,

(1) s(x,h(x)) = Sf(x,n(x)) X Sg(x,h(x)).

J1

(2) TP %€

L

‘ffx,h(xﬁ) then h(x) € Sg(x,h(x))
The first condition states that at each x € X the set S(x,h(x)) may
be expressed as the cross product of the sets Sf(x,h(x)) and Sg(x.h(x» .

The second condilion is a special relation between S Sg and h which

f)
will be used to establish the connection between fixed points of the
lower dimensional problem and fixed points of S.

One would expect that D.2.2 reduces to D.2.1 in the special case

where 8(z) is a set consisting of a single point for each z € 2.

This is established in

Proposition 2.10. Let F:Z - 7 and define the point to set map

2

S:2 5 7* by 8(z) = {F(z)) for each 2z € Z. Then (F,2) is a

decomposable function iff (F,Z) 1is a decomposable point to set map.

Proof. Assume first that (F,Z) is a decomposable function and let
X, Y, f, g and h be obtained from D.2.1. Define the point to set
maps S,:Z - X* and SS:Z - Y* by Sf(z) = {f(z)} and Sg(z) = (g(z2))

for each z € Z. It is now an easy matter to verify that X, Y, Sf, Sg




and h satisfy D.2.2. This takes care of the necessary part of the
proposition. To go the other way suppose (S,Z) 1is a decomposable

point to set map. Let X, Y, Sf,
To shéw that (F,z) is decomposable, functions f and g will be con=-

Sg and h be obtained from D.2.2.

structed in such a way that together with X, Y and h they will satisfy
D.2.1. Simply define f(z) to be any element of Sf(z) and similarly
for g(z). To verify condition (1) of D.2.1 let x € X. Then from the

decomposability of §,

F(x,h(x)) € {F(x,h(x))}

S(x,h(x)) = 8p(x,h(x)) x 8 (x,h(x))

{(£(x,n(x)), eg(x,h(x)))} ,

the last equality being justified because Sf(x,h(x)) and Sg(x,h(x))
are sets with only one point. Hence F(x,h(x)) = (£(x,h(x)), g(x,h(x))).

Condition (2) is trivial to verify. I

This result has shown that, on the surface, D.2.2 is the proper

generalization of D.2.1. The next theorem is the analog to T.2.1l.

Theorem 2.2. If (S,Z) 1is decomposable then x - X satisfies
x € Sf(x,h(x)) iff (x,h(x)) € S(x,h(x)) where X and S, are obtained

from D,1.2.

Proof. Suppose first that x Sf(x,h(x)). By property (2) of D.2.:-,
h(x) € Sg(x,h(x)). Thus (x,h(x)) ¢ Sg(x,h(x)) x Sg(x,h(x)) = 8(x,h(x)),

the last equality being justified by property (1) of D.2.2. This takes
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care of the necessary part of the theorem. For the sufficiency part,
suppose (x,h(x)) € S(x,h(x)). From property (1) of D.2.2 it follows ‘

immediately that x S Sf(x,h(x)} as desired, I l

Defining the point to set map Sr:X = X* Dy Sr(x) = Sf(x,h(x))
one may more easily see what T.2.2 is saying. It is saying that if |
(s,2) is decomposable then finding a fixed point x of Sr yields a ‘
fixed point of § namely (x,h(x)). The importance of this is that
finding a fixed point of Sr involves working in R" instead of R°.

The next task is to develop some conditions under which S and Sr

may be expected to have fixed points.

Corollary 2.2. Suppoge (8,2) is decomposeble and thst in addition

sf is usable (i.e. nonempty convex and upper semi-continuous). Suppose
also that h is continuous. If X is compact and convex with int(X)
nonempty then S has a fixed point.

Proof. Define S :X - X* by S_(x) = 8.(x,h(x)). §, 1s a usable

£
point to set map since the composition of usable maps is usable (see
Theorem 1', p. 115 of Berge [3]). Now apply the Kakutani fixed point

theorem [28] to Sr o obtain the existence of an x € X such that

x € sr(x). By T.2.2, (x,h(x)) is a fixed point of 8. I

Two examples of the property of decomposability are discussed.

The first example, although hypothetical, shows the power of decomposability

29
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by reducing an (n+l)-dimensional fixed point problem to a l-dimensional
problem. The second example is optimization under both equality and
inequality constraints.

Example 2.5. Let a, b€ R* with a<b. Set X = [a,b] and Y = R,
Thus 2 =X XY = [&,b) x R°. S will be constructed to satisfy the
hypotheses of C.2.2 in such a way that the point to set map Sr will be
a mapping from [a,b] into [a&,b]¥, Thus finding a fixed point of S
will be reduced to finding a fixed point of Sr’ and that will be a one-
dimensional problem. To actually construct this S 1let h:X - Y be

an arbitrary continuous function and let Sf:Z - X* be any useble point
to set map. Define sg:z - Y* Dby Sg(x,y) = h(Sf(x,y)). Finally define

Z,

m

S:Z - 2*¥ by S(x,y) = Sf(x,y) X Sg(x,y) for each (x,y)

Proposition 2.11. (8,2) is decomposable.

Proof. Condition (1) of D.2.2 is true by construction so only condition
(2) needs to be verified. To this end let x € X with x € Sf(x,h(x)).
Applying h to both sides yields h(x) € h(Sf(x,h(x))) = Sg(x,h(x))

as desired. H

Proposition 2.12. S has a fixed point.

Proof. (8,Z) 1is decomposable and satisfies the hypotheses of C.2.2,

thus S has a fixed point, I
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From the proof of C.2.2 it is apparent that in order to compute
a fixed point of S, one need only compute a fixed point of Sr:X - X*
and this is a problem of searching [&a,b] as opposed to [a,b] X - g
Notice that Sf and h were completely arbitrary except for their
continuity properties. This example shows that there are problems (§,Z)
whose fixed points would not normally be computable because of the high

dimensionality yet if (S,Z) is decomposable in the proper way, one can

find the fixed point in a l-dimensional space.

Example 2.6. With the concept of a decomposable point to set map it is
pocsible to show that, under certain circumstances, the general nonlinear

programming problem of the form

min P(z) s’ o0
s.t. G(z) =0 where  G:R° - R
a(z) <0 Q:R° - &

zZ &€ R

may be set up as e decomposable point to set map fixed point problem,

In order to do this, many of the concepts developed in Chapter 4 are
required and in order to avoid duplication, a proof of exactly how this
can be done is postponed until Appendix A, Recall however, that
decomposability is the property of being able to solve a particular fixed
point problem by solving a lower dimensional fixed point problem, so in

order to apply this concept to the nonlinear programming problem it will be

SL

g —— - - DES—— . g ———




necessary to (a) find a fixed point problem which is related to the NLP
and (b) show that this fixed point problem is decomposable. Chapter 4
deals with (a) and Appendix A deals with (b). The approach is very much
related to the one developed in Example 2.2.

In this section the concept of e decomposable point to set map
was discussed and several examples were presented. The next section is

a further generalization of these notions.

2.35. Generalizations.

A generalization of decomposability for functions and then for

point to set maps is developed.

Definition 2.3. Let 7 be a nonempty subset of R° and let F:Z — Z.

The pair (F,Z) 1is weakly decomposable iff there are positive integers

m and n whose sum is s, nonempty subsets X of R" and Y of R%

together with functions f:Z2 - X, €:Z -2Y, h:X -Y and c:X XY 52
such that for each x € X,
(1) F(e(x,h(x))) = c(f(c(x,h(x))),&(c(x,h(x)))).

f(c(x,h(x))) then h(x) = gle(x,h(x))).

n

(2t X
(3) ¢ 1is 1-1.

Note immediately that when ¢ 1is the identity map on X X Y this
definition is exactly that of decomposability of (F,%). Whenever
(F,2) 1is weakly decomposable, X, Y, f, g, h and c¢ will refer to

the corresponding sets and functions derived from D.2. 5.
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As one would expect there are straightforward generalizations

of T.2.1 and C.2.1 which may be stated as

Theorem 2.3, If (F,Z) is weakly decomposable then x € X satisfies

x = f(e(x,h(x))) iff c(x,h(x)) = Fle(x,h(x))).

Proof. Suppose first that x = f(c(x,h(x))). By condition (2) of

D.2.3, h(x) = g(e(x,h(x))). Thus

Li}

c(x,h(x)) = e(f(elx,h(x))), glelx,h(x)))) = Fle(x,h(x))) ,

the last inequality being justified by property (1) of D.2.3. This takes
care of the necessary part of the theorem. For the sufficiency part,
suppose c(x,h(x)) = F(c(x,h(x))). From property (2) of D.2.3,
F(e(x,h(x))) = c(f(e(x,h(x))), gle(x,h(x)))) and since c¢ 1is 1-1

it follows that x = f(c(x,h(x))). I

Corollary 2.3. Suppose (F,2) 1is weakly decomposable. Suppose in
addition that f, h and c¢ are continuous and that X 1is compact

and convex, Then F has a fixed point.

Proof. Define r:X -X by r(x) = f(e(x,h(x))) for each x € X. Note
that r 1is continuous because f, ¢ and h are and because the
composition of continuous functions is continuous. Now apply the Brouwer
fixed point theorem to r to obtain the existence of an x € X such

that r(x) = x. By T.2.3, c(x,h(x)) is a fixed point of F. I
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A similar concept exists for the point to set map case,

Definition 2.4. Let Z be a nonempty subset of R® and let 8:2 — 7%

be a point to set map. The pair (8,2) is weakly decomposable iff there

are positive integers m and n whose sum is s, nonempty subsets X
of R" and Y of Ru, functions h:X - Y and c:X XY -2 together
with point to set maps Sf:Z - X* and Sg:Z — Y* such that for each
X e X,

(1) 8(el(x,n(x))) = c(Sp(e(x,h(x)) x Sg(c(x,h(x)))).

f
(I ER x€Sf(c(x,h(x))) then h(x) € Sg(c(x,h(x))).

(3 e Ea -l

Note that when c¢ 1is the identity on X X Y this definition is exactly
that of decomposability for (S,Z). Whenever (S,Z) is weakly decomposable,
Ay Yy Sf, Sg’ h and ¢ will refer to the corresponding sets, point to set
maps, and functions of D.2.k,

As one would expect there are straightforward generalizations of

Proposition 2.10, T.2.5 and C.2.3. They are stated as

Proposition 2.1%. Let F:Z - Z and define the point to set map S:2 - Z*

by S(z) = {F(z)) for each z = Z. Then (F,Z) is a weakly decomposable

function iff (S,Z) is a weakly decomposable point to set map.

Proof. Assume first that (F,2) 1is a weakly decomposable function and
let X, Y, f, g, h and c¢ be the sets and functions obtained from D.2.3.
Define the point to set maps Sf:Z — X* and SE:Z - Y¥ by Sf(z) =(f(2))
and Sg(z) = {g(z))] for each =z € Z. It is now an easy matter to show

that X, Y, S, Sg, h and c¢ satisfy D.2.4. This takes care of the
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necessary part of the theorem. To go the other way suppose (S,Z) is
a weakly decomposable point to set mep. Let X, Y, h, e, Sf and Sg
he the sets, functicns and point to set maps obtained from D.2.L4. To
show that (F,2) is a weakly decomposable function, f and g will
be constructed in such a way that together with h, ¢, X and Y they
satisfy D.2.3. Simply define f£(z) to be any element of Sf(z) and
similarly for g(z). To verify condition (1) of D.2.3 let x € X.
Then

F(el(x,n(x))) € {F(c(x,h(x))))

s(e(x,n(x)))

Sf(c(x,h(x))) X og(c(xyh(x))))

= e({f(e(x,h(x)))) x {glclx,h(x))))

:(_—(

€ {e(f(e(x,h(x))), gle(x,h(x))))
sO

F(e(x,h(x))) = (f(e(x,h(x))), gle(x,h(x))))

as desired. Condition (2) of D.2.3 is trivial to verify and this comp letes

the proof. il

Theorem 2.4, If (8,2) is weakly decomposable then x ¢ X satisfies

x':

- Sf(c(x,h(x))) iff c(x,h(x)) € s{el(x,h(x))).

Proof. Suppose first that x € Sf(c(x,h(x))). By property (2) of D.2.k,

hix) € Sg(c(x,h(x))). Thus

c(x,h(x)) € e(sp(e(x,h(x))) x sg(c(x,h(X‘))) = S{e(x,h(x))) ,
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the last equality being justified by condition (1) of D.2.4. This takes
care of the necessary part of the theorem. For the sufficiency part
suppose c(x,h(x)) € S(c(x,h(x))). From condition (1) of D.2.4 and

the fact that c¢ is 1-1 it follows that x ¢ S(e(x,h(x))) as desired. ||

Corollary 2.L4. Suppose (S,Z) is weakly decomposable. Suppose in
addition that Sf is a usable point to set map and thst h and ¢
are continuous., Suppose also that X 1is compact and convex with

int (X) nonempty. Under these conditions S has & fixed point.

Proof. Define 5.:X - X* by Sr(x) = Sf(c(x,h(x))). S, 1is & usable
point to set map since the composition of usable maps is usable (see
Theorem 1', p. 113 of Berge (3]). Now apply the Kakutani fixed point
theorem [28] to S, to obtain the existence of an x © X with x ¢ Sr(x).

