NAVAL RESEARCH LAB WASHINGTON D C F/6 12/1
A SIMPLE MEANS OF UPDATING THE SRIF FILTER WHEN THE STATE EQUAT==ETC(U)

~ AD=A053 356
MAR 78 B H CANTRELL

UNCLASSIFIED NRL-8212
I : IIIIIIlIIIII\lIIIIl|IIIII‘|IIIII|IIIII||I|||I||IIIII\|IIIII|IIIII|IIII|||II|II

END

DATE
FILMEU

Do¢




; .Q 9/

NRL Report 8212

“%

A Simple Means of Updating the SRIF Filter
When the State Equations are in Triangular Form

B. H. CANTRELL

iDA0D3356

Radar Analysis Staff
Radar Division

March 29, 1978

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited,




SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE B ol g L S
/ 2. GOVT ACCESSION NO, 3. RECIPIENT'S CATALOG NUMBER
ATy
h Cﬂ T & PERIOD COVERED
SMMPLEMEANS OF UPDATING THE SRIF ‘mli:oblem
r PE]LTERWN THE}J‘ATE’E»’QUATIO E / 6. PERFORMING ORG. REPORT NUMBER

IN TRIANGULAR FORM,
= i
L et R DY

@’: Ben H.[Cantrell @-%n ORTERTS

ENT. PROJECT, TASK 3
NIT NUMBERS 4

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Research Laboratory
Washington, D.C. 20375

11. CONTROLLING OFFICE NAME AND ADDRESS : : - :
Department of the Navy ‘ ‘ 29 | Mardizza®i 1978 2 4

10. PROGRAM ELE
AREA & WOR

ez

Naval Sea Systems Command B — B - €s
Washington, D.C. 20362 14
Ta. MONITORING cY DDRESS(I! diff Trom Controlling Olfice) | 15. SECURITY CLASS. (of this report)
@ 6/6 Lof UNCLASSIFIED
Z f___] [ 15a. ?g&.l;&s_:pcnlou/oovuano[uc

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Kalman filters
Tracking
Least-square filters
SRIF filters

20. TRACT (Continue on reverse alde If necessary and Identify v “lock number)

The square-root information filter (SRIF), which is a numerical method of implementing the Kal-
man filter, was investigated. Under an important special case of no process noise and an upper triangular
form of the state transition matrix the prediction process of the filter is of simple form. The transformed
smoothed and predicted states are identical, and the smoothed and predicted covariance factors are
related by a simple matrix transform.

5

DD ‘:2:';, 1473  EOITION OF 1 NOV 68 1S OBSOLETE
S/N 0102-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)




e

SECUMTY CLASIFICATION OF TiiS PAGE (When Date m

i Sl i i i it ot bl it

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)




et ———c———
e - —————— A S ——————— v

¢

| ENYBOBUIGEION . .« + oo incsensssnisnnisnssssnsnons 1
L REVIEW OF THE SRIF FILTER . . .............ovenn... 1

; PREDICTION PROCESS . ... .\eeenrrennreeannneannns. 8
', ¢ BMPLEMENTATION. . . o oxiavpvonssonanssissboness 10

; IR o B e S U] P G R 10

REFERENOES .. ......ccconuerionssonssesnssonnnness 1

U SUS S S U—




i s o oL SN S8

A SIMPLE MEANS OF UPDATING THE SRIF FILTER WHEN
THE STATE EQUATIONS ARE IN TRIANGULAR FORM

INTRODUCTION

Estimating the state of a system from a set of uncertain measurements has been a prob-
lem for a long time. Kalman in the early sixties provided a simple recursive estimation pro-
cedure by introducing the concept of state and state transition. This procedure in some
instances provided simpler implementation than batching techniques. Since Kalman’s work a
number of numerical procedures have been developed. An excellent account of these pro-
cedures as well as historical notes can be found in Bierman’s book [1] . The square-root
information filter (SRIF filter) is the numerical method of solving the Kalman-filter equa-
tions, which is of interest in this report.

There are a number of problems which involve a state transition matrix which is in
upper triangular form. Prominent examples of problems involving the condition are most
tracking problems. This report describes a simple means of updating the prediction process
of the filter under this condition. A secondary but important result is that the SRIF filter
lends itself to parallel hardware implementation.

