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THE PARTIAL DONOR CELL METHOD

1. Introduction

The use of second order or higher interpolation schemes for

Convection terms causes the appearance of unwanted extremes near

points where the transported function changes its slope rapidly. The

donor cell method uses first order interpolation and therefore cannot

generate such extrema, but it has a diffusion which is unacceptable

in most cases. The partial donor cell method (PDH) presented here is

nonlinear combination of a higher order scheme and the donor cell

method. It adds just enough diffusion to prevent the occurrence of

such extrema. As compared with other hybrid methods it is less

diffusive because it restricts the additional diffusion to points

where It is absolutely necessary. Flux—Corrected Transport (FCT), on

the other hand, removes the extrema after they have occured. The

results of this method and FCT are very similar, as demonstrated in

the test runs. The PDM leaves the solution undisturbed for zero

velocities. It therefore cannot be used to create artificial

viscosity in stationary or nearly stationary shock fronts. The

method can be readily extended to multidime~nsions.

II. Theory

Let f be the function to be transported across a one—dimensional

grid ; we denote by f~ the value of the function at X
j • Furthermore ,

let d be the difference operator ,

dfj+112 
= — f~ . (1)

Note: Manuscript submitted January 30. 1978.
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Two higher—order schemes are considered here.

a) A simple scheme.

Let all quantities be defined at integral points at space

and time, with the exception of the velocily u, defined at half

integral points in space and time. Then, the new value of f~ is

given by

= f~ 
- 
~~ ~~~~~~ 

(f~~1 + f~) - Uj l/2 (f~ + f~~1))/dx~~112 (2)

The scheme is unstable, with an amplification factor

A = 1 + 1/2 (u
dt )2.

The addition of a second order term, corresponding to a second order

interpolation, will make this scheme stable.

b) Lax—Wendroff Scheme.

In this scheme, one defines intermediate values as

~j+1/2 
l/2(f ~+f~÷1) - Y ~~~~ ~~+l - u~f~ ) /dxj~ 112 (3)

then, with 
~j+l/2 

defined similarly

= f~ 
- dt 

~~j+l/2 ~j+l/2 - Uj+l/2 f~~112) /dx~ (4)

The donor cell method can be written in the form

dtf~ f~ — (1 — sign(u~) )  f 
~~~~~~~ 

u 
~~~ 

—fju~
)/ dx

~+l/2

(1 + sign(u~))  (f~u~ — f~~~1 u~~1)/ dx~~1,~2

or

2



= - ~~ [(~~+i ~~~~ 
- 
~~~~~~~~~~~~ + (f~u~ -

(5a)
+ ~~~~~~ sign(u~) [(f~÷1 uj~ 1 

— fjum)/dxj+112 - (f~u~ — f~_1) /dx~~1/2]

As is well—known, the difference between the donor cell method and

the simple scheme (a) defined above is a diffusion term (the second

term in equation 5a) first order in time and second order in space.

(The difference in the case of the Lax—Wendroff scheme also involves

a higher order term in space and time.)

In order to derive the partial donor cell method, let us define

for the scheme (a)

= 1/2 dt u~~1,2 / dx
~+ii2 (6)

and f o r  scheme (b)

cj+1/2 = 1/2 dt I u~+1/2 I /dxj+112 (1 — d t I u ~~l/2 J /dxj+1/2) (6a)

Furthermore, let a j+1/2 be an array of numbers such that

~ ~ °j+l/2 ~ 1;

here a represents the fraction of diffusion to be added. If a 1,

the complete donor cell method would result. It should be emphasized,

however , that this holds for variable velocities only up to terms

second order in time and third order in space.

With these definitions, we add the following diffusion terms in

a conservative manner to either the simple scheme or the Lax—Wendroff

scheme :

D~ = £.+l/2 °j+l/2 dfj+i,2 — 

~j — l / 2  °j ...l/2  df ~ _ 112 (7)

3
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In order to simplify the following discussion let us assume for a