By T.2.k4, e(x,h(x)) is a fixed point of 8. i

This chapter has dealt with the structure of decomposesbility as
it applies to functions and point to set maps. Several examples of this
were pointed out, the most interesting of which is optimizatibn with
both equality and inequality constraints. The next step is to find a
method for solving these problems. Chapter 5> develops an alg;rithm
which may sometimes be used to solve the fixed point problem and Chapter 4

shows how to convert the optimization problem, into a fixed point problem.
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CHAPTER 3

AN ALGORITHM FOR COMPUTING FIXED POINTS

5.1. Triangulations.

In this chapter an algorithm which attempts to compute fixed
points of certain point to set maps is described. It was developed by
Merrill [38] in 1971, A slightly more general version was independently
and simultaneously developed by Eaves and Saigal [15]. In very general
terms the algorithm attempts to compute the fixed points of a sequence
of piecewise linear (PL) functions approaching the original function.
Under certain hypotheses each of these points may be computed in a
finite number of steps. Under additional circumstances there will be
a cluster point of the sequence and that will be the desired fixed
point. To use this approach it is necessary to have (a) a computerized
method for generating the sequence of PL approximations, (b) a systematic
procedure for attempting to move through these pieces of linearity in
search of a fixed point and (c) some conditions under which one might
expect the method to find such points in a finite number of steps.

These are the three sections of this chapter.

L
M and S:M - (R be a

Let M be a nonempty subset of R
usable point to set map whose fixed point is sought. In order to construct
a PL approximation fL to S it will be necessary to break vp M into

pieces (called simplexes) which fit together in a very special way and
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on which fL will actually be linear and continuous. This partition
of M 1is called a triangulation. Before rigorously defining this
concept it will be helpful to understand its building blocks, namely,

the simplexes.

Definition 3.1. For each i =0,...,m define an i-simplex in R® to

be the convex hull cof (i+l) points of R" in general position. Given

these points, say xo,..., x*, the i-simplex is then hull({xo,...,xl}).

Let 1w = hull([xo,...,xm]) be an m-simplex of R". The points

xo,...,xm are called the vertices of 1. Note that they are actually

O-simplexes. One can algso generate very natural l-simplexes from T
5 i
by considering any pair of vertices say x . and x
i i
hull({x 1, X 2}). In general one can generate for each j =0,...,i a

c

and then forming

j-<implex from T by choosing any subset of (j+1) of the original
io by io i

vertices; say X ; ... p X J and forming hull({x ~, ... , % j]).

These are called the j-faces of 7. With these concepts in hand the

notion of a triangulation is quite understandable.

Definition 3.2. Let M be a nonempty subset of R" and 7 ve a

finite or countable collection of m-simplexes. Let jh?i for 1 = 05...;m
be the set of i-faces of members of f»? . Then ik? is a triangulation

of M iff

(1) M=U(t/te ).

(2) Each pair of m-simplexes are either disjoint or meet in a common face.
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(3) Bach (me~l) simplex in 7I/m-1 belongs to at most two m-simplexes.
(Those (m-1) simplexes which belong to exactly one m-simplex are
caelled boundary (m-1)-simplexes.)

(4) Each point in M has a neighborhood meeting only finite many
m-simplexes of %

i
Property (1) states that M 1is the union of all the m-simplexes
in ,)/7 Properties (2) and (3) describe how these m-simplexes must fit

together and property (L) guarantees that each hounded subset of M

meets only finitely many m-simplexes of %’ This is needed for the

proof of finite convergence. A generalizaticn of this notion is presented
in Baves [1L] and other pertinent references include Cairns {5], Todd

[51,52), Kuhn i32], Scarf and Hansen [25].

oty e %) - ) :
The triangulation ﬁ can be used to generate a2 PL approximation
to S through the use of the vertices 770. First consider a map
m X1 ) ( ) 1 \ e =
f: -5 R defined by f(x) € S(x) for each x € . There is a
0 y 0

unique extension of f to a PL map f :M — R" defined by

C m. . i i
where x € 1 = hull([xo, seia iy AT 6% and x = 7}2__0 A*x*. Note that
by property (2) of D.3.2, £¥ is well defined since each x © M has a
unique representation in this form. Furthermore, fL is linear on

each 7t € ?/7 This map fL is called a PL approximation to S induced

by Q} . A meesure of how closely fL approximates S is given by

mesh(?,?) = sup{max(|lu=v|]|’u, v € 1} /7 € 7]]}.
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The algorithm is going to attempt to find a fixed point of fL.
If it is successful it will terminate with an m-simplex
T = hull([xo,...,xm]\ and an x € T with fL(x? = x. This may be

B e gt cueh that

(1

expressed as the existence of multipliers ko, e s g

FEREETS w22 ), s -yl

Setting x = Z$~O A'x' yields fL(x) = x. Such an m-simplex is said
to be completely labelled. The next guestion is how to systematically
move through the triangulation in search of this special simplex. This

is the topic of the next section.

5.2. Moving Through a Triangulation.

No direct search procedure was found; instead, a method based
on a triangulation of R x (0,17 (in which all the vertices belong to
either R" x {0} or R® x {1})) was developed. An example of such a

triangulation is depicted in Figure 3.1 for the case m = 1.

R™ x (1)

R™ x {0}

FIGURE 3.1




It is not haré to cee that the collection of m-simplexes lying in

m A " 0 e : . E
R x {0} 4ipduces a triangulation of R ag doces those in Km e By .

If t© is such an m-simplex let (7)' denote the induced m-simplex in

m n y : Ty X h 5
R obtained by dropping the last coordinate of each point of =

Recall that the objective is to find a completely labelled
simplex in Rm. The algorithm will be designed in such a way that if
there is such an m-simplex it will lie in R™ x {1}. More specifically
the algorithm will start with a special m-simplex IO of R" x {0}.

It will then generate a (possibly infinite) sequence of "adjacent"
0 ik . i

(m+1) and m-simplexes o, T, 0, T, ... in such a way that if 1

: , m S 7o : : :
lies in R X {1} then (17)' is the desired m-simplex (see Figure

R X {0}

FIGURE 3.2

This movement will now be made mathematically rigorous.
: . SR
Fix a triangulation 7” of R X [0,1] such that each vertex
, S
may be expressed as & vector (x,u) where x € R apd uw€ {0,1}.

For each such vertex define a column vector A ( : Rm+1 by

X,u)

L



(f(x)-x, 1) if u =)

(0 )

(w=-x,1) if u=0

where (w,0) € R x {0} Dbvelongs to the interior of a unique m-simplex

ro. This vector w 1is called the starting point, since it is from

this initial simplex, zo, that the search will begin. Finding an m-simplex
in R" {1} which contains a linear approximate fixed point is equivalent

to finding a basic solution to
(*) AX = (0;...,0,1) Ay 20 for i=0,..., m

such that the columns of A which form the basis corresponds to vertices
of an m-simplex in R™ x 1

To start the search for this m-simplex compute a basic feasible
solution to this system of equations which uses columns of A correspond-
ing to the unique m-simplex s hull([(xo,o), i s BEOGVYY An
R x {0} containing the starting point (w,0). The reader will find

it useful to refer frequently to Figure 3.3.

(xl," 1) (xsyll’

R™ x (1)

R™ x {0}

(x0,0) © (x},0)
FIGURE 3.3




!O is a boundary m-simplex of the triangulation and by property
(5) of D.5.2, it belongs to exactly one (m+l)-simplex, namely, oo. Let
(xm+l,l) be that vertex which when joined to 0 produces op. In
Figure 5.3 this vertex is (xﬂ,K). Proceed by bringing A,(xm+l,1)
into the basis. Some column will drop from the old basis. This vertex
corresponds to one of the original vertices (XO,O), s (xm.O) say
(xJ,O). Let 11 be the m-simplex obtained from UO by dropping (xj,O).
In Figure 5.5 this corresponds to moving from oO to zl after having
dropped (xO,O). By property (%) of a triangulation since t* 1s not a
boundary m-simplex it must belong to exactly two (m+l)-simplexes. One
of them is 00. Call the other one 01. This again corresponds to a
new vertex (xm+g,u) for which A.(xm+2,u) may be brought into the
basis. Continuing in this manner the seguence of m and (mt+l)-simplexes

ry o0, ', ... 1is generated and each m-simplex has a basic solution to

(¥). DNow only one of four things can happen with this secuence.

Case 1. The algorithm repeats an (m+l)-simplex to which it has already

- .been. Merrill [37] has shown that this cannot happen if the dropping
vertex is chosen by a lexicographic resolution technique such as proposed
in Dantzig [9Q] or Gale [20]. Hence cycling may be avoided and this case

need not be considered,

Case 2. The algcrithm hits a boundary m-simplex in R™ x {0}. This case
cannot arise becuase the only m-simplex in R" {0} with a solution to

(*) is ro and Case 1 rules out the possibility of ever returning to 00.
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Case 3. The algorithm hits a boundary m-simplex in R" x {1}). 1In this
case the algorithm has succeeded and this m-simplex is the one containing

the linear approximate fixed point.

Case 4, An infinite sequence of distinct m and (mtl)-simplexes is

generated. In this case the algorithm is said to have failed.

Since Case 1 and Case .’ cannot occur, one would like some conditions
on the point to set map S which ensures that Case 4 cannot arise. Then
only Case 5 can happen and this is what is desired. Before proceeding
to give some sufficient conditions on S which rule out Case 4, a subtle
point must be cleared up. In describing the algorithm it was stated
that a new column A.(x,u) will be brought into the existing basis.

The fact that this may always be done is a consequence of the nonnegativity
requirement of A and the boundedness to the solution set to (*)
caused by the fact that X?Z Ai = 1. The question of finite termination

0O

is addressed in the follbwing section.

5.%5. Conditions for Finite Convergence.

Recal! that the algorithm generates a sequence of m and
(m+l)-simplexes ro, UO, rl, .. . One way to prevent this sequence
from being infinite is to force it to remain inside some compact set.

then by property (U4) of D.3.2, the sequence must be finite. The way to

accomplish this is to give conditions on § which guarantee that outside
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of some compact set there is no solution to (¥), and since each m-simplex

rl generated by the algorithm satisfies (*), the path cannot leave this

compact set. This is the essence of

Theorem 5.1. Let S:Rm —a(Rm)l be the usable point to set map whose
fixed point is sought and let 77 be a triangulation of R™ x [0,1]

as described above. Suppose there are positive numbers a and b and
a point x' in R such that if z & B(x',a) then (z'=z, y-x') < 0

for all y € B(z,b)\\\P(x',a) and z' € S(z). If mesh(?”) < b then

(a) A linear approximate fixed point of S 1is computed in a finite
number of steps.

(b) Any linear approximate fixed point lies in B(x', atb).

Proof. See Theorem 5.1 of Merrill [38]. ||
For each application, the hypotheses of the theorem are shown
to hold and thus finite convergence is guaranteed. All that remains is
to take a sequence {qu] of triangulations of R" x [0,1] with the
property that mesh(?ﬂk) -0 as k - «, Now a seguence of fixed
points will be generated and a convergent subsequence will be enough

to yield a fixed point of S as is stated in

Theorem 3.2. Let {5”k] be a sequence of triangulations of R® x Lo

as described above (i.e. meshO?ﬂk) -0 as k - ). If there are

positive real numbers a and b together with a point x' < R and




the point to set mep S which satisfy the hypotheses of T.5.1 then

(a) Each linear approximate fixed point lies in B(x',a + b) and will
be computed in a finite number of steps.

(b) Either xk € S(xk) for some k or any cluster point of [xk‘
is a fixed point of S, where xk is the kth linear approximate

fixed point.

Proof, See Theorem 5.2 of Merrill [38]. I

The only thing left to develop is a computerized method for
generating the seguence {7nk] of triangulations with mesh(ﬂnk) -0
as k —» o , Various people have had needs for triangulations and have
developed their own, e.g. Kuhn [32], Scarf and Hansen [25], Eaves [1"],
Merrill [38]. Recently Todd [52] developed a very elegant way to
generate a sequence of triangulations as described above. They are
referred to as "Union Jack" triangulations. The current version of the
computer code uses this method and computational results have indicated
that it 7= quite efficient.

mis completes the description of an algorithm which attempts
to compute fixed points of usable point to set maps. The next chapter
deals with conditions under which this algorithm may be applied to equality

constrained optimization problems.
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CHAPTER U4

THE APPLICATION OF DECOMPOSABILITY TO

EQUALITY CONSTRAINED OPTIMIZATION

4.1, Introduction and Preliminaries.

Consider the problem

(P.L.1) min P(z) P:R® 5 R' U (+ )
s.t. G(z) =0 where G:R° - R"
Q(z) < 0 Q:R° 5>’ U (% )
z < R®

The objective of this chapter is to state some sufficient c~nditions on
the functions P, G and @Q such that (1) P.L.1 may be formulated as

a fixed point problem and (2) the algorithm described in Chapter 3 can
be used to solve the resulting problem, Since global convergence is
sought one might expect that the conditions obtained will be very restric-
tive. This is in fact the case; however,.computational experience is
indicating that the method is viable on a reasonable class of problems
(see Chapter 7). More specifically the first step will be to develop
conditions on P, G and Q so that P.L,1 may be solved by finding the
fixed point of some usable point to set map. The second step will be

to put additional conditions on these functions so that the resulting
point to set map will satisfy the hypotheses of T.5.2. This will ensure
global convergence of the algorithm.
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Under the next two assumptions, Merrill [3%8] developed a fixed

poiut formulation for the following special case of P.h.1

(P.k.2) min p(x) N p:Rm ﬂ;Rl U {+ o}
where

s.t. a(x) <0 a:R" 5> RY U {+ =)

X € Rm

Assumption 4.1. Assume that p and g are closed proper convex functions

with dom(qi‘ = R® for each i =1,..., £.

