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THE PARTIAL DONOR CELL METHOD

I. Introduction

The use of second order or higher interpolation schemes for
convection terms causes the appearance of unwanted extremes near
points where the transported function changes its slope rapidly. The
donor cell method uses first order interpolation and therefore cannot
generate such extrema, but it has a diffusion which is unacceptable
in most cases. The partial donor cell method (PDM) presented here is
nonlinear combination of a higher order scheme and the donor cell
method. It adds just enough diffusion to prevent the occurrence of
such extrema. As compared with other hybrid methods it is less
diffusive because it restricts the additional diffusion to points
where it is absolutely necessary. Flux-Corrected Transport (FCT), on
the other hand, removes the extrema after they have occured. The
results of this method and FCT are very similar, as demonstrated in
the test runs. The PDM leaves the solution undisturbed for zero
velocities. It therefore cannot be used to create artificial
viscosity in stationary or nearly stationary shock fronts. The

method can be readily extended to multidimensions.

II. Theory

Let £ be the function to be transported across a one-dimensional
grid; we denote by fj the value of the function at xj. Furthermore,
let d be the difference operator,

£ - f

dfy4172 = f341 — £y 1

Note: Manuscript submitted January 30, 1978.




Two higher-order schemes are considered here.
a) A simple scheme.
Let all quantities be defined at integral points at space
and time, with the exception of the velocity u, defined at half
integral points in space and time. Then, the new value of fj is

given by

(=W

Een BT Ouage W ™ 80 Mgy Gy * S0 0 42D

The scheme is unstable, with an amplification factor

2
A= 1ok 1/2 (ELEUi) A
dx

The addition of a second order term, corresponding to a second order
interpolation, will make this scheme stable.
b) Lax-Wendroff Scheme.

In this scheme, one defines intermediate values as

¥ = 1/2(£ 4+

dt

then, with 35+1/2 defined similarly

i

-~ E " n
£, +1/2 F341/2 = Yye72 Fy-172)79%4 i

3
- dt (o,
ot Gt B

The donor cell method can be written in the form

2 dt
£, = f a=s - : " -
j j 2 (1 sign(uJ)) f j41 u 341 fjuj)/dxj+l/2
(1 + sign(u ()

j)) (fjuj " fj‘l uj_l)/dxj_llz

or




E = - g [(fj+l Upgp = £y AR o + (Euy - fj_luj_l)/dxj_llé]
(5a)

+'%£ sign(uj)[(fj+1 uj+1 - fjum)/dxj+l/2 - (fjuj - fn-l)/dxj-I/Z] ~
As' is wsll-known, the difference between the donor cell method and
the simple scheme (a) defined above is a diffusion term (the second
term in equation 5a) first order in time and second order in space.
(The difference in the case of the Lax-Wendroff scheme also involves
a higher order term in space and time.)

In order to derive the partial donor cell method, let us define
for the scheme (a)

= 1/2 dt | uj | / dx

€5+1/2 +1/2 j+1/2, (6)
and for scheme (b)
€1y = 1/2 dt | ug+1/2 I/dxj+1/2 a- dt|uj+l/2I/dxj+l/2) (6a)

Furthermore, let o j+1/2 be an array of numbers such that

92 %4172 5 L3

here o represents the fraction of diffusion to be added. If o = 1,
the complete donor cell method would result. It should be emphasized,
however, that this holds for variable velocities only up to terms
second order in time and third order in space.

With these definitions, we add the following diffusion terms in
a conservative manner to either the simple scheme or the Lax-Wendroff
scheme:

Dy = €j41/2 94172 H541/2 = €4-1/2 O4-1/2 5oy D




T N T ™

In order to simplify the following discussion let us assume for a
moment constant velocity and u > 0, and discuss only the simple
scheme. Then with

€ = u dt/dx
we can rewrite the transport algorithm including diffusion as

€

Ej ok '% g = £33 Oyago Eugpo = 94972 4750 B
or setting
Mier/2 = 94172 Y5402, 9
=t —gde, ~ ) T Gyp172 = Wye172° (10)

The main question is how to determine p. As the convection is nothing
but an interpolation between xj and xj_1 (for u > 0), the new value
of the function must lie between fj and fj-l‘

not an extrema in the absence of diffusion that

This implies if fj is

£ f

P R N T

7 :
If this is not the case, some diffusion has to be added to make the
updated function value lie between these limits. The diffusion
depends obviously on the direction in which the fluid moves and

therefore should incorporate this information. One way to take it

into account is the following. Let us define

5. = A+7 | sign(df

f ) + sign(df

4172 j-1/2) s (11)

then we write p in general in the form

j+1/2




uj+1/2 = gign (dfj+1/2) max [0, |dfj+l/2|
-1/2 Si4p (1 - sign (uj+1/2)) | dfj+3/2| (12)

