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SIGNIFICANCE OF DELTA FERRITE CONTENT TO FATIGUE CRACK GROWTH
RESISTANCE OF AUSTENITIC STAINLESS STEEL WELD DEPOSITS

INTRODUCTION

The influence of delta ferrite content on the mechanical properties of austenitic stain-
less steel welds is being evaluated by the Naval Research Laboratory (NRL) for the Army
Engineer Power Group and the Energy Research und Development Administration (¢RDA).
The investigations, aimed at current and projected weld applications in nuclear rea tor
structures, encompass both preirradiation and postirradiation conditions and focus on
fatigue and notch toughness properties. The investigations were vrompted not only by the
extensive use of welded stainless steel in conventional and advanced (planned) reactor sys-
tems but also by prior observations of large variations in fatigue and fracture properties
among typical welds [1,2]. Several metallurgical factors may be responsible for the noted
observations. The NRL studies are attempting to isolate the primary variables contributing
to such variability and have, as a long-term objective, the development of guidelines for
improved welds for nuclear service.

-/

This report describes initial exploratory tests of fatigue crack growth resistance changes
with one metallurgical variable, deita ferrite content, over a broad range of service tempera-
tures. An initial study of the delta ferrite contribution to postirradiation fatigue behavior
is also described. Reports documentiiig results of a companion study on preirradiation
notch ductility characteristics versus delta ferrite content have been issued §344. ..--—

MATERIALS

The range of delta ferrite content of most interest to reactor applications is approxi-
mately from 5 to 15 percent. /1 series of four 6.4 cm (2-1/2 in.) thick shielded metal arc
weldments (Type 304 base plite, Type 308 filler) encompassing this range were obtained
for the investigations from the Arcos Corporation by contract. The electrode composition
and coatings used were tbose developed by Arcos for a prior Metal Properties Council
{MPC) project. A reference plate from NRL rtock served as base material.

Chemical compositions of the weld depcsits are listed in Table 1. Welding parameters
and conditions are documented elsewhee [3]. Each weld was a full-thickness weld (1.9 cm
(3/4 in.) minimum weld width), the root regions were arc-air back gouged and ground to all
weld metal after layer seven. Welding was accomplished under full mechanical restraint,
however, opposite faces were welded alternately in a sequence designed to minimize un-
balanced stresses. Delta ferrite contents of the individual welds in ferrite number, as deter-
mined by Magne-Gage*, were 5.2, 10.4,15.7, and 19.0, respectively.

Manuscript submitted Junuary 12, 1978
* A magnetism test device
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£ SPECIMEN DESIGN AND EVALUATION
Single-edge-notch (SEN) can'ilever fatigue specimens were used wi'erein the plane of
£ the fatigue crack was oriented paral’2] to the welding direction and perpendicular to the

E weldment surface. The features and dimensions of the SEN specimen are shown in Fig. 1.
: All weld specimens were composite specimens made by joining (el2ctron beam or metal
inert-gas welding) end tabs to a center test section. 5.6 X 8.4 X 1.3 cm in size. Comparisons
i of welded vs nonwelded specimens of similar materials (AISI Type 316 plate and welds)

A have indicated that test results from each are comparable [5].

All tests were conducted in air using a zero-tension-zero loading cycle. Specimen
temperatures were provided by induction heating and were monitored continuously during
testing by thermocouples. Tests normally were interrupted during nonworking frours and
were resumed only after the specimens had again reached temperature. No noticeable

—' effect of this procedure was seen in the data.
Crack length measurements were accomplished by means of a traveling microscope at
4 a magnification of X35 or by means of a high-resolution, closed-circuit television system.

The television system was used for those tests conducted remotely in the NRL hot-cell
facility. Rates of crack growth were established from plots of crack length vs number of

4 cycles using the ASTM-recommended ir.cremental polynomial method. The method

5 basically involved computer fitting, by least squares criteria, seven consecutive data points
(N;.3 to Ni,3) to 2 second order polynomial. The polynomia® in turn is differentiated to
yield da/dN to the N point.