Assumption 4.2, Define the function t:E —»R' by

£ = max[qi(x)/i =1,...,2). Assume that {x ° R |t(x) < 0} belongs
to int(dom p). (The function t will have this interpretation for

the remainder of the thesis.)

5 *
Now one can define the point to set map S:R" T

x - op(x) if t(x) <0
S(x) = x - hull(dp(x) U dt(x)) if t(x) =0
x - dt(x) etz >0

The first thing to verify is that § is usable.

Theorem 4,1, If A.L.1 and A.L4.2 hold then S 1is usable,

Proof. See Theorem 12.1 of Merrill [38]. i
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The relationship between fixed pocints of S and solutions to

P.4.1 is stated in

Theorem 4.2. If A.4.1 and A.L.” hold and if inf{t(x)/x € R®) < 0 then

x!' € S(x') iff x' solves P.4.2.
Proof. See Theorem 12.3% of Merrill [38]. l

Unfortunately this theorem does not guarantee that the algorithm
described in Chapter 3 will compute a fixed point of S. In order to

accomolish this it is necessary to have

Assumption 4.3, Assume the function g has no common direction of

recession other than O (see D.1.7).
Now algorithmic convergence is established in

Theorem 4.%. If A.L.1-A.L.3 hold then the hypotheses of T.3.2 are met

and in addition if a = inf{t(x)/x € R") then

(a) The condition a > 0 may be detected in a finite number of steps.

(b) The condition a = 0 implies that any fixed point of § is
feasible for P.L.2,

(¢) The condition a < 0 1is a necessary and sufficient condition for a
fixed point»of S to solve P.4,2 and the algorithm will compute a

linear approximate fixed point in a finite number of steps.
Proof. See Theorem 12.% and Corollary 12.4%.1 of Merrill [38]. ||
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The next logical step is to find some method of transforming P.4.1
into a prcblem of the form P.%4.”. Perhaps the first thing that comes to
mind is to replace the eocuality constraints G(z =0 by two equivalent
inequality constraints G(z) <0 and -G(z) < 0. Unfortunately, in this
case part (b) of T.L.5 says that the algorithm can only be expected to
generate a feasible point. Thus it is necessary to find another approach.

This is done in the next section.

L.2. Transforming Equality Constrained Optimization into a Fixed

Point Problem.
In the spirit of decomposability the idea is tc use the equality
constraints to solve for some of the variables (called the basic variables)
in terms of the rest (called the nonbasic variables). Thus the original

n

™ and y< RY,

variables z = R® will often be written (x,y) for x - R
X Dbeing the nonbasic variables and y being the basic variables. 1In
order to show how and when this can be done,define a point to set map
H on R" by H(x) = {y - Rn/G(x,y\ = 0). Note H(x) might be empty
so let X = {x ¢ R"/H(x) is nonempty}. The next two assumptions will
allow the proper transformation of P.L.1 into P.k4.2.

Assumption 4,4, Assume X = R

Assumption 4.9. Assume H(x) is a singleton for each x £ X.

From A.4.5 it is possible to define a function h:R™ s

by h(x) = that unique element of H(x). Hence G(x,h(x)) =0 for each

x€Rm. c




1

o : S = . m
From A.L.4 it is possible to define the functions p:R - R
mo ¢ PLENGEIET Lo : g
q:R =R by pix) = P(x,h(x)) end a(x Qix.h(x ), respectively.

This is the desired trensformaticn of P.4.1 into P.4.2 as is established

Theorem 4.4, Tf A 4. L and A.4.5 hold and if h, p and q are defined

m . . A
as above then x ¢ R solves P.4.2 iff (x,h(x)) solves P.L. 1,

Proof. Suppose first that x solves P.4.2. Then (x,h(x)) is feasible
for P.4.1 since G(x,h(x)) =0 and Q(x,h(x)) < 0. 1In order to show
that (x,n(x)) actually solves P.4.1 let (x',y') be any other feasible
solution to P.4.1. It must be shown that P(x,h(x)) < P(x',y'). Since
y' £ H(x') = {r(x')) one need only show that P(x,h(x)) < P(x',h(x")),
but this follows from the optimality of x for P.4.2 since P(x,h(x))

= p(x) < p(x') = P(x",h(x')). This proves the necessary part of the
theorem. For the sufficiency, suppose (%,h(x)) solves P.4.1. Then

x 1is certainly feasible for P.4.,2. 1In order to show that x actually
'

solves P.4.2 let x' be any other feasible solution. It must be shown

that p(x) < p(x'). Since (x'.h(x')) is also feasible for P.4.1 it

follows that p(x) = P(x,h(x)) < P(x',h(x')) = p(x') as desired.

Now that the transformaticn of P.4.1 into P.L.2 has been established
it is desirable to have conditions on P, G, and Q which ensures A, . 1=
A.L.5. The next theorem puts sufficient conditions on G which makes
ALk and A 4.5 hold. It is a modification of the implicit function

theorem and is stated as




Theorem 4.5. Let G:Rm x R® +R be continuously differentiable on

R" x R® and suppose there is a point (a,b) ¢ R™ x R® such that

(1) G(a,b) =0 and (2) the matrix E = DyG(a,b) is nonsingular. Also
suppose there is a constant 0 < A < 1 such that

T - E'lDyG(x,y)H <A for all (x,y) ¢ R" x R"

Under these conditions A.lL.L4 and A.4.5 hold.

Proof. It will be shown that there is a unique function h:Rm —9Rn such
that G(x,h(x)) = 0 for each x ¢ R". To this end define a new function
L:R" x B* 5 R® vy L(x,y) =y - E'lG(x,y). For each fixed value of x,

L will be shown to be a contraction mapping and hence will have a unique
fixed point h(x) € R®. Note that L(x,h(x)) = h(x) iff G(x,h(x)) = O.

To show that L 1is a contraction map in the y coordinate, the constant A\

in the hypothesis will be used to conclude that

IL(x,y) = Lix,y") |l < AMly-y*l  for a1l y, y' < R*

So it is necessary to bound [L(x.,y) = L(x,y')||. This is precisely the
essence of T.1.1. 1In order to apply it, the function L need only be

differentiable in the y-coordinates which of course it is and in fact

-1 \
DyL(x,y) =1-E DyG(x,y;

Upon applying the bound in T.1l.1,




IL(x,y) = L0yl < sup(liD Lle,y+ N (y=y' ) i/0 < A < 1) fly-y'l

the last inequality being justified by the hypothesis. Thus in fact L
is a contraction mapping in the y-coordinates for each fixed value of

the x-coordinates and this completes the proof. ﬂ

is linear and has rank n then A.4.L4 and A.L.5 hold.

(o9}

Corollary 4.1. If

Proof. Let G(x,y) =Ux + Vy +w where V is an (n x n) nonsingular
matrix, U is an (n x m) matrix and ¥ is an n-vector. Choose any

-1
with 0 < A< 1 and set (a,b) = (0, =V "w). Now the hypotheses of

T.4.5 hold so A.%. L4 snd A. 4.5 do also. i

Supposing now that this funection h(x) exists, conditions can be

placed on P, @ and h so that A.4.1-A.L.Z Lold

Proposition 4.1. Suppose P and Q are closed proper convex functions

and that there exists x', x" € R© such that P(x',h(x')) < » and

Q(x",h(x")) <o . If h is linear then A.L.1 holds.

Proof. It must be shown that p and gq &re closed proper convex
functions with dom(qi) = R® for each 1 =1,...,¢. Sinece h 1s

defined on all of R" (by A.lb.4), dom(qi‘ = R® for each 1 = i s
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Next p 1s shown to be convex. To do this let x, w . R° and AC [0,1].

Then _ the linearity of h and the convexity of P it follows that

p(a + (1-0)w) = P(M + (1-2)w, h(x + (L=-A)w))

1]

P( + (1-ANw, M(x) + (1=A)n(w))

P(A(x,h(x)) + (1-A) (w,h(w)))

7\P<x1h(x)> 2 (1">\) P(w’h(w))

AN

Ap(x) + (1-2) p(w)

]

That p 1is closed and proper is straightforward. A similar argument

shows g to be a closed proper convex function also. n

In order to weaken the assumption that h 1is linear it is

necessary to place additional structure on P and Q. This is done in

Proposition L4.2. Suppose P and Q are closed proper convex functions

and that there exists x', x" ¢ R® such that P(x',h(x')) < » and
Q(x",h(x")) < ». Suppose in addition that P and Q are isotone
(see D.1.8) in the y=-coordinates for each fixed value of the x-coordinates.

If h is convex then A.4.1 holds.

Proof. As in the previous proposition, dom(qi) -~ R®

foreach 4 =1;...,8.
Next p 1is shown to be convex. To do this let x, wc " and
A€ [0,1]. From the convexity of h,
h(wm + (1=Ajw) < Ma(x) + (L=-A) h(w) ,
and since P 1is isotone in the y-coordinates it follows that

[
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P(x + (1-A)w, h(x + (1-2)w)) < P(&x + (L-A)w, ah(x) + (1=A)w, Aa(w))

P(A(x, h(x)) + (1-A)(w,h(w)))

INA

N (x,h(x)) + (1=-A) P(w,h(w))

the last inequality being justified by the convexity of P. The left
most side of the inequality is p(Ax + (1-A)w) and the right most side
is Ap(x) + (1-A) p(w). Hence p 1is convex. That p is closed and
proper is straightforward. A similar argument shows gq to be a closed

proper convex function, I

S

Proposition 4.3. If dom(P) = R° then A.4.2 holds.

Proof. Obvious. H

Proposition 4.4, If Q has no common direction of recession other than

O and if h is linear then A.4.3 holds.

Proof. This is done by contradiction so assume d € Rm is a nonzero

1 and an

common direction of recession of g, Then there is a b &€ R
x € R" such that q,(x + M) <b forall A>0 eand i=1,...,L
It will be shown that (d,h(d)) is a nonzero common direction of

recession of Q. Clearly (d,h(d)) is nonzero since d is. From the

linearity of h it follows that for all A >0 and i =1,...,4

Q; ((x,h(x)) + Md,n(a))) = Q(x + M,h(x) + M(d))

Q;(x + 2, h(x + M)

L}

g (x + Nd)
< b.
Hence (d,n(d)) is the desired common direction of recession of Q

and this contradiction proves the claim. H
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In order to weaken the assumption that h 1is linear it is necessary

to place additional structure on P and Q. This is done in

Proposition 4.5. Suppose h is convex. Assume also that Q 1is convex

| and isotone in the y-coordinates. If Q has no common direction of

recession other than O then A.4.3 holds.

Proof. Again this will be done by contradiction, so assume d € R® is

a nonzero common direction of recession of q. Hence there is a b c Rl
and x € Rm such that qi(x + A\d) <b foreach A>0 and 1i=1,...,L.
To construct & nonzero common direction of recession of Q 1let W

(an (n X m) matrix) be a subgradient of h at x (see D.1.2). It will
be shown that (d,Wd) is a nonzero common direction of recession of Q.

It is clearly nonzero since d 1is. From the definition of a subgradient,
h(x) + A(Wd) < h(x + Ad) for all A > 0;

and since Q 1is isotone in the y-coordinates it follows that for all

A>0 and 1=1,...,¢

Qi(x + M, h(x) + awWd) < Q;(x + Ad, h(x + \Wd))

"

q; (x + M)

<P .

Hence (d,Wd) is the desired common direction of recession of Q and

this contradiction proves the claim. I

56




In applicaticns it is very often the case that neither A.L.L nor

A.4.5 will hold. Take for example the function G:R - R by

G(x,y) = * » ya - 1. In this case X = [-1,1] and H(x) =

(ix"s » i) fov-sadh %€ X, One would 1ike o he abie B Pind

a fixed point formulation of P.4.1 in which the resulting point to set map
is usable. There are several problems that immediately present themselves.
The first is that the function h 1is no longer well defined. Recall

that for each x C R, h{x) wes that unique element such that

G(x,h(x)) = 0. In the current situation there may be many choices for
h(x) (since H(x) need not be & singleton). Even supposing one were
able to construct this choice function h(x), the next problem is that

h 1is a mapping from X into R™. 1f, as before, one were to define

p(x) = P(x,h(x)) and q(x) = Q(x,h(x)) for each x C X then A.4.1

will not hold unless X = R". If X # R® then the resulting point to

set map may not be usable (even though X might be compact and convex).

No usable point to set map has been found to overcome these difficulties,

however, one which is very close and has worked in practice is described

in:

Theorem L.6., Suppose X 1is a compact convex subset of R" with x' € X.
Suppose further that A.4.5 holds so there is an h:X - R such that
G(x,h(x)) =0 for each x € X. Let p:X —»Rl U {+ ] Dbe defined by
p(x) = P(x,h(x)) and let q:X - R? be defined by q(x) = Q(x,h(x))

and suppose p and q are closed proper convex functions on int(X).