- 1/2 8, (1 + sign (ugy,n)) | df, |] ‘

This prescription means we subtract df, the difference dfj+1/2 taken
in the direction of the flow, the amount A whether or not the func-
tion has an extremum at this point, and the amount B only if there is
no extremum. But, if the amount exceeds the difference dfj+l/2 no
diffusion will result. This is the point where (as in FCT) the non-
linearity comes in. The values of A and B remain to be determined.

In order to relate this diffusion to the hybrid schemes
described by Harten2 and Van Leer3 we define a quantity 6 by

LR R CPPY
0, = (13)

ld£ 5471 + 1a€5_y )

(compare Eq. 4.12a, 4.12b of ref. 2). Harten's method then can be

written in our notation as

H Lk
Mygrs2 = max (8, 8.44) dfypi/o (14)

This means the solution has an added diffusion proportional to this

smoothness parameter 6 In order to make the connection with our

j.
methods more obvious, let us define

o7 = max (0, |df., . .| - S, |df [)/|df [;  (15a)
h| 4 j+1/2 h| j=1/2 j+1/21?

6] = max (0, Idfj_1/2| - 5, |dfj+1/21)/|dfj_1/2|. (15b)




With these definitions we can rewrite Eq. (12) as

Myr/2 T 954102 1/2 [(1 = algm (0, 00000 0

+ (L + sign (ugy/)) e:] (16) .

The choice of A = 1, B = 0, therefore, closely resembles the hybrid
scheme of Harten and Van Leer.

The important difference is that in the partial donor cell
method only as much diffusion is added as is needed to keep the
function f monotone. This is achieved in two ways; first, by consid-
ering only the differences in the direction from which the fluid
comes; second, by taking the maximum in Eqs. (15). The possibility
of adjusting the parameters A and B is a further advantage.

We now discuss the manner in which A and B are determined. The
simplest argument, which leads to A = 0 and B = 1, is the following.
If

12| £ - £51 [ 9] £, - £ |
then no extrema can occur. That is, if fi has no extrema, this is
equivalent to
| £

~f. s ¢

g § “Ejal

Therefore, no additional diffusion is needed implying A + B = 1.

j+l

The choice of linear interpolation at all extrema leads to A = 0. A
more sophisticated argument proceeds as follows. It is presented

here for scheme a: if f, is not an extreme and as long as

3

1>
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the new values lie between fj and £ Furthermore, at an extremum

j=1°
interpolation with a symmetric parabola will not result in a new
extremum. Therefore, the value A = 1 can be chosen. If the signs of

the differences do not change, the condition above leads to

2
£ | = =2} | £ -fj_ll.

‘ T
[f one chooses B such that only additional diffusion is added if

this condition is not satisfied, namely (similar for b))

2 L
a) B i 2, b) B = .

then at points where the subtracted difference is smaller, fj = fj—l
regardless of the value of e. This leads to great phase errors
locally. A good choice is to take the values found for € = 1/2. The
results for the two schemes are

a) A=1 b) A=1

B =2 B =4
(One should remark that usually in hydrodynamics € at its maximum is
about 0.3; therefore, the phase errors should not be too big.) This
choice assures the correct range of fj. The test runs confirm also
that it is less diffusive than the choice A = 0, B = 1. The results
are for all practical purposes identical with those of FCT for the
transport of square waves. Test runs with rapid varying velocity
have shown that the best results were achieved with A = 0, B = 1. A
description of this algorithm is given in Appendix B.
Test runs:

Test runs have been done for three cases:

B N L




1) Squarewave 10 meshpoints across.

2) Squarewave two meshpoints across.