The SEN specimen crack growth rates (da/dN) were related to stress-intensity factor
range (AK) using the expression for K for pure bending developed by Gross and Srawley

[6):

d Table 1 — Chemical Compositions of AISI Type 308 Shielded Meta} Arc
£ Weld Series With Variable Delta Ferrite Content

. " b

NRL Weld | Delta Ferrite Chemical Composition (wt-%)
474 ! )
Code | Content c |Mn|si| P | s | | N [Mo] N
Vdl 52  10.056{1.880.32|0.024 |0.011 [19.71 |10.35 | 0.05 | 0.068
(178 AA) . . 8810.32{ 0. . . .3510.05 | 0.
] (IYI‘;ZA) 104  {0.060 |1.54 [0.31 | 0.029 | 0.009 |19.90 | $.26 |0.05|0.074
(1‘;‘(‘)3A) 157  |0.060|1.66|0.32|0.029 |0.011 |20.89 | 9.11]0.06 | 0.079
; Va4
(181 KA) 190  [0.060|1.38|0.43{0.028{0.01021.08 | 8.93|0.08 0.084l
4 v/eld deposit feirite number (avg); Magne-Gage determination.

4 °Composi\‘.ion based on standard WRC weld test pad (courtesy Arcos Corporation), core wire for all elec-
trodes from same steel melt
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where Y =1.99 (a/W)1/2 - 2.47 (a/W)¥/2 + 12.97 (1/W)5/2 - 23.17 (a/W)7/2 + 24.80
(a/W)?/2, and where P is the cyclic load, L is the distance from the crack plane to the

point of load application, a is the total length of notch and crack, W is the specimen width,
B is the specimen thickness, and B,, is the net thickness between the specimen side grooves.
A correction for plasticity at the crack tip was not made. Tests of the SEN specimenz
normally were terminated when the total flaw length, a, reached about 3.8 cm (1.5 in.).

EXPERIMENTAL TEST MATRIX

The test matrix employed for the present study is outlined in Table 2. The matrix per-
mits a determination of temperature effects as well as delta farrite content effects on weld
properties. The test tempetature of 260°C corresponds to the operating temperature of the
Army MH-1 A reactor vessel; the 427°C and 649°C test temperatures were chosen to gen-
erally bracket the opersting-temperature range projected for many fast breeder reactor coin.-
ponents. As noted, the matrix called for a fatigue-cycling rate of 10 cpm (sawtooth test
mode). One test (V44-7) was made at a cycling rate of 2 cpm with a 0.5 m tension hold

time. Loading and unloading rates for the hold-time test were the same as those for the con-
tinuous-cycling tests.

Not shown in Table 2, a postirradiation comparison for welds V42 and V44 was also
developed. The specimens were irradiated at 649°C in the EBR-II reactor (subassembly
X-266) to 0.9 X 1022 n/cm2 >0.". MeV and were subsequently tested at 649°C at 10
cpm. A controlled-temperature, heut-p’ ~e irradiation assembly was used. The period of
irradiation was 3110 hours; total time in reactor was about 6000 hours. Specimen tempera-
tures during reactor downtimes were approximately 371°C.

Table 2 — Experimental Test Matrix*
(Unirradiated Condition)

Test Temperature
Weld Code Ferrite Number
260C(500F) 427C(800F) 649C(1200F)
V41 5.2 3b ! 6,8 7
V42 104 9 6 3
V43 15.7 3 5 6
V4 | 19.0 9 6,7° 3

;Zero-temion-zero loading, 10 cpm continuous cycling mode except as noted
Specimen ID number (typical)

€Zero-tensionzero loading, 2 cpm cycling with 0.5 min tension holu
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J. R. HAWTHORNE
RESULTS ARD DISCUSSION

Experimental results pertaining to the preirradiation condition are presented in Figs. 2
through 8. Initial findings for the 649°C postirradiation condition for welds V42 and V44
are shown in Fig. 9. Two general observations can be made immediately. First, overall dif-
ferences among all preirradiation condition results are relatively small. Secondly, the data
appear to conform to a power-law relationship of the form: da/dN = C(AK)™.