REVIEW OF THE SRIF FILTER

The SRIF filter is a numerical method of implementing the Kalman filter [1]. The
Kalman filter is obtained from modeling the process as state equations, defining a measure-
ment procedure, and best estimating the states of the systems. The state equation and meas-
urement process are defined as

X(k) =P(R)X(k -1) + ['(R)W(R)
and
Xy (k) = H(R)X (k) + V(k),

where it is desired to best estimate the n-by-1 state vector X(k). The remaining quantities
are an n-by-n state transition matrix ®(k), an n-by-p matrix I'(k), an m-by-n measurement
matrix H(k), and an m -by-1 measurement _:tor Xy, (k). W(k) and V(k) are independent
Gaussian noises with the properties

E[W(k)] =0,

E[W(R)W'(j)] = S(k)p,

E[V(k)] =0,

*Manuscript submitted February 16, 1978.
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E[V(R)V'())] = Q(R)Sj,
E[W(R)V'()] =0,

and

where 81-,, is 1 when j = k and is 0 otherwise. The covariance matrices S(k) and Q(k) are of
dimension p by p and m by m respectively.

The best estimate of X(k), denoted by X(k) in the standard Kalman-filter format, is
X(k) = X(k) + K(R)[X,, (k) - HR)X (R)], @)
where K(k) is the filter gain, given by
K(k)=P(R)H'(R)Q1(R), (2)
in which P(k) is the smoothed covariance matrix, with
Bl(k) = P (k) + H'()Q" (R)H(R)- @)
P(k) is the predicted covariance matrix, with
P(k +1) = ®(k + 1)P(k)®'(k + 1) + T(k + 1)S(k + 1)I'(k + 1), 4)
and X(k + 1) is the prediction:
X(k +1) = ®(k + 1)X(k), (5)

The filter operates in a predict-and-correct fashion. This suggests a simple derivation, out-
lined below.

Equation (1) is the least-square estimate between the prediction and the measurement
at the kth sample which is obtained by minimizing the cost function

J(k) = [X(k) - X(k)]) P (R)[X(R) - X(k)] + [Xpg (k) ~ HX (k)]'QL (k) [ Xy (k) - HX(R)]
(6)
with respect to X(k). The value of X(k) which minimizes J(k) is denoted by b (k), is the best
estimate of X(k), and is given in equations (1) through (3). Given the best estimate of X(k),
the best prediction is simply equation (5) with the covariance of (4). The process is then

simply repeated recursively, with equations (4) and (5) being the prediction and equations
(1) through (3) being the correction.

The SRIF filter is a means of implementing the Kalman filter which depends heavily on
Cholesky decomposition and the Householder matrix triangulation algorithm [1]. The
Cholesky decomposition is performed on a symmetric positive-definite matrix by factoring
it into the product of a lower triangular matrix L and its transpose:

Q=LL'
and
Q=)L
2
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The algorithm for obtaining L, found in reference 1, is

i =Vqj; forj=1,.,n-1,
j = Qrjl%; fork=j+1,..,n,

and
9k = i - %% fork=j+1,..nandi=k,..,n.
The cost function in equation (6) can be written as
J=(X-X)RR'(X - X) + (Xpy - HX)'(L')1L"1(X,, - HX), ()
where the parenthetical k has been dropped for notational covenience, P~ is factored into
RR', and Q{k) is factored into L L' (note that @ 1(k) = (L')"1L"1). Equation (7) can be re-
written as
J=(Z -R'X)'(Z - R'X) + (Zy - Hy X)'(2Zy; - Hy X),
where
Z=R'X,
Zy=L1%y,,
and
Hy =L1H.

Equation (7) can then be rewritten more compactly as

.z rer, [2
=] L] (] =[] ®

The cost J is unaltered if an orthogonal transform T, where T'T = I, is multiplied by the new
resulting vector in (8). Consequently using

[;w] = [ZZ] o

inJ = C' C yields the same cost J as

J=C'T'TC.
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In addition, if T, which is a n + m square matrix, is chosen such that

ﬁl ' I"il
7] - [5] ®
21 12
= 10
7 [l [2] @

J=R'X-Z)R'X-Z)+ee.

and

then the cost J becomes

By inspection the least-square estimate of X is
R'X=ZoxX=R1Z,

e'e is the minimum value of the cost J, and the smoothed covariance is P(k) = (R')"1R 1.
For simplification (10) is argumented to (9), yielding

& 2] [& 3
T = 5 (11)
HW ZM 0 e

The transform T triangulizes the matrix.

