
A0 A053 356 NAVAL RESEARCH LAB WASHINGTON D C F/G 12/1 ‘N.
A SIMPLE MEANS OF UPDATING THE SRIF FILTER WHEN THE STATE EQUAT—ETC(U)
MAR 78 B H CANTRELL

UNCLASSIFIED NRL 8212 NL

OF i ;tU
N ENJD

O A T S

-

I N 
- -



NIL Report 8212

A Simple Means of Updating the SRI F Filter
~~ When the State Equations are in Triangular Form

9
B. H. CANTRELL

Radar Analysis Staff
Radar Division

a-
March 29, 1978

/ . w
•

L~~~M A Y 2 1 9TR~~fl
j
~4sC~~~ ~~~~~~~~~~~~~~~~~ L~~~

Li

NAVAL RESEARCH LABORATORY
W~~ I.~tou, D.C.

~pprovsd tot public ,s4s...; distribution unllnilt. d.

. _

~

. ~~~~~~~~~~~~~~~~ i&~.s. .~~~~~~~~ k S  1La ~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~ 
g



SECURITY CLASSIFI CATION OF THIS PAGE (*7,.., 0.1. EnI.r.d)

REPORT DOCUMENTATION PAGE READ INSTR UCTION S

O~~~ 

L~~gP~~~~~ M U M B F

BEFORE COMPLETING FORM

NRL~ E~~~~2
1~~7 /

” 12. 
GOVT ACCESSIO N NO 3. RECI PI ENT S CATALOG NUMBER

I... ~~v pr r .* ~ as~~T 6 PERIOD COVERED

AJJMPLF~$EANS O1~JJPDATING THE ________
~ mbthu problem

~ILTER~~HEN THE.SJATE~ 9uATIOr~~i~~
7 

,c-~ ~~~~~~~~~~~~ a

~~~~~~~~~~~~~~~~~~ 

r. 
_ _ _ _ _

6. PERFORMING ORG. REPORT NUNRER
IN TRIANGULAR FORM ,

S. CONT RA~~Y ~~~~‘~~~NT NUMSER(I)

~~~~~~~&nH.jcank~7 
_ _ _ _ _

B. PERFORMING ORGANIZAT ION NAME AND ADDRESS 10. PROGRAM ELEMENT. PR OJ E C T . TA SK

(
~~ AREA 6 WORK UNIT NUMB ERS

Naval Research Laboratory NRL Proble
Washington, D.C. 20375 P~~ei~~ F1

, p ~oVith n~~~~~~ !1L
II. CONTROLLING OFFICE NAME AND ADDRESS “

Department of the Navy i~iar~~~~ 078 / /
Naval Sea Systems Command — •~~. NUM5O~~

Washington, D.C. 20362 14
DDRESS(If dlt(.r.nt ho., ConIrollInS Qfflc.) IS. SECURITY CLASS. (of AS. r.porI)14 MONITORING

UNCLASSIFIED
IS.. DECLAS SIFICATION /DOWNG RAOING

SCHEDULE

lB . DISTRIBUTION STATEMENT (of thIs R.port)

Approved for public ielease; distribution unlimited

17. DISTRIBUTION STATEMENT (of IA. abstract .nt.,.dln Block 20. Sf dSSl.rwt froa, R.port)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (ConISnii. on r•v•rsi aid. If n.c....y aid Sd.ntSfr by block nuab.v)

Kalman filters
Tracking
Least-square filters

~~~~~~~~~ SRIF filters
20. ‘~ M~T RACT (ContSnia. on r•.•ra• .ld. SI n.c.saasy aid Sd.nsSfy ‘c .iock oumb.r)

The square. root information filter (SRIF), which Is a numerical method of implementing the Kal-
man filter , was investigated. Under an important special case of no process noise and an upper triangular
form of the state transition matrix the prediction process of the filter Is of simple form. The transformed
smoothed and predicted states are Identical , and the smoothed and predicted covarlance factors are
related by a simple matrix transform.

} 
DO j~~5 7 3  1473 EDITION OP I NOV 66 13 OBSOLETE

S/N 0 1 02 - 0 I4 - 6 60 1
SECURITY CLASSIFICATION OF THIS PAGE (*7u.n 0.va IIWar d)

L.A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~ La~ ~_ L~~~



SECURITY CLASIU.CATION OF THIS PAGE (U% D~~a f.i .q

U

I

II ____________________________________________
SECURITY CLASSIFICATION OF THIS PAat(~~ ai 0 .  I...o.(S 

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

. 

