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Conversion factors for U.S. customary

to metric (SI) units of measurement

To Convert From To Multiply By
angstrom meters (m) 1.000 000 X E -10
atmosphere (normal) kilo pascal (kPa) 1.01325 XE +2
bar kilo pascal (kPa) 1.000 000 X E +2
bam meter? (m?) 1.000 000 X E -28
British thermal unit (thermochemical) joule () 1.054 350 X E +3
calorie (thermochemical) joule (J) 4.184 000

cal (mermoelmel‘mcal)/cm2

curie

degree (angle)

degree Fahrenheit

electron volt

erg

erg/second

foot

foot-pound -force

gallon (U.S. liquid)

inch

jerk

joule /kilogram (J /kg) (radiation dose
absorbed)

kilotons

kip (1000 Ibf)
kip/inch? (ksi)
ktap

micron

mil

mile (international)

ounce

pound -force (lbs avoirdupois)
pound-force inch

pound ~force /inch
pound-lorceﬂootz
pound—lorce/inchz (psi)
pound-mass (lbm avoirdupois)
pound -mass -loot2 (moment of inertia)

pound-musﬂoota

rad (radiation dose absorbed)
roentgen

shake

slug
torr (mm Hg, 0°C)

mega joule/mz (MJ/m?)
*giga becquerel (GBq)
radian (rad)

degree kelvin (K)
joule (J)

joule (J)

watt (W)

meter (m)

joule (J)

rnetera (ma)

meter (m)

joule (J)

Gray (Gy)
terajoules
newton (N)
kilo pascal (kPa)

newton —lgcmd /mz
(N-8/m*%)

meter (m)

meter (m)

meter (m)

kilogram (kg)
newton (N)
newton-mete: (N.m)
newton/meter (N/m)
kilo pascal (kPa)
kilo pascal (kPa)
kilogram (kg)

kilogram -me'er2
(kg-m?)

kilogram /mete P
(kg /m3)

**Gray (Gy)

coulomb /kilogram
(C/kg)

second (s)
kilogram (kg)
kilo pascal (kPa)

4.184 000 X E -2
3.700 000 X E +1
1.745 329 X E -2
te= (11 + 459.67)/1.8
1.60219 XE -19
1.000 000 X E -7
1.000 000 X E -7
3.048 000 X E -1
1.355 818

3.785 412 X E -3
2.540 000 X E -2
1.000 000 X E +9

1. 000 000

4.183

4.448 222 X E +3
6.894 757 X E +3

1.000 000 X E +2
1 000 000 X E -6
2.540 000 X E -5
1.609 344 XE +3
2.834 952 X E -2
4.448 222

1.129 848 X E -1
1.751 268 X E +2
4.788 026 X E -2
6. 894 757

4.535924 XE -1

4.214 011 XE -2

1.601 846 X E +1
1.000 000 X E -2

2.579760 X E 4
1.000 000 X E -8
1,459 390 X E +1
1.33322 XE -1

*The becquerel (Bqg) is the S unit of radioactivity; 1 Bq = 1 event/s.
**The Gray (Gy) is the SI unit of absorbed radiation.
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I SUMMARY

The Underwater Explosions Research Division (UERD)* is developing
for DNA a technique for generating a plane wave in water to simulate
the pulse generated by an underwater nuclear explosion. The technique
is being developed to improve the current method of loading submarine
sections in which the energy source is concentrated as a large sphere

or as a single line of explosive.

Our objective is to assist DNA and UERD in developing this technique.
This report examines the shock block version, which is a square array of
equally spaced parallel line charges of Primacord, as shown in Figure 1.
The examination consists of evaluating the results of UERD tests carried
out with a single horizontal strand, a short vertical sheet of horizontal
strands, and the small final square array of horizontal strands. The
evaluation is aimed at assessing the suitability of the method for testing
full-scale submarine sections. In addition to providing a plane wave, the
pulse shape should have a pressure that rises rapidly to a plateau where
it should remain long enough to provide the required pulse length. Our
main conclusion is that the shock block generates a plane wave pulse
having pressures that are large enough but a rise time that requires
shortening. The most important limitation is that the pulse duration of
the horizontal strands is much shorter than that of the single strand.
Section III explains this pulse shortening. The mechanism that shortens
the pulse appears to be inherent in the shock block configuration; the
pulse duration would not be lengthened by increasing the strand lengths.