To show (11) is equivalent to the smoothing portion of the Kalman filter, (11) can be

written as
Ty Ti| [R 2] _[R' Z]|
T21 T22 HW ZM 0 e
Equating terms, one has
T,,R'+ T Hy =R’ 12)
and
Ty, 2+ T 2y =Z. (13)

If one chooses




NRL REPORT 8212

equation (12) becomes
ﬁ Ii' + H;VHW - Eﬁ'.

Using previous definitions for Hy and using Pl=RR'andP1=RR ', one obtains equa-
tion (3) of the Kalman filter. Similarly, substituting (14) and (15) into (13), one obtains
equation (1) of the Kalman filter.

The Householder algorithm can be used to triangulize the matrix represented in (11)
without ever computing the transform T directly. Only the basic results are sketched, and
an example is given. Detailed information may be found in reference 1. The algorithm is

based on reflection. Let the vector U be normal to the plane U, . An arbitrary vector Y can
be represented by

Y=(Y'U)0 +v, (16)

where U = U/U * U)Y/2 and v is that part of Y that is orthogonal to U. The reflection of Y
denoted by Y, in the plane U, is

Y,=-(Y'O)U +v, 17)
and the results are represented in Fig. 1.

Eliminating v from (16) and (17) yields

Y'U .
Y,=Y-2 —— U=(I-BUU)Y=TY, (18)
Uvu
where
2
B UIU 1)

The matrix T is an elementary Householder transform with properties 7' = Tand T T' = I.
Equation (18) can be shown to triangulize a matrix by first setting the elements of the vec-
tor U by

"' Y'0) U e—— v U —— v

Fig. 1 — Geometry of the Householder algorithm
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and

the matrix is

For example

where

B=2/U'U,

;= alju(l) + azju(2) ¥ a3ju(3) + a4’-u(4),

and

a;; 0,

BEN H. CANTRELL

u(j) =y(j),

u(1)=y(1)+o,

u(2) = y(2),

Y, =-Y+B(Y'UU.

819
L)
G392

842

813
893
G33

G43

o e ’8“("11)\/’?1 +ag, +a3, +agy,

where 0 = sgn y(1)/ Y’Y. The transform TY yieldsy, (1) =oand y,(j)=0forj=1,2,...
The first column of the matrix is chosen as y(j) in order to set u(j). Equation (18) is then
applied successively. The sign on (18) is changed to yield positive diagonal elements of o,
and the notation 8 = 2/U'U is introduced. The algorithm operating on successive columns of

b= -a;+ ﬁ'y”u(i) forj=1,2,and 3andi=1, .., 4.
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The process is repeated for each successive submatrix. The next step is

- -

01 by by3
1 0] |0 by, by

; Lo by by3
where
bog + 0y
U= b32 s
bys
0y = sign(bgy) Vb3, + b3y + b3,
g=2/U'U,

72j -~ bzlu(l) + balu(z) + b4ju(3),

and

- -
0y byp by
0 o0, cy : 40
0 0 cgg
LO 0 ¢35

¢;j=-bjj+pPygju(j-1) forj=2and3andi=2,3,and 4.

Equation (19) is the desired triangular form required of equation (11) for the example.

The correspondence is

1

5 837 %2

_"21 "22J
[ ]

%51 g2

%41 %42

—

» |98 . | b3

%25 Co3

0; by,
’
0 0'2
5y
’

| 43

c

33
,ande =

C43

The Householder algorithm just described can be compactly encoded in Fortran for
general computer operation. In some cases a hardware implementation is desirable and is

shown schematically in Fig. 2.
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mn 212 213
a1 222 223
a3y a32 a33
v a4 342 343

o e D

T it ) TSN W

Fig. 2 — Schematic of operations performed
with the Householder algorithm

The Kalman and SRIF filters were briefly reviewed to set the notation and acquaint
those readers not familiar with algorithms with the salient features. A simple means of
obtaining the prediction portion of the SRIF filter under an important special case is next
considered.