moment constant velocity and u > 0, and discuss only the simple

scheme. Then with

c = u dt/dx

we can rewrite the transport algorithm including diffusion as

= ~~~ 

~~~+i 
- f~_1) + 

~ ~
°j+1/2 

df .~ 112 
- Oj_1/2 df

1 112
), (8)

or setting

~j+l /2 = °j+1/2 
df
j+l/Z

= — ~ 
— f~_1) + 2 ~~j+ l/2 

— 

~
‘j—l/2~~ 

(10)

The main question is how to determine ~~. As the convection is nothing

but an interpolation between x. and x~~1 (for u > 0), the new value

of the function must lie between f
1 
and f

1~1
. This implies if f . is

not an extrema in the absence of diffusion that

— ~1_1 < If 1 — f 1_1 1.
If this is not the case, some diffusion has to be added to make the

updated function value lie between these limits. The diffusion

depends obviously on the direction in which the fluid moves and

therefore should incorporate this information. One way to take it

into account is the following. Let us define

S
i 

= A + si~n(df~~112) + sign(df1 112) I ;  (11)

then we write 
~j+l/2 

in general in the form

4
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~j+l/2 
= sign (df.+112) [o. Idf j+1121

— 1/2 S
1~1 

(1 — sign (u.÷112)) df1.~3,2~ (12)

— 1/2 S
i 
(1 + sign (uJ+l,2

)) I df
11,~ i]

This prescription means we subtract df, the difference df i+1,2 taken

in the direction of the flow, the amount A whether or not the func-

tion has an extremum at this point, and the amount B only if there is

no extremuin. But, if the amount exceeds the difference df
j+112 

no

diffusion will result. This is the point where (as in FCT) the non-

linearity comes in. The values of A and B remain to be determined.

In order to relate this diffusion to the hybrid schemes

described by Harten
2 and Van Leer3 we define a quantity e by

tdf
1~ 112

( —

(13)
Idf1+1121 + Idf1 112 I

(compare Eq. 4.12a, 4.l2b of ref. 2). Harten’s method then can be

written in our notation as

“1+1/2 
= max (e~, 6j+l~ 

df j+l,2 (14)

This means the solution has an added diffusion proportional to this

smoothness parameter O~ . In order to make the connection with our

methods more obvious, let us define

— ‘~~~~ (0 , Idf 1+112 1 — S~ Idf j_ i,2 1)/ Idfj+1121; (iSa)

= max (0, IdfJ_1/2 1 — S. Idf~+1121)/ Idf 1_112 I .  (15b)

5
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With these definitions we can rewrite Eq. (12) as

= dfj+l,2 1/2 [l 
- sign (u.÷112)) O~~~

+ (1 + sign (u.~ 1/2
)) o~] (16) .

The choice of A = 1, B = 0, therefore, closely resembles the hybrid

scheme of Harten and Van Leer.

The important difference is that in the partial donor cell

method only as much diffusion is added as is needed to keep the

function f monotone. This is achieved in two ways; first, by consid-

ering only the differences in the direction from which the fluid

comes; second, by taking the maximum in Eqs. (15). The possibility

of adjusting the parameters A and B is a further advantage.

We now discuss the manner in which A and B are determined. The

simplest argument, which leads to A = 0 and B = 1, is the following.

If

1/2 I 
~~+l 

- ~j~ l I I - I

then no extrema can occur. That is, if has no extrema, this is

equivalent to

I f 1+1 
— I I f~ —f1..11

Therefore, no additional diffusion Is needed implying A + B = 1.

The choice of linear interpolation at all extrema leads to A = 0. A

more sophisticated argument proceeds as follows. It is presented

here for scheme a: if f
1 

is not an extreme and as long as

C I 
~~~~ 

— f 1_ 1 I I —

6
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the new values lie between f
1 

and Furthermore, at an extremum

interpolation with a symmetric parabola will not result in a new

extremum. Therefore, the value A 1 can be chosen . If the signs of

the differences do not change , the condition above leads to

I ~1+1 
- f

1 I < (~ - 1) 1 - f~_1I.

If one chooses B such that only additional diffusion is added if

this condition is not satisfied, namely (similar for b))
2 2a ) B — — 2 , b ) B = —
C C

then at points where the subtracted difference is smaller, f. = f.1

regardless of the value of C. This leads to great phase errors

locally. A good choice is to take the values found for c = 1/2. The

results for the two schemes are

a) A — i  b) A l

B — 2  B = 4

(One should remark that usually in hydrodynamics c at its maximum is

about 0.3; therefore, the phase errors should not be too big.) This

choice assures the correct range of f.~. The test runs confirm also

that it is less diffusive than the choice A = 0, B = 1. The results

are for all practical purposes identical with those of FCT for the

transport of square waves. Test runs with rapid varying velocity

have shown that the best results were achieved with A = 0, B 1. A

description of this algorithm is given in Appendix B.

Test runs:

Test runs have been done for three cases:
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1) Squarewave 10 meshpoints across.

2) Squarewave two meshpoints across.

3) Cosine wave with 10 points for the total period.