3) Cosine wave with 10 points for the total period.
For the choice € = .2, the results are presented at 10 and 100 steps,
for which the solution is propagated 2 and 20 mes..)oints, respec-
tively. The results are given in the tables below (tables were
- chosen because of the small differences). One sees clearly that for
all the test A = 0, B =1, is most diffusive, but gives basically
the same results. The choice of A =1, B = 2 in the 10 point sqare
wave yields the same results as does FCT (as described in the
appendix). The results of the other tests seem to show that the PDM
holds the extrema a little bit better than FCT. This is clearly

l demonstrated in the cosine wave case where the maximum after 100 steps

is 1.729 compared to 1.518 for FCT. Also, the typical three-point
plateau for FCT appears, whereas PDM keeps the maximum at theright
place. Each of the schemes has a tendency to form a plateau with
more extension in the direction of the flow for a maximum and vice
versa for a minima. The choice of A = 0, B = 1 for the simple
scheme seems to have this tendency in far lesser degree. After
transport over 20 meshpoints the cosine wave is practically symmet-
rical, but with about half the amplitude found for the Lax-Wendroff
scheme.

III. Conclusions

A simple transport scheme has been demonstrated. It prevents

the occurrence of new extrema (and therefore assures monatonicity).




The additional donor cell contributions needed can be chosen

according to the two parameters A and B. The most diffusive choice
A =0, B=1, will result in a scheme slightly more diffuse than FCT,
but it will guarantee the nonoccurrence of new extrema caused by the
higher order scheme. Application of PDM in one dimension requires

the same number of operations as FCT (for the ASC at NRL). It can

readily be applied to nonsplit multidimensional problems.
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Appendix A

In this appendix a short description of the FCT algorithm
actually used in the test runs is given. Theory and more details
are given in ref. (1). Let H be the transport operator for one
timestep (either the simple scheme (a) or the Lax-Wendroff
scheme) ,

then

H

f, = HE, Al

J J ket
if is the transported function. Now a diffused function fDH is
computed using the old values

DH _ _H s
£7 = £, +1/8 (dfyy,, - df, ) (A2)

in order to obtain the antidiffusive flux df?¥l/2’ it is useful to

define a factor S by

= gign (df

Sj+l/2 j+1/2) 1/2

(|sign (dfj+3/2) + sign (df +1/2) + sign (df, +l/2)l -1) (A3)

which is 0 if the sign of the three differences are different. With
the help of this factor, the antidiffusive flux is given by

A

df3+1/2 = S541/2

min (Idfj+3/2| |df P 1/2| 1/8|dfj+1/2|) (A4)

Then final resulting function is then given by

A

s _ .DH e |

11




Appendix B
Here a short description for the PDM scheme for variable
velocities and grids are given. The choice of A =0, B =1 is
incorporated. Results obtained in a multidimensional hydrocode
applying PDM have been optimal with this choice.
Let H be the hydrooperator for one timestep

H
fJ Hfj (B1)

then f? is the updated function.
The following formula can be applied in different directions in
a onestep hydrocode by taking the appropriate differences. Be

S, = 1/4 |sign (df

j j+1/2) + sign (df'—1/2)| (B2)

J
then Sj vanishes if the signs are different. It is 1/2 for the same

signs. The diffusive flux dif 2) is then given by

j+1/

dif 1)y = 1/2 de |uj+1/2| sign (df;,;,)) max (0., Idfj+1/21

(- sign (uy/5)) Sy [dEy5),]

(4 + sign (uj+1/2)) 5 |dfj_1/2| (B3)
Finally the new values f are given by

£ = f? + (dif

12




t =2.0 t = 20.0
Analytic
Values
A 1 0 1 0
B 2 1 FCT 2 1 FCT
.012
.032
0.0 0.000 .000 .000 .002 .077 .000
0.0 .006 .039 .004 .040 .169 .004
0.0 247 .264 +246 .409 .339 .436
1.0 .789 .745 .795 .733 .620 .739
1.0 .963 .758 .964 .886 .847 .889
1.0 .995 .996 .996 .955 . 942 .956
1.0 1.000 1.000 1.000 .984 .974 .984
1.0 1.000 1.000 1.000 .995 .980 <995
1.0 1.000 1.000 1.000 .998 .978 .998
1.0 1.000 1.000 1.000 .998 .964 .998
1.0 1.000 1.000 1.000 .997 .924 .998
1.0 .994 .962 1.000 .959 .834 .996
1.0 .753 .736 .754 .592 .663 .565
0.0 .211 .255 .206 .268 .382 .261
0.0 .037 .042 .036 114 .159 111
0.0 .005 .005 .005 .045 .062 .044
.016 .023 .016
.006 .008 .006
.002 .002 .002
TABLE 1.