PREDICTION PROCESS

The smoothing portion of the Kalman filter using SRIF implementation updates the
factorization of the smoothed covariance and the transformed best estimate. It is desirable
to update the prediction process in a commensurable form. Only an important special case

4 is considered.

The process noise W(k) is assumed to be zero, and the state transition matrix is
assumed to be in upper triangular form. Equation (4) updating the prediction covariance
then becomes

P = oPd’, . (20)
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where the noise W(k) is removed and the sample & has been dropped for notational conveni-
ence. The inverse of (20) is taken, yielding

Pl= (@) 1P, 21)
The covariances are replaced with their factorization |
RR'=@®)1RR'®7,
which can be rewritten as
RR' =[(@®")'R][®")1R] .
Note that (#")"! R is in lower triangular form, which means that
R=(®)1R. (22)
Equation (22) shows the simple form of updating the factor of the prediction covariance.

The predicted state given by

from equation (5) is transformed by
RY1Z=oR")'Z,
where X = (R')"1Z and X = (R')"1Z. Solving for Z yields
Z = (R"YOR '}'12 : (23)
Substituting R from (22) into (23) yields
zZ=Z. (24)
The transformed smoothed and predicted states are seen to be identical.

Sometimes it is desirable to implement a fading-memory filter by making the
smoothed covariance larger. This is accomplished by rewriting equation (21) as

Pl = (@) laP 101,
The parameter is a scaler representing a time fading by
a=etlT,

where 7 is the time constant and ¢ is time. Equation (22) is modified by
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R = \/a(®)R,

and equation (24 ) remains the same under the fading-memory condition.

IMPLEMENTATION

As an example a tracking problem is taken into consideration. The state transition
matrix

1¢0 0 1-t00
_lo100 Liedls 1 0 0
®= 1o 01 ¢|+Vhere?® o6 0 1-¢°
0001 0001

represents a target moving in a straight line in a two-dimensional Cartesian coordinate sys-
tem. The components of the state vector X(k) to be estimated are X, (k), the position in the
ith direction; X (k), the velocity in the ith direction; X3 (k), the position in the jth direc-
tion; and X, (k), the velocity in the jth direction. Only the positions are measured; conse-
quently the measurement matrix H is

1 0 0O
H= .
0 01 0

The functional flow of the filier is shown in Fig. 3. The measurement is prewhitened
using the Cholesky factorization. In most tracking problems the inverse required can simply
be written in closed form using the Cramer rule. The prediction variables are updated with
no more than a matrix multiplication. These steps can be mechanized with several degrees of
parallelism in hardware. Finally the smoothing is performed using the Householder algo-
rithm shown schematically in Fig. 2. The output of the filter in normal tracking is the sta-
tistical distance [2, 3] J = e'e which is required for correlation (a direct consequence of the
filter) and the predicted pogition X used i m correlation and for display. The outputs are
easily obtained, mcludmg X, because R~ need not be found, The best estimate X can be
obtained from Z and R’ directly by back substitution, since R'isin triangular form. All the
operations described including the Householder algorithm are simple operations easily
mechanized with parallelism in the hardware.

SUMMARY

The SRIF filter was briefly reviewed, including the Cholesky factorization and House-
holder algorithm. The smoothing portion of the SRIF filter is claimed to have good numeri-
cal characteristics and lends itself to parallel hardware operation. The prediction process
under an important simple case was examined. The state transition matrix was assumed to
be in upper triangular form, and the process noise was assumed to be zero. Most tracking
problems can be formulated in this form. Under this special case it was shown that the trans-
formed smoothed and predicted states were identical and that the smoothed and predicted
covariance factors were related by a simple matrix transform. Consequently the entire SRIF
filter including both the smoothing and prediction lends itself to hardware implementation.

10
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Obtain new measurement

Prewhiten measurement:
a=1LL,

= ! =1
Hy = LT H.and 2y = LT x,,

1

Prediction:
Z=ZwdR = VaR'e!
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