Effect of Delta Ferrite Content

Figures 2, 3, and 4, showing the performance of the welds at given test temperatures,
indicate essentially no effect of delta-ferrite content on fatigue crack growth resistance for
the range investigated. That is, no discernible trend of behavior with increasing ferrite con-
tent is found. Rather, the data appear to fall within a single data-scatter band at each
temperature. Figure 5 gives some indication of the extent of data scatter possible “or an
individual weld. The specimens in this example represent two test locations through the
weld thickness.*

Effect of Test Temperature

Figures 6 and 7 cummarize individual results for welds V42 and V44, respectively, for
the three test temperatures. These particular comparisons are indicative of the extremes in
temperature sensitivity observed among the four welds. Comparable fatigue crack growth
resistance is clearly demonstrated for 427°C versus 649°C temperature conditions; however,
a trend toward a slightly-lower fatigue crack growth rate was shown consistently in the case
of 260°C testing. On balance, the data reveal very low weld sensitivity to those temperature
conditions investigated. With reference to the 649°C test results, sigma phase forn.ation is
not evident from the data trend characteristics. The duration of tests in this case was in
excess of 40 houss. Sigma phase development and its potential contribution to fatigue crack
growth resistance will be explored further in conjunction with experimental evaluation of
long-term thermal-conditioning effects versus reactor irradiation effects.

Effect of Tension Hold Time

Figure 8 compares trends in the 427°C fatigue resistance of weld V44 under con-
tinuous cycling versus cycling with a 0.5-minute tension hold-time. The data describe
similar fatigue crack growth rates for most of the AK range. This observation is supported
by one made in an earlier study for Type 316 stainless steel welds [1] which compared
the effects of 10-cpm cycling versus 1-cpm cycling with a 54-second hold-time. In both
cases, continuous cycling produced growth rates similar to those from cycling with a ten-
sion-hold up to AK values of about 50 MPay/m (45 ksi\/n.). Above this AK value, some-
what greater growth rates were noted for the continuous—cycling mode. In contrast to these
observations, Shahinian [7] found an increase in growth rate at 427°C with the inclusion
of a 0.1-minute hold at peak load using a similar Type 308 weld. His data trend curves are

*The daia for specimen V41-6 should be taken with some reservation 1n that the specimen was brefly over
heated to 704 C prior to initial cycling.
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shown in Fig. 8 {(dashed lines). Enhunced r=covery of residual stresses during the hold
period was advanced as a possible explanation for the hol.-time effect.

The inconsistency between Shahinian’s observation and those of the present study
may be due to residual element content differences between the respective welds. In the
former case, the weld represented a controlled residual element (CRE) composition modifi-
cation of Type 308 which was specially developed for certain fast breeder reactor applica-
tions. It is noted that the CRE and non-CRE welds show a significant (2:1) difference in
growth rate with tension-hold cycling and low AK values. On the other hand, the welds
show comparable fatigue resistance under continuous cycling over the entire AK range
investigated. Further investigation of hold-time and composition varizbles clearly is
warranted. For Type 334 stainless steel plate, fatigue crack growth at 427°C does not ap-
pear to be changed if a tansion hold is applied (8] .

Effect of Neutron Irradiation

Figure 9 presents findings for two welds irradiated and tested at 649°C. In this ex-
ploratory comparison, an apparent relationship between delta ferrite content and radiation-
induced change in {atigue crack growth resistance is clearly evidenc. That is, weld V44, but
not weld V42, shows a large change in behavior over the preirradiation condition at AK
values greater than 22 MPay/m (20 ksi\/in.). Secondly, the radiation-induced change is
in the direction of higher growth rate. Whether or not the observed diftzrence is due to
thermal effects during the 649°C reactor xposure or radiation effects (or a combination
thereof will be investigated along with associated mechanisms by the continuing program.