Section IV suggests an alternative configuration of the Primacord array.

*
David W. Taylor Naval Ship Research and Development Center, Portsmouth,
Virginia 23709.
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IT EXAMINATION OF THE UERD TEST RESULTS

Our approach to the examination of the UERD test results was to
superpose the pressure pulses obtained from the single strand test in

an attempt to reproduce the pulses of the sheet and block tests.

Figures 2, 3, and 4 show the configurations for the single strand,
the sheet, and the block tests along with the pressure transducer lo-
cations. The pressure pulses recorded at location 4 for the line, sheet,
and block sources a.e shown in Figures 5, 6, and 7. The corresponding
pulse durations are approximately 3.2, 1.6, and 0.9 msec so that the
durations of the sheet and block pulses are considerably shorter than

the duration of the line pulse.

Each pulse in the line test was represented by the formula

-a (tn—t)
P(r,t) = Pn(r)e = R (1)

to facilitate the pressure superposition process, where Pn is the initial
peak pressure, tn is the arrival time, and an is a decay parameter.

The subscript n gives the location number shown in Figure 2

{n = 1-5, 7-9, 11, 12). The values of an and Pn were determined for

cach location by equating the pressure P in formula (1) to the pressure
recorded at times b Bl 0.25 and 1.25 msec. Table 1 lists the re-
sulting values of an and Pn' The pulse is insensitive to the angle ©
between the strand axis and a ray from the end next to the pressure
transducers; in Test 8830, the angular range was 0 < 6 < 45°. Thus,

lependence on 6 was omitted from formula (1). The peak pressure was

o n
2
Pn ( r ) P2
n

represented by
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Data for Fit

Table 1

of Single Strand Pulse

b
2 Peak
Coordinate Peak Decay Pressure
Location Pressure Parameter Parameter
n r 0 P a A
n n n
(£t.) (deg.) (psi) (msec—!)
1 4 0 268 0.96 =
2 6 0 184 0.66 —
3 8 0 156 0.70 0.58
4 10 0 135 0.70 0.60
5 12 0 118 0.67 0.64
74 16 Q 93 0.60 0.70
8 10.2 11 135 0.65 0.58
9 10.8 22 130 0.68 0.60
11 12.8 39 134 0.79 0.42
12 14.1 45 119 0.69 0.51
a. Average a is a = 0.68
b. Average Xn is A = 0.58
14
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which ensures agreement at location 2. The values of An required to

match the pressures P are listed in Table 1.
n

Apart from the location 1 values, @ and Xn do not vary greatly, so
it is reasonable to use the average values of a and A. Thus the pulse

for a single strand is represented by

PN e
P=P(--2—) e - £ >t (2)
2\ r n

where, for the 400 grains/foot Primacord in Test 8830,

P, = 184 psi

2
r2 = 6 £t
A = 0.58
a = (.68 seee

In formula (2), tn is the time of arrival of the pulse. Figure 8 shows
the peak pressures obtained from a fit of each experimental pulse (the
recorded values are slightly higher) for comparison with peak pressures

(t = tn) predicted by formula (2).

The pulse of Figure 9 for location 4 was obtained by using
formula (2) to superpose the pressure pulses from the 10 strands forming
the sheet source in Test 8838, as shown in Figure 3. Also shown in
Figure 9 is a simplified version of the experimental pulse of Figure 6
recorded at location 4 in the sheet test. Because the single strand
test was carried out with Primacord having an explosive weight of
400 grains/foot, whereas the sheet strands contained 18 grains/foot,
the simplified sheet pulse was amplified to provide the same initial
peak pressure (multiplication factor of 3.4). The curves in Figure 9
show that the pulse from the sheet experiment terminates much earlier

than the pulse obtained by assuming the validity of superposition.