~~~~~~~~~~~~~~~~ ~~~ ~
.. 

~~~~~~~~~~~~~~~~~~ 

__ L. .-



~~~ ‘ ‘ ‘ “ ‘~‘~~~‘ P~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
..._,. .. ...- _... . . 

~~~~ 
._ . 

~~~~~~~~~ ~
_
~
,___

~
___._.

~ ,,_ 
_ •. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.— .—..——. .. —•1

CONTENTS

INTRODUCTION 1

REVIEW OF THE SRIF FILTER 1

PREDICTION PROCESS 8

IMPLEMENTATION 10

SUMMARY 10

RE~ ERENCES 11

7

f~

I_ i



~~~pp.r ~
—.—- .

~~~
-—---

~ -~ ___n---- _
~~

__
~
__ _ r-~-~~r-—r—-— ~~~~~~~~~~~~~~~~~ 

- .

A SIMPLE MEANS OF UPDATING THE SRIF FILTER WHEN
THE STATE EQUATIONS ARE IN TRIANGULAR FORM

INTRODUCTION

Estimating the state of a system from a set of uncertain measurements has been a prob-
lem for a long time. Kalman in the early sixties provided a simple recursive estimation pro-
cedure by introducing the concept of state and state transition. This procedure in some
instances provided simpler implementation than batching techniques. Since Kalman ’s work a
number of numerical procedures have been developed. An excellent account of these pro-
cedures as well as historical notes can be found in Bierman ’s book [1]. The square-root
information filter (SRIF filter ) is the numerical method of solving the Kalman-filter equa-
tions, which is of interest in this report.

There are a number of problems which involve a state transition matrix which is in
upper triangular form. Prominent examples of problems Involving the condition are most
tracking problems. This report describes a simple means of updating the prediction process
of the filter under this condition. A secondary but important result is that the SRIF filter
lends itself to parallel hardware implementation.

REVIEW OF THE SRIF FILTER

The SRIF filter is a numerical method of implementing the Kalman filter [11. The
Kalman filter is obtained from modeling the process as state equations, defining a measure-
ment procedure, and best estimating the states of the systems. The state equation and meas-
urement process are defined as

X ( k )  ‘1 (k)X(k — 1) +

and

XM ( k )  = H(k)X(k)  + V(k),

where it is desired to best estimate the n-by-i state vector X(k) .  The remaining quantities
are an n-by-n state transition matrix cb(k), an n-by-p matrix r(k), an rn by-n measurement
matrix H(k) ,  and an rn -by-i measurement ..~tor XM(k) . W(k) and V(k) are independent
Gaussian noises with the properties

E[W(k) 1  0,
E [ W(k)W’(j)] =

E ( V(k)J  ~ O ,
6Man~~ript submitted February 16, 1978.
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and 
E[V(k)V ’(j)] = Q(k)ôjk ,

E [W(k) V’(j)] = 0,

where is 1 when j k and is 0 otherwise. The covariance matrices 8(k) and Q(k) are of
dimension p by p and m by m respectively.

The best estimate of X(k), denoted by ~ (k) in the standard Kalman-filter format , is

~ (k) ~ X(k) + K(k)[Xm(k) H(k)X(k)J , (1)

where K(k) is the filter gain, given by

K(k) = ~(k)H’(k)Q~ (k), . (2)

in which P(k) is the smoothed covariance matrix, with

7 ’1(k)  = P 1(k) + H ’(k)Q 1(k)H(k).  (3)

P(k) is the predicted covariance matrix, with

P(k + 1) = 4 (k + 1)~(k) 4 ’(k + 1) + ~(k + 1)S(k + 1)F ’(k + 1), (4)

and X(k + i) is the prediction :

X ( k + 1) = 4 (k + 1)X(k), (5)

The filter operates in a predict-and-correct fashion . This suggests a simple derivation, out-
lined below.