*
Then the point to set map S:R" — (R")  defined by
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{(x") if x ¢ int(X)

sx) - 4 (*- ap(x) If tilx) <06
x - hull(®Op(x) U dt(x)) if t(x) =0 if x € int(X)
L x - ot(x) ie t(x) >0

has the following properties:
(a) If x' € int(X) then any fixed point of S belongs to int(X).

(b) If x' € int(X) then any fixed point of S solves the problem

min p(x)
s.t. q(x) <0 provided a = inf{t(x)/x € int(X)} <O .
x € int(X)
(¢) The algorithm when implemented on S computes either a fixed point

of S or a point in bd(X).

Proof. Part (a). Let x ¢ S(x). Suppose contrary to the conclusion
of (a) that x ¢ int(X), then S(x) = {x'} and so x = x' € int(X).
This contradiction establishes that any fixed point of S belongs to
int(X).

Part (b). Let x € S(x). First it will be shown that x is
feasible, i.e. a(x) <0 and x € int(X). Part (a) shows that
x € int(X) and by hypothesis a < O hence qi(x\ < t(x) <0 for each
i=1,..., £. Thus x 1is feasible. If t(x) < O then the fact that
x 1is a fixed point of § yields O € Adp(x) and the cptimality of x
follows from the convexity of p on int(X). If, on the other hand,

t(x) =0 then O = Aa' + (1-Nb' for some a' ¢ Jp(x' and b' € dt(x)
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and A€ [0,1]. Since a <0 and t(x) =0 it follows that A\ > O
whence a' = [(1-A)/AJb'. To see that x is actually optimal let
z € int(X) %be any other feasible point. It must be shown that

p(z) > p(x). By the fact that 2z is feasible and that Db' ¢ dt(x),

0 > t(z) > t(x) + (b',2z-x) = (b',z-x) ,

and since a' € dp(x) ,

p(z) > p(x) + (a',z-x)

v

p(x) - [(1-A)/A] {b',2-x) > p(x)

This shows that x actually solves the problem.

Part (c). The proof will be done by showing that the algorithm
generates a point x € X with the additional property that if x ¢ bd(X)
then x € S(x). To actually construct this x, consider a sequence of
triangulations {qu] of R™ x [0,1] whose mesh is going to O for k — o,
For each fixed value of k the algorithm will generate a sequence of m
and (m+l)-simplexes such that each m-simplex is completely labelled. Since

this collection can never leave a compact set it must be finite and so

there will be a completely labelled m-simplex, say rk==hull([(x0k,1) ..... %m,l)})
consequently there are scalars }Qk, e 3 kmk > 0 together with points
zOk € S(ka), el ka € S(xmk) such that
S“i Nk ik g ik ik
i=0 i=0
m
5 }\ik_-_ 1,
i=0




k
Since the mesh(fw ) 1is going to O, it follows that there are points

X, zo, ey 2 € B® together with nonnegative scalars )9, ey »

and a subsequence K such that

(1) {x™) 5x for k€ K and each i=0,...,m
(2) [zlk} -z for k< K and each i = a, ,m
: ik i - c

(3) (A7) >N\ for k€ K and each i =0, ,m
(B =x = \’—T=o N

First it will be shown that x € X. If x &€ X then {zik} - X' for
k<c K and each i =0,...,m. Hence x = x' € int(X). This contradiction
establishes that x < X.

Next it will be shown that if x & bd(X) then x € S(x). So
suppose x € bd(X). Then x € int(X) and hence S(x) is a convex set.
To show x 7 S(x) it will be shown that zi € S(x) for each i =0,...,m
and thus x = 2?:0 Xizi € S(x). To see that 3 € S(x) for each
i =0,...,m note that S(x) 1is usable on int(X) so by the upper

semicontinuity of S and (1) and (2) above, z- < S(x) for each

i =0,...,m. This concludes the proof. Il

Throughout the entire chapter it has been assumed that A.L4.5
always held and an example was presented where A.L.5 did not hold. It
will be shown that there is a possible method for dealing with this type
of problem but certain aspects of the approach render it computationally
infeasible. If A.lL.4 holds then the function h(x) will choose a
very special element of H(x) in such & way that x solves P.L.2
iff (x,h(x)) solves P.L4.1. Unfortunately no computational implementation
for this choice function has been found. This function is described in
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Theorem h,z, Suppose H(x) is compact and convex for each x € K" and
that P 1is continuous. Suppose further that for each x € R® there
is a y € H(x) such that Q(x,y) < 0. Then the choice function

h: R® - R® defined by h(x) = sny solution to

min P(x,y)
alx,y) <0
vy € H(x)
satisfies x colves P.4.2 iff (x,h(x)) solves P.L.1.
Proof. Suppose first that x solves P.4.2. Then (x,h(x)) is feasible

for P.4.1. Let (x',y') be any other feasible solution for P.k4.1.

Then by the definition of h, P(x',y') > P(x',h(x")) = p(x') > p(x) = P(x,h(x))
and so (x,h(x actually solves P.L4.1l. This proves the necessary part

of the theorem. For the sufficiency part suppose (x,h(x)) solves P.L.1,

Then x is certainly feasible for P.4,2. Let x' be any other

feasible point for P.4.2. It must be shown that p(x') > p(x). Since

n

(x',h(x')) 4is feasible for P.4.1 it follows that

p(x) = P(x,h(x)) < P(x', h(x')) = p(x*) . I

This chapter has dealt with theoretical conditions on the original
functions P, G and @Q which allows the algorithm described in Chapter 3
to solve P.4.1, It is now time to focus on the computational aspects of the
problem. It will also be desirable to find some techniques to increase
the efficiency of the algorithm. These are the topics of the next two

chapters.
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CHAPTER 5

COMPUTER CONSIDERATIONS

5.1. Introduction and Preliminaries.

In the previous chapter a theoretical approach was suggested for
solving P.4.1. There is however a considerable gap between the theoretical
framework and an actual computer implementation. In this chapter a
computational method based on the previous theory is developed in detail.
The first step in this direction involves a careful analysis of exactly
what quantities must be computed and methods are proposed for accomplishe-
ing these tasks efficiently. It will become evident that the amount of
work required is quite large and one naturally asks if there are ways
to reduce the computational effort. This topic however will be reserved
for Chapter 6.

Given P.L.1 recall that for each x < R', H(x) = [y(iRn/G(x,y§ =0)
and X = (x ¢ R"/H(x) is nonempty). At the end of Chapter 4 it was shown
that the case where H(x) was not a singleton for each x € X, was a
very difficult and seemingly unmanageable problem, Therefore for the
duration of this chapter, A.L.5 will be assumed. Also recall that the

following point to set map was developed to solve P.L.1,

]

{x"} if x ¢ int(X)
8(x) = x = dp(x) if t(x <0

x - hull (3p(x) U at(x)) 1if +¢(x) =0 1if x€ int(X)

x = ot(x) ' if t(x) >0
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where x' € X. Finally, recall how the algorithm of Chapter J will attempt
to find a fixed point of S, It will use a triangulation of Rm X {0,211

in which the vertices lic in either R" x {0} or R" x {1}. The

algorithm sterts with a speciel m-s:mplex, say, ?O =hull([(xb.l),...,ixm,]}})

G - e - ; L ol .
containing the starting point (w,0) R™ x {0} in its interior. Con-

sequently there is a basic feasible solution A to

A = (0, 0 )]
A>0
where
s (£(x)-x, 1) for some f(x) € S(x) if u =1
A.(x,u) =
‘ (w=x,1) SR

The method proceeds to generate a vertex in the triangulation of the form
(x,u) with w € {0,1}. For each such point it is necessary to compute

A . This vector will be brought into the current basgis and a

. (x,u)
dropping vertex will be unicuely determined. This in turn will generate
a new incoming vertex and the process is repeated. DNote that when then

incoming vertex (x,u) has u = O, the computation of A is very

.(x,u\
simple, however when wu = 1 it is necessary to generate & point
f(x) € S(x)., The flow chart of Figure 5.1 shows the necessary computations
to accomplish this, The first three computations are discussed in the

next section and the other four computations are handled in the last

gection.
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Compute h(x)
G{x,n(x)) = 0

! the current basis

L .
:Exit with A.(x, 1)
:to be brought into

Compute t(x) =

ma.x{Qi(x,h(x))/i =l s

A.(x.l§ paiul

where b' € ot(x)

6L

............ sprennd
(2)
i o M >
, £}
(6)
==g!
where a' ¢ dp(x)
FIGURE 5.1
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5.2. Solving Nonlinear Systems of Equations.

Step (1) of Figure 9.1 is ascertaining if x € int(X). Amongst
other things, this requires determining if there is a y € Rn such that
G(x,y) = 0. Since this is attempting to solve a particular nonlinear
system of n equations in n unknowns it is going to be a difficult
task. Several computational methods exist for accompiishing this.

In the proof of T.!:.5, for example, a contraction mapping approach was
designed, however it is felt that the hypotheses of this theorem are too
strong and that in most applications the function G will not satisfy
these conditions. A mcre stable computational tool was sought. In the
event that these constraints satisfy some differentizbility conditions,

Newton's method may be applied. These conditions are =upplied in

Theorem 5.1. Let x - X be fixed and suppose y € R" is such that
G(x,y) = 0. Suppose G is continuously differentiable (in the y-coor-
dinates) in some neighborhood of y and that PyG(x.y' is nonsingular
at y. Then there is & neighbecrhood O of y such that for any

0 the sequence {yk} defined by

k+1 k -1 LA k
v =y - DV G(x,y) (;(x,y e e =0

converges to y.

Proof. See Theorem 10.2.2 of Ortega and Rhineboldt [L41]. I
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Optimally one would have hoped for a stronger version of T.5.1
in which the sequence [yk) converged to some y € R® ;ff G(x,y) = 0,
that is to say iff x € X. This of course is not the case as it is
possible for Newton's method to diverge and yet x £ X. Furthermore
there is no way of determining if x € int(X). No way around these
difficulties is known so in practice when Newton's method fails it is
assumed that x ¢ int(X). This action has not caused any difficulties
in the test problems reported in Appendix A. Note that when Newton's
method fails it is easy to compute f(x) € S(x) provided x' € X is
available. If such an x' is not available at the start of a problem,

a Phase I method for attempting to find such an x' exists. The next

proposition shows how to set this up.

Proposition 5.1. Consider the problem

n
(P.5.1) min _Z z

Then x' € X iff there is a y' € R® such that (x',y',0) solves P.5.1.

Proof. Suppose first that x' € X. This means there is a y' € R?
such that G(x',y') =0. Thus (x',y',0) is feasible for P.5.1, To

see that it is actually optimal note that the objective value is bounded
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below by O and since (x',y',O) actually attains that value it must be
optimal. To go the other way suppose (x',y',0) solves P.5.1. From the

feasibility conditions, CG(x',y') = O and hence x' ¢ X. I
y

As a result of this proposition it will now be assumed that x' < X
is available and returning to Figure 5.1(2), this completes the description
of what to do if Newton's method fails to converge.

Note that when implementing Newton's method it is necessary to
supply an initial starting point yO € R* from which to iterate. A good
choice for yo will hopefully mean that fewer iterations are required
for convergence. On the other hand a poor choice might lead to slow con=-
vergence or no convergence at all. Under certain differentiability assump-
tions on G, a tangent plane approximation can sometimes be used to generate

a good initial starting point. This is the essence of

Theorem 5.2, Suppose G 1is twice continuously differentiable and that
the point (a,b) € R" x R* satisfies G(a,b) = O with DyG(a,b) non-

singular and let x < R™. Then there is a constant e, such that

le(x,y°) I < ell(x,5°) = (a,0)]°

where

e
n

-1
b - Dy G(a,b)(DxG(a,b)(x-a))

Proof. Since G(a,b) = O and by the definition of y°,

6(x,5°) = 6(x,5°) - G(a,b) - D G(a,b)(x-a) - DyG(a,b)(yo-b)

G(x,5°) - G(a,b) - DG(a,b)(x-a,y"-b)

n
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set e = sup([D°G((x,y°) + A((8,b) - (x,3°))[I/0 < A< 1) < w. The

result now follows from T.1.2. ”

The reason this starting point was chosen was because all of the
quantities needed to generate it will already have been computed by the
algorithm. That is to say, at the moment the algorithm needs a starting
point for Newton's method it will have a point (a,b) with G(a,b) =0
and it will have computed -D;lG(a,b) DxG(a,b). Therefore, to compute
yo all that needs to be done is a matrix multiplication and an addition.
This concludes the analysis of Newton's method and it will henceforth be

assumed that Newton's method has converged to y ¢ R® with Glx,y) =90.

According to Figure 5.1(4) one must now compute
t(x) = ma.x[Q.l(x,h(x))/i S

Following this however it will be necessary to generate either an
a' € dp(x) (if t(x) <0) or b' € d3t(x) (1f &(x) >0). It will be
shown in the next section that under certain conditions these quantities

may be obtained from the original functions P, G and Q.