Formula (1) was used also to obtain the pulse at location 4 from
the shock block of Figure 4. The resulting pulse and the smoothed pulse
at location 4 from Test 8842 are plotted in Figure 10. Again, the

15
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experimental pulse was increased to provide the same initial peak pressure
to allow for the explosive weight of the single strand being 400 grains/foot
(multiplication factor of 3.4). The curves in Figure 10 show that the
pulse from the block terminates much earlier than the pulse obtained by

assuming the validity of superposition.

18
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ITI  LIMITATION OF THE SHOCK BLOCK %

;

A possible explanation for the early termination of the shock block :
pulse may be found by examining the radial motion of the gas and fluid ?
associated with an elemental length of one strand. If all strands are %
detonated simultaneously, then each internal strand may be envisaged as E
occupying the axis of a tube with a square cross section having rigid é
walls (Figure 11). The square tube is replaced by a circular tube to g
assist description. After the detonation front has swept past the %
elemental length of strand and has formed a high pressure gas filament, é
the radial component of the compressional wave travels to the rigid tube g
wall and reflects as an amplified compressional wave back to the gas é
filament. When it arrives at the cylindrical gas-water interface, the %
gas pressure is much lower than initially and an expansion wave propa- é
gates out to the tube where it reflects as an amplified expansion wave é
back to the gas filament. From the time when the first compression wave %
arrives at the gas filament, the fluid is set into radially convergent i
flow that is unstable and conducive to mixing of the hot gas and cold 5
water. Because of the filament shape, every element of gas is subjected %
to mixing and hence to the rapid loss of potential mechanical work by %

heat transfer to the water particles. A square tube would be even more

conducive to mixing than a round one.

For a 2-foot-square array of line charges, the rigid tube may be 3
taken as having a radius of about 1 foot, giving an approximate transit
time at 5000 feet/sec of 0.2 msec. According to the above description

of pulse termination, the first effects on the pulse at location 4 occur

after two transit times, that is, after 0.4 msec. The smoothed version

of the shock block pulse in Figure 10 agrees with this prediction.

We performed four similar simple experiments to examine the quenching

hypothesis. Figure 12a shows a typical configuration in which a 4%-foot

20
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FIGURE 11 ARRAY REPRESENTED BY A STRAND IN A TUBE
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length of 35 x 35 mil Detasheet strand (about 3 grains/foot) was located
on the axis of a 6-inch-diameter steel tube full of water. A pressure
transducer was located in the wall of the tube 13 inches beyond the end
of the strand opposite the detonated end. Figure 12b shows the resulting
pressure pulse. The pulse duration is 0.18 msec, whereas superposition
predicts 0.71 msec. At a cross section of the strand away from the end,
quenching starts 0.1 msec after detonation at the section. Hence, the

results are consistent with the quenching hypothesis.

23
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IV ALTERNATIVE SOURCE CONFIGURATIONS

Four requirements guided the search for an alternative source con-

figuration:

(1) Creation of gas volume at a constant rate to produce a step
pulse.

(2) A long detonation time to aid generation of a long pulse.

(3) Minimization of the energy loss caused by the mixing of
hot gas and cold water.

(4) A practical and economic design suitable for arrangement
in an array under full scale conditions.

The first configuration examined, shown in Figure 13a, consists
of a helical strand of explosive wound on a grooved steel mandrel oriented
vertically in a horizontal steel tube full of water, which, for examination
of the source characteristics, replaces the rest of the array. Figure 13b
shows the resulting pulse measured 30 inches from the center of the
1.5-inch~-diameter explosive helix. The effective pulse duration equals
the detonation time. For part of the duration, the pulse is flat-topped
indicating an attempt to satisfy Requirement 1. The saw-toothed rise to
the plateau is attributed to progressive detonation across the pipe cross
section. This observation led to the change of orientation shown in

Figure 1l4a.