Equation (1) is the least-square estimate between the prediction and the measurement
at the kth sample which is obtained by minimizing the cost function

J(k) — [X(k) - X(k)] ‘P t (k)[X(k) - X(k)] + [XM(k) - HX(k)] ‘Q~ (k)[XM(k) - HX(k)]
(6)

with respect to X(k). The value of X(k) which minimizes J(k) is denoted by k(k), is the best
estimate of X(k), and is given in equations (1) through (3). Given the best estimate of X(k),
the best prediction is simply equatIon (5) with the covariance of (4). The process is then
simply repeated recursively, with equations (4) and (5) being the prediction and equations
(1) through (3) being the correction .

The SRIF filter is a means of implementing the Kalman filter which depends heavily on
Cholesky decomposition and the Householder matrix triangulation algorithm [1]. The
Cholesky decomposition is performed on a symmetric positive-definite matrix by factoring
it into the product of a lower triangular matrix L and its transpose:

Q - L L ’
and

= (L’Y’L~~.

2
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The algorithm for obtaining L, found in reference 1, is
p for j= 1,.. ,n - 1 ,

and 

Q~J q ~J/QJJ for k

q~,1= q ~~-Q 1JQ~J for k = j + 1 , ..., n a n d i ’ k , ..., n.

The cost function in equation (6) can be written as

J - (X - X) ’RI ‘(X - X) + (XM - HX)’(L’)-1L~~ (XM - HX), (7)

• ~~ ere the parenthetical k has been dropped for notational covenience, P 1 is factored into
BR ’, and Q(k) is factored into L L’ (note that Q~~(k) = (L’Y’L ’). Equation (7) can be re-
written as

J (Z R ’X)’(Z R ’X) + (ZM HW X)’(ZM HwX),

where

ZM =L 1XM,

and

Hw L~~H.

Equation (7) can then be rewritten more compactly as

~=[~j ’] ~~~~~~~~~~~~~~~~~~~~~ 
. (8)

The cost J is unaltered if an orthogonal transform T, where T ‘T = I, is multiplied by the new
resulting vector in (8). Consequently using

I I x - I  I=c
LHwJ LZMJ

in J - C’ C yields the same cost J as

J = C ’T’TC.

3
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In addition, if T, which is a n + m square matrix, is chosen such that

T [J r ) 
~

= f~
] (9)

and

T [ ]  = [f] , (10)

then the cost J becomes

J (~~‘X -Z) ’(R ’X - T~) +e ’e.

By inspection the least-square estimate of X is

R ’X~~Z ~~~~~~~~~~
e’e is the minimum value of the cost J, and the smoothed covariance is P(k) = (R’~~’R 1.
For simplification (10) is argumented to (9), yielding

T [n 
~~~1 

= [~
‘ 

~1 . (ii)
LHw ZMJ L° eJ

The transform T triangulizes the matrix.

To show (11) is equivalent to the smoothing portion of the Kalman filter , (11) can be
written as

[T11 T12] 1’~~ ~~1 = F~
’ ~1

LT21 T22j [Hw ZM] [0 ej

Equating terms, one has

and 

T111?’ + T12Hw = 
~~~
‘ (12)

T11Z + T12ZM = (13)

If one chooses

T11 ~-~1 (14)

and
T12 ~~~~~~~~ (15)

4
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equation (12) becomes

R R ’+H~,,Hw A .

Using previous definitions for Hw and using fr.4 = i~ a’ and ~~ = .ä .~~~‘, one obtains equa-
tion (3) of the Kalman filter. Similarly, substituting (14) and (15) into (13), one obtains
equation (1) of the Kalman filter.