5.3. Computing Subgradients.

In this section it will be shown that if P, G, Q and h
satisfy some differentiability conditions it will be possible to compute
subgradients of either p(x) or t(x). First it will be shown how to
compute Vp(x) and Dqg(x) from the derivatives of the initial functions
P, G and Q, and they in turn will be used to compute subgradients.
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Proposition 5.2. Suppose P, G, Q and h are differentiable at some

point (x,h(x)) with x € int(X). If in addition DyG(x,h(x)) is non-

singular then p and g are differentiable at x and

p(x) = Q%P(x,h(x)) + (V&P(x,h(x)))T Dh(x)

Dg(x) = DXQ(x,h(x)) + DyQ(x,h(x)) Dh(x)
with

Dh(x) = -D;l G(x,n(x)) DXG(x,h(x))

\
Proof. That p and J are differentiable follows from the chain rule.

Furthermore the ¥Vp(x) and Dq(x) may be written explicitly as

T

1

Dh(x)

W(x) = TP(x,h(x)) + (7,P(x,8(x))

Da(x) = D,Q(x,h(x)) + Doalx,h(x)) Dh(x)

It remains only to show that Dh(x)

-D;lG(x,h(x)) DxG(x,h(x)). The
function G(x,h(x)) is identically O on int(X) so again applying the

chain rule yields
Dxc(x,h(x)) + DyG(x,h(x)) Dh(x) =0 .

By hypothesis, D G(x,h(x)) is nonsingular, therefore an explicit formula
D

for Dh(x) 1is given by

Dh(x) = —D;lG(x,h(x)) D G(x,h(x)) . I
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Lemma 5.1, If p and q are cloged proper convex functions on int(X)
and if p and q are differentiable on int(X) then vp(x) € dp(x)

and Dqg(x) € dq(x) for each x € int(X).

Proof. This is an immediate consequence of T.1,3. I

Theorem 5.5. Let p and q be closed proper convex functions which are
differentiable on int(X). Suppose i is such that qi(x) = ma.x{qj(x)/lf_jf 2)
= t(x). Then ti(x) € dt(x) and Vp(x) € dp(x)

Proof. Let =z € int(X). It will be shown that t(z) > t(x) + (ti(x),z-x)

for then vqi(x) € dt(x). But since t(x) = qi(x) and since 9y is

convex,

t(x) + (v, (x),2=x) = q,(x) + (vq,(x),z-x)

IA

g (2)

t(Z) ’

IA

ag desired. The fact that Up(x) € Op(x) is a restatement of L.5.1. {

With Proposition 5.2 and T.5.2 it is possible to compute either
an element of AJp(x) or ot(x) and with these computetions under control
all of Figure 5.1 has been dealt with.

This chapter has provided an implementation of an algorithm to
solve P.l,1, Several difficulties remain unresolved but computational

tests have shown this method to be quite reliable (see Chapter /).
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Specifically, a scheme for computing f(x) € S(x) was eanalyzed, First

it is necessary to attempt to solve a nonlinear system of equations.

If this is successful it is then necessary to evaluate partial derivatives
and subsequently solve a system of linear equations. This clearly requires
a lot of effort. It is therefore desirable to find ways of reducing

this work. This is the topic of Chapter 6.
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CHAPTER 6

ACCELERATION TECHNIQUES

6.1. Introduction and Preliminaries.

In the previous chapter a computational method was devised to
solve P.k.1, It was observed that each time a point (x,u) € R" x {1}
was generated a large effort was required to compute f(x) € S(x). The
purpose of this chapter is to describe various ways of improving the
overall efficiency of the algorithm.

An obvious approach is to try to reduce the amount of work needed
to generate f(x) € S(x). One way of doing this is to approximate S by
a sequence {Sk] of point to set maps. Then instead of generating fixed
points to PL approximations of S (as the algorithm currently does)
one would generate fixed points of PL approximations to Sk. The idea
is that it will be less expensive to generate an element of Sk(x) than
one of S(x). Another possible way to save work in generating £(x) € S(x)
is to reduce the amount of work needed to compute h(x) by using a
Simplified Newton Method (SNM) (see Ortega and Rhineboldt [L1l] for
example) or perhaps & Quasi-Newton Method (QNM) (see Murray [39] or
Broyden, Dennis and More [L4]). Whereas NM requires a matrix inversion
at each of its interations, SNM requires only one metrix inversion for
the entire procedure. Still another idea for saving work is to avoid
computing t(x) = max{qi(x)/i =1,... , £} which requires evaluating
all of the constraints. Instead one might hope to be able to evaluate

the constraints sequentially and stop as soon as a violated constraint
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is encountered. This was observed by Merrill [ 58] and he presented an
example consisting of convex functions for which the above idea did not
work. A way around this difficulty has been found and has been implemented
in the computer code.

All of the previous ideas have involved reducing the amount of
work needed to compute f(x) € S(x). Another valuable approach might be
to somehow reduce the total number of times f(x) € S(x) needs to be
computed. One possibility is to use additional structure of P.4.1
such as upper and lower boundes on the variables. A triangulation of
the hyperrectangle defined by these upper and lower bounds has been
developed. Intuitively this would appear to be good since outside of
the hyperrectangle no solution can possibly exist. Yet another possible
way to reduce the total number of times f£(x) € S(x) need be computed
is suggested by Saigal [L46]. His analysis can only be applied to
P.2.1 in which there are no inequality constraints and requires some
differentiability conditions on the functions. In this case the rate
at which the mesh of the triangulation goes to zero can be greatly

increased. Each of these ideas is now made mathematically concrete.

6.2. Approximation Technigues.

Consider the problem of finding a fixed point of a function
f:Rm »>R% In many applications the evaluation of f can be very uime
consuming. It would therefore seem reasonable to attempt to reduce the

amount of work needed to evaluate f. This will be accomplished by

7
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replacing f by a sequence of functions (fk]. Under certain circumstances
the algorithm of Chapter 3 may be used to compute a linear approximate

fixed point of fk in a finite number of steps, and if the sequence of
points thus generated has a cluster point then this can be shown to be

a fixed point of f. The motivation for this approach lies in the fact

that each fk is easier to evaluate than the original f. The circumstances
under which this approach will work is now developed. It is necessary to

introduce

Definition 6.1. A sequence {fk) of functions is said to be weakly equi-
continuous iff for each + > O there is a © >0 and an integer N > 0

such that [x-z|| < & implies ka(x) - fk(z)ﬂ < ¢ for all k > N,
The next two lemmas will be used in the proof of the main theorem.:

Lemma 6.1. If {fk} converges pointwise to f and if {fk} is weakly
equicontinuous then for any sequence of points [xk] converging to

x € Rm, the sequence {fk(xk)] converges to f(x).

Proof. Let ¢ > 0. By D.6.1 there is a & > 0 and an integer N, >0

such that ||x-y|| < & implies ka(x) - fk(y)“ < e/ for all k > Nl'

Since [xk] converges to x one may choose an integer Né > 0 such
that ka - x|l <3 for all k > N,. Also since (£%) converges point-
wise to f there is an integer N3 > 0 such that ka(x) - f(x)|| < e/2

for all k > N5. Set N = max(Nl,NQ,N

75). Then for any k > N it follows

that
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12565 - 2l < 1€ - 560 + I1£%(x) - £(x) I

e/2 + ¢f2

IN

The first term is made small by the weak equicontinuity of {fk] and
the second term is made small by the pointwise convergence of [fk]

ta 2. l

Lemma 6.2. Let [7’]k] be a sequence of triangulations of R" such that
mesh(?]]k) +0 as ko o, Suppose further that {fk} is a weakly equi-
continuous sequence of functions. Let ka be the PL approximation to
fk induced by ’}”k (see Chapter 3). Then for any sequence of points
{xk) and € > 0 there is an integer N > O such that

£ (%) - £55)|| < ¢ for a1l k > N.

Proof. The proof is done by showing that for large enough N, the
vertices of the m-simplex containing xk are sufficiently close to xk

to apply the properties of weak equicontinuity. Formally then let <« > O

be given. Let i hull({ka, iev s xmk]) be an m-simplex in 7}lk

k ; Ok mk
containing x . Hence there are nonnegative multipliers A™7, ... , A
which sum to 1 such that xk = 7«3 -0 A']kxak. Let © >0 and Nl be chosen

by the definition of week equicontinuity of [f'k] . Choose N, such
that Hx'jk - xkll <% forech J=0,...,m and k > N,. This may be
done since mesh(?)[k) -0 as k -5 o, Setting N = ma.x(Nl,NQ) it follows

that for all k > N,
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Theorem 6.1. Let {fk} be a weakly equicontinuous sequence of functions
which converges jpointwise to f. Let {?ﬁk} be a sequence of triangulation
of R® such that mesh(zyk) —»0 for k -5 o, Also let ka be the

: < k. k K. .
PL approximation to f induced by ‘?7 . If {x] 1is a sequence of fixed
points of PR ek that {xk} —-»x%x for k € K (some subsequence), then

x 1is a fixed point of f.

Proof. It will be shown that [f(x)-x|| =0 so let « > 0. Then for

each k € K,

le(x)=xll < £(x) -GS || + [1£5G") = £+ 18D EE) =X + K]l .

Each of these terms can be made less than ¢/L4 for sufficiently large k.
The first term can because of L.6.1 as can the second by L.6.2. The
third term is O because xk is the fixed point of ka for each k ¢ K,
Finally, the fourth term can be made less than ¢/4 since (xk] - X
for k€ K by Y rpothesis. The result now follows by letting ¢ — O. I
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The next proposition shows that under certain circumstances a
sequence of PL approximations to a uniformly continuous function can

generate a weakly equicontinuous sequence of functions.

Proposition 6.1. Let f:R" — R" be uniformly continuous and let

{ﬂvk] be a sequence of triangulations of R™ such that mesh(,ﬂk) -0
for k - . Also let ka ve the L epproximation to £ induced by

, then {ka] is an equicontinuous sequence of functions.

Proof. Let ¢ > 0. First choose 5 >0 such that [x-yll <5 implies
le(x)-£(y)]l < /3 by the uniform continuity of f. Next choose N such
that mesh(’)))k) < &% for all k >N. It will be shown that 5 and N

satisfy the definition of equicontinuity. To see this,let k > N and

X, Y€ R" with lx=yli < 5. Also let hull({xOK, Sy xmk}),
hull([yOk, b yMk?) be simplexes in 7ﬂk containing x and y

% : ; Ok mk
respectively. Hence there are nonnegative multipliers A, ... , A
and qu’ ed umk which sum to 1 such that X = ZW Aikxlk and

1=0

ik ik
¥ = 2?:0 u'y . Consequently

1) - () | < 18 () -2 ()| + e -2 || + £y -E= ()]

<
e ARpgru ik \ S ik ik
= |2 A -e@) + e =W+l & w™(£(y)-£y )
i=0 =0
m m <
< ©AEeE) el + e -2yl + 5 otElety) - )l
1=0 i=0
=3%3°3
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In particular, if f 1is a continuous function from & compact set into
itself then f will be uniformly continuous and consequently a sequence
of PL approximations to f will yield a weakly equicontinuous sequence
of functions.

A theorem similar to T.6.1 for the point to set map case can be

developed. For this it is necessary to have

/ *
Definition 6.2. Let Sk:Rm —>\Rm) be a nonempty point to set map for

each k =1,2,... . Then {Sk1 is said to converge equicontinuously

to the nonempty point to set map S if whenever
1) {(x) »x,

2) z8e g%:x*) for all k=1,2,..., and

(
(
(3) {zk}az then z € 8(x).

Theorem ©.2. Suppose {Sk} is a sequence of nonempty point to set maps
which converges equicontinuously to a usable point to set map S. Also
suppose there is a compact set C with Uk Sk(RmW c C. Let {:?k] be
a sequence of triangulations of R®  with mesh(ﬂqk) 50 for ko5 ®
and let ka be the PL approximation to Sk induced by"zyk with xk

a fixed point of ka. If x is a cluster point of {xk] then x € S(x).

Proof. The proof is done by showing that x may be expressed as a convex
ombination of points im S(x). The result will then follow since S(x)
- ‘ . k : v kL,
vex, To begin with, x is a fixed point of f . Let
k mk

x v« y» X ') be an m-simplex containing xk. Hence

S & mk :
negative multipliers A\, ..¢ , A which sum to 1




lkxlk = xk. To say that xk is a fixed point of ka
- ok
Ok & 5 (ka), ki zmk ' Sk(xmk) for which

such that F‘f ok
means that there are points =

m . o m s
Biahilag 2
1=0 i=0
One would like to be able to take limits in this equetion therefore a sub-
ik ik ik
sequence K will be found for which f{z ), {x ]}, (A"} all converge

for k € K. To do this it will be shown that {zlk}, {xik], and {Alk]

each lie in different but compact sets. The compact set containing [zlk}
is C Dby hypothesis. The sequence [xlk} actually converges to x
for each i1 =0,..., m. This is because meshﬁzyk) -0 for k- o.

ik

Finally the {A ] lie inside a gsimplex. Hence there is a subsequence

K along which {zlk’ —azi for e € K, (xik] —-x for k€ K, and

{xik} 2" for X € X and this is true for each i = O5.¢:5; m. Now

one may take limits in the above equation to yield

AW S
L hxE L RANe
i=0 i=0
or eguivalently
o el
X= 2 Nz
i=0
Hence x 1is a convex combination of zo,....zm. All that remains to
be shown is thet z < S(x) for each 1 =0,..., m, and this follows

from D,6.2 since for each i,

(1) [xik] % for kK€K,
(2) zik € Sk(xik) for k € K,
(3) (6°%) +2° for k€K,

therefore z1 € 9(x) for each 1 =0,...,m. t

s




This concludes the approximation section, however, one word of
caution is in order when implementing the idea. If the early approximations
are not good the algorithm might become "trapped" in the wrong region and
require a lot of additional work to get back to the correct answer, thus
negating the savings. Hence one may wish to think of this as a "tail end"

procedure depending of course on the specific approximation.