For the choice C = .2, the results are presented at 10 and 100 steps,

for which the solution is propagated 2 and 20 mes~.~’oints, respec-

tively. The results are given in the tables below (tables were

chosen because of the small differences). One sees clearly that for

all the test A = 0, B 1, is most diffusive, but gives basically

the same results. The choice of A = 1, B = 2 in the 10 point sqiare

wave yields the same results as does FCT (as described in the

appendix). The results of the other tests seem to show that the PDN

holds the extrema a little bit better than FCT. This is clearly

demonstrated in the cosine wave case where the maximum after 100 steps

is 1.729 compared to 1.518 for FCT. Also, the typical three—point

plateau for FCT appears, whereas PDM keeps the maximum at theright

place. Each of the schemes has a tendency to form a plateau with

more extension in the direction of the flow for a maximum and vice

versa for a minima. The choice of A 0, B = 1 for the simple

scheme seems to have this tendency in far lesser degree. After

transport over 20 meshpoints the cosine wave is practically symmet-

rical, but with about half the amplitude found for the Lax—Wendroff

scheme.

III. Conclusions

A simple transport scheme has been demonstrated. It prevents

the occurrence of new extrema (and therefore assures monatonicity).

8
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The additional donor cell contributions needed can be chosen

according to the two parameters A and B. The most diffusive choice

A = 0, B = 1, will result in a scheme slightly more diffuse than FCT,

but it will guarantee the nonoccurrence of new extrema caused by the

higher order scheme. Application of PDM in one dimension requires

the same number of operations as FCT (for the ASC at NRL). It can

readily be applied to nonsplit multidimensional problems.

9
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Appendix A

In this appendix a short description of the FCT algorithm

actually used in the test runs is given. Theory and more details

are given in ref. (1). Let H be the transport operator for one

timestep (either the simple scheme (a) or the Lax—Wendroff

scheme),

then

f~ = Hf.  (Al)
3 3

if is the transported function. Now a diffused function fDH is

computed using the old values

f
DH 

= f~ + 1/8 (df~~112 
- df~_112) (A2)

in order to obtain the antidiffusive flux dfA , it is useful to3+1/2
define a factor S by

S
1~ 1,2 

= sign (df
1+112

) 1/2

(Isign (df~~312) + sign (df~~112) + sign (df
1+1/2)I—l)(A3)

which is 0 if the sign of the three differences are different. With

the help of this factor, the antidiffusive flux is given by

df~~112 = S
1~1,2 

mm (Idf~~3/2 I S Idfrl,2 1, i/81df1+l/21) (A4)

Then final resulting function is then given by

— fDH 
- (df

~+1i2 
- df~_112) (A5)

11
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Appendix B 
. 

-

Here a short description for the PDM scheme for variable

velocities and grids are given. The choice of A = 0, B = 1 is

incorporated. Results obtained in a multidimensional hydrocode

applying PDN have been optimal with this choice.

Let H be the hydrooperator for one timestep

f~~=Hf . (Bl)

then f~ is the updated function.

The following formula can be applied in different directions in

a onestep hydrocode by taking the appropriate differences. Be

S
1 

= 1/4 ~sign (df
1÷112) + sign (df1_112)I (B2)

then S
1 
vanishes if the signs are different. It is 1/2 for the same

signs. The diffusive flux dif
1+112

) is then given by

dif
1~ 112 

= 1/2 dt Iu~+112 l sign (df1~ 112) max (0., I df ~+1i2 I
— (1 — sign (u

j+112)) S
1~ 1 

I df 1.f3,~ I
— (i + sign (u

1~ 112
)) S~ 1df

1 112 1 (B3)

Finally the new values I are given by

I. = + (difj+112 
- difj ii2

)/ dx
1+112 (B4)

12



I

t = 2 . 0 t=20.0

Analytic
Values

A 1 0 A 1 0 1
B 2 1 FCT B 2 1 1  FCT

.012

.032

0.0 0.000 .000 .000 . .002 .077 .000

0.0 .006 .039 .004 .040 .169 .004
0.0 .247 .264 .246 .409 .339 .436

1.0 .789 .745 .795 .733 .620 .739

1.0 .963 .758 .964 .886 .847 .889

1.0 .995 .996 .996 .955 .942 .956

1.0 1.000 1.000 1.000 .984 .974 .984

1.0 1.000 1.000 1.000 .995 .980 .995
1.0 1.000 1.000 1.000 - .998 .978 .998
1.0 1.000 1.000 1.000 .998 .964 .998

1.0 1.000 1.000 1.000 .997 .924 .998

1.0 .994 .962 1.000 .959 .834 .996

1.0 .753 .736 .754 .592 .663 .565

0.0 .211 .255 .206 .268 .382 .261

0.0 .037 .042 .036 .114 .159 .111

0.0 .005 .005 .005 .045 .062 .044

.016 .023 .016

.006 .008 .006

.002 .002 .002

TABLE 1.