The Householder algorithm can be used to triangulize the matrix represented in (11)
without ever computing the transform T directly. Only the basic results are sketched, and
an example is given. Detailed information may be found in reference 1. The algorithm is
based on reflection. Let the vector U be normal to the plane U1. An arbitrary vector Y can
be represented by

Y ’ ( Y ’U)O +v , (16)

where U = U/ ( U U) 112 and v is that part of Y that is orthogonal to U~ The reflection of Y
denoted by 

~r in the plane U1 is

(17)

and the results are represented in Fig. 1.

Eliminating v from (16) and (17) yields

Yr Y 2  ~J~~ U = (I -PU U’)Y = TY, (18)

where

The matrix T is an elementary Householder transform with properties T’ = T and T T’ = I.
Equation (18) can be shown to triangulize a matrix by first setting the elements of the vec-
tor U by

UI.

w,
u u U U

Fig . 1 — Geometry of the Householder algor ithm

5
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u(1) y ( i)+ a,

u(2) = y(2),

and

u ( j )  =

where a sgn y(1)~/V’V The transform TY yields yr( 1) = 0 and y~(j ) = 0 for j  = 1, 2
The first column of the matrix is chosen as y(j) in order to set u (j) .  Equation (18) is then
applied successively. The sign on (18) is changed to yield positive diagonal elements of a,
and the notation (

~ 
= 2/U’U is introduced. The algorithm operating on successive columns of

the matrix is

Yr = Y+ .8(Y ’U) U.

For example

~~ a12 013 a~ b12 b13

021 022 023 0 b22 b23Ti =

031 032 a33 0 b32 b33

041 042 043 0 b42 b43

where

+ a;

U= 21

a31

041

01 ‘~sgn(a11)~ 6~1 +4~ +a~~~ ~~~~~~

13=2/U’U,

~‘1j 
= a1~u(1) + a21u(2) + a31u(3) +

and

bj j ’ _ a
~~+f r , ij u (i) fo r j=1 , 2, and 3 a n d i = 1 , ..., 4. 

. ___ ,_~~~~~~~~~~~~~~_±_~~~~_ _ _ ~~~~..~
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The process is repeated for each successive submatrix . The next step is

01 b12 b13 o~ b12 b13

1 
01 

0 b22 b23 
= 

0 02 C23 
, (19)

0 T2~ 0 b32 b33 0 0 c33

- 0 b42 b43 0 0 c43

where

+ 02

U b32

b42

02 = sign(b 22) /’b~2 + b~2 + b~2,

~3=2/ U’U,

72j = b21u(1) + b31u(2) + b41u(3),

and

c~~~- b~~+ (3y2ju(j - 1) forj 2and 3~ ndi 2, 3, and 4.

Equation (19) is the desired triangular form required of equation (11) for the example.
The correspondence is

= 

0fl 0121 = 
[o~

021 022j L0 ~ 2

[031 0321 0331Hw~~~ I , ZM
[041 042j 0

43]

~ 
[0131 , 2= b13 

,ande = [c33

[a~~j  c23 [c43

The Householder algorithm just described can be compactly encoded in Fortran for
general computer operation . in some cases a hardware implementation is desirable and is
shown schematically in Fig. 

2 . 7
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a1~ ~12 a13
a21 a22 a23

a32 a33
a42 a43

\ / b~2 \ / b13
b2~ b23

I U I  b32 b3~

L a~_j b42 b~3

+

b~~ 1b13
o 02 C23
o 0 C33
o o c43

Fig. 2 — Schematic of operations performed
with the Householder algorithm

The Kalman and SRIF filters were briefly reviewed to set the notation and acquaint
those readers not familiar with algorithms with the salient features. A simple means of
obtaining the prediction portion of the SRIF filter under an important special case is next
considered.

PREDICTION PROCESS

The smoothing portion of the Kalman filter using SRIF implementation updates the
factorization of the smoothed covariance and the transformed best estimate. It is desirable
to update the prediction process in a commensurable form . Only an important special case
is considered.