6.3. Vgrious Modified Newton Methods.

In this section the Simplified Newton Method (SNM) and the Quasi-
Newton Methods (QNM) are described as possible alternatives to using
Newton's Method (NM) for solving nonlinear systems of equations.

Recall how NM will work. PFor a given point x € R" it will take
a starting point yo and generate the sequence {yk} defined by

S — .
W achiad N DylG(x,yk> G(x,y%) for k =0,1,...

-1
Notice that it is necessary to recompute Dy G(x,yk) at each iteration.
The idea behind SNM is to compute the matrix W = D;lG(x,yO) once and
for all and then to generate the sequence {yk} defined by

4
yk e yk - Wo(x,y%) for k = - 1

Figure 6.1 shows the difference between these two methods in the 1-
dimensional case. The next theorem gives conditions under which SNM

may be expected to converge.
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Newton's Method

<

Simplified Newton's Method

Figure 6.1

81




Theorem ©.3. Suppose G:Rm % B B ia continuously differentiable in
the y-coordinates for each fixed value of the x-coordinates. Suppose
also that (x,y) ¢ R° x R® with G(x,y) = 0, and det(DyG(x,y‘;) # 0.
Then there is a neighborhood O of y such that for all yO € 0 the
sequence [yk} defined by

k+1 k -1 0 k
¥ =Ny 'Dy G(x)y ) G(x,y ), k =0,1,...

converges to y.

Proof. The proof is done, by showing that there is a neighborhood 0

of y such that for each yo € 0 the function L:R" x c¢|(0) - ¢|(0)
defined by L(x,z) = z = D;lG(x,yo) G(x,z) is a contraction mapping

and hence has a unique fixed point namely y. Consequently, since

yk+1 = L(x,yk), it must be that {yk} —Yy. So all that needs to be
demonstrated is the existence of this neighborhood 0. The first property
that O must satisfy is that L must be a contraction mapping on cl(o).

Thus it will be necessary to show that there is a constant 0 < e¢ <1

such that
lL(x,z) - L(x,2')|| < ¢llz-2'|| for all 1z, z' € oO.
Therefore it is necessary to bound [[L(x,z) - L(x,z')||. Since L is

differentiable in the y-coordinates, T.l,1 may be used. This bound

specifies that
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L (x, 2)-L(x, 2') || < sup(liDgL(x, 2#A(2'=2)) [ /A € (0,11} [|z-2"|. Hence o0

will be chosen so that

sup(HDyL(x, z + Az'=2))|i/n € [0,1]) < c

for some c¢ between O and 1., From the definition of L,

_6..
et
o~
»
[
'

= {1 - D;lG(x,yo)DyG(x,z)H

A

) -1 0
IIDy G(x,y) DyG(x,y) -8 G(x,y) DyG(x,y)H

b 0 -1 0
+ HDy G(x,y") DyG(x,y) - DG (x,y) DyG(x,Z)”

IN

2,603 | Hn;le<x,y) - n;1c<x,y0)n

Oy

=1 |
+ IIDy G(x,y )l HDyG<x,y> - DyG(x,z)u ,

The set 0O will be chosen to make each of these final two terms < c/2,
and it will follow that
sup[HDyL(x,z+ Atez)) |/A € [0,1]) <

The first term can be made less than c¢/2 by using the continuity of

DyG(x,y) to choose & 5, >0 such that

“D;lG(x,y) - D;lG(x,yo)“ < C/(ENDYG(x,y)”)

whene ver Hy-yOH < bo. Also a 61 < bo may be chosen together with

a constant e such that




-1 0
”Dy G(x,y )” <e

whenever "y-yo” < 61. Finally there is a 62 <5 61 such that

llDyG(x,y> - DyG<x,z)|| < ¢/(2e)

whenever |z-y|l < 8,. Defining 0 = B(y,&e) does the trick. All that
remains to be verified is that L in fact maps R" x c|(0) into c|(0).
To this end let z € c¢|(0). It msy be shown that [[L(x,z) - y|| <3,

By T.1l.1 and the construction of O,

”L(X,y)-Z” = ”L(X,Z) = L(X)Y)"

IA

sup{HDyL(x, z + My-2))I[/A € [0,11) [lz-yll

cllz-yll

IA

llz-yll

A

o)

IA

o

This completes the proof. I

Other variants of NM are the Quasi-Newton Methods (QNM). Basically
these methods differ from Newton's Method in that they do not require
& direct computation of D;lG(x,yk). Instead this information is
approximated by local data. The approximation is continually updated
throughout the solution procedure. Davidon [10] and Fletcher and Powell
[18] were amongst the first to study this approach. Only the (n+l)-point
sequential gecant method predated their work,

8l




6.4, Use of Upper and Lower Bounds.

In this section a different point to set mepping is designed to
solve P.L.2, The differcnce is that in the new formulation it will not
be necessary to compute Ut(x) = ma.x{qi(x)/]_ <1< ). Instead it will
be possible to check each constraint for feasibility and stop as soon
as the first infeasible constraint is detected. To do this it will be

necessary to assume A.L4,1. Then it is possible to define the following

collection of convex functions ti:Rm = R1 by tH(x) = max[qj.(x)/lf_,jf_i]

for each i =1,..., £, and the following usable point to set maps

; - !
. g™ —a(Rm) by T(x) =x - wti(X) for each i =1,..., £. Letting

ngRm — (Rm)* by S x - p(x) then one may inductively define

N\
]

Sl-l:Rm > (Rm) Fors K=, B=il oo, L by
e ; i
st (x) if t7(x) <0
gl null(s’(x) U T (x)) if t'(x) =0
L (x) if tix) >0.

sO is the point to set map whose fixed point will be shown to solve

P.4.2. First however it is necessary to establish that So is usable.

Theorem 6.4, If A.4.1 holds and if (x/tz(x) < 0} € int(dom p) then

S0 is usable.

Proof. Sg is usable by T.1l.4k. By T.1l.5 one can conclude that S]~1

is usable. Tterating backwards finally ylelds S is usable. I
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The relationship between fixed points of SO and solutions to

P.4.2 is esteblished in

Theorem 6.5. If u = inf{te(z)/z cR") <0 then x . So(x) IFf

solves P.L.2.

Proof. Assume first that x ¢ S°(x). It is necessary to show that

(a) x 1is feasible and (b) if 2z 1is any other feasible point then

p(z) > p(x). The feasibility of x will be established by contradiction,
SO suppose x € So(x} 'is infeasible. It will be shown that t£(z) >0
for all =z and this will contradict the fact that wu < 0. Since

x € So(x) there is a )l € [0,1], x - Sl(x), - € Tl(x) such that

et s (1ot |

]
]

Since zl g Tl(x) there is a bl € atl(x) with zl = x-bl, hence,

Axl + (1-21) (x-b)

»
]

Note that 1f +1(x) >0 then » =0 sand if tX(x) <0 then A =1.

Since x' € S*(x) there is a N € [0,1], x° € §°(x), 2= € T°(x) such
that

xt = Agx + (1-7\2)22 5

I o)
Since 22 € Td(x) there is a b° € yt“(x) with 22 = x-be, hence

x1 = A% 4 (l-h?\(x-ba).

86




Substituting this into the expression for x yields

o n -
= Nha + R0 - KA+ (00 = [1-106r

Note again that if t>(x) >0 then » =0 and if t5(x) <O then

2

A~ = 1. Continuing in this manner yields that for each i = 1,..., £

there is a A' € fo5dd, bt € {ml(x) together with a ¢ € Jp(x) such that

)
x = A (x=c) + (L-A")x - X e
i=1
where
1.2 2 i e
LRI ) SRR, R B iR T
Jj=1

(It is understood that e> = (1-AY).) 8implifying this one has

L4
(a) AMc+ 2 eb =0
=l

and as noted above
(o) ti(x) >0 implies A\ =0, for each i =1,...,%; and
(e) ti(x) < 0 impliess N"="1T " for each "L =l 0. F,

Recall that x is assumed to be infeasible hence for some Kk, tk(x) >0

and consequently by (b), A' = 0. Thus (a) reduces to
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(a") Yﬁ,l eibi = 0. To establish the desired contradiction it is

necessary to use the convexity of ti and the fact that

bt € Bti(x) 1e)

tiiz) = thx) + (b*, z-x) for all z ¢ R° .

Multiplying both sides of this by the nonnegative number ei and summing

over i yields

(@ I, e'th(2) 2T el + (2 eho? 5

244 , z=x) for all z € R

PR i
= Zi=l et (x) ,

The last equality being justified by (a'). Note that tl(x) is non-

decreasing in i so

(e) Zl eiti(z) < (Zﬁ=lei) tz(z) for all z ¢ R® .

i=1

Also note that

\V4
o

2 Z i
(1) ¢ elelm) >
i i i,
because e~ >0 and if t7(x) < O then by (¢) e” = 0. Combining

(e) and (£f) into (a) yields

(Xf=l el) t4(z) >0 for each z € R",
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Finally observe that stl e = (1-A") + A' =1 and hence tg(z) >0

for each z € R". This is the long awaited for contradiction. Thus far

it has been shown that x is feasible and consequently that A' > 0.
Now let 7 € R™ be any other feasible point for P.L.o. Tt must be
shown that p(z) > p(x). This will follow from the convexity of p

and the fact that c € dp(x) since

p(2) 2 p(x) + {e, z=x) .

Hence all that needs to be shown is that (c, z-x) > 0, and this will
be derived from the feasibility of 2z and the convexity of £

Since b £ dt'(x) ,

(g) t'(z) > tl(x) + (bl, z-x) for esch i = e e

Multiplying both sides of (g) by the nonnegative scalars e /A' and

summing over i yields

2
1) D

o s . 3 :
sob REARY Al B B L feT ) ) & <Zﬁ=l(e1/xi)bi, 2-x)

1=

and from (a),

(') I} (et th@) 2T (P i) - (e, zx) .

= i=1
On the right side of (h') note that Zﬁ_l(el/x’\ ti(x) = 0 since x is
feasible and since tl(x) < O implies e1 =0 by (c). On the left

side of (h') note that 37

1, i y ARTR TR
qep (@A) t7(2) ST (e7/A") t7(2) by the

monotonicity of £ An i. Combining these two into (h') yields

89

e ST




(1) Zﬁ=l(ei/x') t" (2) > - (e, (z=x))

Since 2z 1is a feasible point, tz(z) < 0 and hence (c, z-x) >0 as
desired. This proves the necessary part of the theorem. To establish

the sufficiency, assume x solves P.L.2. It will be shown that

£=1 2-2( )

x € 87 "(x) and an argument is given to show that x ¢ S x). This

argument may be repeated to establish that x € So(x). Note that

ﬂ-l(

X €S x) by T.1.9. To see that x C S/-g(xﬁ consider

Case 1: Py < o .

2-1
(

In this case, Sb-r(x) =8 x) and “herefore x © Se-g(x).

Z-l(x) =G,

-0 ) - o N
i this cass S (x) hull(SE 1(x) U pt l(x)\,. But x€ 8 l(x) S0

Case 2: ¢

in particular, x € SE-Q(X). Since x 1is feasible for P.4.2 these are

the only two possible cases and that establishes the proof. I

At this point one would hope to be able to apply the algorithm
of Chapter 3 to this point to set map. Unfortunately there is no guarantee
that a linear approximate fixed point of SO will be computed in a finite
number of steps. Merrill [3%83)] observed this difficulty and he constructed
an example where the constraints were all convex as was the objective
function yet the algorithm failed because it did not find & linear
approximate fixed point in a finite number of steps. A way around this

difficulty is to ensure that the algorithm never searches for a fixed




point of the PL apprr_)_\r_j_mat]on outside of some compact set, A very natural

choice would be the hyperrectangle defined by the upper and lower bounds
since no solution to P.h.2 can lie outside this region anyway. The

only problem is that P.L.2 may have some variables which have no bounds.
Tn this case it is necessary to impose arbitrary upper and lower bounds.
Each time a new linear approximate fixed point is computed, the artificial

bounds will be expanded. This is the essence of

Theorem ©.5. Let {uk] and [vk] be sequences of vectors in R

with uk < vk and {uk} > (=, =, .., , =) and

\

L% -
(v) 5 (+w, +o, ..., +x) a5 k 5o ., Define a sequence of problems

L J

Pk: min p(x)

8.t glx) <
k k

o

u

=
IA
<

m
% ER

Then x solves P.4,2 iff there is an N such that x solves Pk for

k > N.