Figure l4a shows the configuration for two tests differing only by

the length of the explosive strand, Test 11 with 4 feet and Test 12 with
8 feet. Figure 14b shows the pulses obtained from the two tests. Again,

the pulse durations are about equal to the detonation times. The pulse

of Test 11 from the shorter strand resembles a rectangular pulse but the
pulse of Test 11 from the longer strand does not. The relatively slow
rise time and the decay of the pulse from the longer charge is attributed

to the contribution of pressure from each turn traveling faster than the
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axial effective detonation velocity and having more time than the shorter

charge to take effect. This explanation led to the configuration shown

in Figure 15 where the helix has a larger diameter and occupies a central

position in the tube cross section. By reducing the water area around

the steel mandrel the pressure contributions from each turn are higher.

Figure 15a shows the final configuration examined in 2 tests in

the steel tube. The mandrel diameter has been increased from 1'% inches

to 3 inches. Figure 15b shows the pulses obtained from 12-foot and

21-foot strands. The pulse durations equal the detonation times so

that Requirement 2 will be satisfied by a long coil. The shapes resemble
a rectangular pulse. The undesirable feature of the pulse shape is the
superposed oscillations with the highest frequency corresponding to the

number of helical turns detonated per second. 1t is possible, however,

that the oscillations would be less pronounced in an array of coils, be-

cause a steel tube cannot represent the detailed effect of the rest of

the array of coils. We conjecture that the frequency content generated

would be much higher and would lead to hydrodynamic damping.

Because the character of the pulse shown in Figure 15 was encouraging

we decided to continue examination of the helical strand of explosive as

a source, The main and practical disadvantage of the configurations is

that grooved steel mandrels were used to hold the helical strand and keep

it compact. We therefore decided to test the reliability of obtaining

detonation of the entire coil when a simple disposable mandrel was used.

The advantage of the grooved steel mandrel is simply that the pitch
of the helical strand can be kept small without the undetonated coil

being blown away by the detonated coils. Thus the coil can be kept com-

pact and gaseous regions can combine rapidly to minimize the area of the
interface with water (Requirement 3). If a light disposable mandrel is
used, this advantage is lost. Therefore, we conducted experiments with

the general configuration shown in Figure 16 with Primacord wrapped on
a Sono Tube mandrel in a water tank to test the reliability of obtaining

detonation of the entire coil and to detect possible displacement of
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FIGURE 16 CONFIGURATION FOR RELIABILITY TESTS
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coils before completion of the detonation. The Sono Tube excellently
illustrates coil displacement because of the sharp cutting effect of the

Primacord. Three tests were performed:
(1) Primacord 10 feet 8 inches long with 3 turns at 2-inch pitch
(2) Primacord 20 feet long with 6 turns at 4-inch pitch
(3) Primacord 25 feet long with 7 turns at 1-1/8-inch pitch.

In all cases the entire strand was detonated with negligible coil

displacement.

Based on our present knowledge, we recommend continuing this de-
velopment work toward a trial experiment with an array similar to that
shown in Figure 1 for the shock block but using a planar array of hori-
zontal coils in place of the straight strands. Because of the time
required for pressure rarefactions from the edge of the array to be felt
at a pressure transducer, each source pulse duration can be shorter than
that ultimately required in full scale testing with larger arrays. At
location 4 (figure 2) the measuring time unaffected by edge rarefactions
is 1 msec. The detonation velocity of Primacord is 23 feet/msec so a
strand length of 23 feet is adequate for the test. For a l-foot-diameter
coil, the required number of turns is 7.3, or for convenience, 8. If a
pitch of 1-1/8 inch is chosen as the smallest pitch that preserves
reliability of the source, the source length is about 8 inches. A

10-inch long mandrel would support the explosive coil.
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