In an earlier exploration of radiation effects, a submerged-arc Type 316 weld deposit
(ferrite number 11.1) irradiated in a water-cooled reactor and tested at 260°C showed
reduced crack growth rates after irradiation. The neutron fluence (V9 X 1019 n/cm?
>0.1 MeV) as well as the exposure temperature was much lower than those of the present
study. The observation here may not be inconsistent in that a change in the radiation effects
mechanism between the two exposur> temperatures is a distinct possibility. At 260°C,
radiation effacts are generally associated with the production of small defect clusters. At
649°C, on the other hand, radiation effects are associated with the formation of coarse
dislocation networks (and possibly voids), Also, at the higher temperature, radiation-
induced precipitate formation is considered a possibility.

FUTURE EFFORTS

The absence of pronounced differences in preirradiation fatigue crack growth: resis:-
ance due to delta ferrite content or test temperature is consistent with reported findings on
Charpy-V notch ductility and strength determinations for the welds [3] . With the exceptiun
of a determination of long-term thermal-conditioning effects to the welds, studies of the
preirradiation condition are therefore considered complete. The main thrust of the continu-
ing investigations will be toward assesstnents of the contribution of delta ferrite conty : to
postirradiation trends. Tovrard this end, EBR-II experiments are underway that involve
both 427 and 649°C exposures and test temperatures. Findings of these studies should be-
come availabi2 in 1979.
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SUMMARY AND CONCLUSIONS

A series of four AISI Type 308 weld deposits (shielded metal-arc nrocess) representing
a range of delta ferrite contents from ferrite number (FN) 5.2 to 19.0 have Ceen evaluated
for fatigue crack growth resistance at three elevated temperatures. The study focused on
weld comparisons in the unirradisted condition; however, an expioratory zasessment of the
significance of delta ferrite content to fatigue resistance after neutron irradiation was also
made.

Primary observations and conclusions drawn for the unirradiated test condition were:

1. Delta ferrite content variatiors within the range investigated do not result in a
major difference in fatigue crack growth behavior for Type 308 weld deposits at
either 260, 427, or 649°C for the case of fatigue cycling without a tension-hold
period.

2. Fatigue cycling at 427°C with a 0.5-minute tension-hold period produces essen-
tially the same fatigue crack growth trend as fatigue cycling at 10 cpm without a
tension-hold period.

3. The fatigue crack growth resistance of Type 308 weld deposits is not appreciably
governed by temperature within the range investigated. Fatigue crack growth
trends at 427 and 649°C were found to be essentially coincident; at 260°C, a
tendency toward lower f...gue crack growth rates was discemed in the data.

4. The controlled residual element (CRE) composition modification of Type 308
developed for certain fast breeder reactor applicatio 1s may be less resistant to
fatigue crack growth than the non-CRE compositior. at 427°C under certain
fatigue cycling modes, i.e., cycling with a tension-hold pez.od.

Primary obsetvations for the postirradiation condition based on results for two welds
tested at 649°C after V0.9 X 1022 n/cm2 >0.1 MeV at 649°C vere:

1. An apparent relationship exists between 649°C postirradiation fatigue crack
growth resistance and delta ferrite content.

2. Reduced 649°C fatigue crack growth resistance is produced by 649°C irradiation
of welds with FN 19.0 but not welds with FN 10.4.
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A growth resistance of weld V44
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Fig. 8 — Variation in fatigue crack growth resist-
ance of weld V42 with and without a 0.5-minute
tension hold-time added to the basic load pattern
(Trends observed by Shahinian [7] for a con-
trolled residual element composition modification
of Type 308 ere also shown.)
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Fig. 9 — Effect of 849°C neutron irradistion on
the 649 C fatigue crack growth resistance of weld
V42 (FN 10.2) and weld V44 (FN 19.0)
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