Proof. Suppose first that x solves P.4.,2. Choose N such that k > N

implies uk <x< vk. If 2z 1is any other feasible point of Pk for

k > N, then p(z) > p(x) since x solves P.4,2. This establishes the
necessary part of the theorem. Suppose now that x solves Pk for
all k > N. It must be shown that x solves P.4.2. Clearly x is
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feasible for P.L.2 since q(x) < 0. If z is any other feasible point
for P.4.2, then choose k > N such that z 1is feasible for Pk. From
the fact that x solves P, p(x) < p(z). This establishes that x is

optimal for P.L.2. |

An additional advantage to using a hyperrectangle is that it may
be easily triangulated. The philosophy here is that "if there is no
reason to search outside a given region then don't." Also one would like
the ability to control the "size" of these simplexes. To show precisely
how this is done let u, v € R° with u strictly less than v in all
coordinates (u will be the lower bounds and v +the upper bounds).

Also let Nl, reria N be positive integers. Set M = ) [O,Ni] and

i=1
Ch= X?zl[ui,vi]. The idea is to create a linear homeomorphism, L,
from M into C. Then any triangulation of M yields one of C by
applying L to each simplex. Michael Todd [52] has developed a tri-
angulation of R™ which when restricted to M yields a triangulation
of M. This combined with the mapping L will provide the desired tri-
angulation of C. It remains only to specify the mepping L:M - C,

so let (il, e im) € M then define

L1, oo s 4p) =u+ WL, ooy 1)

where




[ (v, =u.) 1
111 R rlaege i 0
N
(vguug)
0 e . 0
¥ = N°
(v.=u)
Bt i e AR = 2
B
-~

This has been implemented intoc the computer code and choices for

Nl, S N® have been left to the user's discretion.

6.5. Other Methods and Future Research.

One of the more effective acceleration techniques is that of
Saigal [Li,45]. It applies to the special case of P.L.2 in which there
are no inequality constraints, that is to say, unconstrained optimization.
Furthermore the hypotheses require that p be a strongly convex twice
continuously differentiable function. In this case he was able to obtain
an increased convergence rate by increasing the rate at which the mesh
of the triangulations goes to zero.

Since the area of acceleration techniques appears to be the most
important, several unsolved problems will be presented in the hopes that
if they can be solved, further improvements will be obtained.

For example, in Chapter 3, it was mentioned that various
researchers have developed computerizable triangulations of Rm and

of the unit simplex, and with the results of section 6.4 it is now possible
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to triangulate a hyperrectangle. The next generalization would be to

develop such a triangulation of a compact polyhedral set. This would
enable one to solve a linear programming problem in a finite number of
steps. Another interesting possibility would be to find a sequence

of linear transformations, which, when applied to the original tri-
angulation of Rm yields a new triangulation of R® with perhaps some
beneficial new properties.

Another area which could use some work is the way in which the
basic and nonbasic variables are chosen. This problem has not been dealt
with here and it can only be said that in the test problems of Chapter 7
a proper choice was always evident. In general one will not be that
lucky and it will be necessary to find a method for doing this. The
choice can be critical in the success of the algorithm. The following
example shows that & poor choice of the basic and nonbasic variables

can cause the algorithm to fail.

Example €.1. Consider the problem

By e Rl .

The solution to the problem is x = 1/2, y = 1/4 and the algorithm will
compute this answer provided the x variable is chosen as the nonbasic
variable, whereas if y 1is so chosen, the algorithm can be caused to
converge to x = y =0 by choosing an initial point x'=-1, y' =1
with G(x',y') = 0.
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CHAPTER 7

COMPUTER RESULTS

7.1. Designing the Test.

All of the previcus work has been used to develop an algorithm
for solving P.4.1 under rather hypothetical conditions. Although con-
vergence has been theoretically established in Chapter 4 the ultimate
value of this (or for that matter any other) approach can only be
determined by its @actual performance. Therefore seventeen test problems
have been solved and the results are compared against those obtained from
GRG (Generalized Reduced Gradient Method) proposed originally by
Abadie [1]), which, to the author's knowledge, is the best commercial
code for solving P.4.1.

The first difficulty in designing such a test is to determine a
measure of computational efficiency. Some items which should be con-
sidered -are robustness, 'cost" to compute a solution, accuracy of the
solution with respect to the optimal objective value and with respect
to the optimal solution vector, and ease of implementation. Of these,
robustness and overall expense are often considered to be the most
important. Robustness is the ability to handle a wide variety of procblems
under various starting conditions. For this reason seventeen distinct
problems are presented and solved, sometimes from different starting

points.
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Having settled on costs as one of the measures of efficiency
the next task is to determine how it is to be caiculated. One possi-
bility is to define costs as tie number of function evaluations. The
reasoning is that very often this will be the most expensive operation.
There are several drawbacks ©o using this statistic as the sole measure
of costs. One problem is that it totally ignores the amount of work
performed between function evaluations. Also, function evaluations in
one method mey be quite different from those of another method. For
example, the fixed point code will require a simplex pivot in B after
each gradient evaluation, but it will never evaluate the objective
function. Furthermore, due to some of the techniques of Chapter 6,
not all gradient evaluations will require a matrix inverse. On the other
hand, with GRG, the objective function is evaluated many times but no
pivots need to be performed. All these different statistics are reported
in the ensuing tables; however, the conclusion is that it is necessary
to let the computer determine the total costs via the CPU time.

Even this is very unsatisfactory in that the way the algorithms
are programmed, the access of data and the amount of printing can
radically affect the CPU time. Several precautions were taken to reduce
some of these variances. To begin with, both codes were run on the
same computer (IBM 370/165) and on identical partitions of core. Both
were compiled under Fortran H, OPT2 and CPU time was measured from the
very first executable statement to the very last. The fixed point code
was programmed by the author and the GRG code was obtained from Leon
Lasdon and Arvind Jain through the Systems Optimization Laboratory at
Stanford University.

()6
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The final step was to find seventeen test problems. One of the
major difficulties here was that many of the problems in the literature
had only inequality constraints. Any problem of this kind was discarded
immediately since the entire objective was to see how this algorithm
would perform under equality constraints. Since problems of this nature
are, in general, very difficult to come by they will be printed here
along with their sources, known solutions, and various starting points in

the hopes that other researchers will be able to use them.

T2 Tables of Results and Conclusions.

This section presents the results of the fixed point code and
GRG on the seventeen problems in Section 7.5. Table 1 gives a summary
of the characteristics of the problems and Tables 2 and 3 give a summary
of the fixed point and GRG methcds respectively. In Table 2, the letter
following a number refers to a different starting point as shown in the
problem description. Also in Table 2, the number of gradient calls
requiring a matrix inverse is reported whereas Table 3 reports all
gradient calls. GRG appears to be somewhat faster in solving problems
1, 7, 9, 12, 13 and 15, whereas the fixed point code seems slightly
faster on problems 2, 3, 4, 5, 6, 8, 10, 11 and 14. At first glance
there is reason to suspect that the dimension of the problem is a key
factor. A possible explanation for this is that as the dimension goes
up, the number of simplexes traversed by the fixed point algorithm goes

up greatly. In order to test this possibility a forty dimensional problem
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was invented (Problem 16) and GRG proved to be approximately eleven times
faster in solving it. Note that this problem has no inequality constraints.
Since inequality constraints add to the complexity, Problem 16 was
modified by adding upper bounds. This formed Problem 17. An interesting
result was that the fixed point code required almost twice as many pivots
(and consequently almost twice as much time) to solve Problem 17 as it
did to solve Problem 16. GRG, on the other hand, actually took less
time to solve Problem 17 than it did to solve Problem 16. This opens
up another area for future investigation.

Nonetheless, the conclusion from these tests is that when the
dimension of the original problem is reduced sufficiently by the equality
constraints, the fixed point approach appears to be more effective than

GRG.
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TABLE

<
i

PROBLEM DESCRIPTION

Number of Nonlinearity of |Nonlinearity
Problem|Number of] Eauality (Lower jUpper Ob jective of
Number {Variables]Conctraints{RoundsiBounds! Function Constraints
L | 2 ] None None Quadratic Quadratic
2 5 1 None None Mild Mild
3 3 None None Strong Quadratic
L 3 None { None | Cubic Quadratic
5 5 & None None Strong Strong
¢ L 2 None { None | Strong Strong
7 5 2 None Nene Strong Strong
5 2 None None trong Strong
9 5 2 AlL All Mild Mild
10 5 1 5 None None Strong Strong
150 5 {7 3 None None Strong Strong
12 6 ; L All All Discontinuous | Strong
1) 10 o All None Strong Linear
14 1l 6 All None | Strong Linear
15 16 8 All All Quadratic Linear
16 Lo 20 lione | None | Quadratic Mild
17 Lo 20 All A1l Quadratic Mild

a9




FIXED POINT RESULTS

TABLE 2

t::blem Objective Number of | Number of | Number of |Number of CPU
ber Value Newton Newton Gradient Pivots Time
* Obtained Calls Iterations| Calls** |Required (in secs)
1 1.394 oL 1 6 2k 07997
2 .000005 L1 Lo 9 L2 .11625
3(a) 961.717 20 59 9 26 .09547
3(v) 961.717 20 59 9 26 .095L7
L 117.062 16 23 16 16 .08295
5 .1655 33 19 55 55 .10946
6 =k 4969 52 106 29 63 .1h7ka
T -2500. 57 Lo 60 Lo L .13192
8 - 210.02k 86 - 132 26 107 .20190
9 -30665.3 109 Tl 3k 165 .20931
10(a) .05395 28 38 9 29 .111%2
10(b) .05395 26 50 6 28 .10978
11(a) .02932 Lo 39 2k Ly .13036
11(b) .02932 o7 27 21 38 .12151
11(e) 27.552 Ly 56 28 Lg .13700
11(ad) 27.552 Ly 56 28 L9 .13700
11(e) 27.552 Ly 56 28 49 .13700
12 8827.6 58 fat Lo 67 .23k25
13 -47.760 1 1 1 385 . 56465
14 000120 1 | 1 115 .28489
15 2lL.9 1 1 1. 967 1.99
16 . 72842 ko7 390 265 577 16.01778
17 . 73027 785 717 785 1084 28.0649

*
The letters in parentheses refer to the different starting points.

-
Only those gradient calls requiring a matrix inverse are reported.

———
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TABLE 3

_ GRG RESULTS
E:::lem Objective | Number of | Number of Number of Number of CPU
er Value Newton Newt.on Gradient Objective Time
* Obtained Calls Iteretions Calls Function Calls (in secs)
1 1.39336 13 7 L 25 .0715
2 0.00000 L7 86 9 134 1139
3(a) 961.715 30 61 9 101 11409
3(v) 961,715 Lo 86 10 135 .12521
I 117.056 28 21 6 50 .09472
5 .1655 13 37 L 51 .0792k
6 -4.L969 51 126 1k 179 .16045
7 -2500.63 29 3k 8 65 .128L
8 -210. 408 75 175 15 253 .2036
9 -30655.5 it i 6 16 .0874
10(a) .053948 2k L2 8 68 11519
10(b) * - - - - -
11(a) .02931 34 76 10 113 .13434
11(b) .02931 23 51 9 84 .12562
11(c) Lk, 022 L 30 10 78 .13835
11(d) 27.872 L8 111 11 160 .15617
11(e) 607.017 76 152 15 239 2007k
12 8827.6 7 5 5 14 .08870
13 -L7.760 9k 1 20 101 .32137
14 ** - - - - .
15 2k, g 156 % 37 162 . 92266
16 .72839 56 73 130 11 1.4873
17 .73017 3 13 5 a5 Jbo72

*
The letters in parentheses refer to the different starting points.

"
GRG failed to obtain correct solution (could be user error).
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T7.3. The Test Problems .

Since equality constrained optimization problems are, in general,
difficult to find in the literature, the seventeen problems which were
used for the comparative tests are documented here along with their

sources, known solutions and suggested starting points.

Prob’em 1.

min P(x

sats

Optimal Solution and Optimal Objective Value.

x' = (823, .911]
P(x') = 1.393
Suggested Starting Point.
x = (2,2)

Source. Himmelblau [26].




Problem 2,

min P(xl,xﬂ,xij = (xl—xg) + (Xa_xi)
t PV N
Set. X) + XX, bx, =3 =

Optimal Solution and Optimal Objective Value.

TSl

Source. Avriel [2].

Problem 3.

, ( R -
min P(xl,xﬁ.xﬁ) = 1000 - x| - ax‘ - X3 - XX, - X1 X3
2 2 2 = (
Sel. 0 X ok . R o T, s S e
1L 2 5 L 5
\"3‘ G 5 ]_J + 3 oy =
Xy &xg 7x$ 6 =10

Optimal Solution and Optimal Objective Value.

x' = (3.51212, .216988, 3.55217)

P(x') = 961,715

Suggested Starting Points.

(a) x = (10, 10, 10)

(b) x = (=5, =10, 5)

Source. Margaret Wright [59].
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Problem 4,

min P(xl,xg,xj) = -(xl +x, + X5 = 7
2 2 2
+ - -
s.t. X1 + X, x3 2 0

|
o

x, = exp(x;) =

Optimal Solution and Optimal Objective Value.

x' = (.17906, 1.1961, .7330)
P(x') = 117.062
Suggested Starting Point.
% =0 8 1)

Source. Richard Asmuth--Private Communication.