The process noise W(k)  is assumed to be zero, and the state transition matrix is
assumed to be in upper triangular form . Equation (4) updating the prediction covariance
then becomes

1’ = 4~~I ’, (20)

_ _ _
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where the noise W(k) is removed and the sample k has been dropped for notational conveni-
ence. The inverse of (20) is taken, yielding

= (~~ ) 1~~~1~ ,_1 (21)

The covariances are replaced with their factorization

1~ ~~~
‘ - ($~) 1~~~~~$ 1,

which can be rewritten as

i~ .ñ’= [($S)_1j] {(4~I)_ 1j~J ’

Note that (~‘i~’~ is in lower triangular form, which means that

R = ($‘) 4R.. (22)

Equation (22) shows the simple form of updating the factor of the prediction covariance.

The predicted state given by

X=~I’X

from equation (5) is transformed by

(~~
Sy1

~~ =

where X = (1?Y1
~ and = (I ’11L Solving for~~ yields

Z = (R ’)4~á’)~~2 (23)

Substituting .R from (22) into (23) yields

z— 2 .  (24)

The transformed smoothed and predicted states are seen to be identical.

Sometimes it is desirable to implement a fading-memory filter by making the
smoothed covariance larger. This is accomplished by rewriting equation (21) as

p-i (4)?y.lg _14)_1 .

The parameter is a scaler representing a time fading by

• a e tIT,

where r is the time constant and t is time. Equation (22) is modified by

• 9 
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=

and equation (24 ) remains the same under the fading-memory condition.

IMPLEMENTATION

As an example a tracking problem is taken into consideration . The state transition
matrix

l t O o  1 - t o o
0 1 0 0  ~ 0 1 0 0
o o i ~ 

, where 4 = 0 0 1 - t
0 0 0 1  0 0 0 1

represents a target moving in a straight line in a two-dimensional Cartesian coordinate sys-
tem. The components of the state vector X(k) to be estimated are X1(k), the position in the
ith direction ; X 2 (k) ,  the velocity in the ith direction ; X3 (k) ,  the position in the jth direc-
tion ; and X4(k), the velocity in thejth direction. Only the positions are measured ; conse-
quently the measurement matrix H is

1 0 0 ol
H =  I-

o o l o J

The functional flow of the filter is shown in Fig. 3. The measurement is prewhitened
using the Cholesky factorization. In most tracking problems the inverse required can simply

• be written in closed form using the Cramer rule. The prediction variables are updated with
no more than a matrix multiplication. These steps can be mechanized with several degrees of
parallelism in hardware. Finally the smoothing is performed using the Householder algo-
rithm shown schematically in Fig. 2. The output of the filter in normal tracking is the sta-
tistical distance [2, 3] J = e’e which is required for correlation (a direct consequence of the
filter) and the predicted position X used in correlation and for display. The outputs are
easily obtained, indudjng X, because R 1 need not be found~The best estimate X can be
obtained from 2 and R ’ directly by back substitution , since B’ is in triangular form. All the
operations described including the Householder algorithm are simple operations easily
mechanized with parallelism in the hardware.

SUMMARY

The SRIF filter was briefly reviewed, including the Cholesky factorization and House-
holder algorithm. The smoothing portion of the SRIF filter is claimed to have good numeri-
cal characteristics and lends itself to parallel hardware operation . The prediction process
under an important simple case was examined. The state transition matrix was assumed to
be in upper triangular form , and the process noise was assumed to be zero. Most tracking
problems can be formulated in this form . Under this special case it was shown that the trans-
formed smoothed and predicted states were identical and that the smoothed and predicted
covariance factors were related by a simple matrix transform . Consequently the entire SRIF
fil ter including both the smoothing and prediction lends itself to hardware implementation.
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I

Obtain new measurement

II
Prewhitsn measurement:

0 • L L .
‘4w L 1 H and ZN - L ’ XM

Prediction :

Z - Z.and R ’ -

Smoothing:

r [
i Z ] . [: I

Prediction:

Statistical Distance :
J — I’ I .

FIg. 3 —  FunctIonal flow of the SRIF filter
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