10 Point Square Wave

Simple Method

13
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t 2.0 t = 2 . 0

Analytic
Values

I A 1.0 0.01 A 1.0 0.0 1[ B 2.0 1.0] FCT B f 2.0 1.0 ] FCT

0.0 .000 .000 .000 .003 .041 .000

0.0 .000 .000 .000 .092 .098 .062

0.0 .006 .038 .000 .331 .213 .265

0.0 .383 .315 .424 .424 .312 .349

1.0 .807 .684 .614 .432 .335 .363

1.0 .589 .631 .614 .386 .331 .363
0.0 .178 .281 .299 .194 .298 .339

0.0 .033 .046 .04, .084 .212 .159

0.0 .004 .005 .006 .034 .090 .063

0.0 .000 .000 .000 .013 .032 .023

0.0 .000 .000 .000 .004 .011 .008

TABLE 2

2—Point Square Wav e

Simple Method

14



Analytic
Values

I A  1 0 1  A 1 0 ]
F B 2 1 I FCT B 2 1 I FCT

.000 .069 .132 .148 .274 .547 .482

.191 .125 .237 .148 .326 .639 .482

.691 .666 .612 .604 .940 .816 .849
1.309 1.460 1.345 1.485 1.504 1.180 1.363

1.809 1.864 1.814 1.810 1.700 1.381 1.503

2.000 1.931 1.868 1.852 1.726 1.403 1.518

1.809 1.875 1.763 1.852 1.674 1.361 1.518

1.309 1.334 1.389 1.396 1.060 1.184 1.151

.691 .541 .655 .515 .496 .820 .bJl

.191 .136 .186 .191 .300 .619 .497

.000 .069 .132 .148 .274 .597 .482

TABLE 3

Simple Method

15



t=2 .0 t— 20 .0

Analytic
Values

A 1.0 0.0 A 0.0 0.0
B 4.0 1.0 FCT [ B 4.0 1.0 FCT

0.0 .000 .000 .000 .000 .057 .000
0.0 .000 .000 .000 .007 .118 .000

0.0 .004 .047 .000 .140 .222 .192

0.0 .292 .289 .293 .468 .384 .470
1.0 .765 .731 .768 .679 .601 .680

1.0 .948 .943 .948 .822 .786 .823
1.0 .992 .992 .992 .409 .893 .911
1.0 .999 .999 1.000 .958 .943 .960
1.0 1.000 1.000 1.000 .982 .956 .982

1.0 1.000 1.000 1.000 .993 .955 .988

1.0 1.000 .000 1.000 .994 .935 .988

1.0 1.000 1.000 1.000 .998 .882 .988

1.0 1.000 1.958 1.000 .812 .781 .820
1.0 .708 .711 .707 .533 .619 .534

0.0 .235 .269 .232 .321 .401 .321

0.0 .052 .057 .052 .178 .220 .178

0.0 .008 .008 .008 .091 .112 .091

0.0 .000 .001 .000 .043 .053 .043

TABLE 4.

10—Point Square Wave

LW Method
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t = 2 . 0  t = 2 0 . 0

Analytic
Values

T A 1.0 0.0 ~ A 1.0 0.0
I B 4.0 1.0 FCT I B 4.0 1.0 ] FCT
- 

0.0 .000 .000 .000 .000 .028 .000 
-

0.0 .000 .000 .000 .009 .061 .010
0.0 .000 .000 .000 .153 .122 .138
0.0 .00 .047 .006 .298 .215 .248
0.0 .390 .335 .432 .368 .282 .303
1.0 .762 .659 .576 .378 .300 .314
1.0 .579 .604 .576 .331 .296 .314
0.0 .210 .285 .332 .214 .268 .300
0.0 .048 .060 .069 .125 .203 .186
0.0 .008 .009 .010 .067 .114 .000
0.0 .001 .001 .001 .033 .054 .050
0.0 .000 .000 .000 .015 .024 .023

TABLE 5.

2—Point Square Wave

LW Method

17
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t = 2 . 0  t — 2 0 . 0

Analytic
Values

A 1.0 0.0 [ A 1.0 0.0 I
B 4.0 1.0 FCT L B 4.0 1.0 j FCT

.000 .085 .157 .188 .409 .712 .665

.191 .175 .271 .188 .579 .753 .665

.691 .743 .655 .658 1.067 .894 .939
1.309 1.391 1.323 1.429 1.410 1.135 1.228

1.809 1.811 1.772 1.762 1.571 1.270 1.325

2.000 1.915 1.843 1.812 1.591 1.288 1.335

1.809 1.825 1.728 1.812 1.421 1.247 1.335

1.309 1.257 1.345 1.342 .934 1.105 1.061

.691 .603 .677 .571 .590 .865 .772

.191 .189 .229 .238 .429 .730 .674

.000 .085 .157 .188 .409 .712 .665

TABLE 6.

Lax—Wendroff Method
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