Problem 5.

: e 2
min P(xl,xg,xE) = exp(xlx2 - xj)

8.t ¥ e
& ' :

Optimal Solution and Optimal Objective Value .

x' =(-.682Lok, 820716, 1.1120k)

P(x') = .1655032

Suggested Starting Point.
x = (=1,1,1)

Source. Richard McCord--Private Communication.
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Problem 6.

- 2 Y 4 2
min P(xl,xg,x5.xh\ = X + (xl-l) + (xe-xs) + (xj-l)
)
o 5 ehgt
s.t. xx) + sin(xh xj) i =0
2 abls
Xp + xjxh =10 =0

Optimal Solution and Optimal Objective Value.

xl

(2.033936, 1.591623, 1.392401, 1.400879)

"

P(x') = -4, 496925

I

Suggested Starting Point.

% = (5.159, 3.362, 0,1)

Source. Richard McCord--Private Communication.

Problem 7.

2

¥ bt . 4 2

min P(xl,xg,xa.xh,xs)-lelxh-6x5x2+x2xi+E)51n(x5-x5) + XXX
2 2

+ X), +x. ~20 =0

2 2 724
8.t X5 F X ¥ ¥ 3
i )

2 3

X, % * X.X), RSP =10

3
D
5 = x:xh - 10xlxg <0

Optimal Solution and Optimal Objective Value.

(1.47963, -2.63661, 1,05467, =1.611"1, 2.67388)

x’

P(x')

-2500. 55

Suggested Starting Point.

x = (1.091, <3.17h4, 1.714, -1.61L4, 2.13L)

Source. Modified from Himmelblau [26].
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Problem 8.

X 2 5 L L o3
D = - a -
min L(xl,xg,xj,xh,xs) 10x, x), ()x}x2 * 20 + 9 uln(xu x3) + X, X)X,
2 % 2 2 + 2 2 o
8.5, Xy * x, f x3 X), + xb -20 =0
xax + 10x. x - 5=0
27k 155 5
2 y =
—xlx3 - x5xLL - 2 < 0

Optimal Solution and Optimal Objective Value.

x' = (-.081k522, 3.69238, 2.48741, .37713k4, .173983%)

or

(.0320, 3.691k4, 2,4807, .35993, .29777)

xl

P(x') = =210.024

Suggested Starting Point.

x e (1, 5,0, 1,1)

Source. Modified from Himmelblau [26].
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Problem 5,
min P(xl,xp,x5.xh,x5) = 5.35735N7x§ + .8356891xlx5 + 57.“93239x1 - Lo792.141

s.t. 85.334k07 + .0056858xﬁx5 + .0006262xlx“

9.300961 + .ooh7oz,>6xjx5 + .00125147x1x3

80.51249 + .0071317)(?}(5 + .0029955xlxq

.0022053x.x, - 92 = 0
575

&4

.0019085x% x), = 20 =0

3
.00021813x; =100 < 0

-+

-80.512ka - -0071317x,%, = .0029955%, %, - .00021813%; + 90 < 0

1 3

B < % < 102

=71
Bex, < b5
T <x53 < 5
27 < x < L5
o7 < x. < 45

=% %

Optimal Solution and Optimal Objective Value.

x' = (78, 33, 29.995, k5, 36.776)

P(x') = =%0665.5

Suggested Starting Point

x = (78.62, 33.4k4, 31.07, LL.18, 35.22)

Source. Modified from Colville [8].
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Problem 10,
min P(xl.xg,xj,xh,xs) = exp(xlxuxjxhxs)

L]
C =5

)

2 ’
- + = h -
s.t. Xy + x2 xj + xh + xs 10 0
xex5 - )xhx5 =0
x]5.+xg +1:o

Optimal Solution and Optimal Objective Value.

(=1.7171k4, 1.59571, 1.82725, -.7636L43, -.765(L3)

x!

n

P(x') = .0539499

Suggested Starting Points.

(&) X ('212)2)’1"1)

(b) X ('l;'l}'l"l)'l)

n

Source. Powell [L2] also Margaret Wright [55].
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Problem 11,
min P(x]_)x25xjvxh)x5) = (xl"l);} i (xl-x2)2 +: (x:)-xi\,ﬁ + ()C;'xb}),4 + (xh-xl))b’

2 5 -
+ + - 2 - =
s.t. x; X, + %3 Y = 342 =0
2
X, Xzt X +2 -2 Ve =0
- D =5
xlxb 2 0

Optimal Solution and Optimal Objective Values.

x' = (1.11663, 1.2204k, 1.53779, 1.97277, 1.79110)
Plx') = 029918

x' = (-2.79807, 3.00L41k, .205371, 3.8747h, -.716603)
P(x*) = 607.036

x' = (=1.2/305, 2.41035, 1.19486, -.154239, -1.57103)
P(x") = 27.8719

x' = (-.703393, 2.63570, =.0963618, -1.79799, =2.3L33¢)
P{x') = Lhh. oel.

Suggested Starting Points.

(o) == 1,1,5,1,1)

(b} "z = (2,2,2,2,2)

(¢) x = (-1,3,-1/2,-2,-3)
(a) x = (=1,2,1,«2,=2)

(&) x = («2,=2,<2,2,«2)

Source. Miele, Moseley, Levy and Coggins [(]; also Margaret Wright |45].
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Problem 12,

- P "
min P(xl,xe,x5,xu,x;,x6) P (xl) + P"(x.)

2
S X, -c+ (xixh cos(b-x6) - xg A cos(b-a))/B =0
X, + (XBXh cos(b+x6) - xz A cos(b-a)) /B = 0
(XSXH sin(b-x6) - xg A sin(b-a))/B - D =0
2 (x5, sin(btxg) - xi A sin(b-a))/B =0
0<x < koo where A= ,90798
0 < x, < 1000 B = 131.078
3k0 < X3 < L2o a = .00889
3ko < x), < Loo b= 1.48477
-1000 < x, < 1000 c = 300
0 <x¢ < .5236 D = 200
and
30 if  0<x; <300
%P'_ (x,) =
- 51 if 300 < x, < koo
and 28 if 0 < x, < 100
£ (x) = | 29 1r 100 < x, < 200
2

30 4f 200 < x, < 300

Optimal Solution and Optimal Objective Value.

(107.83L, 196.295, 373.83%6, 420.002, 21.293, .15327)

xl

P(x') = 8827.595

Suggested Starting Point.

x = (390, 1000, 419.5, 3L40.5, 198.175, .Y)
Source. Coleville [8].
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Problem 13,

min P(xl,..., xlo) Lo

s.EL X 2% b D% ip e e -2=0
2 3 6

ik 10
X), + 2x5 + X, + x7 =3 =0
+ + +2 + = =
x3 x7 x8 xQ x10 ik 0

where
c = (-6.089, -17.16k, -3L.054, =5.91k4, -2L, 721, -1k, 986,

=24, 1, -10.708, ~26.662, -22.179)

Optimal Solution and Optimal Objective Value.

x' = (.0k06, .1477, .7832, .001k, .L853, .0007,

.027h, .0180, .0375, .0969)

P(x'") =h7.761

Suggested Starting Point.

o Cols sie 4wl

Source. Himmelblau [26].




Problem 1k,

5
min P(co, cee s Cpp Ky e, k) = - E;

where

v = 4,5026

Optimal Solution and Optimal Objective Value.

(e',k') = (28.474, 29,282, 30.139, 31.0k47, 32.010, 33.031,
101.526, 102.702, 103.374, 103.339, 102.330)
P(e',k') = .00012080k

Suggested Starting Point.

(e, k) = (101, 10%, ... , 101)

Source. Professor Alan Manne--Private Communication.
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Problem 15,

min P(x 6) B e (xf + X, + 1)(x2 +x, +1)

J J

where

N
[
—
=
—

Y]
]
=
o]
=
(=]

L B L 1 .

(o)
[
(-
[

\O
=
—
[

10 1 1

LL il &

12 1 1

14 1

16 1

¢ = (2.5 1.1, «3,1, «3.5, 1.3, 2.1, 2.3, =1,5) amd

113




B=| 1 2 3 L 5 6 i 8 11 13| 14| 15( 16
1 22] .2 2901 a5t st Q2] 13

2 | -1.46 -1.3 1.82 | -1.15 .8

3 | 1.29) - .8 -1.16 | - .96 -.h9 1

L o110 [ -1.06] .95 |- .5k -1,78 | - .\

5 =143 ] 1.51 59 | - W33 -3 1

6 =172 |- .33 1.62 | 1.24 .21 | -.26 1

7 | Lag 31 112 -. 56 1

8 As | .26 [-1.1 .58 -1.03 1 \

Optimal Solution and Optimal Objective Value.

P(x")

Source.

xl

244, 9

1.568, 0, 0; 0, .66, 0; .67h, 0O)

Himmbelblau [26].
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Problem 16.

1 20 o Lo
min P(Xl""’xho) 25 b x5 * ¥ ox
1=1 j=o1 ¢
20
s.t. X559 exp (- 2 xf) -1=0, 1 <1 <20

Optimal Solution and Optimal Objective Value.

-.22438 if 1<i<20
x! =
011850 JP a1 <1< o
P(x') = .728399

Suggested Starting Point.

0 if 1<1<20

b 1 if2l<i<io

Source. Proposed by author.
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Problem 17,

1
min P(xl,...,xuo) =5
20
gt %, .. eple T %)
i+20 =1 )
< .01

Optimal Solution and Optimal Objective Value.

23085 Af  L.< i
Xi =
01 LN 2
Suggested Starting Point.
X, =0 i

Source. Proposed by author,
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APPENDIX A

With the theory of Chapters 1 and 4 it is now possible to show
that P.L4.1 is in fact a special case of decomposability of a point to

set map. This is formally stated and proved in

Theorem.  Suppose A.%4.1-A.4.5 hold and that in addition P, G, h and Q
are all differentiable on their respective domains. Define the function
L:R" 5 R by L(x) = V. P(x,h(x)) + v, P(x,h(x))" Dh(x). Then the point

*
to set map S:R" x R = (R® x R")"  defined by

(x,5) = ((L(x),G(x,¥))) it iz} <0
S(x,y) = { (x,y)-hull (3t(x) U(L(x)})x{G(x,y)} 1if t(x) =0
[ (%,y) - ot(x) x {G(x,y)) if t(x) >0
satisfies (S,Rm x R°) is decomposable,
Proof. Let X =R, Y=R", %2 =X x Y. Define §ptZ — (X)* by
x = {L(x)) e Eile) = 0
Sf(x,y) = x=hull(dt(x) U {L(x)}) if t(x) =0
x = ot(x) if &) >0

*
and Sg:Z - (Y) by
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Sg(x,y) =y - {6(x,y))

Property (1) of D.2.2 holds by construction. Furthermore, property (2)

of D.2.2 holds trivially since for each x C R" ;

8¢(x,B(x)) = h(x) - (G(x,h(x))) =h(x) - (0} = (n(x)}). |
It is of course important to note that under the conditions developed in

Chapter L4, a solution to P.L.1 may be obtained by finding a fixed point of

*
the point to set map 8, :X - (X) defined by Sr(x) = Sf(x,h(x)).
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In the past decade, several constructive proof's of the Brouwer and Kakutan
fixed point theorems have emerged. These proofs have been developed into
algorithms (known in the literature as complementary pivot algoritims) which
search for fixed points on unbounded regions. In turn these algorithms. have
been used to solve problems arising in economics, engigcering and other
branches of applied mathematics. An important applicati for which this
method was cumbersome and inefficient to use was that of optimizing an objec-
tive function subject to both equality and inequality constraints (hereafter

referred to as the general constrained optimization problem).=0One result of +}s
-is the most efficient complementary pivot algorlthm to date
for handling,bhts‘problem. The second major contribution is

a general structure on fixed point problems which, when present, enables one

to work in a lower dimensional space. It is shown that the general constrained)
optimization problem may sometimes be formulated as a fixed point problem
possessing this property.

The basic approach adopted in this work for handling the general con-
strained optimization problem is to use an implicit function (derived from
the equality constraints) to solve for some dependent variables in terms of
the remaining independent ones. Under certain circumstances, a fixed point
algorithm may be used to search for optimal values of the independent vari-
ables while Newton's method is used to determine values of the dependent
variables. Theoretical conditions on the original functions are developed
to guarantee that the fixed point algorithm converges to a solution and vari-
ous techniques are devised to enhance the overall efficiency. -

To help ascertain the value of this method, comparative computer tests
are run against the Generalized Reduced Gradient (CRG) algorithm which is a
well established nonlinear programming code. This method was selected as
the basis for comparison because, to the author's knowledge, it is the best
commercial code for solving the general constrained optimization problem.
Seventeen test problems were taken from various sources. The fixed point
code solved all seventeen and GRG solved cixteen. This supports the robust-
ness of the fixed point approach. As to the computer times, the fixed point
code proved to be as fast or faster than GRG on the lower dimensional problems.
As the dimension increased, however, the trend reversed and on a forty dimen-
sional problem GRC was approximately eleven times faster. The conclusion
is that when the dimension of the original problem can be sufficiently reduced
by the equality constraints, the fixed point approach appears to be more
effective.
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