10 Point Square Wave

Simple Method

13




t=2.0 t =2.0

Analytic

Values
A 1.0 0.0 1.0 0.0
B 2.0 1.0 FCT 2.0 1.0 FCT
0.0 .000 .000 .000 .003 .041 .000
0.0 .000 .000 .000 .092 .098 .062
0.0 .006 .038 .000 .331 .213 .265
0.0 .383 .315 424 424 <312 « 349
1.0 .807 .684 .614 432 .335 .363
1.0 .589 .631 .614 .386 .331 .363
0.0 .178 .281 .299 .194 .298 .339
0.0 .033 .046 .04 .084 .212 .159
0.0 .004 .005 . 006 .034 .090 .063
0.0 .000 .000 .000 .013 .032 .023
0.0 .000 .000 .000 .004 .011 .008

TABLE 2

2-Point Square Wave

Simple Method

14




Analytic
Values
; A 1 (&) 1 0
B 2 1 FCT 2 1 FCT
.000 .069 .132 .148 274 <547 482
.191 .125 .237 .148 .326 .639 .482
.691 .666 .612 .604 . 940 .816 .849
1.309 1.460 1.345 1.485 1.504 1.180 1.363
1.809 1.864 1.814 1.810 1.700 1.381 1.503
2.000 1.931 1.868 1.852 1.726 1.403 1.518
1.809 1.875 1.763 1.852 1.674 1.361 1.518
1.309 1.334 1.389 1.396 1.060 1.184 1.151
.691 541 .655 «515 <496 .820 .037
) .191 .136 .186 .191 .300 .619 497
.000 .069 132 .148 274 597 482
TABLE 3

Simple Method

15
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10-Point Square Wave

LW Method
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t=2.0 t = 20.0

Analytic

Values
A 1.0 0.0 0.0 0.0
B 4.0 1.0 FCT 4.0 1.0 FCT
0.0 .000 .000 .000 .000 .057 .000
0.0 .000 .000 .000 .007 .118 .000
0.0 .004 <047 .000 .140 .222 .192
0.0 .292 .289 .293 .468 .384 .470
1.0 .765 .731 .768 .679 .601 .680
1.0 . 948 .943 . 948 .822 .786 .823
1.0 .992 .992 .992 .409 .893 911
1.0 .999 .999 1.000 .958 <943 .960
1.0 1.000 1.000 1.000 .982 .956 .982
1.0 1.000 1.000 1.000 .993 «955 »988
1.0 1.000 .000 1.000 .994 .935 .988
1.0 1.000 1.000 1.000 .998 .882 .988
1.0 1.000 1.958 1.000 .812 .781 .820
1.0 .708 .711 .707 .533 .619 <534
0.0 +235 .269 .232 .321 401 .321
0.0 .052 .057 .052 .178 .220 .178
0.0 .008 .008 .008 .091 112 .091
0.0 .000 .001 .000 .043 .053 .043

TABLE 4.




t=2.0 t = 20.0
Analytic
Values
A 1.0 0.0 A 1.0 0.0
B 4.0 1.0 FCT B 4.0 1.0 FCT
0.0 .000 .000 .000 .000 .028 .000
0.0 .000 .000 .000 .009 .061 .010
0.0 .000 .000 .000 .153 «122 .138
0.0 .002 .047 .006 .298 .215 <248
0.0 .390 .335 432 .368 .282 .303
1.0 762 .659 .576 .378 .300 .314
1.0 <579 .604 .576 .331 .296 .314
0.0 .210 .285 .332 214 .268 .300
0.0 .048 .060 .069 .125 .203 .186
0.0 .008 .009 .010 .067 114 .000
0.0 .001 .001 .001 .033 .054 .050
0.0 .000 .000 .000 .015 .024 .023

TABLE 5.
2-Point Square Wave

LW Method
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Analytic

Values
A 1.0 0.0 1.0 0.0
B 4.0 1.0 FCT 4.0 1.0 FCT
.000 .085 .157 .188 .409 .712 .665
191 .175 271 .188 .579 .753 .665
.691 .743 .655 .658 1.067 .894 «939
1.309 1.391 1323 1.429 1.410 1.135 1.228
1.809 1.811 1.772 1.762 1.571 1.270 1.325
2.000 1.915 1.843 1.812 1.591 1.288 1.335
1.809 1.825 1.728 1.812 1.421 1.247 1.335
1.309 1.257 1.345 1.342 .934 1.105 1.061
.691 .603 .677 .571 .590 .865 772
.191 .189 .229 .238 429 .730 .674
.000 .085 .157 .188 .409 712 .665
TABLE 6.

Lax~Wendroff Method




